code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a__ : _a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) _a : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) _a : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.task_name.lower() class a__ ( snake_case__ ): _a : Union[str, Any] = """train""" _a : List[str] = """dev""" _a : int = """test""" class a__ ( snake_case__ ): _a : GlueDataTrainingArguments _a : str _a : List[InputFeatures] def __init__( self , _A , _A , _A = None , _A = Split.train , _A = None , ): """simple docstring""" warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , _A , ) __lowerCAmelCase = args __lowerCAmelCase = glue_processors[args.task_name]() __lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_A , _A ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) __lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCAmelCase , __lowerCAmelCase = label_list[2], label_list[1] __lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + ".lock" with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(_A ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowerCAmelCase = examples[:limit_length] __lowerCAmelCase = glue_convert_examples_to_features( _A , _A , max_length=args.max_seq_length , label_list=_A , output_mode=self.output_mode , ) __lowerCAmelCase = time.time() torch.save(self.features , _A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _A ): """simple docstring""" return self.features[i] def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.label_list
92
from queue import PriorityQueue from typing import Any import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : set , SCREAMING_SNAKE_CASE_ : set , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : PriorityQueue , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue __lowerCAmelCase = cst_fwd.get(SCREAMING_SNAKE_CASE_ , np.inf ) __lowerCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __lowerCAmelCase = new_cost_f __lowerCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __lowerCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict ): __lowerCAmelCase = -1 __lowerCAmelCase = set() __lowerCAmelCase = set() __lowerCAmelCase = {source: 0} __lowerCAmelCase = {destination: 0} __lowerCAmelCase = {source: None} __lowerCAmelCase = {destination: None} __lowerCAmelCase = PriorityQueue() __lowerCAmelCase = PriorityQueue() __lowerCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __lowerCAmelCase , __lowerCAmelCase = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = pass_and_relaxation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = pass_and_relaxation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __lowerCAmelCase = shortest_distance return shortest_path_distance UpperCamelCase__ = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } UpperCamelCase__ = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
92
1
'''simple docstring''' UpperCamelCase__ : int = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert type(a_ ) in (int, float) and decimal == int(a_ ) A_ : Union[str, Any] = int(a_ ) A_ : List[Any] = """""" A_ : Tuple = False if decimal < 0: A_ : List[Any] = True decimal *= -1 while decimal > 0: A_ , A_ : Any = divmod(a_ , 1_6 ) A_ : str = values[remainder] + hexadecimal A_ : Optional[int] = """0x""" + hexadecimal if negative: A_ : Dict = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
164
'''simple docstring''' import math def UpperCAmelCase ( a_ ) -> list: """simple docstring""" A_ : List[Any] = [True] * n A_ : List[Any] = False A_ : Union[str, Any] = False A_ : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): A_ : Optional[Any] = i * 2 while index < n: A_ : Any = False A_ : str = index + i A_ : List[str] = [2] for i in range(3 , a_ , 2 ): if is_prime[i]: primes.append(a_ ) return primes def UpperCAmelCase ( a_ = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int: """simple docstring""" A_ : Any = math.floor(math.sqrt(a_ ) ) + 1_0_0 A_ : int = prime_sieve(a_ ) A_ : int = 0 A_ : Union[str, Any] = 0 A_ : List[str] = primes[prime_index] while (last_prime**2) <= limit: A_ : Tuple = primes[prime_index + 1] A_ : List[Any] = last_prime**2 A_ : Union[str, Any] = next_prime**2 # Get numbers divisible by lps(current) A_ : Tuple = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A_ : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A_ : str = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A_ : Any = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
164
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Dict: lowerCAmelCase = 0 def _snake_case ( self ) -> int: lowerCAmelCase = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = Path(UpperCamelCase_ ) / '''preprocessor_config.json''' lowerCAmelCase = Path(UpperCamelCase_ ) / '''config.json''' json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase_ , """w""" ) ) lowerCAmelCase = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ) -> int: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = Path(UpperCamelCase_ ) / '''preprocessor_config.json''' lowerCAmelCase = Path(UpperCamelCase_ ) / '''config.json''' json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase_ , """w""" ) ) lowerCAmelCase = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase = Path(UpperCamelCase_ ) / '''preprocessor_config.json''' lowerCAmelCase = Path(UpperCamelCase_ ) / '''config.json''' json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase_ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase = AutoImageProcessor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase = CLIPImageProcessor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) lowerCAmelCase = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved lowerCAmelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = Path(UpperCamelCase_ ) / '''preprocessor_config.json''' json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) lowerCAmelCase = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ) -> Union[str, Any]: with self.assertRaisesRegex( UpperCamelCase_ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase = AutoImageProcessor.from_pretrained("""clip-base""" ) def _snake_case ( self ) -> Tuple: with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase = AutoImageProcessor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def _snake_case ( self ) -> Optional[int]: with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _snake_case ( self ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) lowerCAmelCase = AutoImageProcessor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _snake_case ( self ) -> List[Any]: try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = Path(UpperCamelCase_ ) / '''preprocessor_config.json''' lowerCAmelCase = Path(UpperCamelCase_ ) / '''config.json''' json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase_ , """w""" ) ) lowerCAmelCase = CustomImageProcessor.from_pretrained(UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) lowerCAmelCase = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Optional[int]: class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
46
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , ): __lowercase : Tuple = {} if train_file is not None: __lowercase : List[Any] = [train_file] if eval_file is not None: __lowercase : List[str] = [eval_file] if test_file is not None: __lowercase : List[Any] = [test_file] __lowercase : List[str] = datasets.load_dataset('''csv''' , data_files=__UpperCamelCase ) __lowercase : str = list(ds[list(files.keys() )[0]].features.keys() ) __lowercase : Union[str, Any] = features_name.pop(__UpperCamelCase ) __lowercase : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase : List[str] = {label: i for i, label in enumerate(__UpperCamelCase )} __lowercase : Optional[Any] = tokenizer.model_input_names __lowercase : Optional[Any] = {} if len(__UpperCamelCase ) == 1: for k in files.keys(): __lowercase : str = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) , batched=__UpperCamelCase , ) elif len(__UpperCamelCase ) == 2: for k in files.keys(): __lowercase : List[Any] = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' , ) , batched=__UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase : Dict = {k: v for k, v in ex.items() if k in input_names} __lowercase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase : Tuple = {k: v for k, v in ex.items() if k in input_names} __lowercase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowercase : Dict = labelaid[ex[label_name]] yield (d, label) __lowercase : str = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase : str = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a_ = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : UpperCamelCase =field(metadata={"help": "Which column contains the label"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the training file"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the development file"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the test file"} ) UpperCamelCase =field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase =field( default=snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCAmelCase_ : UpperCamelCase =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase =field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase =field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase =field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase ,__lowercase ,__lowercase : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase ,__lowercase ,__lowercase ,__lowercase : Any = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCamelCase ) , labelaid=__UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCamelCase ) -> Dict: __lowercase : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase : Optional[Any] = TFTrainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase : List[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase : List[Any] = trainer.evaluate() __lowercase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(__UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(__UpperCamelCase ) return results if __name__ == "__main__": main()
249
0
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 1, _UpperCAmelCase = 1, _UpperCAmelCase = 1.0E4, _UpperCAmelCase = False, _UpperCAmelCase = 1.0, ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"Embedding dimension {embedding_dim} should be even" __UpperCAmelCase : int = float(embedding_dim // 2 ) __UpperCAmelCase : List[Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __UpperCAmelCase : Optional[Any] = min_timescale * jnp.exp(jnp.arange(_a, dtype=jnp.floataa ) * -log_timescale_increment ) __UpperCAmelCase : int = jnp.expand_dims(_a, 1 ) * jnp.expand_dims(_a, 0 ) # scale embeddings __UpperCAmelCase : List[Any] = scale * emb if flip_sin_to_cos: __UpperCAmelCase : int = jnp.concatenate([jnp.cos(_a ), jnp.sin(_a )], axis=1 ) else: __UpperCAmelCase : Union[str, Any] = jnp.concatenate([jnp.sin(_a ), jnp.cos(_a )], axis=1 ) __UpperCAmelCase : Dict = jnp.reshape(_a, [jnp.shape(_a )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE = 32 SCREAMING_SNAKE_CASE = jnp.floataa @nn.compact def __call__( self : Union[str, Any] , UpperCAmelCase_ : Dict ): """simple docstring""" __UpperCAmelCase : int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(lowerCamelCase_ ) __UpperCAmelCase : str = nn.silu(lowerCamelCase_ ) __UpperCAmelCase : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(lowerCamelCase_ ) return temb class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE = 32 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 1 @nn.compact def __call__( self : Dict , UpperCAmelCase_ : Any ): """simple docstring""" return get_sinusoidal_embeddings( lowerCamelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
360
'''simple docstring''' from datetime import datetime as dt import os from github import Github lowerCAmelCase__ : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __UpperCamelCase ( ): __UpperCAmelCase : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) __UpperCAmelCase : Union[str, Any] = g.get_repo("huggingface/transformers" ) __UpperCAmelCase : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: __UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase ) __UpperCAmelCase : Any = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
37
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowerCAmelCase_ = None lowerCAmelCase_ = { '''7B''': 1_1_0_0_8, '''13B''': 1_3_8_2_4, '''30B''': 1_7_9_2_0, '''65B''': 2_2_0_1_6, '''70B''': 2_8_6_7_2, } lowerCAmelCase_ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1 , _UpperCamelCase=256 ) -> List[str]: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" with open(_UpperCamelCase , '''r''' ) as f: return json.load(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ) -> List[Any]: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : Tuple = os.path.join(_UpperCamelCase , '''tmp''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : Dict = read_json(os.path.join(_UpperCamelCase , '''params.json''' ) ) snake_case_ : List[Any] = NUM_SHARDS[model_size] snake_case_ : Union[str, Any] = params['''n_layers'''] snake_case_ : List[Any] = params['''n_heads'''] snake_case_ : int = n_heads // num_shards snake_case_ : str = params['''dim'''] snake_case_ : str = dim // n_heads snake_case_ : int = 10_000.0 snake_case_ : List[str] = 1.0 / (base ** (torch.arange(0 , _UpperCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case_ : Union[str, Any] = params['''n_kv_heads'''] # for GQA / MQA snake_case_ : List[Any] = n_heads_per_shard // num_key_value_heads snake_case_ : List[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case_ : List[Any] = n_heads snake_case_ : Dict = n_heads_per_shard snake_case_ : str = dim # permute for sliced rotary def permute(_UpperCamelCase , _UpperCamelCase=n_heads , _UpperCamelCase=dim , _UpperCamelCase=dim ): return w.view(_UpperCamelCase , dima // n_heads // 2 , 2 , _UpperCamelCase ).transpose(1 , 2 ).reshape(_UpperCamelCase , _UpperCamelCase ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case_ : str = torch.load(os.path.join(_UpperCamelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded snake_case_ : List[Any] = [ torch.load(os.path.join(_UpperCamelCase , f'''consolidated.{i:02d}.pth''' ) , map_location='''cpu''' ) for i in range(_UpperCamelCase ) ] snake_case_ : List[Any] = 0 snake_case_ : str = {'''weight_map''': {}} for layer_i in range(_UpperCamelCase ): snake_case_ : List[str] = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : Optional[Any] = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case_ : int = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case_ : List[Any] = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Optional[int] = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) snake_case_ : Any = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Dict = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : str = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : Optional[Any] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : Dict = inv_freq for k, v in state_dict.items(): snake_case_ : Optional[int] = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : str = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : List[str] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: snake_case_ : Optional[int] = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_UpperCamelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_UpperCamelCase )] , dim=0 ), } for k, v in state_dict.items(): snake_case_ : int = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) # Write configs snake_case_ : Optional[int] = {'''total_size''': param_count * 2} write_json(_UpperCamelCase , os.path.join(_UpperCamelCase , '''pytorch_model.bin.index.json''' ) ) snake_case_ : Any = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 snake_case_ : Any = params['''multiple_of'''] if '''multiple_of''' in params else 256 snake_case_ : Dict = LlamaConfig( hidden_size=_UpperCamelCase , intermediate_size=compute_intermediate_size(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_UpperCamelCase , ) config.save_pretrained(_UpperCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) snake_case_ : Optional[Any] = LlamaForCausalLM.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_UpperCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_UpperCamelCase , safe_serialization=_UpperCamelCase ) shutil.rmtree(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" snake_case_ : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case_ : Union[str, Any] = tokenizer_class(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_UpperCamelCase , help='''Whether or not to save using `safetensors`.''' ) snake_case_ : Dict = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case_ : str = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _UpperCamelCase ) if __name__ == "__main__": main()
279
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase_ = random.Random() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: """simple docstring""" if rng is None: snake_case_ : str = global_rng snake_case_ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=400 , __magic_name__=2000 , __magic_name__=10 , __magic_name__=160 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=4000 , __magic_name__=False , __magic_name__=True , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : str = batch_size snake_case_ : Union[str, Any] = min_seq_length snake_case_ : Tuple = max_seq_length snake_case_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : Optional[int] = padding_value snake_case_ : Union[str, Any] = sampling_rate snake_case_ : Optional[int] = return_attention_mask snake_case_ : str = do_normalize snake_case_ : str = feature_size snake_case_ : Optional[Any] = chunk_length snake_case_ : Union[str, Any] = hop_length def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase (self , __magic_name__=False , __magic_name__=False ) -> Optional[Any]: '''simple docstring''' def _flatten(__magic_name__ ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: snake_case_ : int = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : str = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = WhisperFeatureExtractionTester(self ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Union[str, Any] = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) snake_case_ : List[Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) snake_case_ : Optional[int] = feat_extract_first.to_dict() snake_case_ : Dict = feat_extract_second.to_dict() snake_case_ : List[str] = feat_extract_first.mel_filters snake_case_ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(__magic_name__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(__magic_name__ ) snake_case_ : Optional[int] = self.feature_extraction_class.from_json_file(__magic_name__ ) snake_case_ : int = feat_extract_first.to_dict() snake_case_ : Optional[int] = feat_extract_second.to_dict() snake_case_ : Union[str, Any] = feat_extract_first.mel_filters snake_case_ : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : str = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test feature size snake_case_ : str = feature_extractor(__magic_name__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features snake_case_ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test batched snake_case_ : int = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case_ : List[str] = np.asarray(__magic_name__ ) snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Dict = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test truncation required snake_case_ : Any = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] snake_case_ : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] snake_case_ : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ : Optional[Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated] snake_case_ : Any = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def lowerCamelCase (self ) -> int: '''simple docstring''' import torch snake_case_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa ) snake_case_ : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case_ : Optional[Any] = ds.sort('''id''' ).select(range(__magic_name__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : str = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on snake_case_ : List[Any] = self._load_datasamples(1 ) snake_case_ : Union[str, Any] = WhisperFeatureExtractor() snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1e-4 ) ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Optional[int] = self._load_datasamples(1 )[0] snake_case_ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue snake_case_ : Optional[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0] self.assertTrue(np.all(np.mean(__magic_name__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1e-3 ) )
279
1
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] ="time_series_transformer" a : Union[str, Any] ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = [1, 2, 3, 4, 5, 6, 7] , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 64 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = prediction_length lowerCAmelCase : int = context_length or prediction_length lowerCAmelCase : Tuple = distribution_output lowerCAmelCase : Any = loss lowerCAmelCase : List[Any] = input_size lowerCAmelCase : Optional[int] = num_time_features lowerCAmelCase : Union[str, Any] = lags_sequence lowerCAmelCase : Union[str, Any] = scaling lowerCAmelCase : Tuple = num_dynamic_real_features lowerCAmelCase : List[Any] = num_static_real_features lowerCAmelCase : List[str] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : Optional[Any] = cardinality else: lowerCAmelCase : Any = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : Optional[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Optional[int] = input_size * len(__UpperCAmelCase ) + self._number_of_features lowerCAmelCase : Optional[Any] = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : Optional[int] = decoder_attention_heads lowerCAmelCase : Any = encoder_ffn_dim lowerCAmelCase : Any = decoder_ffn_dim lowerCAmelCase : Any = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Tuple = activation_dropout lowerCAmelCase : List[str] = encoder_layerdrop lowerCAmelCase : Tuple = decoder_layerdrop lowerCAmelCase : List[Any] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[int] = use_cache super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
354
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = data lowerCAmelCase : Tuple = None class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Optional[int] = None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.head while temp is not None: print(temp.data , end=" " ) lowerCAmelCase : List[str] = temp.next print() def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = Node(snake_case__ ) lowerCAmelCase : Union[str, Any] = self.head lowerCAmelCase : Optional[Any] = new_node def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if node_data_a == node_data_a: return else: lowerCAmelCase : str = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase : Union[str, Any] = node_a.next lowerCAmelCase : Any = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase : List[Any] = node_a.next if node_a is None or node_a is None: return lowerCAmelCase , lowerCAmelCase : str = node_a.data, node_a.data if __name__ == "__main__": lowerCAmelCase__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
133
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = RoCBertTokenizer __lowerCamelCase : str = None __lowerCamelCase : str = False __lowerCamelCase : List[Any] = True __lowerCamelCase : Any = filter_non_english def _lowerCAmelCase ( self ): super().setUp() A : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] A : List[Any] = {} A : List[Any] = {} for i, value in enumerate(lowerCamelCase__ ): A : List[str] = i A : Optional[int] = i A : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) A : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""word_shape_file"""] ) A : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file, """w""", encoding="""utf-8""" ) as word_shape_writer: json.dump(lowerCamelCase__, lowerCamelCase__, ensure_ascii=lowerCamelCase__ ) with open(self.word_pronunciation_file, """w""", encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(lowerCamelCase__, lowerCamelCase__, ensure_ascii=lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[Any] = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) A : int = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(lowerCamelCase__, ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCamelCase__ ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCamelCase__ ), [5, 6, 2, 5, 7, 8] ) def _lowerCAmelCase ( self ): A : List[Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ), ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def _lowerCAmelCase ( self ): A : List[str] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ), ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def _lowerCAmelCase ( self ): A : str = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__, strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""h\u00E9llo"""] ) def _lowerCAmelCase ( self ): A : Any = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__, strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def _lowerCAmelCase ( self ): A : List[Any] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def _lowerCAmelCase ( self ): A : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ), ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _lowerCAmelCase ( self ): A : Dict = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__, strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _lowerCAmelCase ( self ): A : Any = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__, strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _lowerCAmelCase ( self ): A : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__, never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ), ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def _lowerCAmelCase ( self ): A : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] A : Union[str, Any] = {} for i, token in enumerate(lowerCamelCase__ ): A : Any = i A : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=lowerCamelCase__, unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ), [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ), ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ), ["""[UNK]""", """runn""", """##ing"""] ) def _lowerCAmelCase ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def _lowerCAmelCase ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def _lowerCAmelCase ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def _lowerCAmelCase ( self ): A : List[str] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]], [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: A : str = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]], [["""[UNK]"""], [], ["""[UNK]"""]] ) def _lowerCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__, **lowerCamelCase__ ) A : Optional[int] = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' A : int = tokenizer_r.encode_plus( lowerCamelCase__, return_attention_mask=lowerCamelCase__, return_token_type_ids=lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, add_special_tokens=lowerCamelCase__, ) A : int = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__, """do_lower_case""" ) else False A : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results], tokens["""offset_mapping"""] ) def _lowerCAmelCase ( self ): A : Tuple = ["""的""", """人""", """有"""] A : Tuple = """""".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A : Tuple = True A : Optional[int] = self.tokenizer_class.from_pretrained(lowerCamelCase__, **lowerCamelCase__ ) A : str = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__, **lowerCamelCase__ ) A : str = tokenizer_p.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) A : List[Any] = tokenizer_r.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) A : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) A : List[str] = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) A : Union[str, Any] = False A : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__, **lowerCamelCase__ ) A : Tuple = self.tokenizer_class.from_pretrained(lowerCamelCase__, **lowerCamelCase__ ) A : List[str] = tokenizer_r.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) A : Tuple = tokenizer_p.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) A : List[Any] = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) A : List[str] = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". A : Optional[Any] = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) @slow def _lowerCAmelCase ( self ): A : Dict = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) A : Optional[int] = tokenizer.encode("""你好""", add_special_tokens=lowerCamelCase__ ) A : str = tokenizer.encode("""你是谁""", add_special_tokens=lowerCamelCase__ ) A : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) A : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__, lowerCamelCase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _lowerCAmelCase ( self ): A : Union[str, Any] = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): A : List[str] = """你好,你是谁""" A : Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) A : List[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) A : Optional[int] = tokenizer.convert_tokens_to_shape_ids(lowerCamelCase__ ) A : List[Any] = tokenizer.convert_tokens_to_pronunciation_ids(lowerCamelCase__ ) A : Union[str, Any] = tokenizer.prepare_for_model( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) A : str = tokenizer.encode_plus(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__, lowerCamelCase__ )
116
def __UpperCamelCase ( _lowerCAmelCase = 100_0000 ) -> int: """simple docstring""" A : str = limit + 1 A : Tuple = [0] * limit for first_term in range(1 , _lowerCAmelCase ): for n in range(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): A : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a A : Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
116
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase : Any = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["BeitFeatureExtractor"] lowerCamelCase : str = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "T5Config" class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig
114
0
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A ( tf.keras.layers.Layer ): def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1 , lowerCamelCase__=False , **lowerCamelCase__ ) -> Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) lowercase__ = vocab_size lowercase__ = d_embed lowercase__ = d_proj lowercase__ = cutoffs + [vocab_size] lowercase__ = [0] + self.cutoffs lowercase__ = div_val lowercase__ = self.cutoffs[0] lowercase__ = len(self.cutoffs ) - 1 lowercase__ = self.shortlist_size + self.n_clusters lowercase__ = keep_order lowercase__ = [] lowercase__ = [] def A__ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' if self.n_clusters > 0: lowercase__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=lowerCamelCase__ , name="""cluster_weight""" ) lowercase__ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=lowerCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowercase__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'''out_projs_._{i}''' , ) self.out_projs.append(lowerCamelCase__ ) else: self.out_projs.append(lowerCamelCase__ ) lowercase__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'''out_layers_._{i}_._weight''' , ) lowercase__ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowercase__ , lowercase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ = self.d_embed // (self.div_val**i) lowercase__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'''out_projs_._{i}''' ) self.out_projs.append(lowerCamelCase__ ) lowercase__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'''out_layers_._{i}_._weight''' , ) lowercase__ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=lowerCamelCase__ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(lowerCamelCase__ ) @staticmethod def A__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> int: '''simple docstring''' lowercase__ = x if proj is not None: lowercase__ = tf.einsum("""ibd,ed->ibe""" , lowerCamelCase__ , lowerCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , lowerCamelCase__ , lowerCamelCase__ ) + b @staticmethod def A__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' lowercase__ = shape_list(lowerCamelCase__ ) lowercase__ = tf.range(lp_size[0] , dtype=target.dtype ) lowercase__ = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCamelCase__ , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=False ) -> int: '''simple docstring''' lowercase__ = 0 if self.n_clusters == 0: lowercase__ = self._logit(lowerCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowercase__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) lowercase__ = tf.nn.log_softmax(lowerCamelCase__ , axis=-1 ) else: lowercase__ = shape_list(lowerCamelCase__ ) lowercase__ = [] lowercase__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowercase__ , lowercase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowercase__ = (target >= l_idx) & (target < r_idx) lowercase__ = tf.where(lowerCamelCase__ ) lowercase__ = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) - l_idx if self.div_val == 1: lowercase__ = self.out_layers[0][0][l_idx:r_idx] lowercase__ = self.out_layers[0][1][l_idx:r_idx] else: lowercase__ = self.out_layers[i][0] lowercase__ = self.out_layers[i][1] if i == 0: lowercase__ = tf.concat([cur_W, self.cluster_weight] , 0 ) lowercase__ = tf.concat([cur_b, self.cluster_bias] , 0 ) lowercase__ = self._logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.out_projs[0] ) lowercase__ = tf.nn.log_softmax(lowerCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowercase__ = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = self._gather_logprob(lowerCamelCase__ , lowerCamelCase__ ) else: lowercase__ = self._logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.out_projs[i] ) lowercase__ = tf.nn.log_softmax(lowerCamelCase__ ) lowercase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster lowercase__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCamelCase__ ) if target is not None: lowercase__ = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = self._gather_logprob(lowerCamelCase__ , lowerCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCamelCase__ , -cur_logprob , shape_list(lowerCamelCase__ ) ) lowercase__ = tf.concat(lowerCamelCase__ , axis=-1 ) if target is not None: if return_mean: lowercase__ = tf.reduce_mean(lowerCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
164
'''simple docstring''' def _A ( lowercase__ , lowercase__ ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowercase__ = str(bin(lowercase__ ) )[2:] # remove the leading "0b" lowercase__ = str(bin(lowercase__ ) )[2:] lowercase__ = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
164
1
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a_ = random.Random() def lowerCamelCase__ ( _a , _a=1.0 , _a=None , _a=None): if rng is None: SCREAMING_SNAKE_CASE : int = global_rng SCREAMING_SNAKE_CASE : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , a : Any , a : Dict=7 , a : int=400 , a : Tuple=2000 , a : Union[str, Any]=2048 , a : Dict=128 , a : Union[str, Any]=1 , a : List[Any]=512 , a : Any=30 , a : int=4_4100 , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Optional[int] = min_seq_length SCREAMING_SNAKE_CASE : Optional[int] = max_seq_length SCREAMING_SNAKE_CASE : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : Optional[int] = spectrogram_length SCREAMING_SNAKE_CASE : List[Any] = feature_size SCREAMING_SNAKE_CASE : int = num_audio_channels SCREAMING_SNAKE_CASE : Union[str, Any] = hop_length SCREAMING_SNAKE_CASE : Optional[int] = chunk_length SCREAMING_SNAKE_CASE : str = sampling_rate def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __UpperCamelCase ( self : List[Any] , a : List[str]=False , a : Dict=False ) -> Any: """simple docstring""" def _flatten(a : Optional[Any] ): return list(itertools.chain(*a ) ) if equal_length: SCREAMING_SNAKE_CASE : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : Any = [np.asarray(a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =TvltFeatureExtractor def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = TvltFeatureExtractionTester(self ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(a , "spectrogram_length" ) ) self.assertTrue(hasattr(a , "feature_size" ) ) self.assertTrue(hasattr(a , "num_audio_channels" ) ) self.assertTrue(hasattr(a , "hop_length" ) ) self.assertTrue(hasattr(a , "chunk_length" ) ) self.assertTrue(hasattr(a , "sampling_rate" ) ) def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Tuple = feat_extract_first.save_pretrained(a )[0] check_json_file_has_correct_format(a ) SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class.from_pretrained(a ) SCREAMING_SNAKE_CASE : str = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : List[str] = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : Tuple = dict_first.pop("mel_filters" ) SCREAMING_SNAKE_CASE : List[Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(a , a ) ) self.assertEqual(a , a ) def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(a , "feat_extract.json" ) feat_extract_first.to_json_file(a ) SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class.from_json_file(a ) SCREAMING_SNAKE_CASE : int = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : Tuple = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : Dict = dict_first.pop("mel_filters" ) SCREAMING_SNAKE_CASE : Any = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(a , a ) ) self.assertEqual(a , a ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(a ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE : int = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE : List[str] = feature_extractor(a , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor( a , return_tensors="np" , sampling_rate=4_4100 , mask_audio=a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(a , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __UpperCamelCase ( self : Tuple , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE : List[str] = ds.sort("id" ).select(range(a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE : Optional[Any] = TvltFeatureExtractor() SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(a , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , a , atol=1e-4 ) )
76
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _lowerCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' _lowerCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' _lowerCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return float((preds == labels).mean() ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase="binary" ): """simple docstring""" lowerCAmelCase__ : Any = simple_accuracy(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = float(fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average=UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = {} for id_pred, label in zip(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCAmelCase__ : Dict = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Optional[int] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*UpperCamelCase ) lowerCAmelCase__ : List[Any] = fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average="""macro""" ) fas.append(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase ) ) ems.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = float(sum(UpperCamelCase ) / len(UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = sum(UpperCamelCase ) / len(UpperCamelCase ) lowerCAmelCase__ : Dict = float(fa_score(y_true=UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None ,) def UpperCAmelCase_ ( self ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__UpperCAmelCase ,__UpperCAmelCase )} elif self.config_name == "cb": return acc_and_fa(__UpperCAmelCase ,__UpperCAmelCase ,fa_avg="""macro""" ) elif self.config_name == "record": lowerCAmelCase__ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCAmelCase__ : Union[str, Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__UpperCAmelCase ,__UpperCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__UpperCAmelCase ,__UpperCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
37
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : List[Any] = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Any = num_choices _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : str = self.vocab_size - 1 def __A ( self ): _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : str = None _lowerCAmelCase : Any = None _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Tuple = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _lowerCAmelCase : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self , a__ , a__ , a__ , a__ , *a__ ): _lowerCAmelCase : int = OpenAIGPTModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , token_type_ids=a__ , head_mask=a__ ) _lowerCAmelCase : Optional[Any] = model(a__ , token_type_ids=a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , *a__ ): _lowerCAmelCase : Tuple = OpenAIGPTLMHeadModel(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model(a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , *a__ ): _lowerCAmelCase : Optional[Any] = OpenAIGPTDoubleHeadsModel(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Any = model(a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , *a__ ): _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Any = OpenAIGPTForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Any = model(a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : List[str] = config_and_inputs _lowerCAmelCase : List[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _UpperCamelCase : List[str] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _UpperCamelCase : Tuple = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self , a__ , a__ , a__=False ): _lowerCAmelCase : Tuple = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _lowerCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a__ , ) _lowerCAmelCase : str = inputs_dict["""labels"""] _lowerCAmelCase : Tuple = inputs_dict["""labels"""] _lowerCAmelCase : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a__ , ) _lowerCAmelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def __A ( self ): _lowerCAmelCase : Any = OpenAIGPTModelTester(self ) _lowerCAmelCase : str = ConfigTester(self , config_class=a__ , n_embd=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a__ ) @slow def __A ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : int = OpenAIGPTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : str = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(a__ ) _lowerCAmelCase : Tuple = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=a__ ) # the president is _lowerCAmelCase : Any = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _lowerCAmelCase : Union[str, Any] = model.generate(a__ , do_sample=a__ ) self.assertListEqual(output_ids[0].tolist() , a__ )
371
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def SCREAMING_SNAKE_CASE ( ) -> Tuple: _lowerCAmelCase : Tuple = torch.nn.Linear(2 ,4 ) _lowerCAmelCase : Union[str, Any] = torch.optim.AdamW(model.parameters() ,lr=1.0 ) _lowerCAmelCase : Tuple = torch.optim.lr_scheduler.OneCycleLR(_lowerCamelCase ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) _lowerCAmelCase : Tuple = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _lowerCAmelCase : List[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> int: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Any: _lowerCAmelCase : List[str] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowerCamelCase ) class __A ( SCREAMING_SNAKE_CASE_ ): @require_cuda def __A ( self ): _lowerCAmelCase : Union[str, Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a__ ): _lowerCAmelCase : Tuple = Accelerator(cpu=a__ ) def __A ( self ): _lowerCAmelCase : Dict = Accelerator() _lowerCAmelCase : Any = GradientState() assert state.num_steps == 1 _lowerCAmelCase : Optional[int] = 4 assert state.num_steps == 4 assert state.sync_gradients is True _lowerCAmelCase : Dict = False assert state.sync_gradients is False GradientState._reset_state() def __A ( self ): _lowerCAmelCase : Optional[int] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = create_components() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __A ( self ): _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __A ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a__ , **a__ ): pass with patch("""torch.cuda.set_device""" , a__ ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): _lowerCAmelCase : Dict = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def __A ( self ): _lowerCAmelCase : Any = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) _lowerCAmelCase : List[Any] = get_signature(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1e-3 ) def __A ( self ): _lowerCAmelCase : str = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) _lowerCAmelCase : Optional[Any] = get_signature(a__ ) # saving hook def save_config(a__ , a__ , a__ ): _lowerCAmelCase : Dict = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(a__ , """data.json""" ) , """w""" ) as f: json.dump(a__ , a__ ) # loading hook def load_config(a__ , a__ ): with open(os.path.join(a__ , """data.json""" ) , """r""" ) as f: _lowerCAmelCase : int = json.load(a__ ) _lowerCAmelCase : str = config["""class_name"""] _lowerCAmelCase : Union[str, Any] = accelerator.register_save_state_pre_hook(a__ ) _lowerCAmelCase : int = accelerator.register_load_state_pre_hook(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match with hooks load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCAmelCase : Dict = """random""" # make sure loaded weights match with hooks accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match with hooks removed load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCAmelCase : Optional[Any] = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = create_components() _lowerCAmelCase : Any = None # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = accelerator.prepare( a__ , a__ , a__ , a__ , a__ , a__ ) self.assertTrue(dummy_obj is None ) def __A ( self ): _lowerCAmelCase : str = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = create_components() _lowerCAmelCase : Optional[int] = [1, 2, 3] # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = accelerator.prepare( a__ , a__ , a__ , a__ , a__ , a__ ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def __A ( self ): from transformers import AutoModelForCausalLM _lowerCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map={"""""": 0} , ) _lowerCAmelCase : List[str] = Accelerator() # This should work _lowerCAmelCase : List[Any] = accelerator.prepare(a__ ) @slow @require_bnb def __A ( self ): from transformers import AutoModelForCausalLM _lowerCAmelCase : Any = Accelerator() with init_empty_weights(): _lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase : int = infer_auto_device_map(a__ ) _lowerCAmelCase : Optional[Any] = """cpu""" _lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=a__ , load_in_abit=a__ , llm_inta_enable_fpaa_cpu_offload=a__ ) # This should not work and get value error with self.assertRaises(a__ ): _lowerCAmelCase : List[str] = accelerator.prepare(a__ ) @slow @require_bnb @require_multi_gpu def __A ( self ): from transformers import AutoModelForCausalLM _lowerCAmelCase : Dict = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): _lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase : List[str] = infer_auto_device_map(a__ ) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map=a__ , ) _lowerCAmelCase : Tuple = Accelerator() # This should not work and get value error with self.assertRaises(a__ ): _lowerCAmelCase : Optional[int] = accelerator.prepare(a__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __A ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): _lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) _lowerCAmelCase : int = infer_auto_device_map(a__ ) _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map=a__ , ) _lowerCAmelCase : str = Accelerator() # This should work _lowerCAmelCase : str = accelerator.prepare(a__ ) @require_cuda def __A ( self ): _lowerCAmelCase : Union[str, Any] = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Any = torch.optim.SGD(model.parameters() , lr=0.0_1 ) _lowerCAmelCase : List[str] = Accelerator(cpu=a__ ) _lowerCAmelCase : Tuple = accelerator.prepare(a__ )
126
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ : Optional[int] = logging.get_logger(__name__) lowercase_ : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : Tuple = "codegen" snake_case_ : Optional[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , snake_case__ : Any=50_400 , snake_case__ : int=2_048 , snake_case__ : Optional[Any]=2_048 , snake_case__ : Tuple=4_096 , snake_case__ : List[str]=28 , snake_case__ : List[Any]=16 , snake_case__ : int=64 , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]="gelu_new" , snake_case__ : List[Any]=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : Optional[int]=0.0 , snake_case__ : Dict=1e-5 , snake_case__ : int=0.02 , snake_case__ : Union[str, Any]=True , snake_case__ : str=50_256 , snake_case__ : List[str]=50_256 , snake_case__ : Optional[int]=False , **snake_case__ : str , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_ctx _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_inner _UpperCAmelCase = rotary_dim _UpperCAmelCase = activation_function _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ ) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : List[str] , snake_case__ : PretrainedConfig , snake_case__ : str = "default" , snake_case__ : List[PatchingSpec] = None , snake_case__ : bool = False , ): """simple docstring""" super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , "pad_token_id" , snake_case__ ): # TODO: how to do that better? _UpperCAmelCase = 0 @property def UpperCamelCase ( self : Tuple ): """simple docstring""" _UpperCAmelCase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) _UpperCAmelCase = {0: "batch", 1: "past_sequence + sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCamelCase ( self : int ): """simple docstring""" return self._config.n_layer @property def UpperCamelCase ( self : List[str] ): """simple docstring""" return self._config.n_head def UpperCamelCase ( self : List[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): """simple docstring""" _UpperCAmelCase = super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCAmelCase = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] _UpperCAmelCase = common_inputs["attention_mask"] if self.use_past: _UpperCAmelCase = ordered_inputs["attention_mask"].dtype _UpperCAmelCase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def UpperCamelCase ( self : Any ): """simple docstring""" return 13
133
0
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , ): __lowerCAmelCase = parent __lowerCAmelCase = 13 __lowerCAmelCase = 7 __lowerCAmelCase = 30 __lowerCAmelCase = self.seq_length + self.mem_len __lowerCAmelCase = 15 __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = 99 __lowerCAmelCase = [10, 50, 80] __lowerCAmelCase = 32 __lowerCAmelCase = 32 __lowerCAmelCase = 4 __lowerCAmelCase = 8 __lowerCAmelCase = 1_28 __lowerCAmelCase = 2 __lowerCAmelCase = 2 __lowerCAmelCase = None __lowerCAmelCase = 1 __lowerCAmelCase = 0 __lowerCAmelCase = 3 __lowerCAmelCase = self.vocab_size - 1 __lowerCAmelCase = 0.0_1 def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = TFTransfoXLModel(__a ) __lowerCAmelCase , __lowerCAmelCase = model(__a ).to_tuple() __lowerCAmelCase = {"input_ids": input_ids_a, "mems": mems_a} __lowerCAmelCase , __lowerCAmelCase = model(__a ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = TFTransfoXLLMHeadModel(__a ) __lowerCAmelCase , __lowerCAmelCase = model(__a ).to_tuple() __lowerCAmelCase = {"input_ids": input_ids_a, "labels": lm_labels} __lowerCAmelCase , __lowerCAmelCase = model(__a ).to_tuple() __lowerCAmelCase , __lowerCAmelCase = model([input_ids_a, mems_a] ).to_tuple() __lowerCAmelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __lowerCAmelCase , __lowerCAmelCase = model(__a ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = TFTransfoXLForSequenceClassification(__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : Any =() if is_tf_available() else () __UpperCAmelCase : Dict =( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __UpperCAmelCase : str =False __UpperCAmelCase : Any =False __UpperCAmelCase : Optional[int] =False __UpperCAmelCase : Optional[Any] =False def snake_case ( self , __a , __a , __a , __a , __a ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case ( self ): __lowerCAmelCase = TFTransfoXLModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , d_embed=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): self.model_tester.set_seed() __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__a ) def snake_case ( self ): self.model_tester.set_seed() __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __lowerCAmelCase = model.get_output_embeddings() assert isinstance(__a , tf.keras.layers.Layer ) __lowerCAmelCase = model.get_bias() assert name is None else: __lowerCAmelCase = model.get_output_embeddings() assert x is None __lowerCAmelCase = model.get_bias() assert name is None def snake_case ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def snake_case ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFTransfoXLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def snake_case ( self ): pass @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved." ) @slow def snake_case ( self ): __lowerCAmelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __lowerCAmelCase = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __lowerCAmelCase = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __lowerCAmelCase = model.generate(__a , max_length=2_00 , do_sample=__a ) self.assertListEqual(output_ids[0].numpy().tolist() , __a )
259
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Tuple = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str ="""data2vec-audio""" def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.0_2 , __a=1e-5 , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=16 , __a=19 , __a=5 , __a=0.0_5 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="sum" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ): super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) __lowerCAmelCase = hidden_size __lowerCAmelCase = feat_extract_activation __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = conv_bias __lowerCAmelCase = num_conv_pos_embeddings __lowerCAmelCase = num_conv_pos_embedding_groups __lowerCAmelCase = conv_pos_kernel_size __lowerCAmelCase = len(self.conv_dim ) __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = feat_proj_dropout __lowerCAmelCase = final_dropout __lowerCAmelCase = layerdrop __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = vocab_size __lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase = mask_time_prob __lowerCAmelCase = mask_time_length __lowerCAmelCase = mask_time_min_masks __lowerCAmelCase = mask_feature_prob __lowerCAmelCase = mask_feature_length __lowerCAmelCase = mask_feature_min_masks # ctc loss __lowerCAmelCase = ctc_loss_reduction __lowerCAmelCase = ctc_zero_infinity # adapter __lowerCAmelCase = add_adapter __lowerCAmelCase = adapter_kernel_size __lowerCAmelCase = adapter_stride __lowerCAmelCase = num_adapter_layers __lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = xvector_output_dim @property def snake_case ( self ): return math.prod(self.conv_stride )
259
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _lowerCamelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Dict , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[Any] ): """simple docstring""" warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
28
from math import log from scipy.constants import Boltzmann, physical_constants a : Any = 300 # TEMPERATURE (unit = K) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
114
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class _A ( unittest.TestCase ): def __A ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="""utf-8""" , check=__UpperCAmelCase , ) assert hasattr(self , """env""" ) def __A ( self , __UpperCAmelCase=1 ) -> Optional[Any]: '''simple docstring''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-single' , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' TrainingJobAnalytics(__UpperCAmelCase ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) def __A ( self ) -> Tuple: '''simple docstring''' # create estimator __UpperCAmelCase : str = self.create_estimator() # run training estimator.fit() # result dataframe __UpperCAmelCase : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCAmelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __UpperCAmelCase : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCAmelCase : int = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __UpperCAmelCase )
16
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
1
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = (DPMSolverSinglestepScheduler,) lowerCamelCase = (('num_inference_steps', 25),) def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]: '''simple docstring''' A__ = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**lowercase_ ) return config def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('num_inference_steps',lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ = sample, sample for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ): A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self : List[str] )-> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('num_inference_steps',lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int: '''simple docstring''' if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = 1_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample return sample def snake_case__ ( self : Any )-> str: '''simple docstring''' A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = 5_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def snake_case__ ( self : int )-> Optional[Any]: '''simple docstring''' A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = self.full_loop(scheduler=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 A__ = DEISMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ = UniPCMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ = self.full_loop(scheduler=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def snake_case__ ( self : Tuple )-> Any: '''simple docstring''' self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,) def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def snake_case__ ( self : Dict )-> List[Any]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,) A__ = self.full_loop( solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' self.check_over_configs(variance_type=lowercase_ ) self.check_over_configs(variance_type='learned_range' ) def snake_case__ ( self : str )-> Any: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase_,time_step=0 ) def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' A__ = self.full_loop() A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def snake_case__ ( self : Any )-> Union[str, Any]: '''simple docstring''' A__ = self.full_loop(use_karras_sigmas=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' A__ = self.full_loop(prediction_type='v_prediction' ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def snake_case__ ( self : Tuple )-> int: '''simple docstring''' A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 ) A__ = scheduler_class(**lowercase_ ) A__ = 1_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample assert sample.dtype == torch.floataa
7
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Dict , __lowerCamelCase : Any=3_0522 , __lowerCamelCase : int=768 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Dict=9500 , __lowerCamelCase : List[str]=1600 , __lowerCamelCase : Tuple=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Any=2 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : str=1e-12 , __lowerCamelCase : Optional[Any]=9 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : int=4 , __lowerCamelCase : Tuple=6.67 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=True , **__lowerCamelCase : List[Any] , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
359
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] SCREAMING_SNAKE_CASE__ = (low + high) // 2 SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = max_subarray(_A , _A , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = max_subarray(_A , mid + 1 , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = max_cross_sum(_A , _A , _A , _A ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = float('''-inf''' ), -1 SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = float('''-inf''' ), -1 SCREAMING_SNAKE_CASE__ = 0 for i in range(_A , low - 1 , -1 ): summ += arr[i] if summ > left_sum: SCREAMING_SNAKE_CASE__ = summ SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: SCREAMING_SNAKE_CASE__ = summ SCREAMING_SNAKE_CASE__ = i return max_left, max_right, (left_sum + right_sum) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [randint(1 , _A ) for _ in range(_A )] SCREAMING_SNAKE_CASE__ = time.time() max_subarray(_A , 0 , input_size - 1 ) SCREAMING_SNAKE_CASE__ = time.time() return end - start def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] SCREAMING_SNAKE_CASE__ = [time_max_subarray(_A ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(_A , _A ): print(_A , '''\t\t''' , _A ) plt.plot(_A , _A ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
218
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __A = logging.get_logger(__name__) __A = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A ( A__ ): lowerCamelCase : Tuple = """van""" def __init__( self , lowerCamelCase__=224 , lowerCamelCase__=3 , lowerCamelCase__=[7, 3, 3, 3] , lowerCamelCase__=[4, 2, 2, 2] , lowerCamelCase__=[64, 128, 320, 512] , lowerCamelCase__=[3, 3, 12, 3] , lowerCamelCase__=[8, 8, 4, 4] , lowerCamelCase__="gelu" , lowerCamelCase__=0.02 , lowerCamelCase__=1e-6 , lowerCamelCase__=1e-2 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowercase__ = image_size lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = strides lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = mlp_ratios lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = dropout_rate
164
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase = TypeVar("""T""") class A_ ( Generic[T] ): """simple docstring""" def __init__( self :Dict , lowerCamelCase_ :bool = True ): """simple docstring""" lowerCamelCase__ : dict[T, list[T]] ={} # dictionary of lists lowerCamelCase__ : int =directed def UpperCAmelCase__ ( self :str , lowerCamelCase_ :T , lowerCamelCase_ :T ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) self.adj_list[destination_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Dict =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Dict =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCamelCase__ : Union[str, Any] =[destination_vertex] lowerCamelCase__ : Any =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCamelCase__ : Tuple =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCamelCase__ : str =[destination_vertex] lowerCamelCase__ : Optional[Any] =[] return self def __repr__( self :Optional[Any] ): """simple docstring""" return pformat(self.adj_list )
126
0
"""simple docstring""" from timeit import timeit __UpperCamelCase : Optional[Any] = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = len(_UpperCAmelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = len(_UpperCAmelCase ) // 2 lowerCAmelCase = len(_UpperCAmelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(_UpperCAmelCase ) <= 2: return True if s[0] == s[len(_UpperCAmelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return s == s[::-1] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'all({name}(key) is value for key, value in test_data.items())' lowerCAmelCase = F'from __main__ import test_data, {name}' lowerCAmelCase = 50_0000 lowerCAmelCase = timeit(stmt=_UpperCAmelCase , setup=_UpperCAmelCase , number=_UpperCAmelCase ) print(F'{name:<35} finished {number:,} runs in {result:.5f} seconds' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
309
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] =ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> int: UpperCamelCase :Union[str, Any] = (3, 32, 128) UpperCamelCase :Any = tempfile.mkdtemp() # fmt: off UpperCamelCase :int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCamelCase :Optional[int] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) UpperCamelCase :Tuple = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } UpperCamelCase :str = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , **SCREAMING_SNAKE_CASE_ ) -> int: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Dict = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) UpperCamelCase :List[Any] = Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) return image_input def UpperCAmelCase ( self ) -> str: UpperCamelCase :str = self.get_tokenizer() UpperCamelCase :Union[str, Any] = self.get_image_processor() UpperCamelCase :List[Any] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase :Dict = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[int] = self.get_tokenizer() UpperCamelCase :Dict = self.get_image_processor() UpperCamelCase :List[Any] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase :Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase :Optional[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) UpperCamelCase :int = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Tuple = self.get_image_processor() UpperCamelCase :List[str] = self.get_tokenizer() UpperCamelCase :str = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = self.prepare_image_inputs() UpperCamelCase :List[str] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) UpperCamelCase :Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Optional[Any] = self.get_image_processor() UpperCamelCase :Union[str, Any] = self.get_tokenizer() UpperCamelCase :int = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = '''test''' UpperCamelCase :Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :List[str] = self.get_image_processor() UpperCamelCase :Tuple = self.get_tokenizer() UpperCamelCase :Union[str, Any] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = '''test''' UpperCamelCase :str = self.prepare_image_inputs() UpperCamelCase :Dict = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Optional[Any] = self.get_image_processor() UpperCamelCase :Any = self.get_tokenizer() UpperCamelCase :Union[str, Any] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase :Union[str, Any] = processor.char_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :List[Any] = self.get_image_processor() UpperCamelCase :Optional[Any] = self.get_tokenizer() UpperCamelCase :Any = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = None UpperCamelCase :List[Any] = self.prepare_image_inputs() UpperCamelCase :Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :str = self.get_image_processor() UpperCamelCase :Tuple = self.get_tokenizer() UpperCamelCase :Optional[int] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = torch.randn(1 , 27 , 38 ) UpperCamelCase :Union[str, Any] = torch.randn(1 , 27 , 5_0257 ) UpperCamelCase :Optional[Any] = torch.randn(1 , 27 , 3_0522 ) UpperCamelCase :Optional[Any] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
259
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=[1, 384, 24, 24] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , ) -> int: UpperCamelCase :List[Any] = parent UpperCamelCase :List[str] = batch_size UpperCamelCase :Optional[Any] = image_size UpperCamelCase :Optional[Any] = patch_size UpperCamelCase :Optional[Any] = num_channels UpperCamelCase :Union[str, Any] = is_training UpperCamelCase :Dict = use_labels UpperCamelCase :List[Any] = hidden_size UpperCamelCase :Optional[int] = num_hidden_layers UpperCamelCase :Any = backbone_out_indices UpperCamelCase :int = num_attention_heads UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :List[str] = hidden_act UpperCamelCase :Optional[int] = hidden_dropout_prob UpperCamelCase :int = attention_probs_dropout_prob UpperCamelCase :Optional[Any] = initializer_range UpperCamelCase :List[Any] = num_labels UpperCamelCase :Any = backbone_featmap_shape UpperCamelCase :Optional[int] = scope UpperCamelCase :Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase :Tuple = (image_size // patch_size) ** 2 UpperCamelCase :int = num_patches + 1 def UpperCAmelCase ( self ) -> str: UpperCamelCase :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase :int = None if self.use_labels: UpperCamelCase :str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase :Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Tuple = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Optional[int] = DPTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :Tuple = self.num_labels UpperCamelCase :Any = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :int = self.num_labels UpperCamelCase :str = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :List[str] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = config_and_inputs UpperCamelCase :List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ : Optional[Any] =( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Optional[int] =False UpperCamelCase_ : Union[str, Any] =False def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[Any] = DPTModelTester(self ) UpperCamelCase :List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def UpperCAmelCase ( self ) -> int: pass def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> int: UpperCamelCase , UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Tuple = [*signature.parameters.keys()] UpperCamelCase :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :int = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ): continue UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase :Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Union[str, Any] = False UpperCamelCase :Dict = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase :Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase :List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Dict: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Dict = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase :Tuple = model_class(config=SCREAMING_SNAKE_CASE_ ) # Skip the check for the backbone UpperCamelCase :List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase :Tuple = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self ) -> Tuple: pass @slow def UpperCAmelCase ( self ) -> Any: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase :int = DPTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Optional[Any] = '''add''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :int = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) def _A ( ): UpperCamelCase :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: UpperCamelCase :Any = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCamelCase :int = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = prepare_img() UpperCamelCase :Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase :Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = outputs.predicted_depth # verify the predicted depth UpperCamelCase :List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
259
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''input_features'''] def __init__( self : Any , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : str=1_6000 , UpperCAmelCase_ : Optional[int]=160 , UpperCAmelCase_ : int=30 , UpperCAmelCase_ : Union[str, Any]=400 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : Tuple , ): super().__init__( feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Any = n_fft SCREAMING_SNAKE_CASE : List[Any] = hop_length SCREAMING_SNAKE_CASE : List[str] = chunk_length SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length * sampling_rate SCREAMING_SNAKE_CASE : List[Any] = self.n_samples // hop_length SCREAMING_SNAKE_CASE : Union[str, Any] = sampling_rate SCREAMING_SNAKE_CASE : Optional[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase_ , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=UpperCAmelCase_ , norm="slaney" , mel_scale="slaney" , ) def _A ( self : Optional[int] , UpperCAmelCase_ : np.array ): SCREAMING_SNAKE_CASE : List[Any] = spectrogram( UpperCAmelCase_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) SCREAMING_SNAKE_CASE : List[str] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : Tuple = np.maximum(UpperCAmelCase_ , log_spec.max() - 8.0 ) SCREAMING_SNAKE_CASE : Dict = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _A ( UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : float = 0.0 ): if attention_mask is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(UpperCAmelCase_ , np.intaa ) SCREAMING_SNAKE_CASE : int = [] for vector, length in zip(UpperCAmelCase_ , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE : Optional[Any] = padding_value normed_input_values.append(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : List[Any] , UpperCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[str] = "max_length" , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Union[str, Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) SCREAMING_SNAKE_CASE : Any = isinstance(UpperCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE : List[Any] = is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ): SCREAMING_SNAKE_CASE : List[str] = np.asarray(UpperCAmelCase_ , dtype=np.floataa ) elif isinstance(UpperCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Any = [np.asarray([raw_speech] ).T] SCREAMING_SNAKE_CASE : Optional[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = self.pad( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=max_length if max_length else self.n_samples , truncation=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: SCREAMING_SNAKE_CASE : List[str] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) SCREAMING_SNAKE_CASE : int = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format SCREAMING_SNAKE_CASE : Union[str, Any] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) SCREAMING_SNAKE_CASE : int = [self._np_extract_fbank_features(UpperCAmelCase_ ) for waveform in input_features[0]] if isinstance(input_features[0] , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[str] = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for feature in input_features] else: SCREAMING_SNAKE_CASE : int = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) SCREAMING_SNAKE_CASE : List[Any] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[Any] = padded_inputs.convert_to_tensors(UpperCAmelCase_ ) return padded_inputs def _A ( self : str ): SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : List[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
319
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='''utf-8''' ,check=_snake_case ,) assert hasattr(self ,'''env''' ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Any=1 ) -> Any: """simple docstring""" return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=f"""{self.env.base_job_name}-single""" ,instance_count=_snake_case ,instance_type=self.instance_type ,debugger_hook_config=_snake_case ,hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version='''py36''' ,) def UpperCAmelCase ( self : Tuple ,_snake_case : List[Any] ) -> List[Any]: """simple docstring""" TrainingJobAnalytics(_snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = self.create_estimator() # run training estimator.fit() # result dataframe lowercase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowercase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' ,999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" ,'''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} ,_snake_case )
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch UpperCamelCase_ = "sshleifer/bart-tiny-random" UpperCamelCase_ = "patrickvonplaten/t5-tiny-random" @require_torch class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return AutoConfig.from_pretrained(__snake_case ) def __UpperCamelCase ( self ): _lowerCAmelCase , *_lowerCAmelCase : Dict = create_student_by_copying_alternating_layers(__snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def __UpperCamelCase ( self ): _lowerCAmelCase , *_lowerCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(__snake_case , tempfile.mkdtemp() , e=1 , d=__snake_case ) def __UpperCamelCase ( self ): _lowerCAmelCase , *_lowerCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(__snake_case , tempfile.mkdtemp() , e=1 , d=__snake_case ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def __UpperCamelCase ( self ): _lowerCAmelCase , *_lowerCAmelCase : Dict = create_student_by_copying_alternating_layers(__snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def __UpperCamelCase ( self ): with self.assertRaises(__snake_case ): create_student_by_copying_alternating_layers(__snake_case , tempfile.mkdtemp() , e=__snake_case , d=__snake_case )
309
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'git_vision_model' def __init__( self , __snake_case=768 , __snake_case=3072 , __snake_case=12 , __snake_case=12 , __snake_case=3 , __snake_case=224 , __snake_case=16 , __snake_case="quick_gelu" , __snake_case=1e-5 , __snake_case=0.0 , __snake_case=0.02 , **__snake_case , ) -> int: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =intermediate_size __a =num_hidden_layers __a =num_attention_heads __a =num_channels __a =patch_size __a =image_size __a =initializer_range __a =attention_dropout __a =layer_norm_eps __a =hidden_act @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __a , __a =cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": __a =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'git' def __init__( self , __snake_case=None , __snake_case=3_0522 , __snake_case=768 , __snake_case=6 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1024 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=False , __snake_case=101 , __snake_case=102 , __snake_case=None , **__snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , pad_token_id=__snake_case , **__snake_case ) if vision_config is None: __a ={} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) __a =GitVisionConfig(**__snake_case ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_act __a =intermediate_size __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =initializer_range __a =layer_norm_eps __a =position_embedding_type __a =use_cache __a =tie_word_embeddings __a =num_image_with_embedding __a =bos_token_id __a =eos_token_id def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.vision_config.to_dict() __a =self.__class__.model_type return output
218
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __snake_case = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize __snake_case = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' __snake_case = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' __snake_case = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def A_ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def A_ ( self : List[str] , UpperCAmelCase_ : Optional[int] ): import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def A_ ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]=0.9 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Union[str, Any]=0.5 ): if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE__ = [ meteor_score.single_meteor_score( word_tokenize(lowercase_ ) , word_tokenize(lowercase_ ) , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] else: SCREAMING_SNAKE_CASE__ = [ meteor_score.single_meteor_score(lowercase_ , lowercase_ , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] return {"meteor": np.mean(lowercase_ )}
356
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case = 50_00_00 __snake_case ,__snake_case = os.path.split(__file__) __snake_case = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.map(**UpperCamelCase_ ) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.filter(**UpperCamelCase_ ) def _lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) SCREAMING_SNAKE_CASE__ = generate_example_dataset( os.path.join(UpperCamelCase_ , 'dataset.arrow' ) , UpperCamelCase_ , num_examples=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=UpperCamelCase_ ) def tokenize(UpperCamelCase_ ): return tokenizer(examples['text'] ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='numpy' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='pandas' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='torch' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = filter(UpperCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase_ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase_ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
169
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand UpperCamelCase_ = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) UpperCamelCase_ = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) UpperCamelCase_ = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) UpperCamelCase_ = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) UpperCamelCase_ = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) UpperCamelCase_ = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) UpperCamelCase_ = ( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def _UpperCAmelCase ( ) -> Dict: _lowerCAmelCase , _lowerCAmelCase : List[Any] = randrange(len(_lowerCamelCase ) ), randrange(len(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> Optional[Any]: return (generate_random_hand() for _ in range(_lowerCamelCase )) @pytest.mark.parametrize("""hand, expected""" , _lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int ) -> Optional[Any]: assert PokerHand(_lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , _lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : int ) -> int: assert PokerHand(_lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , _lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int ) -> Union[str, Any]: _lowerCAmelCase : int = PokerHand(_lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , _lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ) -> Optional[int]: assert PokerHand(_lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , _lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any ) -> str: assert PokerHand(_lowerCamelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , _lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : List[Any] ) -> Dict: assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] ) -> Any: assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected def _UpperCAmelCase ( ) -> Dict: _lowerCAmelCase : Optional[Any] = [PokerHand(_lowerCamelCase ) for hand in SORTED_HANDS] _lowerCAmelCase : Any = poker_hands.copy() shuffle(_lowerCamelCase ) _lowerCAmelCase : List[str] = chain(sorted(_lowerCamelCase ) ) for index, hand in enumerate(_lowerCamelCase ): assert hand == poker_hands[index] def _UpperCAmelCase ( ) -> List[Any]: # Test that five high straights are compared correctly. _lowerCAmelCase : Dict = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=_lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _UpperCAmelCase ( ) -> str: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _lowerCAmelCase : Optional[int] = PokerHand("""2C 4S AS 3D 5C""" ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _UpperCAmelCase ( ) -> Any: # Problem number 54 from Project Euler # Testing from poker_hands.txt file _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Optional[Any] = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) _lowerCAmelCase : str = os.path.join(_lowerCamelCase , """poker_hands.txt""" ) with open(_lowerCamelCase ) as file_hand: for line in file_hand: _lowerCAmelCase : List[Any] = line[:14].strip() _lowerCAmelCase : Optional[int] = line[15:].strip() _lowerCAmelCase , _lowerCAmelCase : Any = PokerHand(_lowerCamelCase ), PokerHand(_lowerCamelCase ) _lowerCAmelCase : Any = player.compare_with(_lowerCamelCase ) if output == "Win": answer += 1 assert answer == 3_76
309
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
1
'''simple docstring''' from copy import deepcopy class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : list[int] | None = None , SCREAMING_SNAKE_CASE_ : int | None = None ) -> None: '''simple docstring''' if arr is None and size is not None: A: Tuple = size A: Dict = [0] * size elif arr is not None: self.init(SCREAMING_SNAKE_CASE_ ) else: raise ValueError('''Either arr or size must be specified''' ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[int] ) -> None: '''simple docstring''' A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) A: List[str] = deepcopy(SCREAMING_SNAKE_CASE_ ) for i in range(1 , self.size ): A: Any = self.next_(SCREAMING_SNAKE_CASE_ ) if j < self.size: self.tree[j] += self.tree[i] def _snake_case ( self : Optional[int] ) -> list[int]: '''simple docstring''' A: Optional[Any] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): A: int = self.next_(SCREAMING_SNAKE_CASE_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' return index - (index & (-index)) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A: Dict = self.next_(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' self.add(SCREAMING_SNAKE_CASE_ , value - self.get(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' if right == 0: return 0 A: Any = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A: Dict = self.prev(SCREAMING_SNAKE_CASE_ ) return result def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' return self.prefix(SCREAMING_SNAKE_CASE_ ) - self.prefix(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' return self.query(SCREAMING_SNAKE_CASE_ , index + 1 ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 A: Dict = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A: Optional[Any] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
319
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('''only integers accepted as input''' ) else: A: str = str(abs(__lowercase ) ) A: int = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
319
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def A (__lowerCamelCase :float , __lowerCamelCase :float ): if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
229
'''simple docstring''' import numpy as np import qiskit def A (__lowerCamelCase :int = 8 , __lowerCamelCase :int | None = None ): _lowerCAmelCase = np.random.default_rng(seed=__lowerCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCAmelCase = 6 * key_len # Measurement basis for Alice's qubits. _lowerCAmelCase = rng.integers(2 , size=__lowerCamelCase ) # The set of states Alice will prepare. _lowerCAmelCase = rng.integers(2 , size=__lowerCamelCase ) # Measurement basis for Bob's qubits. _lowerCAmelCase = rng.integers(2 , size=__lowerCamelCase ) # Quantum Circuit to simulate BB84 _lowerCAmelCase = qiskit.QuantumCircuit(__lowerCamelCase , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(__lowerCamelCase ): if alice_state[index] == 1: bbaa_circ.x(__lowerCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(__lowerCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__lowerCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(__lowerCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCAmelCase = qiskit.execute(__lowerCamelCase , __lowerCamelCase , shots=1 , seed_simulator=__lowerCamelCase ) # Returns the result of measurement. _lowerCAmelCase = job.result().get_counts(__lowerCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCAmelCase = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCAmelCase = gen_key[:key_len] if len(__lowerCamelCase ) >= key_len else gen_key.ljust(__lowerCamelCase , """0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
229
1
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->bool: """simple docstring""" lowercase : str = str(_UpperCamelCase ) return len(_UpperCamelCase ) == 9 and set(_UpperCamelCase ) == set('''123456789''' ) def __lowercase ( ) ->int | None: """simple docstring""" for base_num in range(9999, 4999, -1 ): lowercase : Optional[Any] = 100002 * base_num if is_9_pandigital(_UpperCamelCase ): return candidate for base_num in range(333, 99, -1 ): lowercase : Union[str, Any] = 1002003 * base_num if is_9_pandigital(_UpperCamelCase ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
337
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCamelCase : int = False try: lowerCamelCase : Dict = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class __lowercase : """simple docstring""" def __init__( self , A = None , A = [] ) -> Optional[int]: snake_case : List[str] = 0 snake_case : str = choices snake_case : Any = prompt if sys.platform == "win32": snake_case : Tuple = """*""" else: snake_case : Union[str, Any] = """➔ """ def UpperCAmelCase ( self , A , A = "" ) -> int: if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , A ) else: forceWrite(self.choices[index] , A ) def UpperCAmelCase ( self , A ) -> Dict: if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(A ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def UpperCAmelCase ( self , A , A = 1 ) -> Union[str, Any]: snake_case : Dict = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(A ) move_cursor(A , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def UpperCAmelCase ( self ) -> Optional[Any]: self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def UpperCAmelCase ( self ) -> Tuple: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def UpperCAmelCase ( self ) -> str: move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def UpperCAmelCase ( self ) -> List[Any]: move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(A )] for number in range(1_0 )] ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = int(chr(self.current_selection ) ) snake_case : List[str] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , A ) else: return else: return def UpperCAmelCase ( self , A = 0 ) -> Union[str, Any]: if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) snake_case : Optional[int] = default_choice for i in range(len(self.choices ) ): self.print_choice(A ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: snake_case : Union[str, Any] = int(builtins.input() ) except ValueError: snake_case : int = default_choice else: snake_case : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(A , """\n""" ) return choice
350
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCAmelCase ( self ) -> Any: return self._get_dummy_components() def UpperCAmelCase ( self , A , A=0 ) -> Optional[int]: if str(A ).startswith("""mps""" ): snake_case : List[str] = torch.manual_seed(A ) else: snake_case : Optional[int] = torch.Generator(device=A ).manual_seed(A ) snake_case : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> Any: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def UpperCAmelCase ( self ) -> List[str]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase ( self ) -> List[str]: self._test_save_load_local() def UpperCAmelCase ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> List[Any]: # if snake_case : Tuple = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) snake_case : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A , tokenizer=A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) snake_case , snake_case : Optional[int] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() snake_case : List[str] = None snake_case : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img snake_case : Any = IFImgaImgPipeline(**pipe_a.components ) snake_case : Dict = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting snake_case : Optional[Any] = IFInpaintingPipeline(**pipe_a.components ) snake_case : Any = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A , A , A , A ) def UpperCAmelCase ( self , A , A , A , A ) -> str: # pipeline 1 _start_torch_memory_measurement() snake_case : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Tuple = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) snake_case : Optional[int] = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() snake_case : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : str = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) snake_case : str = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def UpperCAmelCase ( self , A , A , A , A ) -> int: # pipeline 1 _start_torch_memory_measurement() snake_case : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Union[str, Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) snake_case : Optional[int] = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() snake_case : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : int = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A ) snake_case : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : int = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , original_image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) snake_case : List[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def UpperCAmelCase ( self , A , A , A , A ) -> Any: # pipeline 1 _start_torch_memory_measurement() snake_case : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(A ) snake_case : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Tuple = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) snake_case : Tuple = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() snake_case : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : Any = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A ) snake_case : str = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(A ) snake_case : List[str] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , original_image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) snake_case : List[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def SCREAMING_SNAKE_CASE__ ( ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
176
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a__ : """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = None __lowerCamelCase = None def lowerCAmelCase__ ( ) -> Node | None: '''simple docstring''' A__ = Node(1 ) A__ = Node(2 ) A__ = Node(3 ) A__ = Node(4 ) A__ = Node(5 ) return tree def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] if root is None: return output A__ = deque([root] ) while process_queue: A__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] def populate_output(SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] def populate_output(SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] A__ = [] A__ = 0 A__ = height(SCREAMING_SNAKE_CASE_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = 1 else: output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = 0 return output def lowerCAmelCase__ ( ) -> None: # Main function for testing. '''simple docstring''' A__ = make_tree() print(F'In-order Traversal: {inorder(SCREAMING_SNAKE_CASE_ )}' ) print(F'Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE_ )}' ) print(F'Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE_ )}' , "\n" ) print(F'Height of Tree: {height(SCREAMING_SNAKE_CASE_ )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(SCREAMING_SNAKE_CASE_ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(SCREAMING_SNAKE_CASE_ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , level=SCREAMING_SNAKE_CASE_ ) ) print("\nZigZag order Traversal: " ) print(zigzag(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
68
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : List[str] = 1_6 _lowerCAmelCase : List[Any] = 3_2 def lowerCAmelCase ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": UpperCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) set_seed(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase__ = os.path.split(_lowerCAmelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase__ = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCAmelCase ), "epoch": epoch, } , step=_lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCAmelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
169
0
def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = generate_pascal_triangle(UpperCAmelCase ) for row_idx in range(UpperCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) snake_case_ = [] for current_row_idx in range(UpperCAmelCase ): snake_case_ = populate_current_row(UpperCAmelCase , UpperCAmelCase ) triangle.append(UpperCAmelCase ) return triangle def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ = 1, 1 for current_col_idx in range(1 , UpperCAmelCase ): calculate_current_element( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return current_row def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: snake_case_ = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ = triangle[current_row_idx - 1][current_col_idx] snake_case_ = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) snake_case_ = [[1]] for row_index in range(1 , UpperCAmelCase ): snake_case_ = [0] + result[-1] + [0] snake_case_ = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ = sum(divmod(UpperCAmelCase , 2 ) ) snake_case_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ = row_first_half + row_second_half result.append(UpperCAmelCase ) return result def UpperCAmelCase ( ) -> Union[str, Any]: from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase , UpperCAmelCase ) -> None: snake_case_ = f'{func.__name__}({value})' snake_case_ = timeit(f'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCAmelCase , UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _lowercase : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = str(id_ ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = [] __lowerCAmelCase = {} # {vertex:distance} def __lt__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: return self.key < other.key def __repr__( self : str ) -> Tuple: return self.id def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: self.neighbors.append(SCREAMING_SNAKE_CASE__ ) def a ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: __lowerCAmelCase = weight def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : str ) -> List[str]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def UpperCamelCase_ ( snake_case_ : list , snake_case_ : Vertex ) -> list: '''simple docstring''' __lowerCAmelCase = [] for u in graph: __lowerCAmelCase = math.inf __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = graph[:] while q: __lowerCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowerCAmelCase = u __lowerCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase_ ( snake_case_ : list , snake_case_ : Vertex ) -> Iterator[tuple]: '''simple docstring''' for u in graph: __lowerCAmelCase = math.inf __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __lowerCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowerCAmelCase = u __lowerCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase_ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
229
'''simple docstring''' import re from filelock import FileLock try: import nltk _A : int = True except (ImportError, ModuleNotFoundError): _A : Optional[Any] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def UpperCamelCase_ ( snake_case_ : str ) -> str: '''simple docstring''' re.sub("""<n>""" , """""" , snake_case_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case_ ) )
229
1
from __future__ import annotations def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): lowercase :Tuple = len(lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col], [*diagonal_right_collisions, row - col], [*diagonal_left_collisions, row + col], lowerCamelCase, lowerCamelCase, ) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :list[list[str]] = [] depth_first_search([], [], [], lowerCamelCase, lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(lowerCamelCase ) print("" ) print(len(lowerCamelCase ), "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
158
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
158
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __a ( ) ->List[str]: a__: Optional[int] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' a__: Union[str, Any] = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert('RGB' ) return image def __a ( _SCREAMING_SNAKE_CASE ) ->Tuple: a__: Dict = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Optional[int] = dct.pop(UpperCamelCase_ ) a__: List[Any] = val def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__: Tuple = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) a__: Dict = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict a__: Any = torch.cat((q_bias, torch.zeros_like(UpperCamelCase_ , requires_grad=UpperCamelCase_ ), v_bias) ) a__: Tuple = qkv_bias def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: a__: Optional[Any] = 364 if 'coco' in model_name else 224 a__: Optional[int] = BlipaVisionConfig(image_size=UpperCamelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: a__: str = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=UpperCamelCase_ ).to_dict() elif "opt-6.7b" in model_name: a__: List[Any] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=UpperCamelCase_ ).to_dict() elif "t5-xl" in model_name: a__: List[Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__: Tuple = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() a__: Any = BlipaConfig(vision_config=UpperCamelCase_ , text_config=UpperCamelCase_ ) return config, image_size @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]: a__: List[Any] = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) a__: List[str] = tokenizer('\n' , add_special_tokens=UpperCamelCase_ ).input_ids[0] a__ , a__: List[Any] = get_blipa_config(UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) a__: List[str] = BlipaForConditionalGeneration(UpperCamelCase_ ).eval() a__: Optional[int] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } a__ , a__: List[str] = model_name_to_original[model_name] # load original model print('Loading original model...' ) a__: Dict = 'cuda' if torch.cuda.is_available() else 'cpu' a__ , a__ , a__: Tuple = load_model_and_preprocess( name=UpperCamelCase_ , model_type=UpperCamelCase_ , is_eval=UpperCamelCase_ , device=UpperCamelCase_ ) original_model.eval() print('Done!' ) # update state dict keys a__: Union[str, Any] = original_model.state_dict() a__: int = create_rename_keys(UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__: List[str] = state_dict.pop(UpperCamelCase_ ) if key.startswith('Qformer.bert' ): a__: Optional[Any] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: a__: Union[str, Any] = key.replace('self' , 'attention' ) if "opt_proj" in key: a__: Dict = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: a__: List[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): a__: List[str] = key.replace('opt' , 'language' ) if key.startswith('t5' ): a__: str = key.replace('t5' , 'language' ) a__: int = val # read in qv biases read_in_q_v_bias(UpperCamelCase_ , UpperCamelCase_ ) a__ , a__: Dict = hf_model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] a__: Optional[Any] = load_demo_image() a__: List[str] = vis_processors['eval'](UpperCamelCase_ ).unsqueeze(0 ).to(UpperCamelCase_ ) a__: Optional[Any] = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(UpperCamelCase_ ) # create processor a__: List[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) a__: Optional[Any] = BlipaProcessor(image_processor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) a__: Optional[int] = processor(images=UpperCamelCase_ , return_tensors='pt' ).pixel_values.to(UpperCamelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) hf_model.to(UpperCamelCase_ ) with torch.no_grad(): if "opt" in model_name: a__: Optional[int] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits a__: Dict = hf_model(UpperCamelCase_ , UpperCamelCase_ ).logits else: a__: List[str] = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits a__: Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) a__: Dict = hf_model(UpperCamelCase_ , UpperCamelCase_ , labels=UpperCamelCase_ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": a__: str = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=UpperCamelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": a__: Union[str, Any] = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=UpperCamelCase_ ) else: # cast to same type a__: str = logits.dtype assert torch.allclose(original_logits.to(UpperCamelCase_ ) , UpperCamelCase_ , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) a__: Optional[Any] = '' a__: str = tokenizer(UpperCamelCase_ , return_tensors='pt' ).input_ids.to(UpperCamelCase_ ) a__: str = original_model.generate({'image': original_pixel_values} ) a__: Optional[int] = hf_model.generate( UpperCamelCase_ , UpperCamelCase_ , do_sample=UpperCamelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , UpperCamelCase_ ) a__: Union[str, Any] = input_ids.shape[1] a__: List[Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase_ ) a__: List[str] = [text.strip() for text in output_text] print('HF generation:' , UpperCamelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase_ ) hf_model.save_pretrained(UpperCamelCase_ ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() lowercase__ = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowercase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
290
import os from math import logaa def _lowercase ( UpperCamelCase_ = "base_exp.txt" ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCamelCase_ ) , UpperCamelCase_ ) ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = list(map(UpperCamelCase_ , line.split(',' ) ) ) if x * logaa(UpperCamelCase_ ) > largest: SCREAMING_SNAKE_CASE__ = x * logaa(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = i + 1 return result if __name__ == "__main__": print(solution())
176
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): snake_case : Optional[datasets.Features] = None def _UpperCamelCase (a__ :"pyspark.sql.DataFrame" , a__ :List[int] , ): """simple docstring""" import pyspark def generate_fn(): UpperCamelCase__ = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: UpperCamelCase__ = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" ) UpperCamelCase__ = partition_df.collect() UpperCamelCase__ = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class __SCREAMING_SNAKE_CASE ( _BaseExamplesIterable ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None , ): UpperCamelCase__ = df UpperCamelCase__ = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCamelCase__ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = self.split_shard_indices_by_worker(__lowerCAmelCase , __lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCAmelCase ) @property def _lowerCamelCase ( self ): return len(self.partition_order ) class __SCREAMING_SNAKE_CASE ( datasets.DatasetBuilder ): snake_case : Any = SparkConfig def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): import pyspark UpperCamelCase__ = pyspark.sql.SparkSession.builder.getOrCreate() UpperCamelCase__ = df UpperCamelCase__ = working_dir super().__init__( cache_dir=__lowerCAmelCase , config_name=str(self.df.semanticHash() ) , **__lowerCAmelCase , ) def _lowerCamelCase ( self ): # Returns the path of the created file. def create_cache_and_write_probe(__lowerCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__lowerCAmelCase ) UpperCamelCase__ = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowerCAmelCase , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCamelCase__ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__lowerCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def _lowerCamelCase ( self ): return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self , __lowerCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _lowerCamelCase ( self , __lowerCAmelCase ): import pyspark def get_arrow_batch_size(__lowerCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) UpperCamelCase__ = self.df.count() UpperCamelCase__ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCamelCase__ = ( self.df.limit(__lowerCAmelCase ) .repartition(1 ) .mapInArrow(__lowerCAmelCase , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCamelCase__ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCamelCase__ = min(__lowerCAmelCase , int(approx_total_size / max_shard_size ) ) UpperCamelCase__ = self.df.repartition(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): import pyspark UpperCamelCase__ = ParquetWriter if file_format == """parquet""" else ArrowWriter UpperCamelCase__ = os.path.join(self._working_dir , os.path.basename(__lowerCAmelCase ) ) if self._working_dir else fpath UpperCamelCase__ = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCamelCase__ = self.config.features UpperCamelCase__ = self._writer_batch_size UpperCamelCase__ = self._fs.storage_options def write_arrow(__lowerCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCamelCase__ = pyspark.TaskContext().taskAttemptId() UpperCamelCase__ = next(__lowerCAmelCase , __lowerCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) UpperCamelCase__ = 0 UpperCamelCase__ = writer_class( features=__lowerCAmelCase , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__lowerCAmelCase , storage_options=__lowerCAmelCase , embed_local_files=__lowerCAmelCase , ) UpperCamelCase__ = pa.Table.from_batches([first_batch] ) writer.write_table(__lowerCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCamelCase__ , UpperCamelCase__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 UpperCamelCase__ = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__lowerCAmelCase , storage_options=__lowerCAmelCase , embed_local_files=__lowerCAmelCase , ) UpperCamelCase__ = pa.Table.from_batches([batch] ) writer.write_table(__lowerCAmelCase ) if writer._num_bytes > 0: UpperCamelCase__ , UpperCamelCase__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowerCAmelCase ) ): UpperCamelCase__ = os.path.join(os.path.dirname(__lowerCAmelCase ) , os.path.basename(__lowerCAmelCase ) ) shutil.move(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = ( self.df.mapInArrow(__lowerCAmelCase , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = "arrow" , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): self._validate_cache_dir() UpperCamelCase__ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__lowerCAmelCase ) UpperCamelCase__ = not is_remote_filesystem(self._fs ) UpperCamelCase__ = os.path.join if is_local else posixpath.join UpperCamelCase__ = """-TTTTT-SSSSS-of-NNNNN""" UpperCamelCase__ = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" UpperCamelCase__ = path_join(self._output_dir , __lowerCAmelCase ) UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = [] UpperCamelCase__ = [] for task_id, content in self._prepare_split_single(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__lowerCAmelCase ) UpperCamelCase__ = total_num_examples UpperCamelCase__ = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: UpperCamelCase__ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCamelCase__ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): rename( __lowerCAmelCase , fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , f"""{global_shard_id:05d}""" ).replace("""NNNNN""" , f"""{total_shards:05d}""" ) , ) UpperCamelCase__ = [] UpperCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) ): UpperCamelCase__ , UpperCamelCase__ = task_id_and_num_shards[i] for shard_id in range(__lowerCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowerCAmelCase , len(__lowerCAmelCase ) ).map(lambda __lowerCAmelCase : _rename_shard(*__lowerCAmelCase ) ).collect() else: # don't use any pattern UpperCamelCase__ = 0 UpperCamelCase__ = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace(__lowerCAmelCase , """""" ) , ) def _lowerCamelCase ( self , __lowerCAmelCase , ): return SparkExamplesIterable(self.df )
366
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : int = """cvt""" def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=[7, 3, 3] , __lowerCAmelCase=[4, 2, 2] , __lowerCAmelCase=[2, 1, 1] , __lowerCAmelCase=[64, 192, 384] , __lowerCAmelCase=[1, 3, 6] , __lowerCAmelCase=[1, 2, 10] , __lowerCAmelCase=[4.0, 4.0, 4.0] , __lowerCAmelCase=[0.0, 0.0, 0.0] , __lowerCAmelCase=[0.0, 0.0, 0.0] , __lowerCAmelCase=[0.0, 0.0, 0.1] , __lowerCAmelCase=[True, True, True] , __lowerCAmelCase=[False, False, True] , __lowerCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __lowerCAmelCase=[3, 3, 3] , __lowerCAmelCase=[1, 1, 1] , __lowerCAmelCase=[2, 2, 2] , __lowerCAmelCase=[1, 1, 1] , __lowerCAmelCase=[1, 1, 1] , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase ) UpperCamelCase__ = num_channels UpperCamelCase__ = patch_sizes UpperCamelCase__ = patch_stride UpperCamelCase__ = patch_padding UpperCamelCase__ = embed_dim UpperCamelCase__ = num_heads UpperCamelCase__ = depth UpperCamelCase__ = mlp_ratio UpperCamelCase__ = attention_drop_rate UpperCamelCase__ = drop_rate UpperCamelCase__ = drop_path_rate UpperCamelCase__ = qkv_bias UpperCamelCase__ = cls_token UpperCamelCase__ = qkv_projection_method UpperCamelCase__ = kernel_qkv UpperCamelCase__ = padding_kv UpperCamelCase__ = stride_kv UpperCamelCase__ = padding_q UpperCamelCase__ = stride_q UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps
87
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = 0 while number > 0: __UpperCamelCase :Optional[Any] = number % 10 sum_of_digits += last_digit __UpperCamelCase :str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase ( SCREAMING_SNAKE_CASE = 100 ): '''simple docstring''' __UpperCamelCase :Dict = factorial(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = split_and_add(SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
43
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase__ = BitConfig( conv_layer=SCREAMING_SNAKE_CASE_ , num_labels=1000 , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: if "stem.conv" in name: lowercase__ = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowercase__ = name.replace('blocks' , 'layers' ) if "head.fc" in name: lowercase__ = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): lowercase__ = 'bit.' + name if "bit" not in name and "classifier" not in name: lowercase__ = 'bit.encoder.' + name return name def __UpperCamelCase () -> Optional[Any]: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: lowercase__ = get_config(SCREAMING_SNAKE_CASE_ ) # load original model from timm lowercase__ = create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() # load state_dict of original model lowercase__ = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val.squeeze() if 'head' in key else val # load HuggingFace model lowercase__ = BitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # create image processor lowercase__ = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE_ ) ) lowercase__ = transform.transforms lowercase__ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowercase__ = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE_ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE_ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__ = prepare_img() lowercase__ = transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) lowercase__ = processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # verify logits with torch.no_grad(): lowercase__ = model(SCREAMING_SNAKE_CASE_ ) lowercase__ = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase__ = timm_model(SCREAMING_SNAKE_CASE_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowercase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
366
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowercase_ = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowercase_ = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCamelCase () -> Union[str, Any]: lowercase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowercase__ = bs[:] lowercase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 lowercase__ = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char return pairs class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = ['input_ids', 'attention_mask'] def __init__( self : Dict , a : Union[str, Any] , a : Optional[Any] , a : List[str]="replace" , a : Optional[int]="<s>" , a : List[str]="</s>" , a : List[Any]="</s>" , a : Union[str, Any]="<s>" , a : Any="<unk>" , a : Optional[int]="<pad>" , a : Optional[Any]="<mask>" , a : Tuple=False , **a : List[Any] , )-> Optional[int]: """simple docstring""" lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding='utf-8' ) as vocab_handle: lowercase__ = json.load(a ) lowercase__ = {v: k for k, v in self.encoder.items()} lowercase__ = errors # how to handle errors in decoding lowercase__ = bytes_to_unicode() lowercase__ = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding='utf-8' ) as merges_handle: lowercase__ = merges_handle.read().split('\n' )[1:-1] lowercase__ = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ = dict(zip(a , range(len(a ) ) ) ) lowercase__ = {} lowercase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Any: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[Any] )-> Dict: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = tuple(a ) lowercase__ = get_pairs(a ) if not pairs: return token while True: lowercase__ = min(a , key=lambda a : self.bpe_ranks.get(a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(a ): try: lowercase__ = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ = tuple(a ) lowercase__ = new_word if len(a ) == 1: break else: lowercase__ = get_pairs(a ) lowercase__ = ' '.join(a ) lowercase__ = word return word def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : str )-> Optional[Any]: """simple docstring""" lowercase__ = [] for token in re.findall(self.pat , a ): lowercase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(' ' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[Any] )-> Optional[int]: """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Optional[Any] )-> Union[str, Any]: """simple docstring""" return self.decoder.get(a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : Optional[int] )-> Dict: """simple docstring""" lowercase__ = ''.join(a ) lowercase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE_ ( self : Any , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + '\n' ) lowercase__ = 0 with open(a , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowercase__ = token_index writer.write(' '.join(a ) + '\n' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[int] , a : Optional[List[int]] = None , a : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Any , a : Dict , a : Dict=False , **a : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): lowercase__ = ' ' + text return (text, kwargs)
269
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def A (__A : str , __A : str , __A : str , __A : PreTrainedTokenizer , __A : int , __A : Optional[int] = None , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = {} if train_file is not None: UpperCAmelCase_ = [train_file] if eval_file is not None: UpperCAmelCase_ = [eval_file] if test_file is not None: UpperCAmelCase_ = [test_file] UpperCAmelCase_ = datasets.load_dataset('''csv''' , data_files=lowerCamelCase_ ) UpperCAmelCase_ = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase_ = features_name.pop(lowerCamelCase_ ) UpperCAmelCase_ = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase_ = {label: i for i, label in enumerate(lowerCamelCase_ )} UpperCAmelCase_ = tokenizer.model_input_names UpperCAmelCase_ = {} if len(lowerCamelCase_ ) == 1: for k in files.keys(): UpperCAmelCase_ = ds[k].map( lambda __A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''' ) , batched=lowerCamelCase_ , ) elif len(lowerCamelCase_ ) == 2: for k in files.keys(): UpperCAmelCase_ = ds[k].map( lambda __A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''' , ) , batched=lowerCamelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase_ = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase_ = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase_ = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase_ = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase_ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase_ = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase_ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase_ = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase_ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid snake_case_ : Dict = logging.getLogger(__name__) @dataclass class __snake_case : UpperCAmelCase__ : int = field(metadata={'''help''': '''Which column contains the label'''} ) UpperCAmelCase__ : str = field(default=lowercase__ , metadata={'''help''': '''The path of the training file'''} ) UpperCAmelCase__ : Optional[str] = field(default=lowercase__ , metadata={'''help''': '''The path of the development file'''} ) UpperCAmelCase__ : Optional[str] = field(default=lowercase__ , metadata={'''help''': '''The path of the test file'''} ) UpperCAmelCase__ : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__ : bool = field( default=lowercase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class __snake_case : UpperCAmelCase__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase__ : bool = field(default=lowercase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def A () -> Dict: """simple docstring""" UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCamelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCAmelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCAmelCase_ = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(__A : EvalPrediction ) -> Dict: UpperCAmelCase_ = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase_ = TFTrainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ = trainer.evaluate() UpperCAmelCase_ = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(lowerCamelCase_ ) return results if __name__ == "__main__": main()
357
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __a(SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , args=(SCREAMING_SNAKE_CASE_) )[0] def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
158
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[Any] = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 256, "width": 256} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_flip_channel_order def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PIL.Image.BILINEAR , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Optional[Any]: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> np.ndarray: return flip_channel_order(_lowerCAmelCase , data_format=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> PIL.Image.Image: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCAmelCase = [self.flip_channel_order(image=_lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> int: _lowerCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_lowerCAmelCase ): _lowerCAmelCase = target_sizes.numpy() _lowerCAmelCase = [] for idx in range(len(_lowerCAmelCase ) ): _lowerCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_lowerCAmelCase ) _lowerCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowerCAmelCase ) else: _lowerCAmelCase = logits.argmax(dim=1 ) _lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
158
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets UpperCamelCase : str = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ UpperCamelCase : Any = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ UpperCamelCase : str = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Any="binary" , UpperCAmelCase_ : str=None): """simple docstring""" a : str = fa_score( UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ , pos_label=UpperCAmelCase_ , average=UpperCAmelCase_ , sample_weight=UpperCAmelCase_) return {"f1": float(UpperCAmelCase_) if score.size == 1 else score}
355
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A : List[Any] = "CIDAS/clipseg-rd64-refined" A : Optional[Any] = "image_segmenter" A : List[Any] = CLIPSegForImageSegmentation A : Tuple = ["image", "text"] A : Optional[int] = ["image"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['vision']) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors='pt') def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str): """simple docstring""" with torch.no_grad(): a : Union[str, Any] = self.model(**UpperCAmelCase_).logits return logits def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : int): """simple docstring""" a : int = outputs.cpu().detach().numpy() a : str = 0 a : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
345
0
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _UpperCamelCase ( __A , __A , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: UpperCamelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_lowerCamelCase ) if decoder_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_lowerCamelCase ) if cross_attn_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowercase_ : def __init__( self , a , a=13 , a=7 , a=True , a=False , a=99 , a=16 , a=2 , a=4 , a=4 , a="relu" , a=0.1 , a=0.1 , a=0.0 , a=0.0 , a=20 , a=2 , a=1 , a=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def __a ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.eos_token_id # Eos Token UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase__ = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = self.get_config() UpperCamelCase__ = prepare_mam_aaa_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def __a ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __a ( self ): UpperCamelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , a , a ): UpperCamelCase__ = MaMaaaModel(config=lowercase_ ).get_decoder().to(lowercase_ ).eval() UpperCamelCase__ = inputs_dict["input_ids"] UpperCamelCase__ = inputs_dict["attention_mask"] UpperCamelCase__ = inputs_dict["head_mask"] # first forward pass UpperCamelCase__ = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) UpperCamelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ = model(lowercase_ , attention_mask=lowercase_ )["last_hidden_state"] UpperCamelCase__ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[ "last_hidden_state" ] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-2 ) ) def __a ( self , a , a ): UpperCamelCase__ = MaMaaaModel(config=lowercase_ ).to(lowercase_ ).eval() UpperCamelCase__ = model(**lowercase_ ) UpperCamelCase__ = outputs.encoder_last_hidden_state UpperCamelCase__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_encoder() encoder.save_pretrained(lowercase_ ) UpperCamelCase__ = MaMaaaEncoder.from_pretrained(lowercase_ ).to(lowercase_ ) UpperCamelCase__ = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_decoder() decoder.save_pretrained(lowercase_ ) UpperCamelCase__ = MaMaaaDecoder.from_pretrained(lowercase_ ).to(lowercase_ ) UpperCamelCase__ = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=lowercase_ , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase_ ( __A , __A , __A , unittest.TestCase ): __UpperCAmelCase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __UpperCAmelCase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __UpperCAmelCase = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False def __a ( self , a , a , a , a , a ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __a ( self ): UpperCamelCase__ = MaMaaaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=lowercase_ ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) UpperCamelCase__ = model_class.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertEqual(info["missing_keys"] , [] ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowercase_ ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase_ ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ = copy.deepcopy(self._prepare_for_class(lowercase_ , lowercase_ ) ) if not self.is_encoder_decoder: UpperCamelCase__ = inputs["input_ids"] del inputs["input_ids"] else: UpperCamelCase__ = inputs["input_ids"] UpperCamelCase__ = inputs.get("decoder_input_ids" , lowercase_ ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , lowercase_ ) UpperCamelCase__ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase__ = wte(lowercase_ ) else: UpperCamelCase__ = wte(lowercase_ ) UpperCamelCase__ = wte(lowercase_ ) with torch.no_grad(): model(**lowercase_ )[0] def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = input_dict["input_ids"] UpperCamelCase__ = input_ids.ne(1 ).to(lowercase_ ) UpperCamelCase__ = MaMaaaForConditionalGeneration(lowercase_ ).eval().to(lowercase_ ) if torch_device == "cuda": model.half() model.generate(lowercase_ , attention_mask=lowercase_ ) model.generate(num_beams=4 , do_sample=lowercase_ , early_stopping=lowercase_ , num_return_sequences=3 ) def _UpperCamelCase ( __A ) -> List[str]: '''simple docstring''' return torch.tensor(_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase ) a__ : Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowercase_ ( unittest.TestCase ): @cached_property def __a ( self ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def __a ( self ): UpperCamelCase__ = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ ) UpperCamelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , lowercase_ , lowercase_ ) with torch.no_grad(): UpperCamelCase__ = model(**lowercase_ )[0] UpperCamelCase__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , lowercase_ ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=lowercase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=lowercase_ ) ) def __a ( self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ ) # change to intended input UpperCamelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , lowercase_ , lowercase_ ) with torch.no_grad(): UpperCamelCase__ = model(**lowercase_ )[0] UpperCamelCase__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , lowercase_ ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=lowercase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=lowercase_ ) ) def __a ( self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ ) UpperCamelCase__ = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) UpperCamelCase__ = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase__ = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" ) UpperCamelCase__ = model.generate( input_ids=dct["input_ids"].to(lowercase_ ) , attention_mask=dct["attention_mask"].to(lowercase_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) UpperCamelCase__ = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] UpperCamelCase__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowercase_ , skip_special_tokens=lowercase_ ) assert generated == expected_en
80
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase_ ( _lowerCamelCase : int): lowercase__ : int = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', )) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', )) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', )) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', )) return embed def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int): lowercase__ : Optional[Any] = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', )) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', )) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''')) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''')) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''')) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''')) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''')) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''')) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''')) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''')) return attention_weights def lowercase_ ( _lowerCamelCase : Optional[int]): lowercase__ : Tuple = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', "stage2.cls_token")) return token def lowercase_ ( ): lowercase__ : List[str] = [] head.append(("layernorm.weight", "norm.weight")) head.append(("layernorm.bias", "norm.bias")) head.append(("classifier.weight", "head.weight")) head.append(("classifier.bias", "head.bias")) return head def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]): lowercase__ : Optional[Any] = "imagenet-1k-id2label.json" lowercase__ : List[str] = 1000 lowercase__ : Dict = "huggingface/label-files" lowercase__ : List[Any] = num_labels lowercase__ : Tuple = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Tuple = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Any = idalabel lowercase__ : List[Any] = {v: k for k, v in idalabel.items()} lowercase__ : Optional[int] = CvtConfig(num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1)[-1][4:6] == "13": lowercase__ : Any = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1)[-1][4:6] == "21": lowercase__ : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : Union[str, Any] = [2, 2, 20] lowercase__ : Optional[Any] = [3, 12, 16] lowercase__ : Optional[Any] = [192, 768, 1024] lowercase__ : Union[str, Any] = CvtForImageClassification(_lowerCamelCase) lowercase__ : Tuple = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k") lowercase__ : int = image_size lowercase__ : Dict = torch.load(_lowerCamelCase , map_location=torch.device("cpu")) lowercase__ : Any = OrderedDict() lowercase__ : int = [] for idx in range(len(config.depth)): if config.cls_token[idx]: lowercase__ : Dict = list_of_state_dict + cls_token(_lowerCamelCase) lowercase__ : List[str] = list_of_state_dict + embeddings(_lowerCamelCase) for cnt in range(config.depth[idx]): lowercase__ : Any = list_of_state_dict + attention(_lowerCamelCase , _lowerCamelCase) lowercase__ : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_lowerCamelCase) for i in range(len(_lowerCamelCase)): lowercase__ : Dict = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_lowerCamelCase) model.save_pretrained(_lowerCamelCase) image_processor.save_pretrained(_lowerCamelCase) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
87
0
import math def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : List[str] =0 while num > 0: lowerCamelCase__ : Any =num % 8 lowerCamelCase__ : List[str] =octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowerCamelCase__ : Optional[Any] =math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(__lowerCamelCase )}''' def snake_case__ ( ): """simple docstring""" print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
367
"""simple docstring""" import numpy as np from PIL import Image def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : int =0 lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Union[str, Any] =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase__ : Union[str, Any] =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase__ : str =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : Optional[int] =0 return updated_arr def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : str =0 lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Dict =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase__ : Optional[Any] =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase__ : Optional[int] =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : int =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image _lowercase : int = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
272
0
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () a__ : Tuple =np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). a__ : Tuple =[0, 25, 50] a__ : List[str] =[25, 50, 75] a__ : List[Any] =fuzz.membership.trimf(X, abca) a__ : List[str] =fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. a__ : Dict =np.ones(75) a__ : Tuple =np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) a__ : Optional[int] =fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) a__ : Union[str, Any] =fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) a__ : str =fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) a__ : Optional[Any] =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] a__ : List[str] =young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) a__ : Optional[int] =young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] a__ : Union[str, Any] =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] a__ : int =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
53
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Optional[int] = logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'maskformer-swin' SCREAMING_SNAKE_CASE = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: int=224 , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: int=3 , _SCREAMING_SNAKE_CASE: List[Any]=96 , _SCREAMING_SNAKE_CASE: Union[str, Any]=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE: Any=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE: List[str]=7 , _SCREAMING_SNAKE_CASE: List[str]=4.0 , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: str="gelu" , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-5 , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: str=None , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> List[str]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = image_size __lowerCAmelCase : Any = patch_size __lowerCAmelCase : Tuple = num_channels __lowerCAmelCase : Any = embed_dim __lowerCAmelCase : Any = depths __lowerCAmelCase : Dict = len(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = num_heads __lowerCAmelCase : Tuple = window_size __lowerCAmelCase : Dict = mlp_ratio __lowerCAmelCase : Any = qkv_bias __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : Tuple = drop_path_rate __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Optional[int] = use_absolute_embeddings __lowerCAmelCase : List[str] = layer_norm_eps __lowerCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE) - 1)) __lowerCAmelCase : Any = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(_SCREAMING_SNAKE_CASE) + 1)] __lowerCAmelCase , __lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names)
269
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ : lowerCamelCase__ = 42 lowerCamelCase__ = None @staticmethod def __a ( ) -> List[Any]: raise NotImplementedError def __a ( self , _a , _a , _a , **_a ) -> int: raise NotImplementedError def __a ( self , _a ) -> str: raise NotImplementedError def __a ( self ) -> Optional[Any]: if not self.is_available(): raise RuntimeError( f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def __a ( cls ) -> Union[str, Any]: return f"`pip install {cls.pip_package or cls.name}`" class __magic_name__ (__lowercase ): lowerCamelCase__ = '''optuna''' @staticmethod def __a ( ) -> Union[str, Any]: return is_optuna_available() def __a ( self , _a , _a , _a , **_a ) -> Any: return run_hp_search_optuna(_a , _a , _a , **_a ) def __a ( self , _a ) -> int: return default_hp_space_optuna(_a ) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''ray''' lowerCamelCase__ = '''\'ray[tune]\'''' @staticmethod def __a ( ) -> str: return is_ray_available() def __a ( self , _a , _a , _a , **_a ) -> Any: return run_hp_search_ray(_a , _a , _a , **_a ) def __a ( self , _a ) -> Dict: return default_hp_space_ray(_a ) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''sigopt''' @staticmethod def __a ( ) -> Union[str, Any]: return is_sigopt_available() def __a ( self , _a , _a , _a , **_a ) -> str: return run_hp_search_sigopt(_a , _a , _a , **_a ) def __a ( self , _a ) -> str: return default_hp_space_sigopt(_a ) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''wandb''' @staticmethod def __a ( ) -> Dict: return is_wandb_available() def __a ( self , _a , _a , _a , **_a ) -> Union[str, Any]: return run_hp_search_wandb(_a , _a , _a , **_a ) def __a ( self , _a ) -> Union[str, Any]: return default_hp_space_wandb(_a ) lowerCamelCase__ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def A(): lowerCAmelCase_ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__a ) > 0: lowerCAmelCase_ = available_backends[0].name if len(__a ) > 1: logger.info( F"{len(__a )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
22
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , ): snake_case_ = {} if train_file is not None: snake_case_ = [train_file] if eval_file is not None: snake_case_ = [eval_file] if test_file is not None: snake_case_ = [test_file] snake_case_ = datasets.load_dataset('''csv''' , data_files=SCREAMING_SNAKE_CASE__ ) snake_case_ = list(ds[list(files.keys() )[0]].features.keys() ) snake_case_ = features_name.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case_ = {label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} snake_case_ = tokenizer.model_input_names snake_case_ = {} if len(SCREAMING_SNAKE_CASE__ ) == 1: for k in files.keys(): snake_case_ = ds[k].map( lambda SCREAMING_SNAKE_CASE__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' ) , batched=SCREAMING_SNAKE_CASE__ , ) elif len(SCREAMING_SNAKE_CASE__ ) == 2: for k in files.keys(): snake_case_ = ds[k].map( lambda SCREAMING_SNAKE_CASE__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' , ) , batched=SCREAMING_SNAKE_CASE__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case_ = {k: v for k, v in ex.items() if k in input_names} snake_case_ = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case_ = {k: v for k, v in ex.items() if k in input_names} snake_case_ = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case_ = {k: v for k, v in ex.items() if k in input_names} snake_case_ = labelaid[ex[label_name]] yield (d, label) snake_case_ = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case_ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case_ = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case_ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case_ = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case_ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={"help": "Which column contains the label"} ) SCREAMING_SNAKE_CASE : str = field(default=__A , metadata={"help": "The path of the training file"} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__A , metadata={"help": "The path of the development file"} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__A , metadata={"help": "The path of the test file"} ) SCREAMING_SNAKE_CASE : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE : bool = field(default=__A , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __SCREAMING_SNAKE_CASE (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case_, snake_case_, snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_, snake_case_, snake_case_, snake_case_ = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=SCREAMING_SNAKE_CASE__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE__ ) , labelaid=SCREAMING_SNAKE_CASE__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case_ = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) def compute_metrics(SCREAMING_SNAKE_CASE__ ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case_ = TFTrainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": main()
8
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = (DPMSolverSinglestepScheduler,) lowerCamelCase = (('num_inference_steps', 25),) def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]: '''simple docstring''' A__ = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**lowercase_ ) return config def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('num_inference_steps',lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ = sample, sample for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ): A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self : List[str] )-> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('num_inference_steps',lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int: '''simple docstring''' if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = 1_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample return sample def snake_case__ ( self : Any )-> str: '''simple docstring''' A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = 5_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def snake_case__ ( self : int )-> Optional[Any]: '''simple docstring''' A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = self.full_loop(scheduler=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 A__ = DEISMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ = UniPCMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ = self.full_loop(scheduler=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def snake_case__ ( self : Tuple )-> Any: '''simple docstring''' self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,) def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def snake_case__ ( self : Dict )-> List[Any]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,) A__ = self.full_loop( solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' self.check_over_configs(variance_type=lowercase_ ) self.check_over_configs(variance_type='learned_range' ) def snake_case__ ( self : str )-> Any: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase_,time_step=0 ) def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' A__ = self.full_loop() A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def snake_case__ ( self : Any )-> Union[str, Any]: '''simple docstring''' A__ = self.full_loop(use_karras_sigmas=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' A__ = self.full_loop(prediction_type='v_prediction' ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def snake_case__ ( self : Tuple )-> int: '''simple docstring''' A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 ) A__ = scheduler_class(**lowercase_ ) A__ = 1_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample assert sample.dtype == torch.floataa
7
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : _UpperCAmelCase : Optional[Any] = XGLMConfig _UpperCAmelCase : Tuple = {} _UpperCAmelCase : Dict = '''gelu''' def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_4 ,SCREAMING_SNAKE_CASE__ : Any=7 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : List[Any]=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : List[str]=9_9 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 ,SCREAMING_SNAKE_CASE__ : str=2 ,SCREAMING_SNAKE_CASE__ : str=4 ,SCREAMING_SNAKE_CASE__ : int=3_7 ,SCREAMING_SNAKE_CASE__ : List[str]="gelu" ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Any=0.1 ,SCREAMING_SNAKE_CASE__ : str=5_1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 ,): __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : str = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Any = is_training __lowerCamelCase : int = use_input_mask __lowerCamelCase : List[str] = use_labels __lowerCamelCase : List[Any] = vocab_size __lowerCamelCase : int = d_model __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : List[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : Any = activation_dropout __lowerCamelCase : Dict = attention_dropout __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : int = None __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : int = 1 def lowerCAmelCase ( self : Dict): return XGLMConfig.from_pretrained('facebook/xglm-564M') def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) ,clip_value_min=0 ,clip_value_max=3) __lowerCamelCase : List[Any] = None if self.use_input_mask: __lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length]) __lowerCamelCase : List[str] = self.get_config() __lowerCamelCase : Tuple = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase ( self : Any): return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=SCREAMING_SNAKE_CASE__ ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=SCREAMING_SNAKE_CASE__ ,) def lowerCAmelCase ( self : Dict): __lowerCamelCase : str = self.prepare_config_and_inputs() ( __lowerCamelCase ) : List[str] = config_and_inputs __lowerCamelCase : Any = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : List[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _UpperCAmelCase : Any = (TFXGLMForCausalLM,) if is_tf_available() else () _UpperCAmelCase : Optional[Any] = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Any = False def lowerCAmelCase ( self : Tuple): __lowerCamelCase : int = TFXGLMModelTester(self) __lowerCamelCase : Dict = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,n_embd=3_7) def lowerCAmelCase ( self : Tuple): self.config_tester.run_common_tests() @slow def lowerCAmelCase ( self : List[Any]): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : int = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.') def lowerCAmelCase ( self : Optional[Any]): super().test_resize_token_embeddings() @require_tf class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any=True): __lowerCamelCase : List[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') __lowerCamelCase : str = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] ,dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[Any] = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowerCamelCase : List[str] = model.generate(SCREAMING_SNAKE_CASE__ ,do_sample=SCREAMING_SNAKE_CASE__ ,num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M') __lowerCamelCase : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') tf.random.set_seed(0) __lowerCamelCase : Union[str, Any] = tokenizer('Today is a nice day and' ,return_tensors='tf') __lowerCamelCase : str = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0'): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE__ ,do_sample=SCREAMING_SNAKE_CASE__ ,seed=[7, 0]) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_ids[0] ,skip_special_tokens=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : str): __lowerCamelCase : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') __lowerCamelCase : Optional[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M') __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : List[Any] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE__ ,return_tensors='tf' ,padding=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = inputs['input_ids'] __lowerCamelCase : Tuple = model.generate(input_ids=SCREAMING_SNAKE_CASE__ ,attention_mask=inputs['attention_mask'] ,max_new_tokens=1_2) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] ,return_tensors='tf').input_ids __lowerCamelCase : Union[str, Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE__ ,max_new_tokens=1_2) __lowerCamelCase : int = tokenizer(sentences[1] ,return_tensors='tf').input_ids __lowerCamelCase : Any = model.generate(input_ids=SCREAMING_SNAKE_CASE__ ,max_new_tokens=1_2) __lowerCamelCase : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ,skip_special_tokens=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = tokenizer.decode(output_padded[0] ,skip_special_tokens=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,[non_padded_sentence, padded_sentence])
351
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging a =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: __lowerCamelCase : Tuple = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ), F"{len(lowerCamelCase__ )} != {len(lowerCamelCase__ )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) a ={ # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } a ={ # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: try: __lowerCamelCase : List[str] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[int]: if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCamelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = "student" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __lowerCamelCase : int = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(lowerCamelCase__ , lowerCamelCase__ ): AutoTokenizer.from_pretrained(lowerCamelCase__ ).save_pretrained(lowerCamelCase__ ) # purely for convenience __lowerCamelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ).eval() else: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), F"teacher must be a model or string got type {type(lowerCamelCase__ )}" __lowerCamelCase : str = teacher.config.to_diff_dict() try: __lowerCamelCase , __lowerCamelCase : Dict = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __lowerCamelCase : Optional[int] = teacher_e if d is None: __lowerCamelCase : Optional[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __lowerCamelCase , __lowerCamelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __lowerCamelCase , __lowerCamelCase : Any = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __lowerCamelCase : Union[str, Any] = teacher_e if d is None: __lowerCamelCase : Any = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCamelCase__ ) # Copy weights __lowerCamelCase : str = teacher.config_class(**lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(lowerCamelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __lowerCamelCase : Tuple = student.load_state_dict(teacher.state_dict() , strict=lowerCamelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(range(lowerCamelCase__ ) ), list(range(lowerCamelCase__ ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCamelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __lowerCamelCase : List[int] = pick_layers_to_copy(lowerCamelCase__ , lowerCamelCase__ ) if d_layers_to_copy is None: __lowerCamelCase : List[int] = pick_layers_to_copy(lowerCamelCase__ , lowerCamelCase__ ) try: if hasattr( lowerCamelCase__ , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCamelCase__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCamelCase__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCamelCase__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCamelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCamelCase__ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCamelCase__ ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) __lowerCamelCase : Dict = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(lowerCamelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
113
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class UpperCamelCase_ (__snake_case ): __magic_name__ = "layoutlmv3" def __init__( self : str , lowerCAmelCase_ : Any=50_265 , lowerCAmelCase_ : int=768 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[Any]=3_072 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Tuple=512 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Dict=0.0_2 , lowerCAmelCase_ : List[str]=1e-5 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict=1_024 , lowerCAmelCase_ : Tuple=128 , lowerCAmelCase_ : Tuple=128 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : Union[str, Any]=128 , lowerCAmelCase_ : Tuple=64 , lowerCAmelCase_ : Tuple=256 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=224 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[int]=16 , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : str , ) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ , hidden_size=lowerCamelCase_ , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , intermediate_size=lowerCamelCase_ , hidden_act=lowerCamelCase_ , hidden_dropout_prob=lowerCamelCase_ , attention_probs_dropout_prob=lowerCamelCase_ , max_position_embeddings=lowerCamelCase_ , type_vocab_size=lowerCamelCase_ , initializer_range=lowerCamelCase_ , layer_norm_eps=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class UpperCamelCase_ (__snake_case ): __magic_name__ = version.parse('''1.12''' ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-5 @property def _SCREAMING_SNAKE_CASE ( self : int ) -> int: return 12 def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : "ProcessorMixin" , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional["TensorType"] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 40 , lowerCAmelCase_ : int = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , "apply_ocr" , lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ , text=lowerCamelCase_ , boxes=lowerCamelCase_ , return_tensors=lowerCamelCase_ , ) ) return inputs
268
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
0
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def _lowerCAmelCase ( __snake_case : np.ndarray ) -> np.ndarray: __A : int = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def _lowerCAmelCase ( __snake_case : np.ndarray ) -> np.ndarray: return (gray > 1_27) & (gray <= 2_55) def _lowerCAmelCase ( __snake_case : np.ndarray , __snake_case : np.ndarray ) -> np.ndarray: __A : Any = np.zeros_like(__snake_case ) __A : int = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __A : int = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __A : Tuple = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __A : Dict = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowercase__ : Union[str, Any] = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' lowercase__ : Union[str, Any] = np.array(Image.open(lena_path)) # kernel to be applied lowercase__ : List[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowercase__ : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowercase__ : str = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
371
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : str = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''roberta-prelayernorm''' def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Union[str, Any] = vocab_size __A : List[str] = hidden_size __A : Tuple = num_hidden_layers __A : List[str] = num_attention_heads __A : Tuple = hidden_act __A : Optional[Any] = intermediate_size __A : List[Any] = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Dict = max_position_embeddings __A : Any = type_vocab_size __A : Optional[int] = initializer_range __A : List[str] = layer_norm_eps __A : Optional[int] = position_embedding_type __A : Dict = use_cache __A : List[str] = classifier_dropout class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
190
0
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: """simple docstring""" if index == r: for j in range(_A ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __UpperCamelCase = arr[i] combination_util(_A , _A , _A , index + 1 , _A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_A , _A , _A , _A , _A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _A ( _lowercase , _lowercase , _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(_A , _A , _A , 0 , _A , 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
310
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = 0 @slow def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowercase : List[Any] = AutoTokenizer.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__a ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowercase : Dict = AutoTokenizer.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__a ) , 0 ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Dict = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) # Check that tokenizer_type ≠ model_type __lowercase : List[str] = AutoTokenizer.from_pretrained(__a , config=__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__a , """vocab.txt""" ) ) __lowercase : Optional[int] = AutoTokenizer.from_pretrained(__a , tokenizer_type="""bert""" , use_fast=__a ) self.assertIsInstance(__a , __a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__a , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__a , """merges.txt""" ) ) __lowercase : Tuple = AutoTokenizer.from_pretrained(__a , tokenizer_type="""gpt2""" , use_fast=__a ) self.assertIsInstance(__a , __a ) @require_tokenizers def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__a , """vocab.txt""" ) ) __lowercase : Any = AutoTokenizer.from_pretrained(__a , tokenizer_type="""bert""" ) self.assertIsInstance(__a , __a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__a , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__a , """merges.txt""" ) ) __lowercase : Tuple = AutoTokenizer.from_pretrained(__a , tokenizer_type="""gpt2""" ) self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" with pytest.raises(__a ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowercase : Any = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) if isinstance(__a , __a ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __a ) else: self.assertEqual(tokenizer.do_lower_case , __a ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowerCAmelCase ( self : int ) -> int: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __a , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): __lowercase : Optional[Any] = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : int = TOKENIZER_MAPPING.values() __lowercase : List[str] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__a ) @require_tokenizers def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__a ) , __a ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __a ) @require_tokenizers def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : str = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__a ) __lowercase : Optional[int] = """Hello, world. How are you?""" __lowercase : List[Any] = tokenizer.tokenize(__a ) self.assertEqual("""[UNK]""" , tokens[0] ) __lowercase : Tuple = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__a ) __lowercase : str = tokenizer.tokenize(__a ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(__a ) , __a ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Any = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = get_tokenizer_config("""bert-base-cased""" ) __lowercase : List[str] = config.pop("""_commit_hash""" , __a ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__a , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __lowercase : str = get_tokenizer_config(__a ) self.assertDictEqual(__a , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowercase : str = AutoTokenizer.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : List[Any] = get_tokenizer_config(__a ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" try: AutoConfig.register("""custom""" , __a ) AutoTokenizer.register(__a , slow_tokenizer_class=__a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoTokenizer.register(__a , slow_tokenizer_class=__a ) __lowercase : List[Any] = CustomTokenizer.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCAmelCase ( self : int ) -> int: """simple docstring""" try: AutoConfig.register("""custom""" , __a ) # Can register in two steps AutoTokenizer.register(__a , slow_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__a , fast_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __a , slow_tokenizer_class=__a , fast_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoTokenizer.register(__a , fast_tokenizer_class=__a ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : int = BertTokenizerFast.from_pretrained(__a ) bert_tokenizer.save_pretrained(__a ) __lowercase : str = CustomTokenizerFast.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : List[str] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , __a ) __lowercase : int = AutoTokenizer.from_pretrained(__a , use_fast=__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" with self.assertRaises(__a ): __lowercase : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): __lowercase : Tuple = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) __lowercase : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , trust_remote_code=__a ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowercase : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , trust_remote_code=__a , use_fast=__a ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = False class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = NewTokenizer _A : Union[str, Any] = False try: AutoConfig.register("""custom""" , __a ) AutoTokenizer.register(__a , slow_tokenizer_class=__a ) AutoTokenizer.register(__a , fast_tokenizer_class=__a ) # If remote code is not set, the default is to use local __lowercase : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowercase : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __lowercase : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowercase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __lowercase : Any = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) __lowercase : Dict = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : str = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__a ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowercase : List[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__a , use_fast=__a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" with self.assertRaisesRegex( __a , """bert-base is not a local folder and is not a valid model identifier""" ): __lowercase : List[Any] = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __a , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , revision="""aaaaaa""" ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __lowercase : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A_ : @property def lowercase ( self : Optional[int] ): return self.get_dummy_input() @property def lowercase ( self : List[str] ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def lowercase ( self : str , snake_case_ : Dict=True , snake_case_ : int=False , snake_case_ : Any=False , snake_case_ : Union[str, Any]=False , ): _UpperCAmelCase = 4 _UpperCAmelCase = 3_2 _UpperCAmelCase = (3_2, 3_2) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = torch.device(snake_case_ ) _UpperCAmelCase = (batch_size, num_channels) + sizes _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ ) _UpperCAmelCase = {"hidden_states": hidden_states} if include_temb: _UpperCAmelCase = 1_2_8 _UpperCAmelCase = randn_tensor((batch_size, temb_channels) , generator=snake_case_ , device=snake_case_ ) if include_res_hidden_states_tuple: _UpperCAmelCase = torch.manual_seed(1 ) _UpperCAmelCase = (randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ ),) if include_encoder_hidden_states: _UpperCAmelCase = floats_tensor((batch_size, 3_2, 3_2) ).to(snake_case_ ) if include_skip_sample: _UpperCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=snake_case_ , device=snake_case_ ) return dummy_input def lowercase ( self : List[str] ): _UpperCAmelCase = { "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": _UpperCAmelCase = 3_2 if self.block_type == "mid": init_dict.pop("out_channels" ) _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def lowercase ( self : int , snake_case_ : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**snake_case_ ) unet_block.to(snake_case_ ) unet_block.eval() with torch.no_grad(): _UpperCAmelCase = unet_block(**snake_case_ ) if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = output[0] self.assertEqual(output.shape , self.output_shape ) _UpperCAmelCase = output[0, -1, -3:, -3:] _UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ ) assert torch_all_close(output_slice.flatten() , snake_case_ , atol=5e-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def lowercase ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**snake_case_ ) model.to(snake_case_ ) model.train() _UpperCAmelCase = model(**snake_case_ ) if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = output[0] _UpperCAmelCase = torch.device(snake_case_ ) _UpperCAmelCase = randn_tensor(output.shape , device=snake_case_ ) _UpperCAmelCase = torch.nn.functional.mse_loss(snake_case_ , snake_case_ ) loss.backward()
22
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __SCREAMING_SNAKE_CASE :Dict = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class A_ : def __init__( self : List[Any] , snake_case_ : int , snake_case_ : Dict=1_6 , snake_case_ : Dict=1_3 , snake_case_ : int=7 , snake_case_ : Any=1_4 , snake_case_ : int=1_0 , snake_case_ : Any=1_9 , snake_case_ : int=5 , snake_case_ : Any=4 , snake_case_ : Tuple=True , snake_case_ : Optional[int]=1_6 , snake_case_ : List[str]=2 , snake_case_ : Any=4 , snake_case_ : List[Any]=4 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Optional[int]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Tuple=[1, 2, 3, 4, 5] , snake_case_ : str=2_5 , snake_case_ : Any=5 , ): _UpperCAmelCase = d_model _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length _UpperCAmelCase = cardinality _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = embedding_dimension _UpperCAmelCase = is_training _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = context_length _UpperCAmelCase = prediction_length + label_length _UpperCAmelCase = label_length _UpperCAmelCase = moving_average _UpperCAmelCase = autocorrelation_factor def lowercase ( self : Union[str, Any] ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase ( self : int , snake_case_ : Optional[Any] ): _UpperCAmelCase = config.context_length + max(config.lags_sequence ) _UpperCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) _UpperCAmelCase = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def lowercase ( self : List[Any] ): _UpperCAmelCase = self.get_config() _UpperCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def lowercase ( self : Optional[Any] , snake_case_ : int , snake_case_ : Optional[int] ): _UpperCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() _UpperCAmelCase = model(**snake_case_ ) _UpperCAmelCase = outputs.encoder_last_hidden_state _UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) _UpperCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = model.create_network_inputs(**snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _UpperCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _UpperCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _UpperCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) _UpperCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) _UpperCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _lowerCamelCase : Tuple = (AutoformerForPrediction,) if is_torch_available() else () _lowerCamelCase : List[Any] = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Tuple = False _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : List[Any] = False def lowercase ( self : Tuple ): _UpperCAmelCase = AutoformerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["missing_keys"] , [] ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="Model has no tokens embeddings" ) def lowercase ( self : Optional[int] ): pass def lowercase ( self : Optional[int] ): _UpperCAmelCase = inspect.signature(getattr(snake_case_ , "forward" ) ) # The main input is the name of the argument after `self` _UpperCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , "seq_length" , snake_case_ ) _UpperCAmelCase = getattr(self.model_tester , "decoder_seq_length" , snake_case_ ) _UpperCAmelCase = getattr(self.model_tester , "encoder_seq_length" , snake_case_ ) _UpperCAmelCase = getattr(self.model_tester , "d_model" , snake_case_ ) _UpperCAmelCase = getattr(self.model_tester , "num_attention_heads" , snake_case_ ) _UpperCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCAmelCase = len(snake_case_ ) _UpperCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions _UpperCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) _UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase ( self : Dict ): super().test_retain_grad_hidden_states_attentions() def UpperCAmelCase_ ( __lowercase : str="train-batch.pt" ) -> List[str]: '''simple docstring''' _UpperCAmelCase = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=__lowercase , repo_type="dataset" ) _UpperCAmelCase = torch.load(__lowercase , map_location=__lowercase ) return batch @require_torch @slow class A_ ( unittest.TestCase ): def lowercase ( self : Optional[int] ): _UpperCAmelCase = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _UpperCAmelCase = prepare_batch() with torch.no_grad(): _UpperCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] _UpperCAmelCase = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _UpperCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state _UpperCAmelCase = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : Tuple ): _UpperCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _UpperCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCAmelCase = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) _UpperCAmelCase = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) _UpperCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=snake_case_ ) _UpperCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
22
1
"""simple docstring""" from math import pow def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCAmelCase = int(pow(lowercase_ , lowercase_ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCAmelCase , UpperCAmelCase = backtrack( lowercase_ , lowercase_ , current_number + 1 , lowercase_ , lowercase_ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCAmelCase , UpperCAmelCase = backtrack( lowercase_ , lowercase_ , current_number + 1 , lowercase_ , lowercase_ ) return current_sum, solutions_count def _lowerCAmelCase ( lowercase_ , lowercase_ ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(lowercase_ , lowercase_ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
181
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging snake_case_ = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = R'\w+[.]\d+' UpperCAmelCase = re.findall(lowercase_ , lowercase_ ) for pat in pats: UpperCAmelCase = key.replace(lowercase_ , '_'.join(pat.split('.' ) ) ) return key def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=42 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase = flax_model.init_weights(PRNGKey(lowercase_ ) ) UpperCAmelCase = flatten_dict(lowercase_ ) UpperCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = rename_key(lowercase_ ) UpperCAmelCase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor(lowercase_ , lowercase_ , lowercase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(lowercase_ ) return unflatten_dict(lowercase_ )
181
1
__A ={ '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } __A ={value: key for key, value in encode_dict.items()} def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def lowerCamelCase_ ( lowerCamelCase__ ): if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only \'A\', \'B\' and spaces" ) lowerCamelCase_ = "" for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] lowerCamelCase_ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
19
"""simple docstring""" from __future__ import annotations def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> list[int]: return [ord(SCREAMING_SNAKE_CASE_ ) - 96 for elem in plain] def lowercase (SCREAMING_SNAKE_CASE_ : list[int] ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase () -> None: SCREAMING_SNAKE_CASE = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , SCREAMING_SNAKE_CASE_ ) print('Decoded:' , decode(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main()
113
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float , __A : float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
111
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __a = '''pt''' elif is_tf_available(): __a = '''tf''' else: __a = '''jax''' class __SCREAMING_SNAKE_CASE ( a__ , unittest.TestCase ): A : Tuple = PerceiverTokenizer A : Union[str, Any] = False def __lowerCamelCase ( self ): super().setUp() lowercase : Any = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): lowercase : Any = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase : Optional[int] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , _UpperCAmelCase ) ) lowercase : Any = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase : str = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase : int = toks + toks # toks_str = [t[1] for t in toks] lowercase : int = [t[0] for t in toks] # Ensure consistency lowercase : Union[str, Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase : str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase : Optional[Any] = ' ' + output_txt lowercase : Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def __lowerCamelCase ( self ): lowercase : Any = self.perceiver_tokenizer lowercase : Optional[int] = 'Unicode €.' lowercase : int = tokenizer(_UpperCAmelCase ) lowercase : Any = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , _UpperCAmelCase ) # decoding lowercase : Union[str, Any] = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '''[CLS]Unicode €.[SEP]''' ) lowercase : List[str] = tokenizer('''e è é ê ë''' ) lowercase : Optional[Any] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , _UpperCAmelCase ) # decoding lowercase : Tuple = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def __lowerCamelCase ( self ): lowercase : Tuple = self.perceiver_tokenizer lowercase : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowercase : Tuple = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowercase : Optional[Any] = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase : Optional[int] = list(batch.input_ids.numpy()[0] ) else: lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.perceiver_tokenizer lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowercase : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _UpperCAmelCase ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertNotIn('''decoder_input_ids''' , _UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , _UpperCAmelCase ) def __lowerCamelCase ( self ): lowercase : List[str] = self.perceiver_tokenizer lowercase : Optional[int] = [ 'Summary of the text.', 'Another summary.', ] lowercase : List[Any] = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='''max_length''' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __lowerCamelCase ( self ): lowercase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase : Dict = tempfile.mkdtemp() lowercase : Any = ' He is very happy, UNwant\u00E9d,running' lowercase : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase : List[str] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase : Tuple = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase : Union[str, Any] = tempfile.mkdtemp() lowercase : Any = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowercase : str = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowercase : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase : List[str] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase : Any = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase : Tuple = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def __lowerCamelCase ( self ): lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowercase : Union[str, Any] = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowercase : Dict = json.load(_UpperCAmelCase ) lowercase : List[str] = [f"""<extra_id_{i}>""" for i in range(125 )] lowercase : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowercase : Union[str, Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase : int = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase : List[str] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_UpperCAmelCase )] lowercase : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __lowerCamelCase ( self ): lowercase : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): lowercase : List[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase : List[str] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowercase : Union[str, Any] = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
337
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _lowerCAmelCase ( __snake_case : str , __snake_case : complex , __snake_case : str = "x" , __snake_case : float = 10**-10 , __snake_case : int = 1 , ) -> complex: __A : int = symbols(__snake_case ) __A : Tuple = lambdify(__snake_case , __snake_case ) __A : Any = lambdify(__snake_case , diff(__snake_case , __snake_case ) ) __A : str = starting_point while True: if diff_function(__snake_case ) != 0: __A : Optional[Any] = prev_guess - multiplicity * func(__snake_case ) / diff_function( __snake_case ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : Dict = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
190
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
175
"""simple docstring""" def snake_case_ ( A_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(A_, A_ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case_ ( A_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(A_, A_ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
175
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCAmelCase : Optional[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCAmelCase : List[Any] = 0.01 with locka.acquire(): with pytest.raises(snake_case__ ): UpperCAmelCase : Tuple = time.time() locka.acquire(snake_case__ ) assert time.time() - _start > timeout def _snake_case ( UpperCamelCase : List[Any] ): UpperCAmelCase : Optional[int] = """a""" * 1000 + """.lock""" UpperCAmelCase : List[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(snake_case__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase : Optional[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case__ ): locka.acquire(0 )
109
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowerCAmelCase : Any = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowerCAmelCase : List[str] = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' lowerCAmelCase : int = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def A_( A : str): UpperCamelCase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def A_( A : tuple): return x[0] def A_( A : str): UpperCamelCase = get_letter_count(A) UpperCamelCase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(A) UpperCamelCase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=A) UpperCamelCase = ''.join(freq_to_letter[freq]) UpperCamelCase = list(freq_to_letter_str.items()) freq_pairs.sort(key=A , reverse=A) UpperCamelCase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(A) def A_( A : str): UpperCamelCase = get_frequency_order(A) UpperCamelCase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
251
'''simple docstring''' lowerCAmelCase : List[Any] = {str(digit): digit**5 for digit in range(10)} def A_( A : int): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(A)) def A_( ): return sum( number for number in range(1000 , 100_0000) if number == digits_fifth_powers_sum(A)) if __name__ == "__main__": print(solution())
251
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def a__ ( lowerCAmelCase__ , lowerCAmelCase__="shi-labs/oneformer_demo" ) -> Any: with open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase__ : List[Any] = json.load(lowerCAmelCase__ ) UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : int = [] for key, info in class_info.items(): UpperCAmelCase__ : Dict = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase__ ) ) UpperCAmelCase__ : Dict = thing_ids UpperCAmelCase__ : str = class_names return metadata class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Tuple , _A : List[str] , _A : List[str]=7 , _A : str=3 , _A : Union[str, Any]=30 , _A : int=400 , _A : Optional[int]=None , _A : Dict=True , _A : Optional[int]=True , _A : List[Any]=[0.5, 0.5, 0.5] , _A : List[str]=[0.5, 0.5, 0.5] , _A : int=10 , _A : Any=False , _A : List[Any]=255 , _A : str="shi-labs/oneformer_demo" , _A : Dict="ade20k_panoptic.json" , _A : List[str]=10 , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : Optional[int] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : List[Any] = do_resize UpperCAmelCase__ : List[Any] = {'''shortest_edge''': 32, '''longest_edge''': 1_333} if size is None else size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : Any = image_mean UpperCAmelCase__ : Union[str, Any] = image_std UpperCAmelCase__ : int = class_info_file UpperCAmelCase__ : str = prepare_metadata(_A , _A ) UpperCAmelCase__ : List[str] = num_text UpperCAmelCase__ : Optional[int] = repo_path # for the post_process_functions UpperCAmelCase__ : Optional[Any] = 2 UpperCAmelCase__ : Dict = 10 UpperCAmelCase__ : Optional[int] = 10 UpperCAmelCase__ : List[Any] = 3 UpperCAmelCase__ : Union[str, Any] = 4 UpperCAmelCase__ : List[str] = num_labels UpperCAmelCase__ : Any = do_reduce_labels UpperCAmelCase__ : Optional[Any] = ignore_index def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowercase_ ( self : Any , _A : str , _A : int=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Union[str, Any] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : Any = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] UpperCAmelCase__ : str = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase__ : Union[str, Any] = self.size['''shortest_edge'''] else: UpperCAmelCase__ : Tuple = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Optional[int] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : int = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCAmelCase__ = image_processing_class def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = OneFormerImageProcessorTester(self ) @property def lowercase_ ( self : Optional[int] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' pass def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Dict = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : List[Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : str = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : str , _A : Optional[int]=False , _A : Optional[Any]=False , _A : Any="np" ): '''simple docstring''' UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase__ : int = self.image_processing_tester.num_labels UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase__ : Tuple = num_labels if is_instance_map: UpperCAmelCase__ : int = list(range(_A ) ) * 2 UpperCAmelCase__ : Any = dict(enumerate(_A ) ) UpperCAmelCase__ : Optional[int] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase__ : Tuple = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase__ : Any = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : str ): '''simple docstring''' def common(_A : Dict=False , _A : Tuple=None ): UpperCAmelCase__ : Union[str, Any] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase__ : Tuple = inputs['''mask_labels'''] UpperCAmelCase__ : str = inputs['''class_labels'''] UpperCAmelCase__ : Dict = inputs['''pixel_values'''] UpperCAmelCase__ : Optional[Any] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = np.zeros((20, 50) ) UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : str = 1 UpperCAmelCase__ : Tuple = 1 UpperCAmelCase__ : Any = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase__ : List[Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase__ : int = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase__ : Tuple = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase__ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase__ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase__ : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase__ : Dict = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
181
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') UpperCamelCase__ , UpperCamelCase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') UpperCamelCase__ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: UpperCamelCase__ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCamelCase__ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
181
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : int = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = "perceiver" def __init__( self , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=1_280 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=26 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="kv" , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=262 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=56 , __SCREAMING_SNAKE_CASE=[368, 496] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=1_920 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=[1, 16, 224, 224] , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = num_latents UpperCamelCase : int = d_latents UpperCamelCase : Tuple = d_model UpperCamelCase : Dict = num_blocks UpperCamelCase : Optional[int] = num_self_attends_per_block UpperCamelCase : Any = num_self_attention_heads UpperCamelCase : Dict = num_cross_attention_heads UpperCamelCase : List[Any] = qk_channels UpperCamelCase : Optional[Any] = v_channels UpperCamelCase : Any = cross_attention_shape_for_attention UpperCamelCase : List[str] = self_attention_widening_factor UpperCamelCase : Union[str, Any] = cross_attention_widening_factor UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : Any = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Union[str, Any] = use_query_residual # masked language modeling attributes UpperCamelCase : List[Any] = vocab_size UpperCamelCase : Optional[int] = max_position_embeddings # image classification attributes UpperCamelCase : Optional[int] = image_size # flow attributes UpperCamelCase : List[Any] = train_size # multimodal autoencoding attributes UpperCamelCase : Optional[int] = num_frames UpperCamelCase : int = audio_samples_per_frame UpperCamelCase : List[str] = samples_per_patch UpperCamelCase : Any = output_shape class UpperCAmelCase_ ( _a): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 40 , __SCREAMING_SNAKE_CASE = 40 , ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase : Tuple = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase : Optional[Any] = preprocessor.num_special_tokens_to_add(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase : Dict = [''' '''.join(['''a'''] ) * seq_length] * batch_size UpperCamelCase : int = dict(preprocessor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = inputs.pop('''input_ids''' ) return inputs elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase : str = compute_effective_axis_dimension(__SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase : Tuple = self._generate_dummy_images(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : str = dict(preprocessor(images=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[int] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
315
import qiskit def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCamelCase : Any = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCamelCase : Any = qiskit.execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : int = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
315
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : int = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : int = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } SCREAMING_SNAKE_CASE : int = f"""{src_lang}-{tgt_lang}""" SCREAMING_SNAKE_CASE : Any = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , '''README.md''' ) print(f"""Generating {path}""" ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(SCREAMING_SNAKE_CASE__ ) # make sure we are under the root of the project __UpperCamelCase : List[Any] = Path(__file__).resolve().parent.parent.parent __UpperCamelCase : List[Any] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCamelCase : Optional[Any] = model_name.split('-') __UpperCamelCase : int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
182
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
111
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE_ = { """google/rembert""": 2_5_6, } SCREAMING_SNAKE_CASE_ = """▁""" class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = VOCAB_FILES_NAMES __snake_case : Any = PRETRAINED_VOCAB_FILES_MAP __snake_case : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Dict = RemBertTokenizer def __init__( self : Any ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Optional[Any]=False ,lowerCamelCase__ : Dict="[CLS]" ,lowerCamelCase__ : Tuple="[SEP]" ,lowerCamelCase__ : Optional[int]="<unk>" ,lowerCamelCase__ : Union[str, Any]="[SEP]" ,lowerCamelCase__ : Dict="<pad>" ,lowerCamelCase__ : int="[CLS]" ,lowerCamelCase__ : int="[MASK]" ,**lowerCamelCase__ : Union[str, Any] ,) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,remove_space=lowerCamelCase__ ,keep_accents=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,**lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCamelCase__ ) ) return SCREAMING_SNAKE_CASE = os.path.join( lowerCamelCase__ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file ,lowerCamelCase__ ) return (out_vocab_file,)
193
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if index == number_of_items: return 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: SCREAMING_SNAKE_CASE = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
193
1
import collections import importlib.util import os import re from pathlib import Path a_ = 'src/transformers' # Matches is_xxx_available() a_ = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available a_ = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: a_ = re.compile(r'^\s*try:') # Catches a line with else: a_ = re.compile(r'^\s*else:') def __lowercase ( lowerCamelCase : List[Any] ): if _re_test_backend.search(lowerCamelCase ) is None: return None UpperCamelCase_ : Optional[int] = [b[0] for b in _re_backend.findall(lowerCamelCase )] backends.sort() return "_and_".join(lowerCamelCase ) def __lowercase ( lowerCamelCase : List[str] ): with open(lowerCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase_ : int = f.readlines() UpperCamelCase_ : Dict = 0 while line_index < len(lowerCamelCase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure UpperCamelCase_ : Dict = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: UpperCamelCase_ : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase ): UpperCamelCase_ : Tuple = _re_one_line_import_struct.search(lowerCamelCase ).groups()[0] UpperCamelCase_ : int = re.findall('\[([^\]]+)\]' , lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue UpperCamelCase_ : List[Any] = _re_import_struct_key_value.search(lowerCamelCase ) if single_line_import_search is not None: UpperCamelCase_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 UpperCamelCase_ : Tuple = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCamelCase_ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase_ : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase_ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): UpperCamelCase_ : int = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase ) is not None: UpperCamelCase_ : Any = _re_import_struct_add_many.search(lowerCamelCase ).groups()[0].split(', ' ) UpperCamelCase_ : Union[str, Any] = [obj[1:-1] for obj in imports if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif _re_between_brackets.search(lowerCamelCase ) is not None: UpperCamelCase_ : Optional[Any] = _re_between_brackets.search(lowerCamelCase ).groups()[0].split(', ' ) UpperCamelCase_ : Optional[Any] = [obj[1:-1] for obj in imports if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif _re_quote_object.search(lowerCamelCase ) is not None: objects.append(_re_quote_object.search(lowerCamelCase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 UpperCamelCase_ : Tuple = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCamelCase_ : List[Any] = [] while ( line_index < len(lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): UpperCamelCase_ : Any = lines[line_index] UpperCamelCase_ : str = _re_import.search(lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCamelCase_ : Optional[Any] = {'none': objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. UpperCamelCase_ : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase_ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase_ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): UpperCamelCase_ : List[Any] = lines[line_index] UpperCamelCase_ : Union[str, Any] = _re_import.search(lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCamelCase_ : List[str] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Optional[int] ): def find_duplicates(lowerCamelCase : Optional[Any] ): return [k for k, v in collections.Counter(lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCamelCase_ : List[str] = [] for key in import_dict_objects.keys(): UpperCamelCase_ : Dict = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCamelCase_ : Any = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCamelCase_ : Union[str, Any] = 'base imports' if key == 'none' else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def __lowercase ( ): UpperCamelCase_ : Any = [] for root, _, files in os.walk(lowerCamelCase ): if "__init__.py" in files: UpperCamelCase_ : int = os.path.join(lowerCamelCase , '__init__.py' ) UpperCamelCase_ : int = parse_init(lowerCamelCase ) if objects is not None: UpperCamelCase_ : List[str] = analyze_results(*lowerCamelCase ) if len(lowerCamelCase ) > 0: UpperCamelCase_ : Any = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('\n'.join(lowerCamelCase ) ) if len(lowerCamelCase ) > 0: raise ValueError('\n\n'.join(lowerCamelCase ) ) def __lowercase ( ): UpperCamelCase_ : List[Any] = [] for path, directories, files in os.walk(lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase ) / folder).glob('*.py' ) ) ) == 0: continue UpperCamelCase_ : Tuple = str((Path(lowerCamelCase ) / folder).relative_to(lowerCamelCase ) ) UpperCamelCase_ : int = short_path.replace(os.path.sep , '.' ) submodules.append(lowerCamelCase ) for fname in files: if fname == "__init__.py": continue UpperCamelCase_ : int = str((Path(lowerCamelCase ) / fname).relative_to(lowerCamelCase ) ) UpperCamelCase_ : Optional[int] = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowerCamelCase ) return submodules a_ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def __lowercase ( ): # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase_ : int = importlib.util.spec_from_file_location( 'transformers' , os.path.join(lowerCamelCase , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) UpperCamelCase_ : str = spec.loader.load_module() UpperCamelCase_ : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowerCamelCase ) > 0: UpperCamelCase_ : List[str] = '\n'.join(F"- {module}" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"{list_of_modules}\n" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
175
from torch import nn class _lowercase ( nn.Module ): def __init__( self : Any , snake_case : Dict , snake_case : Union[str, Any] ) -> Dict: """simple docstring""" super().__init__() UpperCamelCase_ : List[Any] = class_size UpperCamelCase_ : List[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCamelCase_ : int = nn.Linear(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Any ) -> str: """simple docstring""" UpperCamelCase_ : Dict = self.mlp(snake_case ) return logits
175
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=[] ): _UpperCAmelCase : List[str] = size[0] - overlap_pixels * 2 _UpperCAmelCase : List[Any] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _UpperCAmelCase : str = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _UpperCAmelCase : Any = np.pad(__lowerCAmelCase , mode="linear_ramp" , pad_width=__lowerCAmelCase , end_values=0 ) if "l" in remove_borders: _UpperCAmelCase : List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _UpperCAmelCase : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _UpperCAmelCase : int = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _UpperCAmelCase : List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return max(__lowerCAmelCase , min(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = list(__lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _UpperCAmelCase : List[str] = clamp_rect(__lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__lowerCAmelCase , (original_slice, 0) ) return result def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _UpperCAmelCase : Tuple = tile.crop(__lowerCAmelCase ) return tile def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = n % d return n - divisor class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Optional[int] , lowerCamelCase__ : AutoencoderKL , lowerCamelCase__ : CLIPTextModel , lowerCamelCase__ : CLIPTokenizer , lowerCamelCase__ : UNetaDConditionModel , lowerCamelCase__ : DDPMScheduler , lowerCamelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase__ : int = 3_50 , ) ->Tuple: '''simple docstring''' super().__init__( vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , low_res_scheduler=lowerCamelCase__ , scheduler=lowerCamelCase__ , max_noise_level=lowerCamelCase__ , ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , **lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : int = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _UpperCAmelCase : Any = add_overlap_rect(lowerCamelCase__ , lowerCamelCase__ , image.size ) _UpperCAmelCase : List[Any] = image.crop(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _UpperCAmelCase : Tuple = translated_slice_x - (original_image_slice / 2) _UpperCAmelCase : Tuple = max(0 , lowerCamelCase__ ) _UpperCAmelCase : int = squeeze_tile(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = to_input.size _UpperCAmelCase : Union[str, Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _UpperCAmelCase : List[Any] = super(lowerCamelCase__ , self ).__call__(image=lowerCamelCase__ , **lowerCamelCase__ ).images[0] _UpperCAmelCase : str = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase : Any = unsqueeze_tile(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase : Optional[int] = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) _UpperCAmelCase : str = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowerCamelCase__ ) , mode="L" , ) final_image.paste( lowerCamelCase__ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowerCamelCase__ ) @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[str, List[str]] , lowerCamelCase__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowerCamelCase__ : int = 75 , lowerCamelCase__ : float = 9.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1_28 , lowerCamelCase__ : int = 32 , lowerCamelCase__ : int = 32 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) _UpperCAmelCase : Dict = math.ceil(image.size[0] / tile_size ) _UpperCAmelCase : Dict = math.ceil(image.size[1] / tile_size ) _UpperCAmelCase : Dict = tcx * tcy _UpperCAmelCase : Optional[Any] = 0 for y in range(lowerCamelCase__ ): for x in range(lowerCamelCase__ ): self._process_tile( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , prompt=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , noise_level=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def __lowerCAmelCase (): # Run a demo _UpperCAmelCase : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : List[str] = StableDiffusionTiledUpscalePipeline.from_pretrained(__lowerCAmelCase , revision="fp16" , torch_dtype=torch.floataa ) _UpperCAmelCase : Optional[int] = pipe.to("cuda" ) _UpperCAmelCase : List[str] = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(__lowerCAmelCase ): print(F"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) _UpperCAmelCase : Optional[int] = pipe(image=__lowerCAmelCase , prompt="Black font, white background, vector" , noise_level=40 , callback=__lowerCAmelCase ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int=False ,__UpperCamelCase: str=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'backbone.' if is_semantic else '' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (f"{prefix}cls_token", 'beit.embeddings.cls_token'), (f"{prefix}patch_embed.proj.weight", 'beit.embeddings.patch_embeddings.projection.weight'), (f"{prefix}patch_embed.proj.bias", 'beit.embeddings.patch_embeddings.projection.bias'), (f"{prefix}pos_embed", 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: int ,__UpperCamelCase: Optional[int]=False ,__UpperCamelCase: Union[str, Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): SCREAMING_SNAKE_CASE : List[Any] = 'backbone.' if is_semantic else '' # queries, keys and values SCREAMING_SNAKE_CASE : Dict = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE : int = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias" ) SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias" ) SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Dict = q_bias SCREAMING_SNAKE_CASE : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"{prefix}blocks.{i}.gamma_1" ) SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(f"{prefix}blocks.{i}.gamma_2" ) SCREAMING_SNAKE_CASE : Any = gamma_a SCREAMING_SNAKE_CASE : List[str] = gamma_a def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = val def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Any ,__UpperCamelCase: int=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = False if 'rvlcdip' in checkpoint_url else True SCREAMING_SNAKE_CASE : Dict = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase ,use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[Any] = 10_24 SCREAMING_SNAKE_CASE : Union[str, Any] = 40_96 SCREAMING_SNAKE_CASE : Dict = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : List[Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE : Any = 'rvlcdip-id2label.json' SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='dataset' ) ,'r' ) ) SCREAMING_SNAKE_CASE : Optional[int] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[int] = idalabel SCREAMING_SNAKE_CASE : Any = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE : List[Any] = torch.hub.load_state_dict_from_url(__UpperCamelCase ,map_location='cpu' )['model'] SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(__UpperCamelCase ,has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ,has_lm_head=__UpperCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image SCREAMING_SNAKE_CASE : Optional[int] = BeitImageProcessor( size=config.image_size ,resample=PILImageResampling.BILINEAR ,do_center_crop=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=__UpperCamelCase ,return_tensors='pt' ) SCREAMING_SNAKE_CASE : str = encoding['pixel_values'] SCREAMING_SNAKE_CASE : Optional[Any] = model(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = outputs.logits # verify logits SCREAMING_SNAKE_CASE : List[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: SCREAMING_SNAKE_CASE : int = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: SCREAMING_SNAKE_CASE : int = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase ,__UpperCamelCase ) ,organization='nielsr' ,commit_message='Add image processor' ,use_temp_dir=__UpperCamelCase ,) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase ,__UpperCamelCase ) ,organization='nielsr' ,commit_message='Add model' ,use_temp_dir=__UpperCamelCase ,) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) UpperCamelCase_ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
251
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase_ = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase_ = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = len([g for position, g in enumerate(__UpperCamelCase ) if g == main_target[position]] ) return (item, float(__UpperCamelCase )) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : int = random.randint(0 ,len(__UpperCamelCase ) - 1 ) SCREAMING_SNAKE_CASE : List[str] = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: list[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = list(__UpperCamelCase ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE : Optional[Any] = random.choice(__UpperCamelCase ) return "".join(__UpperCamelCase ) def lowercase__( __UpperCamelCase: tuple[str, float] ,__UpperCamelCase: list[tuple[str, float]] ,__UpperCamelCase: list[str] ,): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE : Optional[Any] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 if child_n >= 10 else child_n for _ in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = population_score[random.randint(0 ,__UpperCamelCase )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = crossover(parent_a[0] ,__UpperCamelCase ) # Append new string to the population list. pop.append(mutate(__UpperCamelCase ,__UpperCamelCase ) ) pop.append(mutate(__UpperCamelCase ,__UpperCamelCase ) ) return pop def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: list[str] ,__UpperCamelCase: bool = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE : List[str] = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE : List[Any] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__UpperCamelCase ) # Generate random starting population. SCREAMING_SNAKE_CASE : Optional[Any] = [] for _ in range(__UpperCamelCase ): population.append(''.join([random.choice(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE : Optional[int] = [evaluate(__UpperCamelCase ,__UpperCamelCase ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x[1] ,reverse=__UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCamelCase ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE : str = [ (item, score / len(__UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCamelCase ): population.extend(select(population_score[int(__UpperCamelCase )] ,__UpperCamelCase ,__UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase_ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) UpperCamelCase_ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
251
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A : str = logging.get_logger('''transformers.models.speecht5''') def lowerCAmelCase__ ( lowerCamelCase : str ,lowerCamelCase : int ,lowerCamelCase : Union[str, Any] ): hf_model.apply_weight_norm() _A : Optional[int] = checkpoint["""input_conv.weight_g"""] _A : str = checkpoint["""input_conv.weight_v"""] _A : str = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): _A : Dict = checkpoint[F'upsamples.{i}.1.weight_g'] _A : Any = checkpoint[F'upsamples.{i}.1.weight_v'] _A : Union[str, Any] = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _A : Tuple = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] _A : Dict = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] _A : Optional[Any] = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] _A : Tuple = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] _A : Optional[Any] = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] _A : Tuple = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] _A : Optional[int] = checkpoint["""output_conv.1.weight_g"""] _A : Optional[Any] = checkpoint["""output_conv.1.weight_v"""] _A : Union[str, Any] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase : Tuple ,lowerCamelCase : int ,lowerCamelCase : Any ,lowerCamelCase : Tuple=None ,lowerCamelCase : Dict=None ,): if config_path is not None: _A : Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(_a ) else: _A : str = SpeechTaHifiGanConfig() _A : List[str] = SpeechTaHifiGan(_a ) _A : int = torch.load(_a ) load_weights(orig_checkpoint['model']['generator'] ,_a ,_a ) _A : List[Any] = np.load(_a ) _A : Optional[Any] = stats[0].reshape(-1 ) _A : int = stats[1].reshape(-1 ) _A : Any = torch.from_numpy(_a ).float() _A : int = torch.from_numpy(_a ).float() model.save_pretrained(_a ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_a ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A : Any = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
365
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : str=0.999 ,lowerCamelCase : int="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase : List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _A : Tuple = [] for i in range(lowerCamelCase ): _A : List[Any] = i / num_diffusion_timesteps _A : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) ,lowerCamelCase ) ) return torch.tensor(lowerCamelCase ,dtype=torch.floataa ) class __lowerCamelCase ( a_ , a_ ): """simple docstring""" a = [e.name for e in KarrasDiffusionSchedulers] a = 2 @register_to_config def __init__( self : int , SCREAMING_SNAKE_CASE : int = 1000 , SCREAMING_SNAKE_CASE : float = 0.0_0085 , SCREAMING_SNAKE_CASE : float = 0.012 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : str = "linspace" , SCREAMING_SNAKE_CASE : int = 0 , ): if trained_betas is not None: _A : Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "linear": _A : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : Any = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : Optional[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}') _A : Any = 1.0 - self.betas _A : List[Any] = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any=None): if schedule_timesteps is None: _A : Dict = self.timesteps _A : List[Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: _A : Dict = 1 if len(SCREAMING_SNAKE_CASE) > 1 else 0 else: _A : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE) else timestep _A : int = self._index_counter[timestep_int] return indices[pos].item() @property def A ( self : Optional[Any]): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def A ( self : List[Any] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , ): _A : Tuple = self.index_for_timestep(SCREAMING_SNAKE_CASE) if self.state_in_first_order: _A : Any = self.sigmas[step_index] else: _A : int = self.sigmas_interpol[step_index] _A : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def A ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , ): _A : Optional[Any] = num_inference_steps _A : int = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A : Tuple = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE)[::-1].copy() elif self.config.timestep_spacing == "leading": _A : Optional[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : int = (np.arange(0 , SCREAMING_SNAKE_CASE) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : str = (np.arange(SCREAMING_SNAKE_CASE , 0 , -step_ratio)).round().copy().astype(SCREAMING_SNAKE_CASE) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.') _A : List[str] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) _A : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE)).to(SCREAMING_SNAKE_CASE) _A : str = np.interp(SCREAMING_SNAKE_CASE , np.arange(0 , len(SCREAMING_SNAKE_CASE)) , SCREAMING_SNAKE_CASE) _A : str = np.concatenate([sigmas, [0.0]]).astype(np.floataa) _A : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE).to(device=SCREAMING_SNAKE_CASE) # interpolate sigmas _A : Optional[int] = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() _A : Any = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) _A : List[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(SCREAMING_SNAKE_CASE).startswith('mps'): # mps does not support float64 _A : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE , dtype=torch.floataa) else: _A : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) # interpolate timesteps _A : Optional[int] = self.sigma_to_t(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE , dtype=timesteps.dtype) _A : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() _A : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps]) _A : str = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A : Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any]): # get log sigma _A : Dict = sigma.log() # get distribution _A : Any = log_sigma - self.log_sigmas[:, None] # get sigmas range _A : Tuple = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) _A : Union[str, Any] = low_idx + 1 _A : Dict = self.log_sigmas[low_idx] _A : List[Any] = self.log_sigmas[high_idx] # interpolate sigmas _A : Dict = (low - log_sigma) / (low - high) _A : Union[str, Any] = w.clamp(0 , 1) # transform interpolation to time range _A : int = (1 - w) * low_idx + w * high_idx _A : Any = t.view(sigma.shape) return t @property def A ( self : Any): return self.sample is None def A ( self : int , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE : bool = True , ): _A : Optional[int] = self.index_for_timestep(SCREAMING_SNAKE_CASE) # advance index counter by 1 _A : Dict = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A : Tuple = self.sigmas[step_index] _A : Dict = self.sigmas_interpol[step_index + 1] _A : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _A : int = self.sigmas[step_index - 1] _A : Union[str, Any] = self.sigmas_interpol[step_index] _A : Dict = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A : List[Any] = 0 _A : Dict = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol _A : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A : Any = sigma_hat if self.state_in_first_order else sigma_interpol _A : Union[str, Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample') else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A : str = sigma_interpol - sigma_hat # store for 2nd order step _A : List[str] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _A : List[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _A : Optional[int] = sigma_next - sigma_hat _A : str = self.sample _A : Any = None _A : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE) def A ( self : Any , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples _A : str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE): # mps does not support float64 _A : Any = self.timesteps.to(original_samples.device , dtype=torch.floataa) _A : List[str] = timesteps.to(original_samples.device , dtype=torch.floataa) else: _A : str = self.timesteps.to(original_samples.device) _A : str = timesteps.to(original_samples.device) _A : int = [self.index_for_timestep(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) for t in timesteps] _A : Tuple = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): _A : List[Any] = sigma.unsqueeze(-1) _A : Dict = original_samples + noise * sigma return noisy_samples def __len__( self : List[Any]): return self.config.num_train_timesteps
227
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
1
"""simple docstring""" from manim import * class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = Rectangle(height=0.5 , width=0.5) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) SCREAMING_SNAKE_CASE_ : Optional[int] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : List[Any] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : Optional[Any] = VGroup(*UpperCamelCase__).arrange(UpperCamelCase__ , buff=0) SCREAMING_SNAKE_CASE_ : List[Any] = VGroup(*UpperCamelCase__).arrange(UpperCamelCase__ , buff=0) SCREAMING_SNAKE_CASE_ : int = VGroup(UpperCamelCase__ , UpperCamelCase__).arrange(UpperCamelCase__ , buff=0) SCREAMING_SNAKE_CASE_ : List[str] = Text('''CPU''' , font_size=24) SCREAMING_SNAKE_CASE_ : Tuple = Group(UpperCamelCase__ , UpperCamelCase__).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__) cpu.move_to([-2.5, -0.5, 0]) self.add(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [mem.copy() for i in range(1)] SCREAMING_SNAKE_CASE_ : Any = VGroup(*UpperCamelCase__).arrange(UpperCamelCase__ , buff=0) SCREAMING_SNAKE_CASE_ : Any = Text('''GPU''' , font_size=24) SCREAMING_SNAKE_CASE_ : str = Group(UpperCamelCase__ , UpperCamelCase__).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__) gpu.align_to(UpperCamelCase__ , UpperCamelCase__) gpu.set_x(gpu.get_x() - 1) self.add(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Optional[Any] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : Union[str, Any] = VGroup(*UpperCamelCase__).arrange(UpperCamelCase__ , buff=0) SCREAMING_SNAKE_CASE_ : Optional[Any] = Text('''Model''' , font_size=24) SCREAMING_SNAKE_CASE_ : Optional[int] = Group(UpperCamelCase__ , UpperCamelCase__).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__) model.move_to([3, -1.0, 0]) self.play( Create(UpperCamelCase__ , run_time=1) , Create(UpperCamelCase__ , run_time=1) , Create(UpperCamelCase__ , run_time=1) , ) SCREAMING_SNAKE_CASE_ : List[str] = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) SCREAMING_SNAKE_CASE_ : Any = Square(side_length=2.2) key.move_to([-5, 2, 0]) SCREAMING_SNAKE_CASE_ : Dict = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) step_a.move_to([2, 2, 0]) self.play(Write(UpperCamelCase__ , run_time=2.5) , Write(UpperCamelCase__) , Write(UpperCamelCase__)) self.add(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : int = [] for i, rect in enumerate(UpperCamelCase__): SCREAMING_SNAKE_CASE_ : str = Rectangle(height=0.46 , width=0.46).set_stroke(width=0.0).set_fill(UpperCamelCase__ , opacity=0.7) cpu_target.move_to(UpperCamelCase__) cpu_target.generate_target() SCREAMING_SNAKE_CASE_ : Optional[int] = 0.46 / 4 SCREAMING_SNAKE_CASE_ : int = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=UpperCamelCase__) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCamelCase__ , buff=0.0) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCamelCase__ , buff=0.0) cpu_targs.append(UpperCamelCase__) first_animations.append(rect.animate(run_time=0.5).set_stroke(UpperCamelCase__)) second_animations.append(MoveToTarget(UpperCamelCase__ , run_time=1.5)) self.play(*UpperCamelCase__) self.play(*UpperCamelCase__) self.wait()
367
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _A (__a ) -> Union[str, Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def _A (__a ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
318
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase=13,__lowerCamelCase=30,__lowerCamelCase=2,__lowerCamelCase=3,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=32,__lowerCamelCase=2,__lowerCamelCase=4,__lowerCamelCase=37,__lowerCamelCase="gelu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=10,__lowerCamelCase=0.02,__lowerCamelCase=3,__lowerCamelCase=None,__lowerCamelCase=2,): A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 2 def UpperCamelCase ( self ): A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): return DeiTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=__lowerCamelCase,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = TFDeiTModel(config=__lowerCamelCase ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = TFDeiTForMaskedImageModeling(config=__lowerCamelCase ) A__ = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ = 1 A__ = TFDeiTForMaskedImageModeling(__lowerCamelCase ) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = self.type_sequence_label_size A__ = TFDeiTForImageClassification(__lowerCamelCase ) A__ = model(__lowerCamelCase,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = TFDeiTForImageClassification(__lowerCamelCase ) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(__lowerCamelCase,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self ): A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ): A__ = TFDeiTModelTester(self ) A__ = ConfigTester(self,config_class=__lowerCamelCase,has_text_modality=__lowerCamelCase,hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase,tf.keras.layers.Dense ) ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCamelCase ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1],__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=False ): A__ = super()._prepare_for_class(__lowerCamelCase,__lowerCamelCase,return_labels=__lowerCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase ( self ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDeiTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase__( )->int: A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): A__ = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=__lowerCamelCase,return_tensors='''tf''' ) # forward pass A__ = model(**__lowerCamelCase ) # verify the logits A__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape,__lowerCamelCase ) A__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3],__lowerCamelCase,atol=1E-4 ) )
193
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = (DPMSolverSinglestepScheduler,) __SCREAMING_SNAKE_CASE = (('''num_inference_steps''', 25),) def UpperCamelCase ( self,**__lowerCamelCase ): A__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**__lowerCamelCase ) return config def UpperCamelCase ( self,__lowerCamelCase=0,**__lowerCamelCase ): A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('''num_inference_steps''',__lowerCamelCase ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) A__ = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ = sample, sample for t in range(__lowerCamelCase,time_step + scheduler.config.solver_order + 1 ): A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample A__ = new_scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self ): pass def UpperCamelCase ( self,__lowerCamelCase=0,**__lowerCamelCase ): A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('''num_inference_steps''',__lowerCamelCase ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) A__ = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample A__ = new_scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self,__lowerCamelCase=None,**__lowerCamelCase ): if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample return sample def UpperCamelCase ( self ): A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = 50 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCamelCase ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCamelCase ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = self.full_loop(scheduler=__lowerCamelCase ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 A__ = DEISMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ = UniPCMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ = self.full_loop(scheduler=__lowerCamelCase ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCamelCase ( self ): self.check_over_configs(thresholding=__lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase,prediction_type=__lowerCamelCase,sample_max_value=__lowerCamelCase,algorithm_type='''dpmsolver++''',solver_order=__lowerCamelCase,solver_type=__lowerCamelCase,) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCamelCase ( self ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase,solver_type=__lowerCamelCase,prediction_type=__lowerCamelCase,algorithm_type=__lowerCamelCase,) A__ = self.full_loop( solver_order=__lowerCamelCase,solver_type=__lowerCamelCase,prediction_type=__lowerCamelCase,algorithm_type=__lowerCamelCase,) assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers" def UpperCamelCase ( self ): self.check_over_configs(lower_order_final=__lowerCamelCase ) self.check_over_configs(lower_order_final=__lowerCamelCase ) def UpperCamelCase ( self ): self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCamelCase ( self ): self.check_over_configs(variance_type=__lowerCamelCase ) self.check_over_configs(variance_type='''learned_range''' ) def UpperCamelCase ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCamelCase,time_step=0 ) def UpperCamelCase ( self ): A__ = self.full_loop() A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(use_karras_sigmas=__lowerCamelCase ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(prediction_type='''v_prediction''' ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(prediction_type='''v_prediction''',use_karras_sigmas=__lowerCamelCase ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=__lowerCamelCase,dynamic_thresholding_ratio=0 ) A__ = scheduler_class(**__lowerCamelCase ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
193
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ) -> Tuple: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(UpperCAmelCase ) for s in shape] )}.npy''' def UpperCAmelCase ( self : int ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict=0 , UpperCAmelCase : str=(4, 4, 6_4, 6_4) , UpperCAmelCase : List[str]=False ) -> int: __lowerCAmelCase: List[Any] = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase: Any = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase , UpperCAmelCase ) ) , dtype=UpperCAmelCase ) return image def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : str="CompVis/stable-diffusion-v1-4" ) -> Dict: __lowerCAmelCase: str = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase: Union[str, Any] = 'bf16' if fpaa else None __lowerCAmelCase , __lowerCAmelCase: int = FlaxUNetaDConditionModel.from_pretrained( UpperCAmelCase , subfolder='unet' , dtype=UpperCAmelCase , revision=UpperCAmelCase ) return model, params def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : List[Any]=(4, 7_7, 7_6_8) , UpperCAmelCase : Any=False ) -> List[str]: __lowerCAmelCase: Dict = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase: List[str] = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase , UpperCAmelCase ) ) , dtype=UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=UpperCAmelCase ) __lowerCAmelCase: str = self.get_latents(UpperCAmelCase , fpaa=UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.get_encoder_hidden_states(UpperCAmelCase , fpaa=UpperCAmelCase ) __lowerCAmelCase: List[str] = model.apply( {'params': params} , UpperCAmelCase , jnp.array(UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCAmelCase: Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCAmelCase: List[Any] = jnp.array(UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Any ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: List[Any] = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=UpperCAmelCase ) __lowerCAmelCase: Any = self.get_latents(UpperCAmelCase , shape=(4, 4, 9_6, 9_6) , fpaa=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = self.get_encoder_hidden_states(UpperCAmelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=UpperCAmelCase ) __lowerCAmelCase: str = model.apply( {'params': params} , UpperCAmelCase , jnp.array(UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCAmelCase: str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCAmelCase: str = jnp.array(UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-2 )
322
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) __A : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } __A : Optional[int] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : Any = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: snake_case_ : Union[str, Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: snake_case_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ : int = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Tuple = value elif weight_type == "bias": snake_case_ : str = value else: snake_case_ : Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Any = [] snake_case_ : Any = fairseq_model.state_dict() snake_case_ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case_ : int = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Tuple = True else: for key, mapped_key in MAPPING.items(): snake_case_ : Optional[int] = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue snake_case_ : Tuple = True if "*" in mapped_key: snake_case_ : int = name.split(lowerCamelCase_ )[0].split(""".""" )[-2] snake_case_ : Union[str, Any] = mapped_key.replace("""*""" , lowerCamelCase_ ) if "weight_g" in name: snake_case_ : List[Any] = """weight_g""" elif "weight_v" in name: snake_case_ : str = """weight_v""" elif "bias" in name: snake_case_ : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ : Dict = """weight""" else: snake_case_ : Union[str, Any] = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] snake_case_ : int = name.split(""".""" ) snake_case_ : List[Any] = int(items[0] ) snake_case_ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ : Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case_ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Any=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :str=True ): '''simple docstring''' if config_path is not None: snake_case_ : int = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) else: snake_case_ : Union[str, Any] = UniSpeechSatConfig() snake_case_ : List[str] = """""" if is_finetuned: snake_case_ : List[Any] = UniSpeechSatForCTC(lowerCamelCase_ ) else: snake_case_ : Optional[Any] = UniSpeechSatForPreTraining(lowerCamelCase_ ) snake_case_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : List[Any] = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __A : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
359
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' # reformer model snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # Initialise PyTorch model snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
54
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def a( A : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def a( A : np.ndarray , A : np.ndarray ) -> XGBClassifier: """simple docstring""" a = XGBClassifier() classifier.fit(A , A ) return classifier def a( ) -> None: """simple docstring""" a = load_iris() a , a = data_handling(A ) a , a , a , a = train_test_split( A , A , test_size=0.25 ) a = iris["target_names"] # Create an XGBoost Classifier from the training data a = xgboost(A , A ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A , A , A , display_labels=A , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
227
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = '''▁''' A_ = {'''vocab_file''': '''prophetnet.tokenizer'''} A_ = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } A_ = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } A_ = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_12, } def UpperCAmelCase__ (snake_case__ : List[str] ): """simple docstring""" _snake_case : str = collections.OrderedDict() with open(snake_case__ , """r""" , encoding="""utf-8""" ) as reader: _snake_case : Tuple = reader.readlines() for index, token in enumerate(snake_case__ ): _snake_case : Dict = token.rstrip("""\n""" ) _snake_case : Dict = index return vocab class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self: str, a_: Optional[int], a_: Any="[SEP]", a_: List[str]="[SEP]", a_: Union[str, Any]="[SEP]", a_: Any="[UNK]", a_: Dict="[PAD]", a_: Dict="[CLS]", a_: Union[str, Any]="[MASK]", a_: Optional[Dict[str, Any]] = None, **a_: Optional[Any], ): '''simple docstring''' _snake_case : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_, eos_token=a_, sep_token=a_, unk_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise _snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) _snake_case : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _snake_case : Optional[Any] = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4} for i in range(10 ): _snake_case : str = f"[unused{i}]" _snake_case : Dict = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _snake_case : List[Any] = 12 _snake_case : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(a_ ) def __getstate__( self: str ): '''simple docstring''' _snake_case : List[str] = self.__dict__.copy() _snake_case : int = None return state def __setstate__( self: int, a_: Dict ): '''simple docstring''' _snake_case : int = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): _snake_case : Dict = {} _snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self: Dict, a_: List[int], a_: Optional[List[int]] = None, a_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) if token_ids_a is None: return ([0] * len(a_ )) + [1] return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def UpperCamelCase_ ( self: List[str], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' _snake_case : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self: Tuple, a_: str ): '''simple docstring''' return self.sp_model.encode(a_, out_type=a_ ) def UpperCamelCase_ ( self: Dict, a_: Union[str, Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _snake_case : Optional[int] = self.sp_model.PieceToId(a_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase_ ( self: Any, a_: Optional[int] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self: Any, a_: Any ): '''simple docstring''' _snake_case : Any = """""".join(a_ ).replace(a_, """ """ ).strip() return out_string def UpperCamelCase_ ( self: Tuple, a_: str, a_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _snake_case : List[Any] = os.path.join( a_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, """wb""" ) as fi: _snake_case : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def UpperCamelCase_ ( self: Union[str, Any], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] _snake_case : Optional[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
368
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : int=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _snake_case : Dict = os.path.abspath(snake_case__ ) logger.info(F"Loading PyTorch weights from {pt_path}" ) _snake_case : Tuple = torch.load(snake_case__ , map_location="""cpu""" ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) _snake_case : int = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _snake_case : Dict = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ ) return flax_state_dict def UpperCAmelCase__ (snake_case__ : Tuple[str] , snake_case__ : np.ndarray , snake_case__ : Dict[str, jnp.ndarray] , snake_case__ : str , ): """simple docstring""" def is_key_or_prefix_key_in_dict(snake_case__ : Tuple[str] ) -> bool: return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm _snake_case : Any = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _snake_case : Optional[Any] = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _snake_case : Any = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # embedding _snake_case : Any = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # conv layer _snake_case : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ): _snake_case : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _snake_case : List[str] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ): _snake_case : List[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _snake_case : List[Any] = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _snake_case : Tuple = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _snake_case : Optional[Any] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _snake_case : Union[str, Any] = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _snake_case : Dict = pt_tuple_key[-2] + """_v""" if name is not None: _snake_case : Union[str, Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} _snake_case : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _snake_case : Dict = flax_model.params["""params"""] else: _snake_case : List[Any] = flax_model.params _snake_case : Tuple = flatten_dict(snake_case__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _snake_case : Union[str, Any] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(snake_case__ ) _snake_case : Tuple = {} _snake_case : Dict = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _snake_case : Optional[int] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _snake_case : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _snake_case : Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _snake_case : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters _snake_case , _snake_case : int = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary _snake_case : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _snake_case : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _snake_case : Union[str, Any] = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown _snake_case : List[Any] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown _snake_case : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" import torch # Load the index _snake_case : str = {} for shard_file in shard_filenames: # load using msgpack utils _snake_case : Union[str, Any] = torch.load(snake_case__ ) _snake_case : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} _snake_case : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _snake_case : str = flax_model.params["""params"""] _snake_case : List[Any] = flatten_dict(snake_case__ ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _snake_case : List[Any] = flax_model.params _snake_case : Tuple = flatten_dict(snake_case__ ) _snake_case : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _snake_case : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _snake_case : List[str] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _snake_case : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _snake_case : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters _snake_case , _snake_case : Optional[Any] = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary _snake_case : List[str] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _snake_case : Any = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _snake_case : Optional[int] = jnp.asarray(snake_case__ ) continue if "var" in flax_key[-1]: _snake_case : Any = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown _snake_case : List[str] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown _snake_case : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : Optional[Any] = os.path.abspath(snake_case__ ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class _snake_case : Union[str, Any] = getattr(snake_case__ , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(snake_case__ , """rb""" ) as state_f: try: _snake_case : Dict = from_bytes(snake_case__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Optional[int] ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _snake_case : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _snake_case : Optional[int] = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) _snake_case : Dict = flatten_dict(snake_case__ ) _snake_case : Optional[Any] = pt_model.state_dict() _snake_case : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _snake_case : Optional[int] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _snake_case : str = [] _snake_case : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _snake_case : Tuple = flax_key_tuple[0] == pt_model.base_model_prefix _snake_case : Optional[Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _snake_case : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _snake_case : Union[str, Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict: # conv layer _snake_case : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) _snake_case : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict: # linear layer _snake_case : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _snake_case : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case : int = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _snake_case : Tuple = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: _snake_case : Optional[int] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: _snake_case : int = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _snake_case : int = """.""".join(snake_case__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _snake_case : Optional[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _snake_case : List[str] = key.split(""".""" ) _snake_case : Optional[int] = None if key_components[-3::2] == ["parametrizations", "original0"]: _snake_case : int = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: _snake_case : Union[str, Any] = key_components[-2] + """_v""" if name is not None: _snake_case : Dict = key_components[:-3] + [name] _snake_case : Dict = """.""".join(snake_case__ ) _snake_case : str = key if flax_key in special_pt_names: _snake_case : Union[str, Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict _snake_case : List[str] = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor _snake_case : List[Any] = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list _snake_case : List[str] = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(snake_case__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" """If your task is similar to the task the model of the checkpoint was trained on, """ F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
132
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =13 lowerCamelCase_ =7 lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =99 lowerCamelCase_ =384 lowerCamelCase_ =2 lowerCamelCase_ =4 lowerCamelCase_ =37 lowerCamelCase_ ='''gelu''' lowerCamelCase_ =0.1 lowerCamelCase_ =0.1 lowerCamelCase_ =512 lowerCamelCase_ =16 lowerCamelCase_ =2 lowerCamelCase_ =0.0_2 lowerCamelCase_ =3 lowerCamelCase_ =4 lowerCamelCase_ =128 lowerCamelCase_ =2 lowerCamelCase_ =9 lowerCamelCase_ =1 lowerCamelCase_ =None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase_ =ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=lowerCAmelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertModel(config=lowerCAmelCase ) lowerCamelCase_ ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ =[input_ids, input_mask] lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertForMaskedLM(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =TFConvBertForSequenceClassification(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_choices lowerCamelCase_ =TFConvBertForMultipleChoice(config=lowerCAmelCase ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =TFConvBertForTokenClassification(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertForQuestionAnswering(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowercase : List[str] =( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowercase : int =False lowercase : List[Any] =False lowercase : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ =True lowerCamelCase_ =True if hasattr(lowerCAmelCase, '''use_cache''' ): lowerCamelCase_ =True lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) for model_class in self.all_model_classes: lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =len(model(lowerCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase, saved_model=lowerCAmelCase ) lowerCamelCase_ =os.path.join(lowerCAmelCase, '''saved_model''', '''1''' ) lowerCamelCase_ =tf.keras.models.load_model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) if self.is_encoder_decoder: lowerCamelCase_ =outputs['''encoder_hidden_states'''] lowerCamelCase_ =outputs['''encoder_attentions'''] else: lowerCamelCase_ =outputs['''hidden_states'''] lowerCamelCase_ =outputs['''attentions'''] self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase ) lowerCamelCase_ =getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ =True lowerCamelCase_ =getattr(self.model_tester, '''decoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) def check_decoder_attentions_output(lowerCAmelCase ): lowerCamelCase_ =len(lowerCAmelCase ) self.assertEqual(out_len % 2, 0 ) lowerCamelCase_ =outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(lowerCAmelCase ): lowerCamelCase_ =[ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) lowerCamelCase_ =len(lowerCAmelCase ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) if self.is_encoder_decoder: lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_decoder_attentions_output(lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase_ =True lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) # Check attention is always last and order is fine lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) lowerCamelCase_ =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =model(lowerCAmelCase )[0] lowerCamelCase_ =[1, 6, 768] self.assertEqual(output.shape, lowerCAmelCase ) lowerCamelCase_ =tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3], lowerCAmelCase, atol=1e-4 )
75
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
358
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCAmelCase_( enum.Enum ): '''simple docstring''' __lowercase : Any = 0 __lowercase : List[str] = 1 __lowercase : List[Any] = 2 @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase__ : List[Any] = None if self.model.config.prefix is not None: lowerCAmelCase__ : Optional[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase__ : Optional[int] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self._sanitize_parameters(prefix=__UpperCAmelCase ,**self._forward_params ) lowerCAmelCase__ : int = {**self._preprocess_params, **preprocess_params} lowerCAmelCase__ : Optional[Any] = {**self._forward_params, **forward_params} def UpperCAmelCase_ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Dict: lowerCAmelCase__ : List[Any] = {} if prefix is not None: lowerCAmelCase__ : Any = prefix if prefix: lowerCAmelCase__ : Optional[Any] = self.tokenizer( __UpperCAmelCase ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) lowerCAmelCase__ : int = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" """ [None, 'hole']""" ) lowerCAmelCase__ : int = handle_long_generation preprocess_params.update(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = generate_kwargs lowerCAmelCase__ : Union[str, Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) lowerCAmelCase__ : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) lowerCAmelCase__ : int = ReturnType.TENSORS if return_type is not None: lowerCAmelCase__ : Optional[Any] = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase__ : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase__ : Tuple = self.tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCAmelCase__ : Tuple = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*__UpperCAmelCase ,**__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> str: lowerCAmelCase__ : List[Any] = self.tokenizer( prefix + prompt_text ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) lowerCAmelCase__ : Optional[int] = prompt_text if handle_long_generation == "hole": lowerCAmelCase__ : Tuple = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase__ : str = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase__ : List[Any] = generate_kwargs.get("""max_length""" ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase__ : List[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) lowerCAmelCase__ : str = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase__ : Union[str, Any] = inputs["""attention_mask"""][:, -keep_length:] return inputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Tuple = model_inputs["""input_ids"""] lowerCAmelCase__ : Dict = model_inputs.get("""attention_mask""" ,__UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : int = 1 else: lowerCAmelCase__ : str = input_ids.shape[0] lowerCAmelCase__ : List[Any] = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase__ : Union[str, Any] = generate_kwargs.pop("""prefix_length""" ,0 ) if prefix_length > 0: lowerCAmelCase__ : Union[str, Any] = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase__ : Tuple = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase__ : str = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase__ : Optional[int] = self.model.generate(input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : str = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase__ : Dict = generated_sequence.reshape(__UpperCAmelCase ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase__ : Any = tf.reshape(__UpperCAmelCase ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=ReturnType.FULL_TEXT ,__UpperCAmelCase=True ) -> str: lowerCAmelCase__ : int = model_outputs["""generated_sequence"""][0] lowerCAmelCase__ : Dict = model_outputs["""input_ids"""] lowerCAmelCase__ : Tuple = model_outputs["""prompt_text"""] lowerCAmelCase__ : Optional[Any] = generated_sequence.numpy().tolist() lowerCAmelCase__ : List[str] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase__ : List[str] = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase__ : Dict = self.tokenizer.decode( __UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase__ : Optional[int] = 0 else: lowerCAmelCase__ : str = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase__ : Optional[int] = prompt_text + text[prompt_length:] else: lowerCAmelCase__ : List[str] = text[prompt_length:] lowerCAmelCase__ : List[Any] = {"""generated_text""": all_text} records.append(__UpperCAmelCase ) return records
184
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowerCAmelCase : UpperCAmelCase__ = MBartConfig UpperCAmelCase__ = {} UpperCAmelCase__ = """gelu""" def __init__( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=13 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Dict=99 , UpperCAmelCase : int=32 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=4 , UpperCAmelCase : Any=37 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[str]=20 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : Dict=0 , ) -> Dict: lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : str = seq_length lowerCamelCase__ : str = is_training lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = eos_token_id lowerCamelCase__ : Any = pad_token_id lowerCamelCase__ : int = bos_token_id def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ : int = prepare_mbart_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def A_ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: lowerCamelCase__ : Tuple = TFMBartModel(config=UpperCAmelCase ).get_decoder() lowerCamelCase__ : int = inputs_dict['input_ids'] lowerCamelCase__ : Union[str, Any] = input_ids[:1, :] lowerCamelCase__ : str = inputs_dict['attention_mask'][:1, :] lowerCamelCase__ : Union[str, Any] = inputs_dict['head_mask'] lowerCamelCase__ : Union[str, Any] = 1 # first forward pass lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Any = outputs.to_tuple() lowerCamelCase__ : Optional[int] = past_key_values[1] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> Union[str, Any]: if attention_mask is None: lowerCamelCase__ : Union[str, Any] = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCAmelCase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : str ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A_ ( self : Dict ) -> int: lowerCamelCase__ : Dict = TFMBartModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self , config_class=UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: self.config_tester.run_common_tests() def A_ ( self : Tuple ) -> int: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowerCAmelCase ( unittest.TestCase ): UpperCAmelCase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] UpperCAmelCase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] UpperCAmelCase__ = """facebook/mbart-large-en-ro""" @cached_property def A_ ( self : Union[str, Any] ) -> Optional[Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self : Optional[Any] ) -> Any: lowerCamelCase__ : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A_ ( self : List[Any] , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ : List[str] = self.translate_src_text(**UpperCAmelCase ) self.assertListEqual(self.expected_text , UpperCAmelCase ) def A_ ( self : str , **UpperCAmelCase : int ) -> List[str]: lowerCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text , **UpperCAmelCase , return_tensors='tf' ) lowerCamelCase__ : Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowerCamelCase__ : str = self.tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) return generated_words @slow def A_ ( self : str ) -> Union[str, Any]: self._assert_generated_batch_equal_expected()
50
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowerCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(_a ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) requires_backends(self , 'decord' ) self.check_model_type(UpperCamelCase__ ) def A ( self : Optional[int] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" UpperCamelCase = {} if frame_sampling_rate is not None: UpperCamelCase = frame_sampling_rate if num_frames is not None: UpperCamelCase = num_frames UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , UpperCamelCase__ : Union[str, List[str]] , **UpperCamelCase__ : Dict ): """simple docstring""" return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=1 ): """simple docstring""" if num_frames is None: UpperCamelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): UpperCamelCase = BytesIO(requests.get(UpperCamelCase__ ).content ) UpperCamelCase = VideoReader(UpperCamelCase__ ) videoreader.seek(0 ) UpperCamelCase = 0 UpperCamelCase = num_frames * frame_sampling_rate - 1 UpperCamelCase = np.linspace(UpperCamelCase__ , UpperCamelCase__ , num=UpperCamelCase__ , dtype=np.intaa ) UpperCamelCase = videoreader.get_batch(UpperCamelCase__ ).asnumpy() UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = self.image_processor(UpperCamelCase__ , return_tensors=self.framework ) return model_inputs def A ( self : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.model(**UpperCamelCase__ ) return model_outputs def A ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(UpperCamelCase__ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
28
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : UNetaDModel UpperCamelCase_ : KarrasVeScheduler def __init__( self : Any , SCREAMING_SNAKE_CASE_ : UNetaDModel , SCREAMING_SNAKE_CASE_ : KarrasVeScheduler ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self : str , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 50 , SCREAMING_SNAKE_CASE_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' A: Any = self.unet.config.sample_size A: List[Any] = (batch_size, 3, img_size, img_size) A: Optional[Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A: Union[str, Any] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A: Optional[int] = self.scheduler.schedule[t] A: Optional[int] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A , A: Optional[Any] = self.scheduler.add_noise_to_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A: Dict = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A: List[str] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A: Union[str, Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A: List[Any] = self.scheduler.step_correct( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , step_output.prev_sample , step_output['''derivative'''] , ) A: int = step_output.prev_sample A: Tuple = (sample / 2 + 0.5).clamp(0 , 1 ) A: Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A: str = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
334
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase = 4 ) -> list[list[int]]: A: Tuple = abs(__lowercase ) or 4 return [[1 + x + y * row_size for x in range(__lowercase )] for y in range(__lowercase )] def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(transpose(__lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(reverse_column(__lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_column(transpose(__lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Union[str, Any] = [list(__lowercase ) for x in zip(*__lowercase )] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[int] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[Any] = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> None: for i in matrix: print(*__lowercase ) if __name__ == "__main__": UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
334
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) SCREAMING_SNAKE_CASE : Optional[int] = DetaConfig( backbone_config=_a , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_a , with_box_refine=_a , two_stage=_a , ) # set labels SCREAMING_SNAKE_CASE : Tuple = "huggingface/label-files" if "o365" in model_name: SCREAMING_SNAKE_CASE : Optional[int] = 366 SCREAMING_SNAKE_CASE : Optional[Any] = "object365-id2label.json" else: SCREAMING_SNAKE_CASE : str = 91 SCREAMING_SNAKE_CASE : Tuple = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE : int = num_labels SCREAMING_SNAKE_CASE : str = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="dataset")) , "r")) SCREAMING_SNAKE_CASE : Union[str, Any] = {int(_a): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[str] = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight")) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight")) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias")) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight")) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias")) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight")) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias")) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias")) # fmt: on return rename_keys def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Tuple = dct.pop(_a) SCREAMING_SNAKE_CASE : Optional[Any] = val def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Any = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): SCREAMING_SNAKE_CASE : Optional[int] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : str = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight") SCREAMING_SNAKE_CASE : Dict = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[: dim] SCREAMING_SNAKE_CASE : Any = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : int = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( _a , _a): # transformer decoder self-attention layers SCREAMING_SNAKE_CASE : List[str] = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight") SCREAMING_SNAKE_CASE : str = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:hidden_size, :] SCREAMING_SNAKE_CASE : str = in_proj_bias[:hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ hidden_size : hidden_size * 2, : ] SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE : Any = in_proj_weight[-hidden_size:, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[-hidden_size:] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(_a , stream=_a).raw) return im @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : int = get_deta_config(_a) # load original state dict if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE : Any = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth") elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE : Any = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth") else: raise ValueError(f"Model name {model_name} not supported") SCREAMING_SNAKE_CASE : List[Any] = torch.load(_a , map_location="cpu")["model"] # original state dict for name, param in state_dict.items(): print(_a , param.shape) # rename keys SCREAMING_SNAKE_CASE : Optional[Any] = create_rename_keys(_a) for src, dest in rename_keys: rename_key(_a , _a , _a) read_in_swin_q_k_v(_a , config.backbone_config) read_in_decoder_q_k_v(_a , _a) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Optional[int] = val if "input_proj" in key: SCREAMING_SNAKE_CASE : Any = state_dict.pop(_a) SCREAMING_SNAKE_CASE : str = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: SCREAMING_SNAKE_CASE : Any = state_dict.pop(_a) SCREAMING_SNAKE_CASE : str = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE : str = DetaForObjectDetection(_a) model.load_state_dict(_a) model.eval() SCREAMING_SNAKE_CASE : str = "cuda" if torch.cuda.is_available() else "cpu" model.to(_a) # load image processor SCREAMING_SNAKE_CASE : int = DetaImageProcessor(format="coco_detection") # verify our conversion on image SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=_a , return_tensors="pt") SCREAMING_SNAKE_CASE : List[Any] = encoding["pixel_values"] SCREAMING_SNAKE_CASE : Dict = model(pixel_values.to(_a)) # verify logits print("Logits:" , outputs.logits[0, :3, :3]) print("Boxes:" , outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]]) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]]) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]]) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_a) , atol=1E-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_a) , atol=1E-4) print("Everything ok!") if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}...") Path(_a).mkdir(exist_ok=_a) model.save_pretrained(_a) processor.save_pretrained(_a) # Push to hub if push_to_hub: print("Pushing model and processor to hub...") model.push_to_hub(f"jozhang97/{model_name}") processor.push_to_hub(f"jozhang97/{model_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
76
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase_ = "src/transformers" lowercase_ = "docs/source/en/tasks" def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' , newline='\n' ) as f: A__ = f.readlines() # Find the start prompt. A__ = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE__ ): start_index += 1 start_index += 1 A__ = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase_ = direct_transformers_import(TRANSFORMERS_PATH) lowercase_ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase_ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: '''simple docstring''' A__ = TASK_GUIDE_TO_MODELS[task_guide] A__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(SCREAMING_SNAKE_CASE__ , set() ) A__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict: '''simple docstring''' A__ , A__ , A__ , A__ = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) A__ = get_model_list_for_task(SCREAMING_SNAKE_CASE__ ) if current_list != new_list: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ' to fix this.' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
282
import argparse import struct import unittest class A : """simple docstring""" def __init__( self : Any,lowercase_ : bytes )-> None: '''simple docstring''' A__ = data # Initialize hash values A__ = [ 0X6_a_0_9_e_6_6_7, 0Xb_b_6_7_a_e_8_5, 0X3_c_6_e_f_3_7_2, 0Xa_5_4_f_f_5_3_a, 0X5_1_0_e_5_2_7_f, 0X9_b_0_5_6_8_8_c, 0X1_f_8_3_d_9_a_b, 0X5_b_e_0_c_d_1_9, ] # Initialize round constants A__ = [ 0X4_2_8_a_2_f_9_8, 0X7_1_3_7_4_4_9_1, 0Xb_5_c_0_f_b_c_f, 0Xe_9_b_5_d_b_a_5, 0X3_9_5_6_c_2_5_b, 0X5_9_f_1_1_1_f_1, 0X9_2_3_f_8_2_a_4, 0Xa_b_1_c_5_e_d_5, 0Xd_8_0_7_a_a_9_8, 0X1_2_8_3_5_b_0_1, 0X2_4_3_1_8_5_b_e, 0X5_5_0_c_7_d_c_3, 0X7_2_b_e_5_d_7_4, 0X8_0_d_e_b_1_f_e, 0X9_b_d_c_0_6_a_7, 0Xc_1_9_b_f_1_7_4, 0Xe_4_9_b_6_9_c_1, 0Xe_f_b_e_4_7_8_6, 0X0_f_c_1_9_d_c_6, 0X2_4_0_c_a_1_c_c, 0X2_d_e_9_2_c_6_f, 0X4_a_7_4_8_4_a_a, 0X5_c_b_0_a_9_d_c, 0X7_6_f_9_8_8_d_a, 0X9_8_3_e_5_1_5_2, 0Xa_8_3_1_c_6_6_d, 0Xb_0_0_3_2_7_c_8, 0Xb_f_5_9_7_f_c_7, 0Xc_6_e_0_0_b_f_3, 0Xd_5_a_7_9_1_4_7, 0X0_6_c_a_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_b_7_0_a_8_5, 0X2_e_1_b_2_1_3_8, 0X4_d_2_c_6_d_f_c, 0X5_3_3_8_0_d_1_3, 0X6_5_0_a_7_3_5_4, 0X7_6_6_a_0_a_b_b, 0X8_1_c_2_c_9_2_e, 0X9_2_7_2_2_c_8_5, 0Xa_2_b_f_e_8_a_1, 0Xa_8_1_a_6_6_4_b, 0Xc_2_4_b_8_b_7_0, 0Xc_7_6_c_5_1_a_3, 0Xd_1_9_2_e_8_1_9, 0Xd_6_9_9_0_6_2_4, 0Xf_4_0_e_3_5_8_5, 0X1_0_6_a_a_0_7_0, 0X1_9_a_4_c_1_1_6, 0X1_e_3_7_6_c_0_8, 0X2_7_4_8_7_7_4_c, 0X3_4_b_0_b_c_b_5, 0X3_9_1_c_0_c_b_3, 0X4_e_d_8_a_a_4_a, 0X5_b_9_c_c_a_4_f, 0X6_8_2_e_6_f_f_3, 0X7_4_8_f_8_2_e_e, 0X7_8_a_5_6_3_6_f, 0X8_4_c_8_7_8_1_4, 0X8_c_c_7_0_2_0_8, 0X9_0_b_e_f_f_f_a, 0Xa_4_5_0_6_c_e_b, 0Xb_e_f_9_a_3_f_7, 0Xc_6_7_1_7_8_f_2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( lowercase_ : bytes )-> bytes: '''simple docstring''' A__ = B'\x80' + (B'\x00' * (6_3 - (len(lowercase_ ) + 8) % 6_4)) A__ = struct.pack('>Q',(len(lowercase_ ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self : Optional[int] )-> None: '''simple docstring''' A__ = [ self.preprocessed_data[x : x + 6_4] for x in range(0,len(self.preprocessed_data ),6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L',lowercase_ ) ) # add 48 0-ed integers words += [0] * 4_8 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0,6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 1_5],7 ) ^ self.ror(words[index - 1_5],1_8 ) ^ (words[index - 1_5] >> 3) ) A__ = ( self.ror(words[index - 2],1_7 ) ^ self.ror(words[index - 2],1_9 ) ^ (words[index - 2] >> 1_0) ) A__ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A__ = self.ror(lowercase_,6 ) ^ self.ror(lowercase_,1_1 ) ^ self.ror(lowercase_,2_5 ) A__ = (e & f) ^ ((~e & 0Xf_f_f_f_f_f_f_f) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A__ = self.ror(lowercase_,2 ) ^ self.ror(lowercase_,1_3 ) ^ self.ror(lowercase_,2_2 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(lowercase_ )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self : Union[str, Any],lowercase_ : int,lowercase_ : int )-> int: '''simple docstring''' return 0Xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> None: '''simple docstring''' import hashlib A__ = bytes('Test String','utf-8' ) self.assertEqual(SHAaaa(lowercase_ ).hash,hashlib.shaaaa(lowercase_ ).hexdigest() ) def _snake_case( ) -> None: '''simple docstring''' import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(SCREAMING_SNAKE_CASE__ , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
282
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple = 1 / sqrt(2 ) ) -> IIRFilter: SCREAMING_SNAKE_CASE_ = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ = sin(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = cos(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ = (1 - _cos) / 2 SCREAMING_SNAKE_CASE_ = 1 - _cos SCREAMING_SNAKE_CASE_ = 1 + alpha SCREAMING_SNAKE_CASE_ = -2 * _cos SCREAMING_SNAKE_CASE_ = 1 - alpha SCREAMING_SNAKE_CASE_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str = 1 / sqrt(2 ) ) -> IIRFilter: SCREAMING_SNAKE_CASE_ = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ = sin(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = cos(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ = (1 + _cos) / 2 SCREAMING_SNAKE_CASE_ = -1 - _cos SCREAMING_SNAKE_CASE_ = 1 + alpha SCREAMING_SNAKE_CASE_ = -2 * _cos SCREAMING_SNAKE_CASE_ = 1 - alpha SCREAMING_SNAKE_CASE_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] = 1 / sqrt(2 ) ) -> IIRFilter: SCREAMING_SNAKE_CASE_ = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ = sin(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = cos(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ = _sin / 2 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = -ba SCREAMING_SNAKE_CASE_ = 1 + alpha SCREAMING_SNAKE_CASE_ = -2 * _cos SCREAMING_SNAKE_CASE_ = 1 - alpha SCREAMING_SNAKE_CASE_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int = 1 / sqrt(2 ) ) -> IIRFilter: SCREAMING_SNAKE_CASE_ = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ = sin(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = cos(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ = 1 - alpha SCREAMING_SNAKE_CASE_ = -2 * _cos SCREAMING_SNAKE_CASE_ = 1 + alpha SCREAMING_SNAKE_CASE_ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] = 1 / sqrt(2 ) , ) -> IIRFilter: SCREAMING_SNAKE_CASE_ = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ = sin(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = cos(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE_ = 1 + alpha * big_a SCREAMING_SNAKE_CASE_ = -2 * _cos SCREAMING_SNAKE_CASE_ = 1 - alpha * big_a SCREAMING_SNAKE_CASE_ = 1 + alpha / big_a SCREAMING_SNAKE_CASE_ = -2 * _cos SCREAMING_SNAKE_CASE_ = 1 - alpha / big_a SCREAMING_SNAKE_CASE_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] = 1 / sqrt(2 ) , ) -> IIRFilter: SCREAMING_SNAKE_CASE_ = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ = sin(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = cos(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE_ = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE_ = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE_ = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE_ = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE_ = 2 * sqrt(__lowerCAmelCase ) * alpha SCREAMING_SNAKE_CASE_ = big_a * (pmc + aaa) SCREAMING_SNAKE_CASE_ = 2 * big_a * mpc SCREAMING_SNAKE_CASE_ = big_a * (pmc - aaa) SCREAMING_SNAKE_CASE_ = ppmc + aaa SCREAMING_SNAKE_CASE_ = -2 * pmpc SCREAMING_SNAKE_CASE_ = ppmc - aaa SCREAMING_SNAKE_CASE_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : str = 1 / sqrt(2 ) , ) -> IIRFilter: SCREAMING_SNAKE_CASE_ = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ = sin(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = cos(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE_ = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE_ = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE_ = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE_ = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE_ = 2 * sqrt(__lowerCAmelCase ) * alpha SCREAMING_SNAKE_CASE_ = big_a * (ppmc + aaa) SCREAMING_SNAKE_CASE_ = -2 * big_a * pmpc SCREAMING_SNAKE_CASE_ = big_a * (ppmc - aaa) SCREAMING_SNAKE_CASE_ = pmc + aaa SCREAMING_SNAKE_CASE_ = 2 * mpc SCREAMING_SNAKE_CASE_ = pmc - aaa SCREAMING_SNAKE_CASE_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
225
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a :Optional[int] = ["text", "image", "audio"] def _lowercase ( __lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): inputs.append(create_inputs(__lowerCAmelCase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _lowercase ( __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple = [] for output in outputs: if isinstance(__lowerCAmelCase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class __a : '''simple docstring''' def _a ( self ) -> str: """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE__ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , _a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE__ : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tool(*_a ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE__ : List[Any] = [outputs] self.assertListEqual(output_types(_a ) , self.tool.outputs ) def _a ( self ) -> List[Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Dict = self.tool(*_a ) if not isinstance(_a , _a ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) ) for output, output_type in zip(_a , self.tool.outputs ): SCREAMING_SNAKE_CASE__ : Optional[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_a , _a ) ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : List[Any] = [] for _input, input_type in zip(_a , self.tool.inputs ): if isinstance(_a , _a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tool(*_a ) if not isinstance(_a , _a ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) )
132
0
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Collection[float] | None = None ) -> None: if components is None: UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[Any] = list(lowerCAmelCase_ ) def __len__( self : Union[str, Any] ) -> int: return len(self.__components ) def __str__( self : List[str] ) -> str: return "(" + ",".join(map(lowerCAmelCase_ , self.__components ) ) + ")" def __add__( self : Dict , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : Optional[int] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = [self.__components[i] + other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: raise Exception("must have the same size" ) def __sub__( self : List[str] , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : List[str] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : List[Any] = [self.__components[i] - other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : Any , lowerCAmelCase_ : float ) -> Vector: ... @overload def __mul__( self : Optional[int] , lowerCAmelCase_ : Vector ) -> float: ... def __mul__( self : Dict , lowerCAmelCase_ : float | Vector ) -> float | Vector: if isinstance(lowerCAmelCase_ , (float, int) ): UpperCAmelCase_ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(self ) == len(lowerCAmelCase_ ): UpperCAmelCase_ : Dict = len(self ) UpperCAmelCase_ : Dict = [self.__components[i] * other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return sum(lowerCAmelCase_ ) else: # error case raise Exception("invalid operand!" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Vector: return Vector(self.__components ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int ) -> float: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase_ : List[str] = value def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: if len(self.__components ) == 0: raise Exception("Vector is empty" ) UpperCAmelCase_ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Vector , lowerCAmelCase_ : bool = False ) -> float: UpperCAmelCase_ : int = self * other UpperCAmelCase_ : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def snake_case ( A__ ): assert isinstance(A__ ,A__ ) return Vector([0] * dimension ) def snake_case ( A__ ,A__ ): assert isinstance(A__ ,A__ ) and (isinstance(A__ ,A__ )) UpperCAmelCase_ : Any = [0] * dimension UpperCAmelCase_ : Dict = 1 return Vector(A__ ) def snake_case ( A__ ,A__ ,A__ ): assert ( isinstance(A__ ,A__ ) and isinstance(A__ ,A__ ) and (isinstance(A__ ,(int, float) )) ) return x * scalar + y def snake_case ( A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : Tuple = [random.randint(A__ ,A__ ) for _ in range(A__ )] return Vector(A__ ) class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : list[list[float]] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : List[Any] = matrix UpperCAmelCase_ : List[Any] = w UpperCAmelCase_ : List[Any] = h def __str__( self : int ) -> str: UpperCAmelCase_ : Tuple = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : List[Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Optional[Any] = [ self.__matrix[i][j] + other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[int] , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Union[str, Any] = [ self.__matrix[i][j] - other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Tuple , lowerCAmelCase_ : float ) -> Matrix: ... @overload def __mul__( self : Tuple , lowerCAmelCase_ : Vector ) -> Vector: ... def __mul__( self : Any , lowerCAmelCase_ : float | Vector ) -> Vector | Matrix: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # matrix-vector if len(lowerCAmelCase_ ) == self.__width: UpperCAmelCase_ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase_ : Any = [ self.__matrix[i][j] * other.component(lowerCAmelCase_ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase_ , sum(lowerCAmelCase_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(lowerCAmelCase_ , (int, float) ): # matrix-scalar UpperCAmelCase_ : int = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase_ , self.__width , self.__height ) return None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.__height def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.__width def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase_ : List[Any] = value else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) UpperCAmelCase_ : Optional[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise Exception("Indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase_ : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase_ ) for y in range(self.__width ) ] return sum(lowerCAmelCase_ ) def snake_case ( A__ ): UpperCAmelCase_ : list[list[float]] = [[0] * n for _ in range(A__ )] return Matrix(A__ ,A__ ,A__ ) def snake_case ( A__ ,A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : list[list[float]] = [ [random.randint(A__ ,A__ ) for _ in range(A__ )] for _ in range(A__ ) ] return Matrix(A__ ,A__ ,A__ )
253
"""simple docstring""" from math import factorial def snake_case ( A__ = 1_00 ): return sum(int(A__ ) for x in str(factorial(A__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
253
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = """segformer""" def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=[2, 2, 2, 2] , __lowerCAmelCase=[8, 4, 2, 1] , __lowerCAmelCase=[3_2, 6_4, 1_6_0, 2_5_6] , __lowerCAmelCase=[7, 3, 3, 3] , __lowerCAmelCase=[4, 2, 2, 2] , __lowerCAmelCase=[1, 2, 5, 8] , __lowerCAmelCase=[4, 4, 4, 4] , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=2_5_5 , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , __lowerCamelCase , ) lowerCamelCase__ = num_channels lowerCamelCase__ = num_encoder_blocks lowerCamelCase__ = depths lowerCamelCase__ = sr_ratios lowerCamelCase__ = hidden_sizes lowerCamelCase__ = patch_sizes lowerCamelCase__ = strides lowerCamelCase__ = mlp_ratios lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = classifier_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = drop_path_rate lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = decoder_hidden_size lowerCamelCase__ = kwargs.get('''reshape_last_stage''' , __lowerCamelCase ) lowerCamelCase__ = semantic_loss_ignore_index class __A ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4 @property def __lowerCamelCase ( self ): '''simple docstring''' return 1_2
209
class _lowercase : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[bool]] ): '''simple docstring''' lowerCamelCase__ : int = row lowerCamelCase__ : Optional[Any] = col lowerCamelCase__ : Union[str, Any] = graph def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[bool]] ): '''simple docstring''' lowerCamelCase__ : str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCamelCase__ : Tuple = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCamelCase__ : List[Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __lowerCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): # And finally, count all islands. '''simple docstring''' lowerCamelCase__ : List[Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCamelCase__ : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) count += 1 return count
184
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : List[Any] = 16 _lowercase : List[str] = 32 def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int = 16 ): lowercase_ : Any = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase_ : int = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCAmelCase__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ : Optional[int] = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase_ : Union[str, Any] = 8 else: lowercase_ : List[str] = None return tokenizer.pad( UpperCAmelCase__ , padding="""longest""" , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase_ : List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Tuple = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Optional[int] = mocked_dataloaders # noqa: F811 def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCAmelCase__ ) == "1": lowercase_ : List[str] = 2 # Initialize accelerator lowercase_ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ : List[Any] = config["""lr"""] lowercase_ : Optional[Any] = int(config["""num_epochs"""] ) lowercase_ : Optional[int] = int(config["""seed"""] ) lowercase_ : Any = int(config["""batch_size"""] ) lowercase_ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCAmelCase__ ) def inner_training_loop(UpperCAmelCase__ : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowercase_ : Union[str, Any] = AdamW(params=model.parameters() , lr=UpperCAmelCase__ ) lowercase_ : int = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate scheduler lowercase_ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ : Optional[int] = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase_ : str = model(**UpperCAmelCase__ ) lowercase_ : Tuple = outputs.loss accelerator.backward(UpperCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ : Tuple = model(**UpperCAmelCase__ ) lowercase_ : int = outputs.logits.argmax(dim=-1 ) lowercase_ : List[str] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) lowercase_ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCamelCase ( ): lowercase_ : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase_ : int = parser.parse_args() lowercase_ : Dict = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase ={ "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
1
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def a ( ): '''simple docstring''' A_ : int = 9 A_ : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A_ : int = kruskal(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCamelCase__ ) == sorted(lowerCamelCase__ )
135
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase :Union[str, Any] = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __SCREAMING_SNAKE_CASE : bool = field(default=__UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) __SCREAMING_SNAKE_CASE : bool = field(default=__UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=__UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , f'{split}_results.json' ) ) def a ( ): '''simple docstring''' A_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_, A_, A_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_, A_, A_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(lowerCamelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A_ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A_ : int = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): assert hasattr(lowerCamelCase__ , lowerCamelCase__ ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) A_ : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCamelCase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: A_ : int = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCamelCase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: A_ : List[str] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCamelCase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) A_ : Union[str, Any] = SeqaSeqDataset # Get datasets A_ : Union[str, Any] = ( dataset_class( lowerCamelCase__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) A_ : int = ( dataset_class( lowerCamelCase__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) A_ : Tuple = ( dataset_class( lowerCamelCase__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer A_ : Optional[Any] = ( build_compute_metrics_fn(data_args.task , lowerCamelCase__ ) if training_args.predict_with_generate else None ) A_ : List[str] = SeqaSeqTrainer( model=lowerCamelCase__ , args=lowerCamelCase__ , data_args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , data_collator=SeqaSeqDataCollator( lowerCamelCase__ , lowerCamelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , ) A_ : str = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) A_ : List[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) A_ : Any = train_result.metrics A_ : str = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowerCamelCase__ , training_args.output_dir ) all_metrics.update(lowerCamelCase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) A_ : Tuple = trainer.evaluate(metric_key_prefix="""val""" ) A_ : str = data_args.n_val A_ : Optional[Any] = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowerCamelCase__ , training_args.output_dir ) all_metrics.update(lowerCamelCase__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) A_ : Any = trainer.predict(test_dataset=lowerCamelCase__ , metric_key_prefix="""test""" ) A_ : int = test_output.metrics A_ : Tuple = data_args.n_test if trainer.is_world_process_zero(): A_ : List[Any] = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowerCamelCase__ , training_args.output_dir ) all_metrics.update(lowerCamelCase__ ) if training_args.predict_with_generate: A_ : List[Any] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) A_ : Tuple = lmap(str.strip , lowerCamelCase__ ) write_txt_file(lowerCamelCase__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowerCamelCase__ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def a ( lowerCamelCase__ ): '''simple docstring''' main() if __name__ == "__main__": main()
135
1
def a_ ( __lowercase : str ) -> int: _snake_case = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _snake_case = hex_num[0] == '-' if is_negative: _snake_case = hex_num[1:] try: _snake_case = int(__lowercase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _snake_case = '' while int_num > 0: _snake_case = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
282
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[int] ): '''simple docstring''' _snake_case = 'hf-internal-testing/tiny-random-t5' _snake_case = AutoTokenizer.from_pretrained(lowercase ) _snake_case = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) _snake_case = tokenizer('This is me' , return_tensors='pt' ) _snake_case = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _snake_case = model.generate(**lowercase ) _snake_case = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) _snake_case = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _snake_case = model_reloaded.generate(**lowercase ) self.assertTrue(torch.allclose(lowercase , lowercase ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = 'hf-internal-testing/tiny-random-t5' _snake_case = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) _snake_case = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowercase ): model.save_pretrained(lowercase ) _snake_case = model.reverse_bettertransformer() model.save_pretrained(lowercase )
282
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : List[Any] = '''lxmert''' _lowercase : Any = {} def __init__( self: Any , UpperCamelCase_: List[Any]=30_522 , UpperCamelCase_: int=768 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: Dict=9_500 , UpperCamelCase_: List[Any]=1_600 , UpperCamelCase_: List[Any]=400 , UpperCamelCase_: List[str]=3_072 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: int=0.1 , UpperCamelCase_: List[str]=512 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: Dict=1E-1_2 , UpperCamelCase_: List[Any]=9 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: Optional[Any]=5 , UpperCamelCase_: str=2_048 , UpperCamelCase_: Dict=4 , UpperCamelCase_: Any=6.67 , UpperCamelCase_: Dict=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Any=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=True , **UpperCamelCase_: Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = num_qa_labels lowercase__ = num_object_labels lowercase__ = num_attr_labels lowercase__ = l_layers lowercase__ = x_layers lowercase__ = r_layers lowercase__ = visual_feat_dim lowercase__ = visual_pos_dim lowercase__ = visual_loss_normalizer lowercase__ = task_matched lowercase__ = task_mask_lm lowercase__ = task_obj_predict lowercase__ = task_qa lowercase__ = visual_obj_loss lowercase__ = visual_attr_loss lowercase__ = visual_feat_loss lowercase__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCamelCase_ )
93
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ) -> Any: """simple docstring""" lowercase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(UpperCamelCase_ ) , torch_builtin(UpperCamelCase_ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCamelCase_ ) , gelu_new(UpperCamelCase_ ) ) ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" lowercase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ = get_activation('''gelu''' ) lowercase__ = get_activation('''gelu_10''' ) lowercase__ = torch_builtin(UpperCamelCase_ ) lowercase__ = geluaa(UpperCamelCase_ ) lowercase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCamelCase_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(UpperCamelCase_ ): get_activation('''bogus''' ) with self.assertRaises(UpperCamelCase_ ): get_activation(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = get_activation('''gelu''' ) lowercase__ = 1 lowercase__ = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCamelCase_ ): lowercase__ = acta.a
93
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCAmelCase : List[Any] = datasets.load_iris() lowerCAmelCase : List[str] = np.array(data['data']) lowerCAmelCase : Any = np.array(data['target']) lowerCAmelCase : Dict = data['target_names'] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = train_test_split(X, y) def A_ ( a , a ): """simple docstring""" return np.linalg.norm(np.array(a ) - np.array(a ) ) def A_ ( a , a , a , a , a=5 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = zip(a , a ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE_ : List[Any] = [] for data_point in data: SCREAMING_SNAKE_CASE_ : Optional[int] = euclidean_distance(data_point[0] , a ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE_ : List[str] = [i[1] for i in sorted(a )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE_ : List[Any] = Counter(a ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
253
import os from typing import Dict, List, Tuple, TypeVar, Union lowerCAmelCase : str = TypeVar('T') lowerCAmelCase : Optional[Any] = Union[List[T], Tuple[T, ...]] lowerCAmelCase : str = Union[T, List[T], Dict[str, T]] lowerCAmelCase : Union[str, Any] = Union[str, bytes, os.PathLike]
253
1
import sys from collections import defaultdict class __lowercase : """simple docstring""" def __init__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.node_position[vertex] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = pos def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE_ : Optional[int] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 * start + 1 else: SCREAMING_SNAKE_CASE_ : Any = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE_ : Any = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = temp, tempa SCREAMING_SNAKE_CASE_ : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __lowerCamelCase ) self.top_to_bottom(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = position[index] while index != 0: SCREAMING_SNAKE_CASE_ : Any = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = heap[parent] SCREAMING_SNAKE_CASE_ : Optional[int] = position[parent] self.set_position(position[parent] , __lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : Union[str, Any] = temp self.set_position(__lowerCamelCase , __lowerCamelCase ) break SCREAMING_SNAKE_CASE_ : List[str] = parent else: SCREAMING_SNAKE_CASE_ : List[str] = val SCREAMING_SNAKE_CASE_ : Union[str, Any] = temp self.set_position(__lowerCamelCase , 0 ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = len(__lowerCamelCase ) // 2 - 1 for i in range(__lowerCamelCase , -1 , -1 ): self.top_to_bottom(__lowerCamelCase , __lowerCamelCase , len(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = positions[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = sys.maxsize self.top_to_bottom(__lowerCamelCase , 0 , len(__lowerCamelCase ) , __lowerCamelCase ) return temp def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : int = Heap() SCREAMING_SNAKE_CASE_ : Dict = [0] * len(A__ ) SCREAMING_SNAKE_CASE_ : str = [-1] * len(A__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE_ : Any = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE_ : Dict = [] for vertex in range(len(A__ ) ): distance_tv.append(sys.maxsize ) positions.append(A__ ) heap.node_position.append(A__ ) SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : List[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = distance heap.heapify(A__, A__ ) for _ in range(1, len(A__ ) ): SCREAMING_SNAKE_CASE_ : Tuple = heap.delete_minimum(A__, A__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE_ : Dict = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(A__ )] ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = distance heap.bottom_to_top( A__, heap.get_position(A__ ), A__, A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCAmelCase__ : Dict =int(input('Enter number of edges: ').strip()) lowerCAmelCase__ : List[str] =defaultdict(list) for _ in range(edges_number): lowerCAmelCase__ : Any =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
368
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = key def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned SCREAMING_SNAKE_CASE_ : Dict = '' for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned SCREAMING_SNAKE_CASE_ : str = '' for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('encrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('decrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
162
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Union[str, Any] , *__lowercase : Dict , **__lowercase : List[str] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Optional[int] , **__lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : List[Any] , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : str , *__lowercase : int , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : List[Any] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : List[Any] , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Any , *__lowercase : Union[str, Any] , **__lowercase : Dict ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Dict , *__lowercase : Dict , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Optional[Any] , **__lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : List[str] , *__lowercase : Dict , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__lowercase : Any , **__lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Any , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Tuple , *__lowercase : List[Any] , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Union[str, Any] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Union[str, Any] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : List[str] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Union[str, Any] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[int] , *__lowercase : str , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : str , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Optional[int] , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[int] , *__lowercase : Any , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Union[str, Any] , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Union[str, Any] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : List[str] , *__lowercase : Tuple , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : List[Any] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Dict , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[Any] , *__lowercase : List[Any] , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : int , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Dict , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Union[str, Any] , *__lowercase : Union[str, Any] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Optional[int] , **__lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : Optional[Any] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) def lowerCamelCase__ ( *_A , **_A ): '''simple docstring''' requires_backends(lowerCamelCase_ , ["torch"] ) def lowerCamelCase__ ( *_A , **_A ): '''simple docstring''' requires_backends(lowerCamelCase_ , ["torch"] ) def lowerCamelCase__ ( *_A , **_A ): '''simple docstring''' requires_backends(lowerCamelCase_ , ["torch"] ) def lowerCamelCase__ ( *_A , **_A ): '''simple docstring''' requires_backends(lowerCamelCase_ , ["torch"] ) def lowerCamelCase__ ( *_A , **_A ): '''simple docstring''' requires_backends(lowerCamelCase_ , ["torch"] ) def lowerCamelCase__ ( *_A , **_A ): '''simple docstring''' requires_backends(lowerCamelCase_ , ["torch"] ) def lowerCamelCase__ ( *_A , **_A ): '''simple docstring''' requires_backends(lowerCamelCase_ , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : int , *__lowercase : Any , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Tuple , *__lowercase : str , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : Union[str, Any] , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : List[str] , *__lowercase : int , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : Any , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Dict , *__lowercase : Any , **__lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Tuple , *__lowercase : str , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : List[str] , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Tuple , *__lowercase : int , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : str , *__lowercase : Dict , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : str , **__lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Optional[Any] , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : List[str] , *__lowercase : int , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : Optional[int] , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : Dict , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Dict , *__lowercase : List[str] , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : Any , **__lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[Any] , *__lowercase : Optional[Any] , **__lowercase : Dict ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : str , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : str , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Tuple , *__lowercase : Dict , **__lowercase : List[str] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Dict , *__lowercase : Tuple , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Optional[int] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[Any] , *__lowercase : Any , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Optional[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Dict , *__lowercase : List[Any] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : str , *__lowercase : Optional[Any] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : Tuple , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Union[str, Any] , **__lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : int , *__lowercase : Dict , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : List[str] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : Dict , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Any , *__lowercase : Tuple , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : Tuple , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Dict , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[Any] , *__lowercase : Any , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : Optional[Any] , **__lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : int , **__lowercase : int ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Any , *__lowercase : Any , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : int , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : List[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Union[str, Any] , *__lowercase : Optional[int] , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : Any , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Optional[Any] , **__lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Tuple , *__lowercase : List[Any] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__lowercase : Optional[Any] , **__lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : int , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Union[str, Any] , *__lowercase : Tuple , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : Optional[int] , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Dict , *__lowercase : List[str] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Tuple , *__lowercase : Any , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Tuple , *__lowercase : Union[str, Any] , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Tuple , *__lowercase : List[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : int , *__lowercase : Dict , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Tuple , *__lowercase : List[Any] , **__lowercase : int ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Optional[int] , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : List[str] , *__lowercase : List[Any] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : int , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : int , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Union[str, Any] , *__lowercase : List[str] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : str , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : Tuple , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[Any] , *__lowercase : str , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : int , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : int , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Tuple , *__lowercase : Optional[Any] , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : Optional[int] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Tuple , *__lowercase : Optional[int] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : str , *__lowercase : Dict , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : int , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : List[Any] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : int , *__lowercase : Optional[Any] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Union[str, Any] , **__lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : Optional[Any] , **__lowercase : Dict ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Tuple , *__lowercase : Optional[int] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : Tuple , **__lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Dict , *__lowercase : Tuple , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : List[Any] , *__lowercase : Optional[int] , **__lowercase : Dict ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : Dict , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : str , *__lowercase : Optional[Any] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__lowercase : int , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : List[str] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[Any] , *__lowercase : List[str] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : List[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Optional[int] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Dict , *__lowercase : str , **__lowercase : Dict ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : Dict , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : Dict , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[Any] , *__lowercase : int , **__lowercase : int ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : Union[str, Any] , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Optional[int] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : int , *__lowercase : Dict , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__lowercase : Tuple , **__lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Any , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Any , *__lowercase : Tuple , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : List[Any] , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__lowercase : str , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[int] , *__lowercase : Optional[int] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : Tuple , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : List[str] , *__lowercase : Any , **__lowercase : List[str] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Any , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : int , *__lowercase : Dict , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Optional[int] , *__lowercase : Union[str, Any] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[Any] , *__lowercase : List[str] , **__lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : Optional[int] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : str , *__lowercase : List[str] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : Optional[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Dict , *__lowercase : Any , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Dict , *__lowercase : Dict , **__lowercase : List[str] ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__lowercase : Tuple , **__lowercase : Any ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : Any , *__lowercase : Optional[int] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) class UpperCAmelCase ( metaclass=_a ): '''simple docstring''' lowerCAmelCase_ = ["""torch"""] def __init__( self : Dict , *__lowercase : Dict , **__lowercase : Dict ): """simple docstring""" requires_backends(self , ["torch"] ) @classmethod def snake_case__ ( cls : str , *__lowercase : Union[str, Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch"] ) @classmethod def snake_case__ ( cls : List[str] , *__lowercase : Any , **__lowercase : str ): """simple docstring""" requires_backends(cls , ["torch"] )
187
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def snake_case (UpperCAmelCase__ ) -> Optional[int]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) A_ : Optional[int] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @staticmethod def _a ( _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=_lowerCamelCase , required=_lowerCamelCase , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=_lowerCamelCase , required=_lowerCamelCase , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=_lowerCamelCase , required=_lowerCamelCase , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=_lowerCamelCase , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=_lowerCamelCase , default=_lowerCamelCase , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , ): UpperCamelCase_: int = logging.get_logger('transformers-cli/converting' ) self._logger.info(f'''Loading model {model_type}''' ) UpperCamelCase_: int = model_type UpperCamelCase_: List[Any] = tf_checkpoint UpperCamelCase_: List[str] = pytorch_dump_output UpperCamelCase_: Optional[Any] = config UpperCamelCase_: str = finetuning_task_name def _a ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowerCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCamelCase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase_: Optional[int] = self._tf_checkpoint UpperCamelCase_: str = '' else: UpperCamelCase_: int = self._tf_checkpoint UpperCamelCase_: List[str] = '' convert_transfo_xl_checkpoint_to_pytorch( _lowerCamelCase , self._config , self._pytorch_dump_output , _lowerCamelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCamelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCamelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
361
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case (UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: int = [False] * len(UpperCAmelCase__ ) UpperCamelCase_: Any = [-1] * len(UpperCAmelCase__ ) def dfs(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Tuple = True UpperCamelCase_: Optional[int] = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase__ , 1 - c ) for i in range(len(UpperCAmelCase__ ) ): if not visited[i]: dfs(UpperCAmelCase__ , 0 ) for i in range(len(UpperCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A_ : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
292
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class _snake_case ( a__ ): snake_case__ = "blip_text_model" def __init__( self : Optional[Any] , UpperCAmelCase : int=30524 , UpperCAmelCase : Union[str, Any]=768 , UpperCAmelCase : List[Any]=768 , UpperCAmelCase : Optional[Any]=3072 , UpperCAmelCase : Dict=768 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Dict=8 , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Dict=1E-12 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Tuple=30522 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Optional[int]=102 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=True , **UpperCAmelCase : Optional[int] , ): super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , sep_token_id=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : Any = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : Tuple = encoder_hidden_size __lowerCamelCase : Tuple = intermediate_size __lowerCamelCase : int = projection_dim __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Dict = max_position_embeddings __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : Any = hidden_act __lowerCamelCase : str = initializer_range __lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob __lowerCamelCase : int = is_decoder __lowerCamelCase : Optional[int] = use_cache @classmethod def lowerCamelCase__ ( cls : str , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : List[Any] ): cls._set_token_in_kwargs(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Dict = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": __lowerCamelCase : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _snake_case ( a__ ): snake_case__ = "blip_vision_model" def __init__( self : Any , UpperCAmelCase : List[str]=768 , UpperCAmelCase : List[str]=3072 , UpperCAmelCase : Union[str, Any]=512 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : str=12 , UpperCAmelCase : List[str]=384 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : str=1E-5 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Optional[int]=1E-10 , **UpperCAmelCase : int , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : Dict = hidden_size __lowerCamelCase : int = intermediate_size __lowerCamelCase : Optional[Any] = projection_dim __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : List[Any] = patch_size __lowerCamelCase : int = image_size __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : Optional[int] = attention_dropout __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : Any = hidden_act @classmethod def lowerCamelCase__ ( cls : Optional[int] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : List[Any] ): cls._set_token_in_kwargs(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Tuple = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": __lowerCamelCase : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _snake_case ( a__ ): snake_case__ = "blip" snake_case__ = True def __init__( self : str , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=512 , UpperCAmelCase : Union[str, Any]=2.6_5_9_2 , UpperCAmelCase : Any=256 , **UpperCAmelCase : Optional[int] , ): super().__init__(**UpperCAmelCase ) if text_config is None: __lowerCamelCase : int = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: __lowerCamelCase : Optional[Any] = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) __lowerCamelCase : List[str] = BlipTextConfig(**UpperCAmelCase ) __lowerCamelCase : str = BlipVisionConfig(**UpperCAmelCase ) __lowerCamelCase : int = self.vision_config.hidden_size __lowerCamelCase : Dict = projection_dim __lowerCamelCase : Optional[Any] = logit_scale_init_value __lowerCamelCase : Optional[Any] = 1.0 __lowerCamelCase : Optional[int] = 0.0_2 __lowerCamelCase : Tuple = image_text_hidden_size @classmethod def lowerCamelCase__ ( cls : Optional[int] , UpperCAmelCase : BlipTextConfig , UpperCAmelCase : BlipVisionConfig , **UpperCAmelCase : List[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Optional[int] = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Optional[int] = self.text_config.to_dict() __lowerCamelCase : List[Any] = self.vision_config.to_dict() __lowerCamelCase : List[Any] = self.__class__.model_type return output
135
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''LayoutLMv3FeatureExtractor'''] __A = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __A = logging.getLogger(__name__) def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = np.argmax(_lowercase , axis=1 ) return np.sum(outputs == labels ) def __A ( _lowercase ): '''simple docstring''' with open(_lowercase , encoding='''utf_8''' ) as f: _A = csv.reader(_lowercase ) _A = [] next(_lowercase ) # skip the first line for line in tqdm(_lowercase ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = [] for dataset in encoded_datasets: _A = len(_lowercase ) _A = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _A = np.zeros((n_batch, 2) , dtype=np.intaa ) _A = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) _A = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_lowercase ): _A = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _A = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _A = with_conta _A = with_conta _A = len(_lowercase ) - 1 _A = len(_lowercase ) - 1 _A = with_conta _A = with_conta _A = mc_label _A = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_lowercase ) for t in all_inputs ) ) return tensor_datasets def __A ( ): '''simple docstring''' _A = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_lowercase , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=_lowercase , default='''''' ) parser.add_argument('''--eval_dataset''' , type=_lowercase , default='''''' ) parser.add_argument('''--seed''' , type=_lowercase , default=42 ) parser.add_argument('''--num_train_epochs''' , type=_lowercase , default=3 ) parser.add_argument('''--train_batch_size''' , type=_lowercase , default=8 ) parser.add_argument('''--eval_batch_size''' , type=_lowercase , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=_lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=_lowercase , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=_lowercase , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_lowercase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=_lowercase , default=6.25e-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=_lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=_lowercase , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=_lowercase , default=0.01 ) parser.add_argument('''--lm_coef''' , type=_lowercase , default=0.9 ) parser.add_argument('''--n_valid''' , type=_lowercase , default=3_74 ) parser.add_argument('''--server_ip''' , type=_lowercase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=_lowercase , default='''''' , help='''Can be used for distant debugging.''' ) _A = parser.parse_args() print(_lowercase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowercase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _A = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _A = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(_lowercase , _lowercase ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _A = ['''_start_''', '''_delimiter_''', '''_classify_'''] _A = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_lowercase ) _A = tokenizer.convert_tokens_to_ids(_lowercase ) _A = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_lowercase ) ) model.to(_lowercase ) # Load and encode the datasets def tokenize_and_encode(_lowercase ): if isinstance(_lowercase , _lowercase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_lowercase ) ) elif isinstance(_lowercase , _lowercase ): return obj return [tokenize_and_encode(_lowercase ) for o in obj] logger.info('''Encoding dataset...''' ) _A = load_rocstories_dataset(args.train_dataset ) _A = load_rocstories_dataset(args.eval_dataset ) _A = (train_dataset, eval_dataset) _A = tokenize_and_encode(_lowercase ) # Compute the max input length for the Transformer _A = model.config.n_positions // 2 - 2 _A = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _A = min(_lowercase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _A = pre_process_datasets(_lowercase , _lowercase , _lowercase , *_lowercase ) _A ,_A = tensor_datasets[0], tensor_datasets[1] _A = TensorDataset(*_lowercase ) _A = RandomSampler(_lowercase ) _A = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.train_batch_size ) _A = TensorDataset(*_lowercase ) _A = SequentialSampler(_lowercase ) _A = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _A = args.max_steps _A = args.max_steps // (len(_lowercase ) // args.gradient_accumulation_steps) + 1 else: _A = len(_lowercase ) // args.gradient_accumulation_steps * args.num_train_epochs _A = list(model.named_parameters() ) _A = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] _A = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] _A = AdamW(_lowercase , lr=args.learning_rate , eps=args.adam_epsilon ) _A = get_linear_schedule_with_warmup( _lowercase , num_warmup_steps=args.warmup_steps , num_training_steps=_lowercase ) if args.do_train: _A ,_A ,_A = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): _A = 0 _A = 0 _A = tqdm(_lowercase , desc='''Training''' ) for step, batch in enumerate(_lowercase ): _A = tuple(t.to(_lowercase ) for t in batch ) _A ,_A ,_A ,_A = batch _A = model(_lowercase , mc_token_ids=_lowercase , lm_labels=_lowercase , mc_labels=_lowercase ) _A = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _A = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _A = '''Training loss: {:.2e} lr: {:.2e}'''.format(_lowercase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _A = model.module if hasattr(_lowercase , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _A = os.path.join(args.output_dir , _lowercase ) _A = os.path.join(args.output_dir , _lowercase ) torch.save(model_to_save.state_dict() , _lowercase ) model_to_save.config.to_json_file(_lowercase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _A = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _A = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_lowercase ) if args.do_eval: model.eval() _A ,_A = 0, 0 _A ,_A = 0, 0 for batch in tqdm(_lowercase , desc='''Evaluating''' ): _A = tuple(t.to(_lowercase ) for t in batch ) _A ,_A ,_A ,_A = batch with torch.no_grad(): _A ,_A ,_A ,_A = model( _lowercase , mc_token_ids=_lowercase , lm_labels=_lowercase , mc_labels=_lowercase ) _A = mc_logits.detach().cpu().numpy() _A = mc_labels.to('''cpu''' ).numpy() _A = accuracy(_lowercase , _lowercase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _A = eval_loss / nb_eval_steps _A = eval_accuracy / nb_eval_examples _A = tr_loss / nb_tr_steps if args.do_train else None _A = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} _A = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(_lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _lowercase , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
358
__A = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
75
0