code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from tax import checkpoints
from transformers import (
AutoTokenizer,
PixaStructConfig,
PixaStructForConditionalGeneration,
PixaStructImageProcessor,
PixaStructProcessor,
PixaStructTextConfig,
PixaStructVisionConfig,
)
def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
lowercase_ : Optional[Any] = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = flatten_dict(__SCREAMING_SNAKE_CASE )
return flax_params
def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ):
"""simple docstring"""
lowercase_ : List[Any] = {}
lowercase_ : List[Any] = {
'''token_embedder''': '''embeddings''',
'''encoder_norm''': '''layernorm''',
'''kernel''': '''weight''',
'''.out''': '''.output''',
'''scale''': '''weight''',
'''embedders_0.pos_embedding''': '''row_embedder.weight''',
'''embedders_1.pos_embedding''': '''column_embedder.weight''',
}
lowercase_ : str = {
'''query''': '''attention.query''',
'''key''': '''attention.key''',
'''value''': '''attention.value''',
'''output.dense''': '''output''',
'''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''',
'''pre_self_attention_layer_norm''': '''self_attention.layer_norm''',
'''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''',
'''mlp.''': '''mlp.DenseReluDense.''',
'''pre_mlp_layer_norm''': '''mlp.layer_norm''',
'''self_attention.o''': '''self_attention.attention.o''',
'''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''',
'''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''',
'''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.logits_dense.weight''': '''decoder.lm_head.weight''',
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
lowercase_ : Dict = '''.'''.join(key[1:] )
# rename the key
for old, new in CONVERSION_MAPPING.items():
lowercase_ : List[str] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
lowercase_ : int = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
lowercase_ : List[str] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = new_key.replace('''encoder''' , '''encoder.encoder''' )
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
lowercase_ : Any = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE )
lowercase_ : str = flax_dict[key]
lowercase_ : List[str] = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
lowercase_ : Tuple = torch.from_numpy(converted_dict[key].T )
else:
lowercase_ : Dict = torch.from_numpy(converted_dict[key] )
return converted_torch_dict
def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
"""simple docstring"""
lowercase_ : Tuple = get_flax_param(__SCREAMING_SNAKE_CASE )
if not use_large:
lowercase_ : Any = PixaStructVisionConfig()
lowercase_ : Optional[Any] = PixaStructTextConfig()
else:
lowercase_ : Tuple = PixaStructVisionConfig(
hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 )
lowercase_ : int = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 )
lowercase_ : Any = PixaStructConfig(
vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = PixaStructForConditionalGeneration(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = rename_and_convert_flax_params(__SCREAMING_SNAKE_CASE )
model.load_state_dict(__SCREAMING_SNAKE_CASE )
lowercase_ : str = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' )
lowercase_ : List[str] = PixaStructImageProcessor()
lowercase_ : Tuple = PixaStructProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE )
if use_large:
lowercase_ : str = 4096
lowercase_ : Dict = True
# mkdir if needed
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
processor.save_pretrained(__SCREAMING_SNAKE_CASE )
print('''Model saved in {}'''.format(__SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--use_large", action="store_true", help="Use large model.")
parser.add_argument("--is_vqa", action="store_true", help="Use large model.")
_lowercase : Tuple = parser.parse_args()
convert_pixastruct_original_pytorch_checkpoint_to_hf(
args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
)
| 93 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : List[Any] = "▁"
_lowercase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"}
_lowercase : Optional[int] = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
}
}
_lowercase : str = {
"facebook/mbart-large-en-ro": 1_0_2_4,
"facebook/mbart-large-cc25": 1_0_2_4,
}
# fmt: off
_lowercase : List[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class lowerCAmelCase__ ( lowerCamelCase_ ):
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = ['''input_ids''', '''attention_mask''']
lowerCAmelCase_ = []
lowerCAmelCase_ = []
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
lowercase_ : Any = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token
lowercase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) )
lowercase_ : List[str] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowercase_ : Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowercase_ : str = 1
lowercase_ : str = len(self.sp_model )
lowercase_ : List[Any] = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE )
}
lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()}
lowercase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowercase_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowercase_ : Optional[Any] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
lowercase_ : Optional[Any] = src_lang if src_lang is not None else '''en_XX'''
lowercase_ : str = self.lang_code_to_id[self._src_lang]
lowercase_ : Optional[Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ):
"""simple docstring"""
lowercase_ : Optional[int] = self.__dict__.copy()
lowercase_ : Dict = None
lowercase_ : Any = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : Optional[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowercase_ : Dict = {}
lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def _snake_case ( self ):
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def _snake_case ( self ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = [1] * len(self.prefix_tokens )
lowercase_ : Tuple = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones
return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
lowercase_ : Optional[int] = [self.sep_token_id]
lowercase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
lowercase_ : Optional[Any] = src_lang
lowercase_ : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = tgt_lang_id
return inputs
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : str = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowercase_ : Any = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip()
return out_string
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase_ : Tuple = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
lowercase_ : List[str] = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
lowercase_ : List[str] = src_lang
lowercase_ : int = tgt_lang
return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def _snake_case ( self ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : Dict = self.lang_code_to_id[src_lang]
lowercase_ : Optional[Any] = []
lowercase_ : List[str] = [self.eos_token_id, self.cur_lang_code]
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : List[Any] = self.lang_code_to_id[lang]
lowercase_ : Dict = []
lowercase_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
| 93 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
'''microsoft/table-transformer-detection''': (
'''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'''
),
}
class UpperCamelCase_ (__A ):
__magic_name__ = '''table-transformer'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self : List[Any] , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=100 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]="relu" , lowerCAmelCase_ : List[Any]=256 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.0_2 , lowerCAmelCase_ : Any=1.0 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Dict="sine" , lowerCAmelCase_ : Optional[Any]="resnet50" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=0.1 , **lowerCAmelCase_ : Dict , ) -> Union[str, Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
UpperCAmelCase_ : Dict = backbone_config.get("model_type" )
UpperCAmelCase_ : str = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(lowerCAmelCase_ )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = None, None, None
UpperCAmelCase_ : int = use_timm_backbone
UpperCAmelCase_ : int = backbone_config
UpperCAmelCase_ : Dict = num_channels
UpperCAmelCase_ : Optional[Any] = num_queries
UpperCAmelCase_ : List[str] = d_model
UpperCAmelCase_ : Union[str, Any] = encoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = encoder_layers
UpperCAmelCase_ : List[str] = encoder_attention_heads
UpperCAmelCase_ : int = decoder_ffn_dim
UpperCAmelCase_ : int = decoder_layers
UpperCAmelCase_ : Optional[int] = decoder_attention_heads
UpperCAmelCase_ : List[str] = dropout
UpperCAmelCase_ : Dict = attention_dropout
UpperCAmelCase_ : Union[str, Any] = activation_dropout
UpperCAmelCase_ : Optional[int] = activation_function
UpperCAmelCase_ : int = init_std
UpperCAmelCase_ : Any = init_xavier_std
UpperCAmelCase_ : Union[str, Any] = encoder_layerdrop
UpperCAmelCase_ : Dict = decoder_layerdrop
UpperCAmelCase_ : Union[str, Any] = encoder_layers
UpperCAmelCase_ : Any = auxiliary_loss
UpperCAmelCase_ : List[str] = position_embedding_type
UpperCAmelCase_ : Dict = backbone
UpperCAmelCase_ : Optional[int] = use_pretrained_backbone
UpperCAmelCase_ : Tuple = dilation
# Hungarian matcher
UpperCAmelCase_ : Optional[Any] = class_cost
UpperCAmelCase_ : List[Any] = bbox_cost
UpperCAmelCase_ : Optional[int] = giou_cost
# Loss coefficients
UpperCAmelCase_ : Optional[int] = mask_loss_coefficient
UpperCAmelCase_ : List[str] = dice_loss_coefficient
UpperCAmelCase_ : Union[str, Any] = bbox_loss_coefficient
UpperCAmelCase_ : Union[str, Any] = giou_loss_coefficient
UpperCAmelCase_ : Dict = eos_coefficient
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
return self.encoder_attention_heads
@property
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int:
return self.d_model
class UpperCamelCase_ (__A ):
__magic_name__ = version.parse('''1.11''' )
@property
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> float:
return 1e-5
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int:
return 12
| 253 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import MutableSequence
class UpperCamelCase_ :
def __init__( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None:
if len(lowerCAmelCase_ ) != degree + 1:
raise ValueError(
"The number of coefficients should be equal to the degree + 1." )
UpperCAmelCase_ : list[float] = list(lowerCAmelCase_ )
UpperCAmelCase_ : Union[str, Any] = degree
def __add__( self : int , lowerCAmelCase_ : Polynomial ) -> Polynomial:
if self.degree > polynomial_a.degree:
UpperCAmelCase_ : List[str] = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , lowerCAmelCase_ )
else:
UpperCAmelCase_ : Optional[Any] = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , lowerCAmelCase_ )
def __sub__( self : Union[str, Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial:
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self : List[str] ) -> Polynomial:
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self : Optional[Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial:
UpperCAmelCase_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int | float ) -> int | float:
UpperCAmelCase_ : int | float = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self : Tuple ) -> str:
UpperCAmelCase_ : str = ""
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ )
return polynomial
def __repr__( self : Union[str, Any] ) -> str:
return self.__str__()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Polynomial:
UpperCAmelCase_ : list[float] = [0] * self.degree
for i in range(self.degree ):
UpperCAmelCase_ : List[Any] = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int | float = 0 ) -> Polynomial:
UpperCAmelCase_ : list[float] = [0] * (self.degree + 2)
UpperCAmelCase_ : List[Any] = constant
for i in range(self.degree + 1 ):
UpperCAmelCase_ : Union[str, Any] = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , lowerCAmelCase_ )
def __eq__( self : Union[str, Any] , lowerCAmelCase_ : object ) -> bool:
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self : Tuple , lowerCAmelCase_ : object ) -> bool:
return not self.__eq__(lowerCAmelCase_ )
| 253 | 1 |
from __future__ import annotations
__lowerCamelCase = 1.6_021e-19 # units = C
def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ):
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError("You cannot supply more or less than 2 values" )
elif conductivity < 0:
raise ValueError("Conductivity cannot be negative" )
elif electron_conc < 0:
raise ValueError("Electron concentration cannot be negative" )
elif mobility < 0:
raise ValueError("mobility cannot be negative" )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 59 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
'''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''',
}
class A__ ( _snake_case ):
lowercase = "mvp"
lowercase = ["past_key_values"]
lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , UpperCamelCase__=50267 , UpperCamelCase__=1024 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__="gelu" , UpperCamelCase__=1024 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=0.0 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=100 , UpperCamelCase__=800 , **UpperCamelCase__ , ) -> Tuple:
'''simple docstring'''
A_ = vocab_size
A_ = max_position_embeddings
A_ = d_model
A_ = encoder_ffn_dim
A_ = encoder_layers
A_ = encoder_attention_heads
A_ = decoder_ffn_dim
A_ = decoder_layers
A_ = decoder_attention_heads
A_ = dropout
A_ = attention_dropout
A_ = activation_dropout
A_ = activation_function
A_ = init_std
A_ = encoder_layerdrop
A_ = decoder_layerdrop
A_ = classifier_dropout
A_ = use_cache
A_ = encoder_layers
A_ = scale_embedding # scale factor will be sqrt(d_model) if True
A_ = use_prompt
A_ = prompt_length
A_ = prompt_mid_dim
super().__init__(
pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCamelCase__ ):
A_ = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"""The config can simply be saved and uploaded again to be fixed.""" )
| 162 | 0 |
import numpy as np
def _a ( UpperCAmelCase ) -> np.array:
"""simple docstring"""
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351 |
from __future__ import annotations
_A : List[str] = '#'
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] ) ->None:
lowerCamelCase__ : dict = {}
def __lowerCamelCase ( self : Union[str, Any] , A : str ) ->None:
lowerCamelCase__ : Any = self._trie
for char in text:
if char not in trie:
lowerCamelCase__ : Any = {}
lowerCamelCase__ : Any = trie[char]
lowerCamelCase__ : List[str] = True
def __lowerCamelCase ( self : List[Any] , A : str ) ->tuple | list:
lowerCamelCase__ : Dict = self._trie
for char in prefix:
if char in trie:
lowerCamelCase__ : List[Any] = trie[char]
else:
return []
return self._elements(A )
def __lowerCamelCase ( self : Dict , A : dict ) ->tuple:
lowerCamelCase__ : Optional[Any] = []
for c, v in d.items():
lowerCamelCase__ : Any = [''' '''] if c == END else [(c + s) for s in self._elements(A )]
result.extend(A )
return tuple(A )
_A : str = Trie()
_A : List[Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def _a ( UpperCAmelCase ) -> tuple:
"""simple docstring"""
lowerCamelCase__ : Optional[int] = trie.find_word(UpperCAmelCase )
return tuple(string + word for word in suffixes )
def _a ( ) -> None:
"""simple docstring"""
print(autocomplete_using_trie('''de''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 265 | 0 |
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__snake_case :List[Any] = logging.get_logger(__name__)
__snake_case :Tuple = TypeVar('''DatasetType''', Dataset, IterableDataset)
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "first_exhausted" , ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(_UpperCAmelCase ):
if not isinstance(_UpperCAmelCase , (Dataset, IterableDataset) ):
if isinstance(_UpperCAmelCase , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} '
'''is an empty dataset dictionary.''' )
raise ValueError(
f'Dataset at position {i} has at least one split: {list(_UpperCAmelCase )}\n'
f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCAmelCase ) )}\']' )
raise ValueError(
f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCAmelCase ).__name__}.' )
if i == 0:
__a , __a = (
(Dataset, IterableDataset) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , stopping_strategy=_UpperCAmelCase )
else:
return _interleave_iterable_datasets(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , stopping_strategy=_UpperCAmelCase )
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , ):
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(_UpperCAmelCase ):
if not isinstance(_UpperCAmelCase , (Dataset, IterableDataset) ):
if isinstance(_UpperCAmelCase , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} '
'''is an empty dataset dictionary.''' )
raise ValueError(
f'Dataset at position {i} has at least one split: {list(_UpperCAmelCase )}\n'
f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCAmelCase ) )}\']' )
raise ValueError(
f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCAmelCase ).__name__}.' )
if i == 0:
__a , __a = (
(Dataset, IterableDataset) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(_UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , axis=_UpperCAmelCase )
else:
return _concatenate_iterable_datasets(_UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , axis=_UpperCAmelCase )
| 49 |
"""simple docstring"""
from __future__ import annotations
_snake_case : str = []
def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ):
for i in range(len(UpperCamelCase ) ):
if board[row][i] == 1:
return False
for i in range(len(UpperCamelCase ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , len(UpperCamelCase ) ) ):
if board[i][j] == 1:
return False
return True
def A__ ( UpperCamelCase , UpperCamelCase ):
if row >= len(UpperCamelCase ):
solution.append(UpperCamelCase )
printboard(UpperCamelCase )
print()
return True
for i in range(len(UpperCamelCase ) ):
if is_safe(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
A = 1
solve(UpperCamelCase , row + 1 )
A = 0
return False
def A__ ( UpperCamelCase ):
for i in range(len(UpperCamelCase ) ):
for j in range(len(UpperCamelCase ) ):
if board[i][j] == 1:
print("Q" , end=" " )
else:
print("." , end=" " )
print()
# n=int(input("The no. of queens"))
_snake_case : List[str] = 8
_snake_case : List[str] = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('The total no. of solutions are :', len(solution))
| 292 | 0 |
'''simple docstring'''
import math
def _lowerCamelCase ( lowerCamelCase_ : int = 100 ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = sum(i * i for i in range(1 , n + 1 ) )
UpperCAmelCase_ : Union[str, Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f'''{solution() = }''')
| 274 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
snake_case__ : Dict = {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ):
'''simple docstring'''
lowerCamelCase_ :str = '''albert'''
def __init__( self , snake_case_=3_0_0_0_0 , snake_case_=1_2_8 , snake_case_=4_0_9_6 , snake_case_=1_2 , snake_case_=1 , snake_case_=6_4 , snake_case_=1_6_3_8_4 , snake_case_=1 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=0 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_="absolute" , snake_case_=0 , snake_case_=2 , snake_case_=3 , **snake_case_ , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ )
UpperCAmelCase_ : List[Any] = vocab_size
UpperCAmelCase_ : Dict = embedding_size
UpperCAmelCase_ : str = hidden_size
UpperCAmelCase_ : Any = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_hidden_groups
UpperCAmelCase_ : List[str] = num_attention_heads
UpperCAmelCase_ : Any = inner_group_num
UpperCAmelCase_ : Optional[int] = hidden_act
UpperCAmelCase_ : Tuple = intermediate_size
UpperCAmelCase_ : Any = hidden_dropout_prob
UpperCAmelCase_ : List[str] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : Dict = type_vocab_size
UpperCAmelCase_ : Union[str, Any] = initializer_range
UpperCAmelCase_ : Optional[Any] = layer_norm_eps
UpperCAmelCase_ : Dict = classifier_dropout_prob
UpperCAmelCase_ : Tuple = position_embedding_type
class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ):
'''simple docstring'''
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCAmelCase_ : List[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 274 | 1 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowerCamelCase : List[Any] = logging.get_logger(__name__)
__lowerCamelCase : Tuple = OrderedDict(
[
("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""),
("""beit""", """BeitFeatureExtractor"""),
("""chinese_clip""", """ChineseCLIPFeatureExtractor"""),
("""clap""", """ClapFeatureExtractor"""),
("""clip""", """CLIPFeatureExtractor"""),
("""clipseg""", """ViTFeatureExtractor"""),
("""conditional_detr""", """ConditionalDetrFeatureExtractor"""),
("""convnext""", """ConvNextFeatureExtractor"""),
("""cvt""", """ConvNextFeatureExtractor"""),
("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""),
("""data2vec-vision""", """BeitFeatureExtractor"""),
("""deformable_detr""", """DeformableDetrFeatureExtractor"""),
("""deit""", """DeiTFeatureExtractor"""),
("""detr""", """DetrFeatureExtractor"""),
("""dinat""", """ViTFeatureExtractor"""),
("""donut-swin""", """DonutFeatureExtractor"""),
("""dpt""", """DPTFeatureExtractor"""),
("""encodec""", """EncodecFeatureExtractor"""),
("""flava""", """FlavaFeatureExtractor"""),
("""glpn""", """GLPNFeatureExtractor"""),
("""groupvit""", """CLIPFeatureExtractor"""),
("""hubert""", """Wav2Vec2FeatureExtractor"""),
("""imagegpt""", """ImageGPTFeatureExtractor"""),
("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""),
("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""),
("""levit""", """LevitFeatureExtractor"""),
("""maskformer""", """MaskFormerFeatureExtractor"""),
("""mctct""", """MCTCTFeatureExtractor"""),
("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""),
("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""),
("""mobilevit""", """MobileViTFeatureExtractor"""),
("""nat""", """ViTFeatureExtractor"""),
("""owlvit""", """OwlViTFeatureExtractor"""),
("""perceiver""", """PerceiverFeatureExtractor"""),
("""poolformer""", """PoolFormerFeatureExtractor"""),
("""regnet""", """ConvNextFeatureExtractor"""),
("""resnet""", """ConvNextFeatureExtractor"""),
("""segformer""", """SegformerFeatureExtractor"""),
("""sew""", """Wav2Vec2FeatureExtractor"""),
("""sew-d""", """Wav2Vec2FeatureExtractor"""),
("""speech_to_text""", """Speech2TextFeatureExtractor"""),
("""speecht5""", """SpeechT5FeatureExtractor"""),
("""swiftformer""", """ViTFeatureExtractor"""),
("""swin""", """ViTFeatureExtractor"""),
("""swinv2""", """ViTFeatureExtractor"""),
("""table-transformer""", """DetrFeatureExtractor"""),
("""timesformer""", """VideoMAEFeatureExtractor"""),
("""tvlt""", """TvltFeatureExtractor"""),
("""unispeech""", """Wav2Vec2FeatureExtractor"""),
("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""),
("""van""", """ConvNextFeatureExtractor"""),
("""videomae""", """VideoMAEFeatureExtractor"""),
("""vilt""", """ViltFeatureExtractor"""),
("""vit""", """ViTFeatureExtractor"""),
("""vit_mae""", """ViTFeatureExtractor"""),
("""vit_msn""", """ViTFeatureExtractor"""),
("""wav2vec2""", """Wav2Vec2FeatureExtractor"""),
("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""),
("""wavlm""", """Wav2Vec2FeatureExtractor"""),
("""whisper""", """WhisperFeatureExtractor"""),
("""xclip""", """CLIPFeatureExtractor"""),
("""yolos""", """YolosFeatureExtractor"""),
]
)
__lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def A_ ( _lowerCAmelCase ) -> Any:
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
UpperCamelCase : Optional[Any] = model_type_to_module_name(__snake_case )
UpperCamelCase : Optional[int] = importlib.import_module(F""".{module_name}""" , "transformers.models" )
try:
return getattr(__snake_case , __snake_case )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(__snake_case , "__name__" , __snake_case ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
UpperCamelCase : Tuple = importlib.import_module("transformers" )
if hasattr(__snake_case , __snake_case ):
return getattr(__snake_case , __snake_case )
return None
def A_ ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , **_lowerCAmelCase , ) -> List[str]:
UpperCamelCase : Dict = get_file_from_repo(
__snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , )
if resolved_config_file is None:
logger.info(
"Could not locate the feature extractor configuration file, will try to use the model config instead." )
return {}
with open(__snake_case , encoding="utf-8" ) as reader:
return json.load(__snake_case )
class A__ :
def __init__( self ):
'''simple docstring'''
raise EnvironmentError(
"AutoFeatureExtractor is designed to be instantiated "
"using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." )
@classmethod
@replace_list_option_in_docstrings(A_ )
def __UpperCamelCase( cls , A_ , **A_ ):
'''simple docstring'''
UpperCamelCase : Tuple = kwargs.pop("config" , A_ )
UpperCamelCase : str = kwargs.pop("trust_remote_code" , A_ )
UpperCamelCase : str = True
UpperCamelCase , UpperCamelCase : Optional[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A_ , **A_ )
UpperCamelCase : List[Any] = config_dict.get("feature_extractor_type" , A_ )
UpperCamelCase : Any = None
if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ):
UpperCamelCase : List[Any] = config_dict["auto_map"]["AutoFeatureExtractor"]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A_ , A_ ):
UpperCamelCase : Any = AutoConfig.from_pretrained(A_ , **A_ )
# It could be in `config.feature_extractor_type``
UpperCamelCase : Tuple = getattr(A_ , "feature_extractor_type" , A_ )
if hasattr(A_ , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map:
UpperCamelCase : List[str] = config.auto_map["AutoFeatureExtractor"]
if feature_extractor_class is not None:
UpperCamelCase : int = feature_extractor_class_from_name(A_ )
UpperCamelCase : Any = feature_extractor_auto_map is not None
UpperCamelCase : Optional[Any] = feature_extractor_class is not None or type(A_ ) in FEATURE_EXTRACTOR_MAPPING
UpperCamelCase : Dict = resolve_trust_remote_code(
A_ , A_ , A_ , A_ )
if has_remote_code and trust_remote_code:
UpperCamelCase : str = get_class_from_dynamic_module(
A_ , A_ , **A_ )
UpperCamelCase : Tuple = kwargs.pop("code_revision" , A_ )
if os.path.isdir(A_ ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A_ , **A_ )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A_ , **A_ )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A_ ) in FEATURE_EXTRACTOR_MAPPING:
UpperCamelCase : Union[str, Any] = FEATURE_EXTRACTOR_MAPPING[type(A_ )]
return feature_extractor_class.from_dict(A_ , **A_ )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def __UpperCamelCase( A_ , A_ ):
'''simple docstring'''
FEATURE_EXTRACTOR_MAPPING.register(A_ , A_ )
| 52 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
a_ : Union[str, Any] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Tuple =['pixel_values']
def __init__( self, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = 1 / 255, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(**lowerCAmelCase )
lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 224}
lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase )
lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase, param_name='''crop_size''' )
lowerCamelCase_ =do_resize
lowerCamelCase_ =size
lowerCamelCase_ =resample
lowerCamelCase_ =do_center_crop
lowerCamelCase_ =crop_size
lowerCamelCase_ =do_rescale
lowerCamelCase_ =rescale_factor
lowerCamelCase_ =do_normalize
lowerCamelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowerCamelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD
lowerCamelCase_ =do_convert_rgb
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
lowerCamelCase_ =get_resize_output_image_size(lowerCAmelCase, size=size['''shortest_edge'''], default_to_square=lowerCAmelCase )
return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =get_size_dict(lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(lowerCAmelCase, size=(size['''height'''], size['''width''']), data_format=lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = ChannelDimension.FIRST, **lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize
lowerCamelCase_ =size if size is not None else self.size
lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''size''', default_to_square=lowerCAmelCase )
lowerCamelCase_ =resample if resample is not None else self.resample
lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size
lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''crop_size''', default_to_square=lowerCAmelCase )
lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean
lowerCamelCase_ =image_std if image_std is not None else self.image_std
lowerCamelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowerCamelCase_ =make_list_of_images(lowerCAmelCase )
if not valid_images(lowerCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowerCamelCase_ =[convert_to_rgb(lowerCAmelCase ) for image in images]
# All transformations expect numpy arrays.
lowerCamelCase_ =[to_numpy_array(lowerCAmelCase ) for image in images]
if do_resize:
lowerCamelCase_ =[self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images]
if do_center_crop:
lowerCamelCase_ =[self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images]
if do_rescale:
lowerCamelCase_ =[self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images]
if do_normalize:
lowerCamelCase_ =[self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images]
lowerCamelCase_ =[to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images]
lowerCamelCase_ ={'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
| 75 | 0 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class a :
_lowercase = None
_lowercase = False
_lowercase = False
_lowercase = False
_lowercase = None
_lowercase = None
_lowercase = False
_lowercase = False
_lowercase = False
_lowercase = True
_lowercase = None
_lowercase = 1
_lowercase = None
_lowercase = False
_lowercase = None
_lowercase = None
def _UpperCAmelCase ( self ):
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(A_ ) for k, v in self.__dict__.items()} )
| 189 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a ( UpperCAmelCase ):
_lowercase = (PNDMScheduler,)
_lowercase = (("num_inference_steps", 5_0),)
def _UpperCAmelCase ( self , **A_ ):
'''simple docstring'''
_UpperCAmelCase : Tuple = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**A_ )
return config
def _UpperCAmelCase ( self , A_=0 , **A_ ):
'''simple docstring'''
_UpperCAmelCase : int = dict(self.forward_default_kwargs )
_UpperCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , A_ )
_UpperCAmelCase : int = self.dummy_sample
_UpperCAmelCase : Dict = 0.1 * sample
_UpperCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : Dict = self.get_scheduler_config(**A_ )
_UpperCAmelCase : Any = scheduler_class(**A_ )
scheduler.set_timesteps(A_ )
# copy over dummy past residuals
_UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A_ )
_UpperCAmelCase : str = scheduler_class.from_pretrained(A_ )
new_scheduler.set_timesteps(A_ )
# copy over dummy past residuals
_UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:]
_UpperCAmelCase : Tuple = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample
_UpperCAmelCase : Any = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
_UpperCAmelCase : Union[str, Any] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample
_UpperCAmelCase : Optional[Any] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _UpperCAmelCase ( self ):
'''simple docstring'''
pass
def _UpperCAmelCase ( self , A_=0 , **A_ ):
'''simple docstring'''
_UpperCAmelCase : Any = dict(self.forward_default_kwargs )
_UpperCAmelCase : int = kwargs.pop("num_inference_steps" , A_ )
_UpperCAmelCase : int = self.dummy_sample
_UpperCAmelCase : Any = 0.1 * sample
_UpperCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : Optional[Any] = self.get_scheduler_config()
_UpperCAmelCase : Dict = scheduler_class(**A_ )
scheduler.set_timesteps(A_ )
# copy over dummy past residuals (must be after setting timesteps)
_UpperCAmelCase : Any = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A_ )
_UpperCAmelCase : str = scheduler_class.from_pretrained(A_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(A_ )
# copy over dummy past residual (must be after setting timesteps)
_UpperCAmelCase : List[Any] = dummy_past_residuals[:]
_UpperCAmelCase : Tuple = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample
_UpperCAmelCase : Union[str, Any] = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
_UpperCAmelCase : Optional[Any] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample
_UpperCAmelCase : List[str] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _UpperCAmelCase ( self , **A_ ):
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
_UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(**A_ )
_UpperCAmelCase : List[str] = scheduler_class(**A_ )
_UpperCAmelCase : List[str] = 10
_UpperCAmelCase : Optional[int] = self.dummy_model()
_UpperCAmelCase : List[Any] = self.dummy_sample_deter
scheduler.set_timesteps(A_ )
for i, t in enumerate(scheduler.prk_timesteps ):
_UpperCAmelCase : Dict = model(A_ , A_ )
_UpperCAmelCase : int = scheduler.step_prk(A_ , A_ , A_ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
_UpperCAmelCase : Any = model(A_ , A_ )
_UpperCAmelCase : Any = scheduler.step_plms(A_ , A_ , A_ ).prev_sample
return sample
def _UpperCAmelCase ( self ):
'''simple docstring'''
_UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs )
_UpperCAmelCase : str = kwargs.pop("num_inference_steps" , A_ )
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[Any] = scheduler_class(**A_ )
_UpperCAmelCase : int = self.dummy_sample
_UpperCAmelCase : str = 0.1 * sample
if num_inference_steps is not None and hasattr(A_ , "set_timesteps" ):
scheduler.set_timesteps(A_ )
elif num_inference_steps is not None and not hasattr(A_ , "set_timesteps" ):
_UpperCAmelCase : Union[str, Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_UpperCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_UpperCAmelCase : Any = dummy_past_residuals[:]
_UpperCAmelCase : Any = scheduler.step_prk(A_ , 0 , A_ , **A_ ).prev_sample
_UpperCAmelCase : Optional[Any] = scheduler.step_prk(A_ , 1 , A_ , **A_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
_UpperCAmelCase : Optional[int] = scheduler.step_plms(A_ , 0 , A_ , **A_ ).prev_sample
_UpperCAmelCase : Optional[Any] = scheduler.step_plms(A_ , 1 , A_ , **A_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _UpperCAmelCase ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=A_ )
def _UpperCAmelCase ( self ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=A_ )
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : Optional[int] = self.get_scheduler_config(steps_offset=1 )
_UpperCAmelCase : str = scheduler_class(**A_ )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def _UpperCAmelCase ( self ):
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ):
self.check_over_configs(beta_start=A_ , beta_end=A_ )
def _UpperCAmelCase ( self ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A_ )
def _UpperCAmelCase ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A_ )
def _UpperCAmelCase ( self ):
'''simple docstring'''
for t in [1, 5, 10]:
self.check_over_forward(time_step=A_ )
def _UpperCAmelCase ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=A_ )
def _UpperCAmelCase ( self ):
'''simple docstring'''
_UpperCAmelCase : int = 27
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : str = self.dummy_sample
_UpperCAmelCase : str = 0.1 * sample
_UpperCAmelCase : str = self.get_scheduler_config()
_UpperCAmelCase : Tuple = scheduler_class(**A_ )
scheduler.set_timesteps(A_ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
_UpperCAmelCase : Dict = scheduler.step_prk(A_ , A_ , A_ ).prev_sample
def _UpperCAmelCase ( self ):
'''simple docstring'''
with self.assertRaises(A_ ):
_UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
_UpperCAmelCase : Dict = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**A_ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def _UpperCAmelCase ( self ):
'''simple docstring'''
_UpperCAmelCase : Dict = self.full_loop()
_UpperCAmelCase : int = torch.sum(torch.abs(A_ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2
assert abs(result_mean.item() - 0.25_80 ) < 1e-3
def _UpperCAmelCase ( self ):
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" )
_UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(A_ ) )
_UpperCAmelCase : List[Any] = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 67.39_86 ) < 1e-2
assert abs(result_mean.item() - 0.08_78 ) < 1e-3
def _UpperCAmelCase ( self ):
'''simple docstring'''
_UpperCAmelCase : Tuple = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 )
_UpperCAmelCase : Dict = torch.sum(torch.abs(A_ ) )
_UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2
assert abs(result_mean.item() - 0.29_95 ) < 1e-3
def _UpperCAmelCase ( self ):
'''simple docstring'''
_UpperCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 )
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A_ ) )
_UpperCAmelCase : Dict = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2
assert abs(result_mean.item() - 0.24_34 ) < 1e-3
| 189 | 1 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __magic_name__ , )
class _A ( __magic_name__):
SCREAMING_SNAKE_CASE : int = RobertaConfig
SCREAMING_SNAKE_CASE : List[str] = '''roberta'''
def __init__( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : int = RobertaEmbeddings(_SCREAMING_SNAKE_CASE )
self.init_weights()
@add_start_docstrings(
'''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. ''' , __magic_name__ , )
class _A ( __magic_name__):
SCREAMING_SNAKE_CASE : Dict = RobertaConfig
SCREAMING_SNAKE_CASE : Tuple = '''roberta'''
def __init__( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Optional[int] = config.num_labels
SCREAMING_SNAKE_CASE_ : str = config.num_hidden_layers
SCREAMING_SNAKE_CASE_ : int = DeeRobertaModel(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Dropout(config.hidden_dropout_prob )
SCREAMING_SNAKE_CASE_ : Tuple = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=False , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = self.num_layers
try:
SCREAMING_SNAKE_CASE_ : Any = self.roberta(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , inputs_embeds=_SCREAMING_SNAKE_CASE , )
SCREAMING_SNAKE_CASE_ : List[Any] = outputs[1]
SCREAMING_SNAKE_CASE_ : Optional[int] = self.dropout(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Dict = self.classifier(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
SCREAMING_SNAKE_CASE_ : Any = e.message
SCREAMING_SNAKE_CASE_ : str = e.exit_layer
SCREAMING_SNAKE_CASE_ : str = outputs[0]
if not self.training:
SCREAMING_SNAKE_CASE_ : str = entropy(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Optional[Any] = []
SCREAMING_SNAKE_CASE_ : Dict = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
SCREAMING_SNAKE_CASE_ : Any = MSELoss()
SCREAMING_SNAKE_CASE_ : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
SCREAMING_SNAKE_CASE_ : List[str] = CrossEntropyLoss()
SCREAMING_SNAKE_CASE_ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
SCREAMING_SNAKE_CASE_ : Tuple = []
for highway_exit in outputs[-1]:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(_SCREAMING_SNAKE_CASE )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
SCREAMING_SNAKE_CASE_ : Any = MSELoss()
SCREAMING_SNAKE_CASE_ : Tuple = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = CrossEntropyLoss()
SCREAMING_SNAKE_CASE_ : int = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_SCREAMING_SNAKE_CASE )
if train_highway:
SCREAMING_SNAKE_CASE_ : Optional[int] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
SCREAMING_SNAKE_CASE_ : Optional[int] = (loss,) + outputs
if not self.training:
SCREAMING_SNAKE_CASE_ : str = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
SCREAMING_SNAKE_CASE_ : Tuple = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 253 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : List[str] = logging.get_logger(__name__)
class _A ( __magic_name__ , __magic_name__):
SCREAMING_SNAKE_CASE : Dict = '''maskformer-swin'''
SCREAMING_SNAKE_CASE : Dict = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(**_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size
SCREAMING_SNAKE_CASE_ : List[str] = patch_size
SCREAMING_SNAKE_CASE_ : Tuple = num_channels
SCREAMING_SNAKE_CASE_ : List[Any] = embed_dim
SCREAMING_SNAKE_CASE_ : Dict = depths
SCREAMING_SNAKE_CASE_ : Dict = len(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Tuple = num_heads
SCREAMING_SNAKE_CASE_ : List[Any] = window_size
SCREAMING_SNAKE_CASE_ : List[Any] = mlp_ratio
SCREAMING_SNAKE_CASE_ : Tuple = qkv_bias
SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : Union[str, Any] = drop_path_rate
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act
SCREAMING_SNAKE_CASE_ : Dict = use_absolute_embeddings
SCREAMING_SNAKE_CASE_ : int = layer_norm_eps
SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE_ : str = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) )
SCREAMING_SNAKE_CASE_ : List[str] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )]
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_aligned_output_features_output_indices(
out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
| 253 | 1 |
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
__UpperCAmelCase = yaml.safe_load(
'\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n'
)
__UpperCAmelCase = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Extra Ignored Subsection',
'text': '',
'is_empty_text': True,
'subsections': [],
}
],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
__UpperCAmelCase = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = (
'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'
)
__UpperCAmelCase = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = (
'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'
)
__UpperCAmelCase = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n'
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n'
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n'
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n'
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'
__UpperCAmelCase = ''
__UpperCAmelCase = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'
__UpperCAmelCase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__UpperCAmelCase = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowercase__ ( __snake_case : int , __snake_case : Tuple ):
'''simple docstring'''
assert ReadMe.from_string(__snake_case , __snake_case ).to_dict() == expected_dict
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowercase__ ( __snake_case : Dict , __snake_case : Optional[int] ):
'''simple docstring'''
with pytest.raises(__snake_case , match=re.escape(expected_error.format(path='root' ) ) ):
UpperCAmelCase_ : Optional[int] = ReadMe.from_string(__snake_case , __snake_case )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : int ):
'''simple docstring'''
with pytest.raises(__snake_case , match=re.escape(expected_error.format(path='root' ) ) ):
ReadMe.from_string(__snake_case , __snake_case )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowercase__ ( __snake_case : List[Any] ):
'''simple docstring'''
ReadMe.from_string(__snake_case , __snake_case , suppress_parsing_errors=__snake_case )
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowercase__ ( __snake_case : Any , __snake_case : str ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Optional[Any] = Path(__snake_case ) / 'README.md'
with open(__snake_case , 'w+' ) as readme_file:
readme_file.write(__snake_case )
UpperCAmelCase_ : List[str] = ReadMe.from_readme(__snake_case , __snake_case ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowercase__ ( __snake_case : List[Any] , __snake_case : Dict ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : str = Path(__snake_case ) / 'README.md'
with open(__snake_case , 'w+' ) as readme_file:
readme_file.write(__snake_case )
UpperCAmelCase_ : Optional[int] = expected_error.format(path=__snake_case )
with pytest.raises(__snake_case , match=re.escape(__snake_case ) ):
UpperCAmelCase_ : int = ReadMe.from_readme(__snake_case , __snake_case )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Optional[int] = Path(__snake_case ) / 'README.md'
with open(__snake_case , 'w+' ) as readme_file:
readme_file.write(__snake_case )
UpperCAmelCase_ : List[str] = expected_error.format(path=__snake_case )
with pytest.raises(__snake_case , match=re.escape(__snake_case ) ):
ReadMe.from_readme(__snake_case , __snake_case )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowercase__ ( __snake_case : Dict ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Optional[Any] = Path(__snake_case ) / 'README.md'
with open(__snake_case , 'w+' ) as readme_file:
readme_file.write(__snake_case )
ReadMe.from_readme(__snake_case , __snake_case , suppress_parsing_errors=__snake_case )
| 355 |
from __future__ import annotations
from collections.abc import Callable
__UpperCAmelCase = list[list[float | int]]
def lowercase__ ( __snake_case : Matrix , __snake_case : Matrix ):
'''simple docstring'''
UpperCAmelCase_ : int = len(__snake_case )
UpperCAmelCase_ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__snake_case )]
UpperCAmelCase_ : int
UpperCAmelCase_ : int
UpperCAmelCase_ : int
UpperCAmelCase_ : int
UpperCAmelCase_ : int
UpperCAmelCase_ : float
for row in range(__snake_case ):
for col in range(__snake_case ):
UpperCAmelCase_ : Dict = matrix[row][col]
UpperCAmelCase_ : Union[str, Any] = vector[row][0]
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : Union[str, Any] = 0
while row < size and col < size:
# pivoting
UpperCAmelCase_ : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __snake_case ):
UpperCAmelCase_ : Optional[int] = augmented[rowa][col] / augmented[row][col]
UpperCAmelCase_ : List[str] = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __snake_case ):
for row in range(__snake_case ):
UpperCAmelCase_ : Union[str, Any] = augmented[row][col] / augmented[col][col]
for cola in range(__snake_case , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case )
]
def lowercase__ ( __snake_case : list[int] ):
'''simple docstring'''
UpperCAmelCase_ : int = len(__snake_case )
UpperCAmelCase_ : Matrix = [[0 for _ in range(__snake_case )] for _ in range(__snake_case )]
UpperCAmelCase_ : Matrix = [[0] for _ in range(__snake_case )]
UpperCAmelCase_ : Matrix
UpperCAmelCase_ : int
UpperCAmelCase_ : int
UpperCAmelCase_ : int
for x_val, y_val in enumerate(__snake_case ):
for col in range(__snake_case ):
UpperCAmelCase_ : int = (x_val + 1) ** (size - col - 1)
UpperCAmelCase_ : int = y_val
UpperCAmelCase_ : List[str] = solve(__snake_case , __snake_case )
def interpolated_func(__snake_case : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__snake_case ) )
return interpolated_func
def lowercase__ ( __snake_case : int ):
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowercase__ ( __snake_case : Callable[[int], int] = question_function , __snake_case : int = 10 ):
'''simple docstring'''
UpperCAmelCase_ : list[int] = [func(__snake_case ) for x_val in range(1 , order + 1 )]
UpperCAmelCase_ : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
UpperCAmelCase_ : int = 0
UpperCAmelCase_ : Callable[[int], int]
UpperCAmelCase_ : int
for poly in polynomials:
UpperCAmelCase_ : Optional[int] = 1
while func(__snake_case ) == poly(__snake_case ):
x_val += 1
ret += poly(__snake_case )
return ret
if __name__ == "__main__":
print(F'{solution() = }')
| 145 | 0 |
"""simple docstring"""
def lowercase ( a__ : List[Any] ) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
_UpperCamelCase = 1
_UpperCamelCase = 1
while repunit:
_UpperCamelCase = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def lowercase ( a__ : Optional[Any] = 1000000 ) -> int:
_UpperCamelCase = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(_lowercase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F'''{solution() = }''')
| 256 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase_ :
def __init__( self , A , A=12 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=512 , A=0.0_2 , A=0 , A=None , ) -> Any:
UpperCAmelCase : Optional[Any] = parent
UpperCAmelCase : str = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : Optional[Any] = is_training
UpperCAmelCase : int = use_input_mask
UpperCAmelCase : List[Any] = use_labels
UpperCAmelCase : Dict = vocab_size
UpperCAmelCase : str = hidden_size
UpperCAmelCase : List[Any] = projection_dim
UpperCAmelCase : Tuple = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Any = dropout
UpperCAmelCase : List[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = max_position_embeddings
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = scope
UpperCAmelCase : Union[str, Any] = bos_token_id
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase : Tuple = input_mask.numpy()
UpperCAmelCase , UpperCAmelCase : int = input_mask.shape
UpperCAmelCase : Optional[int] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(A ):
UpperCAmelCase : Tuple = 1
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : int = self.get_config()
return config, input_ids, tf.convert_to_tensor(A )
def _lowercase( self ) -> int:
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def _lowercase( self , A , A , A ) -> Union[str, Any]:
UpperCAmelCase : int = TFBlipTextModel(config=A )
UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , training=A )
UpperCAmelCase : int = model(A , training=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = config_and_inputs
UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = (TFBlipTextModel,) if is_tf_available() else ()
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = BlipTextModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self ) -> Tuple:
self.config_tester.run_common_tests()
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> List[str]:
pass
def _lowercase( self ) -> Optional[int]:
pass
@unittest.skip(reason="""Blip does not use inputs_embeds""" )
def _lowercase( self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def _lowercase( self ) -> Optional[int]:
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def _lowercase( self ) -> Dict:
pass
@slow
def _lowercase( self ) -> Dict:
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Any = TFBlipTextModel.from_pretrained(A )
self.assertIsNotNone(A )
def _lowercase( self , A=True ) -> str:
super().test_pt_tf_model_equivalence(allow_missing_keys=A )
| 265 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class _a :
def __init__( self : int, lowerCAmelCase__ : Collection[float] | None = None ) -> None:
'''simple docstring'''
if components is None:
_UpperCamelCase : Tuple = []
_UpperCamelCase : Optional[int] = list(lowerCAmelCase__ )
def __len__( self : List[Any] ) -> int:
'''simple docstring'''
return len(self.__components )
def __str__( self : Dict ) -> str:
'''simple docstring'''
return "(" + ",".join(map(lowerCAmelCase__, self.__components ) ) + ")"
def __add__( self : int, lowerCAmelCase__ : Vector ) -> Vector:
'''simple docstring'''
_UpperCamelCase : List[Any] = len(self )
if size == len(lowerCAmelCase__ ):
_UpperCamelCase : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else:
raise Exception('''must have the same size''' )
def __sub__( self : Optional[Any], lowerCAmelCase__ : Vector ) -> Vector:
'''simple docstring'''
_UpperCamelCase : List[Any] = len(self )
if size == len(lowerCAmelCase__ ):
_UpperCamelCase : List[Any] = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else: # error case
raise Exception('''must have the same size''' )
@overload
def __mul__( self : Optional[int], lowerCAmelCase__ : float ) -> Vector:
'''simple docstring'''
...
@overload
def __mul__( self : int, lowerCAmelCase__ : Vector ) -> float:
'''simple docstring'''
...
def __mul__( self : int, lowerCAmelCase__ : float | Vector ) -> float | Vector:
'''simple docstring'''
if isinstance(lowerCAmelCase__, (float, int) ):
_UpperCamelCase : Tuple = [c * other for c in self.__components]
return Vector(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__, lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ):
_UpperCamelCase : Tuple = len(self )
_UpperCamelCase : Any = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return sum(lowerCAmelCase__ )
else: # error case
raise Exception('''invalid operand!''' )
def snake_case ( self : List[str] ) -> Vector:
'''simple docstring'''
return Vector(self.__components )
def snake_case ( self : Any, lowerCAmelCase__ : int ) -> float:
'''simple docstring'''
if isinstance(lowerCAmelCase__, lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception('''index out of range''' )
def snake_case ( self : Optional[Any], lowerCAmelCase__ : int, lowerCAmelCase__ : float ) -> None:
'''simple docstring'''
assert -len(self.__components ) <= pos < len(self.__components )
_UpperCamelCase : List[str] = value
def snake_case ( self : str ) -> float:
'''simple docstring'''
if len(self.__components ) == 0:
raise Exception('''Vector is empty''' )
_UpperCamelCase : Optional[int] = [c**2 for c in self.__components]
return math.sqrt(sum(lowerCAmelCase__ ) )
def snake_case ( self : Optional[Any], lowerCAmelCase__ : Vector, lowerCAmelCase__ : bool = False ) -> float:
'''simple docstring'''
_UpperCamelCase : Any = self * other
_UpperCamelCase : Union[str, Any] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def a_ ( _lowercase ):
assert isinstance(_lowercase , _lowercase )
return Vector([0] * dimension )
def a_ ( _lowercase , _lowercase ):
assert isinstance(_lowercase , _lowercase ) and (isinstance(_lowercase , _lowercase ))
_UpperCamelCase : Tuple = [0] * dimension
_UpperCamelCase : List[Any] = 1
return Vector(_lowercase )
def a_ ( _lowercase , _lowercase , _lowercase ):
assert (
isinstance(_lowercase , _lowercase )
and isinstance(_lowercase , _lowercase )
and (isinstance(_lowercase , (int, float) ))
)
return x * scalar + y
def a_ ( _lowercase , _lowercase , _lowercase ):
random.seed(_lowercase )
_UpperCamelCase : int = [random.randint(_lowercase , _lowercase ) for _ in range(_lowercase )]
return Vector(_lowercase )
class _a :
def __init__( self : Dict, lowerCAmelCase__ : list[list[float]], lowerCAmelCase__ : int, lowerCAmelCase__ : int ) -> None:
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = matrix
_UpperCamelCase : List[str] = w
_UpperCamelCase : Dict = h
def __str__( self : Optional[int] ) -> str:
'''simple docstring'''
_UpperCamelCase : Optional[Any] = ''''''
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self : Any, lowerCAmelCase__ : Matrix ) -> Matrix:
'''simple docstring'''
if self.__width == other.width() and self.__height == other.height():
_UpperCamelCase : List[str] = []
for i in range(self.__height ):
_UpperCamelCase : int = [
self.__matrix[i][j] + other.component(lowerCAmelCase__, lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__, self.__width, self.__height )
else:
raise Exception('''matrix must have the same dimension!''' )
def __sub__( self : Union[str, Any], lowerCAmelCase__ : Matrix ) -> Matrix:
'''simple docstring'''
if self.__width == other.width() and self.__height == other.height():
_UpperCamelCase : int = []
for i in range(self.__height ):
_UpperCamelCase : int = [
self.__matrix[i][j] - other.component(lowerCAmelCase__, lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__, self.__width, self.__height )
else:
raise Exception('''matrices must have the same dimension!''' )
@overload
def __mul__( self : Any, lowerCAmelCase__ : float ) -> Matrix:
'''simple docstring'''
...
@overload
def __mul__( self : str, lowerCAmelCase__ : Vector ) -> Vector:
'''simple docstring'''
...
def __mul__( self : List[Any], lowerCAmelCase__ : float | Vector ) -> Vector | Matrix:
'''simple docstring'''
if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): # matrix-vector
if len(lowerCAmelCase__ ) == self.__width:
_UpperCamelCase : List[Any] = zero_vector(self.__height )
for i in range(self.__height ):
_UpperCamelCase : Dict = [
self.__matrix[i][j] * other.component(lowerCAmelCase__ )
for j in range(self.__width )
]
ans.change_component(lowerCAmelCase__, sum(lowerCAmelCase__ ) )
return ans
else:
raise Exception(
'''vector must have the same size as the '''
'''number of columns of the matrix!''' )
elif isinstance(lowerCAmelCase__, (int, float) ): # matrix-scalar
_UpperCamelCase : int = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(lowerCAmelCase__, self.__width, self.__height )
return None
def snake_case ( self : Union[str, Any] ) -> int:
'''simple docstring'''
return self.__height
def snake_case ( self : List[str] ) -> int:
'''simple docstring'''
return self.__width
def snake_case ( self : Union[str, Any], lowerCAmelCase__ : int, lowerCAmelCase__ : int ) -> float:
'''simple docstring'''
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception('''change_component: indices out of bounds''' )
def snake_case ( self : Any, lowerCAmelCase__ : int, lowerCAmelCase__ : int, lowerCAmelCase__ : float ) -> None:
'''simple docstring'''
if 0 <= x < self.__height and 0 <= y < self.__width:
_UpperCamelCase : str = value
else:
raise Exception('''change_component: indices out of bounds''' )
def snake_case ( self : List[Any], lowerCAmelCase__ : int, lowerCAmelCase__ : int ) -> float:
'''simple docstring'''
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
_UpperCamelCase : Dict = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase : Optional[int] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(lowerCAmelCase__, self.__width - 1, self.__height - 1 ).determinant()
def snake_case ( self : Union[str, Any], lowerCAmelCase__ : int, lowerCAmelCase__ : int ) -> float:
'''simple docstring'''
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(lowerCAmelCase__, lowerCAmelCase__ )
else:
raise Exception('''Indices out of bounds''' )
def snake_case ( self : Optional[Any] ) -> float:
'''simple docstring'''
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
if self.__height < 1:
raise Exception('''Matrix has no element''' )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
_UpperCamelCase : Any = [
self.__matrix[0][y] * self.cofactor(0, lowerCAmelCase__ ) for y in range(self.__width )
]
return sum(lowerCAmelCase__ )
def a_ ( _lowercase ):
_UpperCamelCase : list[list[float]] = [[0] * n for _ in range(_lowercase )]
return Matrix(_lowercase , _lowercase , _lowercase )
def a_ ( _lowercase , _lowercase , _lowercase , _lowercase ):
random.seed(_lowercase )
_UpperCamelCase : list[list[float]] = [
[random.randint(_lowercase , _lowercase ) for _ in range(_lowercase )] for _ in range(_lowercase )
]
return Matrix(_lowercase , _lowercase , _lowercase )
| 128 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class _a ( unittest.TestCase ):
def snake_case ( self : Tuple ) -> Dict:
'''simple docstring'''
_UpperCamelCase : int = tempfile.mkdtemp()
_UpperCamelCase : List[str] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
_UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
_UpperCamelCase : Dict = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073],
'''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711],
'''do_convert_rgb''': True,
}
_UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, lowerCAmelCase__ )
with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp:
json.dump(lowerCAmelCase__, lowerCAmelCase__ )
def snake_case ( self : str, **lowerCAmelCase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__ )
def snake_case ( self : Union[str, Any], **lowerCAmelCase__ : Tuple ) -> str:
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase__ )
def snake_case ( self : Any, **lowerCAmelCase__ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__ )
def snake_case ( self : str ) -> Optional[int]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def snake_case ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase : List[str] = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )]
_UpperCamelCase : List[Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1 ) ) for x in image_inputs]
return image_inputs
def snake_case ( self : str ) -> Any:
'''simple docstring'''
_UpperCamelCase : Any = self.get_tokenizer()
_UpperCamelCase : int = self.get_rust_tokenizer()
_UpperCamelCase : int = self.get_image_processor()
_UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ )
processor_slow.save_pretrained(self.tmpdirname )
_UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__ )
_UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ )
processor_fast.save_pretrained(self.tmpdirname )
_UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer, lowerCAmelCase__ )
self.assertIsInstance(processor_fast.tokenizer, lowerCAmelCase__ )
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor, lowerCAmelCase__ )
self.assertIsInstance(processor_fast.image_processor, lowerCAmelCase__ )
def snake_case ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCamelCase : Dict = self.get_tokenizer(cls_token='''(CLS)''', sep_token='''(SEP)''' )
_UpperCamelCase : List[str] = self.get_image_processor(do_normalize=lowerCAmelCase__ )
_UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname, cls_token='''(CLS)''', sep_token='''(SEP)''', do_normalize=lowerCAmelCase__ )
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ )
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCAmelCase__ )
def snake_case ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase : List[str] = self.get_image_processor()
_UpperCamelCase : str = self.get_tokenizer()
_UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ )
_UpperCamelCase : List[str] = self.prepare_image_inputs()
_UpperCamelCase : Any = image_processor(lowerCAmelCase__, return_tensors='''np''' )
_UpperCamelCase : Any = processor(images=lowerCAmelCase__, return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 )
def snake_case ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase : Tuple = self.get_image_processor()
_UpperCamelCase : Optional[Any] = self.get_tokenizer()
_UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ )
_UpperCamelCase : Tuple = '''Alexandra,T-shirt的价格是15便士。'''
_UpperCamelCase : List[str] = processor(text=lowerCAmelCase__ )
_UpperCamelCase : Any = tokenizer(lowerCAmelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key] )
def snake_case ( self : Dict ) -> Tuple:
'''simple docstring'''
_UpperCamelCase : Tuple = self.get_image_processor()
_UpperCamelCase : Optional[Any] = self.get_tokenizer()
_UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ )
_UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。'''
_UpperCamelCase : Union[str, Any] = self.prepare_image_inputs()
_UpperCamelCase : str = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ )
self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase__ ):
processor()
def snake_case ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase : int = self.get_image_processor()
_UpperCamelCase : int = self.get_tokenizer()
_UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ )
_UpperCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCamelCase : List[Any] = processor.batch_decode(lowerCAmelCase__ )
_UpperCamelCase : Dict = tokenizer.batch_decode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ )
def snake_case ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase : Any = self.get_image_processor()
_UpperCamelCase : Optional[int] = self.get_tokenizer()
_UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ )
_UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。'''
_UpperCamelCase : int = self.prepare_image_inputs()
_UpperCamelCase : Dict = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ )
self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
| 128 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
A : Union[str, Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = ['''BeitFeatureExtractor''']
A : Tuple = ['''BeitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Any = [
'''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BeitForImageClassification''',
'''BeitForMaskedImageModeling''',
'''BeitForSemanticSegmentation''',
'''BeitModel''',
'''BeitPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
'''FlaxBeitForImageClassification''',
'''FlaxBeitForMaskedImageModeling''',
'''FlaxBeitModel''',
'''FlaxBeitPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 274 |
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class A (unittest.TestCase ):
'''simple docstring'''
def a_ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
A__ = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , ["""c"""] )
self.assertEqual(__lowerCAmelCase , [2] )
# Out indices set to match out features
A__ , A__ = get_aligned_output_features_output_indices(["""a""", """c"""] , __lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] )
self.assertEqual(__lowerCAmelCase , [0, 2] )
# Out features set to match out indices
A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , [0, 2] , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] )
self.assertEqual(__lowerCAmelCase , [0, 2] )
# Out features selected from negative indices
A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , [-3, -1] , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] )
self.assertEqual(__lowerCAmelCase , [-3, -1] )
def a_ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaises(__lowerCAmelCase ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , __lowerCAmelCase )
# Out features must be a list
with self.assertRaises(__lowerCAmelCase ):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] )
# Out features must be a subset of stage names
with self.assertRaises(__lowerCAmelCase ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] )
# Out indices must be a list or tuple
with self.assertRaises(__lowerCAmelCase ):
verify_out_features_out_indices(__lowerCAmelCase , 0 , ["""a""", """b"""] )
# Out indices must be a subset of stage names
with self.assertRaises(__lowerCAmelCase ):
verify_out_features_out_indices(__lowerCAmelCase , (0, 1) , ["""a"""] )
# Out features and out indices must be the same length
with self.assertRaises(__lowerCAmelCase ):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] )
# Out features should match out indices
with self.assertRaises(__lowerCAmelCase ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] )
# Out features and out indices should be in order
with self.assertRaises(__lowerCAmelCase ):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] )
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] )
def a_ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
A__ = BackboneMixin()
A__ = ["""a""", """b""", """c"""]
A__ = ["""a""", """c"""]
A__ = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
A__ = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""] )
self.assertEqual(backbone.out_indices , [0, 1] )
A__ = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 274 | 1 |
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=[30, 30] , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=10 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=None , lowerCamelCase__=8 , lowerCamelCase__=10 , ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =parent
__UpperCamelCase : Union[str, Any] =batch_size
__UpperCamelCase : Dict =image_size
__UpperCamelCase : Tuple =patch_size
__UpperCamelCase : int =num_channels
__UpperCamelCase : Union[str, Any] =is_training
__UpperCamelCase : Optional[Any] =use_labels
__UpperCamelCase : int =hidden_size
__UpperCamelCase : Optional[Any] =num_hidden_layers
__UpperCamelCase : Tuple =num_attention_heads
__UpperCamelCase : List[str] =intermediate_size
__UpperCamelCase : List[Any] =hidden_act
__UpperCamelCase : List[str] =hidden_dropout_prob
__UpperCamelCase : str =attention_probs_dropout_prob
__UpperCamelCase : Union[str, Any] =type_sequence_label_size
__UpperCamelCase : int =initializer_range
__UpperCamelCase : Any =num_labels
__UpperCamelCase : str =scope
__UpperCamelCase : Optional[Any] =n_targets
__UpperCamelCase : str =num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__UpperCamelCase : List[str] =(image_size[1] // patch_size) * (image_size[0] // patch_size)
__UpperCamelCase : List[str] =num_patches + 1 + self.num_detection_tokens
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
__UpperCamelCase : List[str] =None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__UpperCamelCase : str =[]
for i in range(self.batch_size ):
__UpperCamelCase : str ={}
__UpperCamelCase : Union[str, Any] =torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=lowerCamelCase__ )
__UpperCamelCase : List[Any] =torch.rand(self.n_targets , 4 , device=lowerCamelCase__ )
labels.append(lowerCamelCase__ )
__UpperCamelCase : int =self.get_config()
return config, pixel_values, labels
def __lowercase ( self ):
"""simple docstring"""
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : int =YolosModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCamelCase : Dict =model(lowerCamelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : int =YolosForObjectDetection(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCamelCase : Any =model(pixel_values=lowerCamelCase__ )
__UpperCamelCase : Optional[int] =model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
__UpperCamelCase : Optional[Any] =model(pixel_values=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] =config_and_inputs
__UpperCamelCase : Tuple ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __A ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ : Optional[Any] =(YolosModel, YolosForObjectDetection) if is_torch_available() else ()
UpperCamelCase__ : Tuple =(
{"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {}
)
UpperCamelCase__ : Optional[int] =False
UpperCamelCase__ : Union[str, Any] =False
UpperCamelCase__ : Optional[int] =False
UpperCamelCase__ : Tuple =False
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ):
"""simple docstring"""
__UpperCamelCase : Any =super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__UpperCamelCase : int =[]
for i in range(self.model_tester.batch_size ):
__UpperCamelCase : Optional[Any] ={}
__UpperCamelCase : List[str] =torch.ones(
size=(self.model_tester.n_targets,) , device=lowerCamelCase__ , dtype=torch.long )
__UpperCamelCase : List[str] =torch.ones(
self.model_tester.n_targets , 4 , device=lowerCamelCase__ , dtype=torch.float )
labels.append(lowerCamelCase__ )
__UpperCamelCase : Any =labels
return inputs_dict
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] =YolosModelTester(self )
__UpperCamelCase : Tuple =ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 )
def __lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowercase ( self ):
"""simple docstring"""
pass
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase : int =model_class(lowerCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCamelCase : List[Any] =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase : Optional[Any] =model_class(lowerCamelCase__ )
__UpperCamelCase : int =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCamelCase : Dict =[*signature.parameters.keys()]
__UpperCamelCase : Any =['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase : Any =True
# in YOLOS, the seq_len is different
__UpperCamelCase : int =self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__UpperCamelCase : int =True
__UpperCamelCase : List[str] =False
__UpperCamelCase : Dict =True
__UpperCamelCase : int =model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
__UpperCamelCase : Any =model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) )
__UpperCamelCase : Any =outputs.attentions
self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCamelCase : str =True
__UpperCamelCase : int =model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
__UpperCamelCase : int =model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) )
__UpperCamelCase : Any =outputs.attentions
self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__UpperCamelCase : Tuple =len(lowerCamelCase__ )
# Check attention is always last and order is fine
__UpperCamelCase : int =True
__UpperCamelCase : Optional[Any] =True
__UpperCamelCase : Dict =model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
__UpperCamelCase : Dict =model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) )
__UpperCamelCase : List[str] =1
self.assertEqual(out_len + added_hidden_states , len(lowerCamelCase__ ) )
__UpperCamelCase : Union[str, Any] =outputs.attentions
self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def __lowercase ( self ):
"""simple docstring"""
def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
__UpperCamelCase : int =model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
__UpperCamelCase : Union[str, Any] =model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) )
__UpperCamelCase : Tuple =outputs.hidden_states
__UpperCamelCase : str =getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ )
# YOLOS has a different seq_length
__UpperCamelCase : Union[str, Any] =self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__UpperCamelCase , __UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase : Dict =True
check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCamelCase : str =True
check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*lowerCamelCase__ )
@slow
def __lowercase ( self ):
"""simple docstring"""
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase : List[Any] =YolosModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def A ( ) -> Union[str, Any]:
__UpperCamelCase : Optional[Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowercase ( self ):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[str] =YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(lowerCamelCase__ )
__UpperCamelCase : Any =self.default_image_processor
__UpperCamelCase : Optional[Any] =prepare_img()
__UpperCamelCase : List[Any] =image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
__UpperCamelCase : Dict =model(inputs.pixel_values )
# verify outputs
__UpperCamelCase : str =torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =torch.tensor(
[[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=lowerCamelCase__ , )
__UpperCamelCase : Dict =torch.tensor(
[[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
# verify postprocessing
__UpperCamelCase : Any =image_processor.post_process_object_detection(
lowerCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
__UpperCamelCase : Union[str, Any] =torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(lowerCamelCase__ )
__UpperCamelCase : List[Any] =[75, 75, 17, 63, 17]
__UpperCamelCase : Any =torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(lowerCamelCase__ )
self.assertEqual(len(results['scores'] ) , 5 )
self.assertTrue(torch.allclose(results['scores'] , lowerCamelCase__ , atol=1E-4 ) )
self.assertSequenceEqual(results['labels'].tolist() , lowerCamelCase__ )
self.assertTrue(torch.allclose(results['boxes'][0, :] , lowerCamelCase__ ) )
| 245 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def A ( a_ ) -> int:
__UpperCamelCase : List[Any] =botoa.client('iam' )
__UpperCamelCase : List[str] ={
'Version': '2012-10-17',
'Statement': [
{'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=a_ ,AssumeRolePolicyDocument=json.dumps(a_ ,indent=2 ) )
__UpperCamelCase : List[str] ={
'Version': '2012-10-17',
'Statement': [
{
'Effect': 'Allow',
'Action': [
'sagemaker:*',
'ecr:GetDownloadUrlForLayer',
'ecr:BatchGetImage',
'ecr:BatchCheckLayerAvailability',
'ecr:GetAuthorizationToken',
'cloudwatch:PutMetricData',
'cloudwatch:GetMetricData',
'cloudwatch:GetMetricStatistics',
'cloudwatch:ListMetrics',
'logs:CreateLogGroup',
'logs:CreateLogStream',
'logs:DescribeLogStreams',
'logs:PutLogEvents',
'logs:GetLogEvents',
's3:CreateBucket',
's3:ListBucket',
's3:GetBucketLocation',
's3:GetObject',
's3:PutObject',
],
'Resource': '*',
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=a_ ,PolicyName=F'{role_name}_policy_permission' ,PolicyDocument=json.dumps(a_ ,indent=2 ) ,)
except iam_client.exceptions.EntityAlreadyExistsException:
print(F'role {role_name} already exists. Using existing one' )
def A ( a_ ) -> Optional[Any]:
__UpperCamelCase : List[Any] =botoa.client('iam' )
return iam_client.get_role(RoleName=a_ )["Role"]["Arn"]
def A ( ) -> Tuple:
__UpperCamelCase : Any =_ask_options(
'How do you want to authorize?' ,['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] ,a_ ,)
__UpperCamelCase : str =None
if credentials_configuration == 0:
__UpperCamelCase : str =_ask_field('Enter your AWS Profile name: [default] ' ,default='default' )
__UpperCamelCase : Optional[Any] =aws_profile
else:
print(
'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,'
'`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' )
__UpperCamelCase : int =_ask_field('AWS Access Key ID: ' )
__UpperCamelCase : Dict =aws_access_key_id
__UpperCamelCase : Any =_ask_field('AWS Secret Access Key: ' )
__UpperCamelCase : Optional[Any] =aws_secret_access_key
__UpperCamelCase : Tuple =_ask_field('Enter your AWS Region: [us-east-1]' ,default='us-east-1' )
__UpperCamelCase : List[str] =aws_region
__UpperCamelCase : Any =_ask_options(
'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' ,['Provide IAM Role name', 'Create new IAM role using credentials'] ,a_ ,)
if role_management == 0:
__UpperCamelCase : Optional[Any] =_ask_field('Enter your IAM role name: ' )
else:
__UpperCamelCase : Dict ='accelerate_sagemaker_execution_role'
print(F'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' )
_create_iam_role_for_sagemaker(a_ )
__UpperCamelCase : List[Any] =_ask_field(
'Do you want to use custom Docker image? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,)
__UpperCamelCase : int =None
if is_custom_docker_image:
__UpperCamelCase : List[Any] =_ask_field('Enter your Docker image: ' ,lambda a_ : str(a_ ).lower() )
__UpperCamelCase : Union[str, Any] =_ask_field(
'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,)
__UpperCamelCase : Optional[Any] =None
if is_sagemaker_inputs_enabled:
__UpperCamelCase : Optional[Any] =_ask_field(
'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' ,lambda a_ : str(a_ ).lower() ,)
__UpperCamelCase : str =_ask_field(
'Do you want to enable SageMaker metrics? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,)
__UpperCamelCase : Dict =None
if is_sagemaker_metrics_enabled:
__UpperCamelCase : Optional[Any] =_ask_field(
'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' ,lambda a_ : str(a_ ).lower() ,)
__UpperCamelCase : int =_ask_options(
'What is the distributed mode?' ,['No distributed training', 'Data parallelism'] ,_convert_sagemaker_distributed_mode ,)
__UpperCamelCase : int ={}
__UpperCamelCase : str =_ask_field(
'Do you wish to optimize your script with torch dynamo?[yes/NO]:' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,)
if use_dynamo:
__UpperCamelCase : Dict ='dynamo_'
__UpperCamelCase : Optional[int] =_ask_options(
'Which dynamo backend would you like to use?' ,[x.lower() for x in DYNAMO_BACKENDS] ,_convert_dynamo_backend ,default=2 ,)
__UpperCamelCase : Tuple =_ask_field(
'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,)
if use_custom_options:
__UpperCamelCase : List[str] =_ask_options(
'Which mode do you want to use?' ,a_ ,lambda a_ : TORCH_DYNAMO_MODES[int(a_ )] ,default='default' ,)
__UpperCamelCase : Union[str, Any] =_ask_field(
'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,)
__UpperCamelCase : Tuple =_ask_field(
'Do you want to enable dynamic shape tracing? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,)
__UpperCamelCase : Tuple ='Which EC2 instance type you want to use for your training?'
if distributed_type != SageMakerDistributedType.NO:
__UpperCamelCase : int =_ask_options(
a_ ,a_ ,lambda a_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(a_ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
__UpperCamelCase : List[str] =_ask_field(a_ ,lambda a_ : str(a_ ).lower() ,default='ml.p3.2xlarge' )
__UpperCamelCase : Union[str, Any] =1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
__UpperCamelCase : List[str] =_ask_field(
'How many machines do you want use? [1]: ' ,a_ ,default=1 ,)
__UpperCamelCase : Optional[Any] =_ask_options(
'Do you wish to use FP16 or BF16 (mixed precision)?' ,['no', 'fp16', 'bf16', 'fp8'] ,_convert_mixed_precision ,)
if use_dynamo and mixed_precision == "no":
print(
'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' )
return SageMakerConfig(
image_uri=a_ ,compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER ,distributed_type=a_ ,use_cpu=a_ ,dynamo_config=a_ ,eca_instance_type=a_ ,profile=a_ ,region=a_ ,iam_role_name=a_ ,mixed_precision=a_ ,num_machines=a_ ,sagemaker_inputs_file=a_ ,sagemaker_metrics_file=a_ ,)
| 245 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __a ( unittest.TestCase ):
def __lowercase ( self : Any ):
'''simple docstring'''
UpperCamelCase__ : Tuple = "ZinengTang/tvlt-base"
UpperCamelCase__ : Optional[int] = tempfile.mkdtemp()
def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return TvltImageProcessor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE )
def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE )
def __lowercase ( self : int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __lowercase ( self : List[str] ):
'''simple docstring'''
UpperCamelCase__ : List[str] = self.get_image_processor()
UpperCamelCase__ : Optional[Any] = self.get_feature_extractor()
UpperCamelCase__ : Dict = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
UpperCamelCase__ : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE )
def __lowercase ( self : Any ):
'''simple docstring'''
UpperCamelCase__ : int = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_feature_extractor()
UpperCamelCase__ : Optional[int] = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[int] = np.ones([1_20_00] )
UpperCamelCase__ : Dict = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" )
UpperCamelCase__ : Optional[int] = processor(audio=SCREAMING_SNAKE_CASE , return_tensors="np" )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowercase ( self : List[str] ):
'''simple docstring'''
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : Any = self.get_feature_extractor()
UpperCamelCase__ : Union[str, Any] = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[Any] = np.ones([3, 2_24, 2_24] )
UpperCamelCase__ : List[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" )
UpperCamelCase__ : List[Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase__ : Optional[int] = self.get_image_processor()
UpperCamelCase__ : Any = self.get_feature_extractor()
UpperCamelCase__ : int = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = np.ones([1_20_00] )
UpperCamelCase__ : str = np.ones([3, 2_24, 2_24] )
UpperCamelCase__ : Any = processor(audio=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE ):
processor()
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
UpperCamelCase__ : Dict = self.get_image_processor()
UpperCamelCase__ : Tuple = self.get_feature_extractor()
UpperCamelCase__ : Any = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
| 189 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowerCamelCase : Tuple =_symbol_database.Default()
lowerCamelCase : List[str] =_descriptor_pool.Default().AddSerializedFile(
b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'''
)
lowerCamelCase : str =globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowerCamelCase : Optional[int] =None
lowerCamelCase : Tuple =b'''H\003'''
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowerCamelCase : List[str] =45
lowerCamelCase : List[Any] =1581
lowerCamelCase : Optional[int] =1517
lowerCamelCase : Tuple =1570
lowerCamelCase : Dict =1584
lowerCamelCase : Optional[Any] =1793
lowerCamelCase : Dict =1795
lowerCamelCase : Any =1916
lowerCamelCase : Dict =1864
lowerCamelCase : Dict =1905
lowerCamelCase : Dict =1919
lowerCamelCase : Union[str, Any] =2429
lowerCamelCase : List[Any] =2208
lowerCamelCase : List[Any] =2418
lowerCamelCase : List[str] =2323
lowerCamelCase : Dict =2407
# @@protoc_insertion_point(module_scope)
| 189 | 1 |
"""simple docstring"""
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class __snake_case ( _lowercase):
def __init__( self : Any , __lowerCAmelCase : Distribution , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=0 ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 1.0 if scale is None else scale
_lowerCamelCase : Union[str, Any] = 0.0 if loc is None else loc
super().__init__(__lowerCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowerCAmelCase )] )
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.base_dist.mean * self.scale + self.loc
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return self.base_dist.variance * self.scale**2
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.variance.sqrt()
class __snake_case ( nn.Module):
def __init__( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Callable[..., Tuple[torch.Tensor]] , **__lowerCAmelCase : Any ):
"""simple docstring"""
super().__init__(**__lowerCAmelCase )
_lowerCamelCase : str = args_dim
_lowerCamelCase : Dict = nn.ModuleList([nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) for dim in args_dim.values()] )
_lowerCamelCase : List[Any] = domain_map
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : torch.Tensor ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = [proj(__lowerCAmelCase ) for proj in self.proj]
return self.domain_map(*__lowerCAmelCase )
class __snake_case ( nn.Module):
def __init__( self : List[Any] , __lowerCAmelCase : str ):
"""simple docstring"""
super().__init__()
_lowerCamelCase : str = function
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , *__lowerCAmelCase : int ):
"""simple docstring"""
return self.function(__lowerCAmelCase , *__lowerCAmelCase )
class __snake_case :
snake_case__ : type
snake_case__ : int
snake_case__ : Dict[str, int]
def __init__( self : int , __lowerCAmelCase : int = 1 ):
"""simple docstring"""
_lowerCamelCase : str = dim
_lowerCamelCase : Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim}
def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Any ):
"""simple docstring"""
if self.dim == 1:
return self.distribution_class(*__lowerCAmelCase )
else:
return Independent(self.distribution_class(*__lowerCAmelCase ) , 1 )
def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , ):
"""simple docstring"""
_lowerCamelCase : int = self._base_distribution(__lowerCAmelCase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__lowerCAmelCase , loc=__lowerCAmelCase , scale=__lowerCAmelCase , event_dim=self.event_dim )
@property
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return () if self.dim == 1 else (self.dim,)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return len(self.event_shape )
@property
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return 0.0
def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int ):
"""simple docstring"""
return ParameterProjection(
in_features=__lowerCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def SCREAMING_SNAKE_CASE ( self : str , *__lowerCAmelCase : torch.Tensor ):
"""simple docstring"""
raise NotImplementedError()
@staticmethod
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : torch.Tensor ):
"""simple docstring"""
return (x + torch.sqrt(torch.square(__lowerCAmelCase ) + 4.0 )) / 2.0
class __snake_case ( _lowercase):
snake_case__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
snake_case__ : type = StudentT
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Optional[int] , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ):
"""simple docstring"""
_lowerCamelCase : List[str] = cls.squareplus(__lowerCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps )
_lowerCamelCase : Dict = 2.0 + cls.squareplus(__lowerCAmelCase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class __snake_case ( _lowercase):
snake_case__ : Dict[str, int] = {"loc": 1, "scale": 1}
snake_case__ : type = Normal
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Optional[int] , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = cls.squareplus(__lowerCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class __snake_case ( _lowercase):
snake_case__ : Dict[str, int] = {"total_count": 1, "logits": 1}
snake_case__ : type = NegativeBinomial
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Optional[int] , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = cls.squareplus(__lowerCAmelCase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : List[str] ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__lowerCAmelCase , logits=__lowerCAmelCase )
else:
return Independent(self.distribution_class(total_count=__lowerCAmelCase , logits=__lowerCAmelCase ) , 1 )
def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None ):
"""simple docstring"""
_lowerCamelCase : Any = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 366 |
"""simple docstring"""
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
lowerCAmelCase__ = logging.get_logger(__name__)
logging.set_verbosity_info()
def snake_case_ ( A_ : str, A_ : str ):
'''simple docstring'''
if "xprophetnet" in prophetnet_checkpoint_path:
_lowerCamelCase : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(A_ )
_lowerCamelCase , _lowerCamelCase : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained(
A_, output_loading_info=A_ )
else:
_lowerCamelCase : str = ProphetNetForConditionalGenerationOld.from_pretrained(A_ )
_lowerCamelCase , _lowerCamelCase : Any = ProphetNetForConditionalGeneration.from_pretrained(
A_, output_loading_info=A_ )
_lowerCamelCase : Optional[Any] = ['''key_proj''', '''value_proj''', '''query_proj''']
_lowerCamelCase : List[Any] = {
'''self_attn''': '''ngram_self_attn''',
'''cross_attn''': '''encoder_attn''',
'''cross_attn_layer_norm''': '''encoder_attn_layer_norm''',
'''feed_forward_layer_norm''': '''final_layer_norm''',
'''feed_forward''': '''''',
'''intermediate''': '''fc1''',
'''output''': '''fc2''',
'''key_proj''': '''k_proj''',
'''query_proj''': '''q_proj''',
'''value_proj''': '''v_proj''',
'''word_embeddings''': '''embed_tokens''',
'''embeddings_layer_norm''': '''emb_layer_norm''',
'''relative_pos_embeddings''': '''relative_linear''',
'''ngram_embeddings''': '''ngram_input_embed''',
'''position_embeddings''': '''embed_positions''',
}
for key in loading_info["missing_keys"]:
_lowerCamelCase : Union[str, Any] = key.split('''.''' )
if attributes[0] == "lm_head":
_lowerCamelCase : str = prophet
_lowerCamelCase : List[Any] = prophet_old
else:
_lowerCamelCase : Optional[int] = prophet.prophetnet
_lowerCamelCase : Optional[Any] = prophet_old.model
_lowerCamelCase : Any = False
for attribute in attributes:
if attribute in mapping:
_lowerCamelCase : Optional[int] = mapping[attribute]
if not hasattr(A_, A_ ) and len(A_ ) > 0:
_lowerCamelCase : int = attribute
elif hasattr(A_, A_ ):
_lowerCamelCase : int = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
_lowerCamelCase : Optional[int] = old_model.weight
logger.info(F'''{attribute} is initialized.''' )
_lowerCamelCase : List[str] = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
_lowerCamelCase : int = old_model.bias
logger.info(F'''{attribute} is initialized''' )
_lowerCamelCase : Union[str, Any] = True
break
elif attribute in special_keys and hasattr(A_, '''in_proj_weight''' ):
_lowerCamelCase : Tuple = old_model.in_proj_weight.shape[0] // 3
_lowerCamelCase : List[Any] = getattr(A_, A_ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
_lowerCamelCase : Optional[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
_lowerCamelCase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
_lowerCamelCase : int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
_lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
_lowerCamelCase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
_lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
_lowerCamelCase : Dict = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings."
_lowerCamelCase : List[str] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] )
_lowerCamelCase : Optional[Any] = True
break
if attribute.isdigit():
_lowerCamelCase : Optional[int] = model[int(A_ )]
_lowerCamelCase : List[Any] = old_model[int(A_ )]
else:
_lowerCamelCase : List[str] = getattr(A_, A_ )
if old_attribute == "":
_lowerCamelCase : str = old_model
else:
if not hasattr(A_, A_ ):
raise ValueError(F'''{old_model} does not have {old_attribute}''' )
_lowerCamelCase : Optional[int] = getattr(A_, A_ )
if not is_key_init:
raise ValueError(F'''{key} was not correctly initialized!''' )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
prophet.save_pretrained(A_ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCAmelCase__ = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 175 | 0 |
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
UpperCAmelCase_ = 'Usage of script: script_name <size_of_canvas:int>'
UpperCAmelCase_ = [0] * 100 + [1] * 10
random.shuffle(choice)
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
__lowerCamelCase = [[False for i in range(a_ )] for j in range(a_ )]
return canvas
def lowerCamelCase__ ( A__ : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(a_ ):
for j, _ in enumerate(a_ ):
__lowerCamelCase = bool(random.getrandbits(1 ) )
def lowerCamelCase__ ( A__ : list[list[bool]] ):
'''simple docstring'''
__lowerCamelCase = np.array(a_ )
__lowerCamelCase = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(a_ ):
for c, pt in enumerate(a_ ):
__lowerCamelCase = __judge_point(
a_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__lowerCamelCase = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__lowerCamelCase = current_canvas.tolist()
return return_canvas
def lowerCamelCase__ ( A__ : bool , A__ : list[list[bool]] ):
'''simple docstring'''
__lowerCamelCase = 0
__lowerCamelCase = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__lowerCamelCase = pt
if pt:
if alive < 2:
__lowerCamelCase = False
elif alive == 2 or alive == 3:
__lowerCamelCase = True
elif alive > 3:
__lowerCamelCase = False
else:
if alive == 3:
__lowerCamelCase = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
UpperCAmelCase_ = int(sys.argv[1])
# main working structure of this module.
UpperCAmelCase_ = create_canvas(canvas_size)
seed(c)
UpperCAmelCase_ , UpperCAmelCase_ = plt.subplots()
fig.show()
UpperCAmelCase_ = ListedColormap(['w', 'k'])
try:
while True:
UpperCAmelCase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 12 |
'''simple docstring'''
from __future__ import annotations
__a = list[tuple[int, int]]
__a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__a = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class A__ :
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float , lowerCAmelCase__ : Node | None , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[str] = pos_x
_UpperCAmelCase : List[Any] = pos_y
_UpperCAmelCase : Optional[int] = (pos_y, pos_x)
_UpperCAmelCase : Tuple = goal_x
_UpperCAmelCase : List[str] = goal_y
_UpperCAmelCase : str = g_cost
_UpperCAmelCase : List[Any] = parent
_UpperCAmelCase : str = self.calculate_heuristic()
def _lowerCAmelCase ( self : str ) -> float:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = abs(self.pos_x - self.goal_x )
_UpperCAmelCase : Optional[Any] = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self : Any , lowerCAmelCase__ : Optional[int] ) -> bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class A__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : tuple[int, int] , lowerCAmelCase__ : tuple[int, int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase__ )
_UpperCAmelCase : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = [self.start]
_UpperCAmelCase : list[Node] = []
_UpperCAmelCase : List[Any] = False
def _lowerCAmelCase ( self : Tuple ) -> Path | None:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
_UpperCAmelCase : Dict = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
_UpperCAmelCase : List[str] = True
return self.retrace_path(lowerCAmelCase__ )
self.closed_nodes.append(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = self.get_successors(lowerCAmelCase__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowerCAmelCase__ )
else:
# retrieve the best current path
_UpperCAmelCase : List[Any] = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowerCAmelCase__ )
else:
self.open_nodes.append(lowerCAmelCase__ )
if not self.reached:
return [self.start.pos]
return None
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Node ) -> list[Node]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = []
for action in delta:
_UpperCAmelCase : Tuple = parent.pos_x + action[1]
_UpperCAmelCase : Any = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowerCAmelCase__ , lowerCAmelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase__ , ) )
return successors
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Node | None ) -> Path:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = node
_UpperCAmelCase : Any = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
_UpperCAmelCase : Any = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
__a = (0, 0)
__a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('------')
__a = GreedyBestFirst(init, goal)
__a = greedy_bf.search()
if path:
for pos_x, pos_y in path:
__a = 2
for elem in grid:
print(elem)
| 145 | 0 |
'''simple docstring'''
from math import sqrt
def __UpperCamelCase ( _UpperCAmelCase ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(sqrt(_UpperCAmelCase ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __UpperCamelCase ( _UpperCAmelCase = 10001 ):
__UpperCAmelCase : Tuple = 0
__UpperCAmelCase : Union[str, Any] = 1
while count != nth and number < 3:
number += 1
if is_prime(_UpperCAmelCase ):
count += 1
while count != nth:
number += 2
if is_prime(_UpperCAmelCase ):
count += 1
return number
if __name__ == "__main__":
print(f"{solution() = }")
| 37 |
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
lowerCAmelCase__ : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def __UpperCamelCase ( ):
__UpperCAmelCase : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
__UpperCAmelCase : Union[str, Any] = g.get_repo("huggingface/transformers" )
__UpperCAmelCase : Union[str, Any] = repo.get_issues(state="open" )
for issue in open_issues:
__UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase )
__UpperCAmelCase : Any = comments[0] if len(_UpperCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="closed" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
if __name__ == "__main__":
main()
| 37 | 1 |
from __future__ import annotations
from random import choice
def _lowerCAmelCase (_lowerCAmelCase):
return choice(_lowerCAmelCase)
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase):
UpperCamelCase_ = random_pivot(_lowerCAmelCase)
# partition based on pivot
# linear time
UpperCamelCase_ = [e for e in lst if e < pivot]
UpperCamelCase_ = [e for e in lst if e > pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(_lowerCAmelCase) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(_lowerCAmelCase) < k - 1:
return kth_number(_lowerCAmelCase , k - len(_lowerCAmelCase) - 1)
# pivot is in elements smaller than k
else:
return kth_number(_lowerCAmelCase , _lowerCAmelCase)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 128 |
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class _lowercase :
'''simple docstring'''
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=50 , snake_case__=0.02 , snake_case__=True , snake_case__=None , ):
'''simple docstring'''
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_input_mask
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_act
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = initializer_range
UpperCamelCase_ = use_labels
UpperCamelCase_ = scope
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = None
if self.use_input_mask:
UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = self.get_config()
return config, input_ids, input_mask, token_labels
def _lowerCamelCase ( self ):
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=snake_case__ , initializer_range=self.initializer_range , )
def _lowerCamelCase ( self ):
'''simple docstring'''
(
(
UpperCamelCase_
) , (
UpperCamelCase_
) , (
UpperCamelCase_
) , (
UpperCamelCase_
) ,
) = self.prepare_config_and_inputs()
UpperCamelCase_ = True
UpperCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ):
'''simple docstring'''
UpperCamelCase_ = BertGenerationEncoder(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ )
UpperCamelCase_ = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ):
'''simple docstring'''
UpperCamelCase_ = True
UpperCamelCase_ = BertGenerationEncoder(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCamelCase_ = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , )
UpperCamelCase_ = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ):
'''simple docstring'''
UpperCamelCase_ = True
UpperCamelCase_ = True
UpperCamelCase_ = BertGenerationDecoder(config=snake_case__ ).to(snake_case__ ).eval()
# first forward pass
UpperCamelCase_ = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , )
UpperCamelCase_ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCamelCase_ = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0]
UpperCamelCase_ = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0]
# select random slice
UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) )
def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ , ):
'''simple docstring'''
UpperCamelCase_ = BertGenerationDecoder(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs()
UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase (a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase__ = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase__ = (
{"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder}
if is_torch_available()
else {}
)
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = BertGenerationEncoderTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def _lowerCamelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase_ = "bert"
self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*snake_case__ )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case__ )
def _lowerCamelCase ( self ):
'''simple docstring'''
(
(
UpperCamelCase_
) , (
UpperCamelCase_
) , (
UpperCamelCase_
) , (
UpperCamelCase_
) , (
UpperCamelCase_
) , (
UpperCamelCase_
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCamelCase_ = None
self.model_tester.create_and_check_model_as_decoder(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*snake_case__ )
@slow
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
self.assertIsNotNone(snake_case__ )
@require_torch
class _lowercase (unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
UpperCamelCase_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
UpperCamelCase_ = model(snake_case__ )[0]
UpperCamelCase_ = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape , snake_case__ )
UpperCamelCase_ = torch.tensor(
[[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
@require_torch
class _lowercase (unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
UpperCamelCase_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
UpperCamelCase_ = model(snake_case__ )[0]
UpperCamelCase_ = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape , snake_case__ )
UpperCamelCase_ = torch.tensor(
[[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
| 128 | 1 |
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __UpperCAmelCase ( UpperCAmelCase_ : List[str] ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[Any] = np.inf
def set_batch_size(UpperCAmelCase_ : List[Any] ) -> None:
nonlocal batch_size
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Any = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Dict = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and feature.dtype == "binary":
__snake_case : int = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(_UpperCAmelCase , _UpperCAmelCase )
return None if batch_size is np.inf else batch_size
class UpperCamelCase ( SCREAMING_SNAKE_CASE__ ):
def __init__(self : Union[str, Any] , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[int] = None , **_A : int , ) -> List[Any]:
super().__init__(
_A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , )
__snake_case : str = path_or_paths if isinstance(_A , _A) else {self.split: path_or_paths}
__snake_case : Tuple = _PACKAGED_DATASETS_MODULES['parquet'][1]
__snake_case : Optional[int] = Parquet(
cache_dir=_A , data_files=_A , features=_A , hash=_A , **_A , )
def _lowercase (self : Optional[int]) -> Union[str, Any]:
# Build iterable dataset
if self.streaming:
__snake_case : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
__snake_case : Tuple = None
__snake_case : Union[str, Any] = None
__snake_case : List[Any] = None
__snake_case : int = None
self.builder.download_and_prepare(
download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , )
__snake_case : Any = self.builder.as_dataset(
split=self.split , verification_mode=_A , in_memory=self.keep_in_memory)
return dataset
class UpperCamelCase :
def __init__(self : Dict , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , **_A : Optional[Any] , ) -> Optional[Any]:
__snake_case : List[Any] = dataset
__snake_case : int = path_or_buf
__snake_case : Optional[Any] = batch_size or get_writer_batch_size(dataset.features)
__snake_case : Optional[Any] = parquet_writer_kwargs
def _lowercase (self : Union[str, Any]) -> int:
__snake_case : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with open(self.path_or_buf , 'wb+') as buffer:
__snake_case : int = self._write(file_obj=_A , batch_size=_A , **self.parquet_writer_kwargs)
else:
__snake_case : List[Any] = self._write(file_obj=self.path_or_buf , batch_size=_A , **self.parquet_writer_kwargs)
return written
def _lowercase (self : int , _A : BinaryIO , _A : int , **_A : Union[str, Any]) -> int:
__snake_case : Optional[Any] = 0
__snake_case : int = parquet_writer_kwargs.pop('path_or_buf' , _A)
__snake_case : List[str] = self.dataset.features.arrow_schema
__snake_case : int = pq.ParquetWriter(_A , schema=_A , **_A)
for offset in logging.tqdm(
range(0 , len(self.dataset) , _A) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ):
__snake_case : Tuple = query_table(
table=self.dataset._data , key=slice(_A , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(_A)
written += batch.nbytes
writer.close()
return written
| 359 |
"""simple docstring"""
def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
'''simple docstring'''
while a != 0:
__snake_case , __snake_case : Union[str, Any] = b % a, a
return b
def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
'''simple docstring'''
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1:
__snake_case : Union[str, Any] = F"mod inverse of {a!r} and {m!r} does not exist"
raise ValueError(UpperCAmelCase_ )
__snake_case , __snake_case , __snake_case : List[str] = 1, 0, a
__snake_case , __snake_case , __snake_case : Dict = 0, 1, m
while va != 0:
__snake_case : List[str] = ua // va
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 95 | 0 |
import numpy as np
def __lowercase ( _A ) -> np.array:
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 245 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCAmelCase__ : Tuple = logging.getLogger(__name__)
class a__ ( UpperCAmelCase ):
"""simple docstring"""
UpperCAmelCase__ : List[str] ="""token-classification"""
def __init__( self : Tuple , UpperCAmelCase__ : Tuple ) ->Optional[Any]:
"""simple docstring"""
if type(UpperCAmelCase__ ) == dict:
SCREAMING_SNAKE_CASE : List[str] = Namespace(**UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : List[str] = import_module("""tasks""" )
try:
SCREAMING_SNAKE_CASE : str = getattr(UpperCAmelCase__ , hparams.task_type )
SCREAMING_SNAKE_CASE : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" )
SCREAMING_SNAKE_CASE : List[Any] = self.token_classification_task.get_labels(hparams.labels )
SCREAMING_SNAKE_CASE : List[Any] = CrossEntropyLoss().ignore_index
super().__init__(UpperCAmelCase__ , len(self.labels ) , self.mode )
def _lowercase ( self : List[str] , **UpperCAmelCase__ : Optional[int] ) ->Any:
"""simple docstring"""
return self.model(**UpperCAmelCase__ )
def _lowercase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) ->List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE : List[str] = (
batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE : Union[str, Any] = self(**UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : int = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def _lowercase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
SCREAMING_SNAKE_CASE : Any = self._feature_file(UpperCAmelCase__ )
if os.path.exists(UpperCAmelCase__ ) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Tuple = torch.load(UpperCAmelCase__ )
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir )
SCREAMING_SNAKE_CASE : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : List[str] = self.token_classification_task.convert_examples_to_features(
UpperCAmelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCAmelCase__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("""Saving features into cached file %s""" , UpperCAmelCase__ )
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
def _lowercase ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) ->DataLoader:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self._feature_file(UpperCAmelCase__ )
logger.info("""Loading features from cached file %s""" , UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : List[Any] = torch.load(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
SCREAMING_SNAKE_CASE : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
SCREAMING_SNAKE_CASE : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
SCREAMING_SNAKE_CASE : Dict = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , batch_size=UpperCAmelCase__ )
def _lowercase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) ->Tuple:
"""simple docstring"""
"""Compute validation""" ""
SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE : str = (
batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE : Dict = self(**UpperCAmelCase__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = outputs[:2]
SCREAMING_SNAKE_CASE : Optional[Any] = logits.detach().cpu().numpy()
SCREAMING_SNAKE_CASE : Tuple = inputs["""labels"""].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def _lowercase ( self : int , UpperCAmelCase__ : List[str] ) ->Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = torch.stack([x["""val_loss"""] for x in outputs] ).mean()
SCREAMING_SNAKE_CASE : str = np.concatenate([x["""pred"""] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE : Tuple = np.argmax(UpperCAmelCase__ , axis=2 )
SCREAMING_SNAKE_CASE : Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = dict(enumerate(self.labels ) )
SCREAMING_SNAKE_CASE : int = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
SCREAMING_SNAKE_CASE : Tuple = {
"""val_loss""": val_loss_mean,
"""accuracy_score""": accuracy_score(UpperCAmelCase__ , UpperCAmelCase__ ),
"""precision""": precision_score(UpperCAmelCase__ , UpperCAmelCase__ ),
"""recall""": recall_score(UpperCAmelCase__ , UpperCAmelCase__ ),
"""f1""": fa_score(UpperCAmelCase__ , UpperCAmelCase__ ),
}
SCREAMING_SNAKE_CASE : Optional[int] = dict(results.items() )
SCREAMING_SNAKE_CASE : Optional[Any] = results
return ret, preds_list, out_label_list
def _lowercase ( self : Dict , UpperCAmelCase__ : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self._eval_end(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Optional[int] = ret["""log"""]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def _lowercase ( self : List[str] , UpperCAmelCase__ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self._eval_end(UpperCAmelCase__ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
SCREAMING_SNAKE_CASE : Dict = ret["""log"""]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def _lowercase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ) ->List[Any]:
"""simple docstring"""
BaseTransformer.add_model_specific_args(UpperCAmelCase__ , UpperCAmelCase__ )
parser.add_argument(
"""--task_type""" , default="""NER""" , type=UpperCAmelCase__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" )
parser.add_argument(
"""--max_seq_length""" , default=1_2_8 , type=UpperCAmelCase__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--labels""" , default="""""" , type=UpperCAmelCase__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=UpperCAmelCase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
return parser
if __name__ == "__main__":
UpperCAmelCase__ : str = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCAmelCase__ : Tuple = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCAmelCase__ : int = parser.parse_args()
UpperCAmelCase__ : Union[str, Any] = NERTransformer(args)
UpperCAmelCase__ : str = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCAmelCase__ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True))
UpperCAmelCase__ : Any = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 245 | 1 |
from __future__ import annotations
lowerCAmelCase__ : List[Any] =[-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
lowerCAmelCase__ : Dict =[-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : str = []
SCREAMING_SNAKE_CASE_ : int = len(A__ )
for i in range(A__ ):
SCREAMING_SNAKE_CASE_ : float = -1
for j in range(i + 1, A__ ):
if arr[i] < arr[j]:
SCREAMING_SNAKE_CASE_ : Optional[int] = arr[j]
break
result.append(A__ )
return result
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : str = []
for i, outer in enumerate(A__ ):
SCREAMING_SNAKE_CASE_ : float = -1
for inner in arr[i + 1 :]:
if outer < inner:
SCREAMING_SNAKE_CASE_ : List[Any] = inner
break
result.append(A__ )
return result
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : Optional[int] = len(A__ )
SCREAMING_SNAKE_CASE_ : list[float] = []
SCREAMING_SNAKE_CASE_ : list[float] = [-1] * arr_size
for index in reversed(range(A__ ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
SCREAMING_SNAKE_CASE_ : Any = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCAmelCase__ : Optional[Any] =(
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
)
| 370 |
import numpy
# List of input, output pairs
lowerCAmelCase__ : int =(
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ : Any =(((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
lowerCAmelCase__ : List[str] =[2, 4, 1, 5]
lowerCAmelCase__ : Dict =len(train_data)
lowerCAmelCase__ : Union[str, Any] =0.0_0_9
def a__ ( A__, A__="train" ):
return calculate_hypothesis_value(A__, A__ ) - output(
A__, A__ )
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : Tuple = 0
for i in range(len(A__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def a__ ( A__, A__ ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def a__ ( A__, A__ ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def a__ ( A__, A__=m ):
SCREAMING_SNAKE_CASE_ : Tuple = 0
for i in range(A__ ):
if index == -1:
summation_value += _error(A__ )
else:
summation_value += _error(A__ ) * train_data[i][0][index]
return summation_value
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : Any = summation_of_cost_derivative(A__, A__ ) / m
return cost_derivative_value
def a__ ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
SCREAMING_SNAKE_CASE_ : str = 0.00_00_02
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Any = 0
while True:
j += 1
SCREAMING_SNAKE_CASE_ : int = [0, 0, 0, 0]
for i in range(0, len(A__ ) ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_cost_derivative(i - 1 )
SCREAMING_SNAKE_CASE_ : str = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
A__, A__, atol=A__, rtol=A__, ):
break
SCREAMING_SNAKE_CASE_ : Optional[Any] = temp_parameter_vector
print(('Number of iterations:', j) )
def a__ ( ):
for i in range(len(A__ ) ):
print(('Actual output value:', output(A__, 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(A__, 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 162 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_SCREAMING_SNAKE_CASE = {
"""configuration_efficientformer""": [
"""EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EfficientFormerConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""EfficientFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EfficientFormerForImageClassification""",
"""EfficientFormerForImageClassificationWithTeacher""",
"""EfficientFormerModel""",
"""EfficientFormerPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFEfficientFormerForImageClassification""",
"""TFEfficientFormerForImageClassificationWithTeacher""",
"""TFEfficientFormerModel""",
"""TFEfficientFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 343 |
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _lowercase ( snake_case_ , unittest.TestCase ):
lowercase = XLMTokenizer
lowercase = False
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase_ : List[Any] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCamelCase_ : str = dict(zip(snake_case , range(len(snake_case ) ) ) )
UpperCamelCase_ : Tuple = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCamelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(snake_case ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(snake_case ) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCamelCase_ : Tuple = 'lower newer'
UpperCamelCase_ : Optional[int] = 'lower newer'
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ : int = XLMTokenizer(self.vocab_file , self.merges_file )
UpperCamelCase_ : List[str] = 'lower'
UpperCamelCase_ : Optional[int] = ['low', 'er</w>']
UpperCamelCase_ : Optional[Any] = tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCamelCase_ : List[Any] = tokens + ['<unk>']
UpperCamelCase_ : int = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ : int = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' )
UpperCamelCase_ : int = tokenizer.encode('sequence builders' , add_special_tokens=snake_case )
UpperCamelCase_ : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case )
UpperCamelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case )
UpperCamelCase_ : Any = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 175 | 0 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__A = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__A = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__A = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def __A ( _lowercase , _lowercase ):
'''simple docstring'''
_A = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] )
return (item, float(_lowercase ))
def __A ( _lowercase , _lowercase ):
'''simple docstring'''
_A = random.randint(0 , len(_lowercase ) - 1 )
_A = parent_a[:random_slice] + parent_a[random_slice:]
_A = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def __A ( _lowercase , _lowercase ):
'''simple docstring'''
_A = list(_lowercase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
_A = random.choice(_lowercase )
return "".join(_lowercase )
def __A ( _lowercase , _lowercase , _lowercase , ):
'''simple docstring'''
_A = []
# Generate more children proportionally to the fitness score.
_A = int(parent_a[1] * 1_00 ) + 1
_A = 10 if child_n >= 10 else child_n
for _ in range(_lowercase ):
_A = population_score[random.randint(0 , _lowercase )][0]
_A ,_A = crossover(parent_a[0] , _lowercase )
# Append new string to the population list.
pop.append(mutate(_lowercase , _lowercase ) )
pop.append(mutate(_lowercase , _lowercase ) )
return pop
def __A ( _lowercase , _lowercase , _lowercase = True ):
'''simple docstring'''
if N_POPULATION < N_SELECTED:
_A = f"""{N_POPULATION} must be bigger than {N_SELECTED}"""
raise ValueError(_lowercase )
# Verify that the target contains no genes besides the ones inside genes variable.
_A = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_A = f"""{not_in_genes_list} is not in genes list, evolution cannot converge"""
raise ValueError(_lowercase )
# Generate random starting population.
_A = []
for _ in range(_lowercase ):
population.append(''''''.join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) )
# Just some logs to know what the algorithms is doing.
_A ,_A = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_lowercase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_A = [evaluate(_lowercase , _lowercase ) for item in population]
# Check if there is a matching evolution.
_A = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
f"""\nGeneration: {generation}"""
f"""\nTotal Population:{total_population}"""
f"""\nBest score: {population_score[0][1]}"""
f"""\nBest string: {population_score[0][0]}""" )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_A = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_lowercase )
# Normalize population score to be between 0 and 1.
_A = [
(item, score / len(_lowercase )) for item, score in population_score
]
# This is selection
for i in range(_lowercase ):
population.extend(select(population_score[int(_lowercase )] , _lowercase , _lowercase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_lowercase ) > N_POPULATION:
break
if __name__ == "__main__":
__A = (
'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'
)
__A = list(
' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'
'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'
)
__A , __A , __A = basic(target_str, genes_list)
print(
f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'
)
| 75 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __A ( _lowercase ):
'''simple docstring'''
_A = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
_A = True if '''large''' in model_name or '''huge''' in model_name else False
_A = True if '''large''' in model_name or '''huge''' in model_name else False
_A = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
_A = [3, 3, 3, 3]
_A = [5, 5, 5, 5]
elif "fl4" in model_name:
_A = [4, 4, 4, 4]
_A = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
_A = [3, 3, 3, 3]
if "lrf" in model_name:
_A = [3, 3, 3, 3]
else:
_A = [2, 2, 2, 2]
if "tiny" in model_name:
_A = 96
elif "small" in model_name:
_A = 96
elif "base" in model_name:
_A = 1_28
elif "large" in model_name:
_A = 1_92
elif "xlarge" in model_name:
_A = 2_56
elif "huge" in model_name:
_A = 3_52
# set label information
_A = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
_A = '''imagenet-22k-id2label.json'''
else:
_A = '''imagenet-1k-id2label.json'''
_A = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
_A = {int(_lowercase ): v for k, v in idalabel.items()}
_A = {v: k for k, v in idalabel.items()}
_A = FocalNetConfig(
embed_dim=_lowercase , depths=_lowercase , focal_levels=_lowercase , focal_windows=_lowercase , use_conv_embed=_lowercase , idalabel=_lowercase , labelaid=_lowercase , use_post_layernorm=_lowercase , use_layerscale=_lowercase , )
return config
def __A ( _lowercase ):
'''simple docstring'''
if "patch_embed.proj" in name:
_A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
_A = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
_A = '''encoder.''' + name
if "encoder.layers" in name:
_A = name.replace('''encoder.layers''' , '''encoder.stages''' )
if "downsample.proj" in name:
_A = name.replace('''downsample.proj''' , '''downsample.projection''' )
if "blocks" in name:
_A = name.replace('''blocks''' , '''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
_A = name.replace('''modulation.f''' , '''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
_A = name.replace('''modulation.h''' , '''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
_A = name.replace('''modulation.proj''' , '''modulation.projection_out''' )
if name == "norm.weight":
_A = '''layernorm.weight'''
if name == "norm.bias":
_A = '''layernorm.bias'''
if "head" in name:
_A = name.replace('''head''' , '''classifier''' )
else:
_A = '''focalnet.''' + name
return name
def __A ( _lowercase , _lowercase , _lowercase=False ):
'''simple docstring'''
_A = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
_A = model_name_to_url[model_name]
print('''Checkpoint URL: ''' , _lowercase )
_A = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
_A = state_dict.pop(_lowercase )
_A = val
_A = get_focalnet_config(_lowercase )
_A = FocalNetForImageClassification(_lowercase )
model.eval()
# load state dict
model.load_state_dict(_lowercase )
# verify conversion
_A = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_A = BitImageProcessor(
do_resize=_lowercase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase , crop_size=2_24 , do_normalize=_lowercase , image_mean=_lowercase , image_std=_lowercase , )
_A = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
_A = processor(images=_lowercase , return_tensors='''pt''' )
_A = transforms.Compose(
[
transforms.Resize(2_56 ),
transforms.CenterCrop(2_24 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ),
] )
_A = image_transforms(_lowercase ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , _lowercase , atol=1e-4 )
_A = model(**_lowercase )
_A = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
_A = torch.tensor([0.21_66, -0.43_68, 0.21_91] )
elif model_name == "focalnet-tiny-lrf":
_A = torch.tensor([1.16_69, 0.01_25, -0.16_95] )
elif model_name == "focalnet-small":
_A = torch.tensor([0.49_17, -0.04_30, 0.13_41] )
elif model_name == "focalnet-small-lrf":
_A = torch.tensor([-0.25_88, -0.53_42, -0.23_31] )
elif model_name == "focalnet-base":
_A = torch.tensor([-0.16_55, -0.40_90, -0.17_30] )
elif model_name == "focalnet-base-lrf":
_A = torch.tensor([0.53_06, -0.04_83, -0.39_28] )
assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
processor.save_pretrained(_lowercase )
if push_to_hub:
print(f"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(f"""{model_name}""" )
processor.push_to_hub(f"""{model_name}""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='focalnet-tiny',
type=str,
help='Name of the FocalNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub.',
)
__A = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 75 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
'''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''',
}
class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = '''focalnet'''
def __init__( self ,__UpperCAmelCase=224 ,__UpperCAmelCase=4 ,__UpperCAmelCase=3 ,__UpperCAmelCase=96 ,__UpperCAmelCase=False ,__UpperCAmelCase=[192, 384, 768, 768] ,__UpperCAmelCase=[2, 2, 6, 2] ,__UpperCAmelCase=[2, 2, 2, 2] ,__UpperCAmelCase=[3, 3, 3, 3] ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=4.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=False ,__UpperCAmelCase=1E-4 ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-5 ,__UpperCAmelCase=32 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
lowerCAmelCase__ : Dict = image_size
lowerCAmelCase__ : int = patch_size
lowerCAmelCase__ : str = num_channels
lowerCAmelCase__ : Dict = embed_dim
lowerCAmelCase__ : List[str] = use_conv_embed
lowerCAmelCase__ : List[Any] = hidden_sizes
lowerCAmelCase__ : Dict = depths
lowerCAmelCase__ : List[str] = focal_levels
lowerCAmelCase__ : List[str] = focal_windows
lowerCAmelCase__ : Dict = hidden_act
lowerCAmelCase__ : Dict = mlp_ratio
lowerCAmelCase__ : Tuple = hidden_dropout_prob
lowerCAmelCase__ : Tuple = drop_path_rate
lowerCAmelCase__ : Dict = use_layerscale
lowerCAmelCase__ : Optional[Any] = layerscale_value
lowerCAmelCase__ : str = use_post_layernorm
lowerCAmelCase__ : Union[str, Any] = use_post_layernorm_in_modulation
lowerCAmelCase__ : int = normalize_modulator
lowerCAmelCase__ : Optional[Any] = initializer_range
lowerCAmelCase__ : List[str] = layer_norm_eps
lowerCAmelCase__ : List[Any] = encoder_stride
lowerCAmelCase__ : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )]
lowerCAmelCase__ , lowerCAmelCase__ : Any = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase ,out_indices=__UpperCAmelCase ,stage_names=self.stage_names )
| 37 |
'''simple docstring'''
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
_lowerCAmelCase = '''\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
'''
_lowerCAmelCase = '''\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
'''
_lowerCAmelCase = '''
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for \'record\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'prediction_text\': the predicted answer text
- for \'multirc\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question-answer pair as specified by the dataset
- \'prediction\': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for \'record\': list of question-answers dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'answers\': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for \'record\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1\': F1 score
- for \'multirc\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1_m\': Per-question macro-F1 score
- \'f1_a\': Average F1 score over all answers
- for \'axb\':
\'matthews_correlation\': Matthew Correlation
- for \'cb\':
- \'accuracy\': Accuracy
- \'f1\': F1 score
- for all others:
- \'accuracy\': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')
>>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]
>>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')
>>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'matthews_correlation\': 1.0}
'''
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
return float((preds == labels).mean() )
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase="binary" ):
"""simple docstring"""
lowerCAmelCase__ : Any = simple_accuracy(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : Tuple = float(fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average=UpperCamelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ : List[str] = {}
for id_pred, label in zip(UpperCamelCase , UpperCamelCase ):
lowerCAmelCase__ : str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}"""
lowerCAmelCase__ : Dict = id_pred["""prediction"""]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
lowerCAmelCase__ : Optional[int] = [(pred, label)]
lowerCAmelCase__ , lowerCAmelCase__ : int = [], []
for question, preds_labels in question_map.items():
lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*UpperCamelCase )
lowerCAmelCase__ : List[Any] = fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average="""macro""" )
fas.append(UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase ) )
ems.append(UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = float(sum(UpperCamelCase ) / len(UpperCamelCase ) )
lowerCAmelCase__ : List[Any] = sum(UpperCamelCase ) / len(UpperCamelCase )
lowerCAmelCase__ : Dict = float(fa_score(y_true=UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase_ ( self ) -> Optional[Any]:
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None ,)
def UpperCAmelCase_ ( self ) -> str:
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"prediction_text": datasets.Value("""string""" ),
},
"references": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"answers": datasets.Sequence(datasets.Value("""string""" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("""int64""" ),
"paragraph": datasets.Value("""int64""" ),
"question": datasets.Value("""int64""" ),
},
"prediction": datasets.Value("""int64""" ),
},
"references": datasets.Value("""int64""" ),
}
else:
return {
"predictions": datasets.Value("""int64""" ),
"references": datasets.Value("""int64""" ),
}
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any:
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(__UpperCAmelCase ,__UpperCAmelCase )}
elif self.config_name == "cb":
return acc_and_fa(__UpperCAmelCase ,__UpperCAmelCase ,fa_avg="""macro""" )
elif self.config_name == "record":
lowerCAmelCase__ : Optional[Any] = [
{
"""qas""": [
{"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]}
for ref in references
]
}
]
lowerCAmelCase__ : Union[str, Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions}
return evaluate_record(__UpperCAmelCase ,__UpperCAmelCase )[0]
elif self.config_name == "multirc":
return evaluate_multirc(__UpperCAmelCase ,__UpperCAmelCase )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(__UpperCAmelCase ,__UpperCAmelCase )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
| 37 | 1 |
"""simple docstring"""
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
a = open # noqa: we just need to have a builtin inside this module to test it properly
| 352 |
"""simple docstring"""
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : str = inspect.getfile(accelerate.test_utils )
UpperCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] )
UpperCAmelCase : List[Any] = ['''accelerate''', '''launch''']
UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate'''
UpperCAmelCase : Union[str, Any] = '''default_config.yaml'''
UpperCAmelCase : Union[str, Any] = config_folder / config_file
UpperCAmelCase : Union[str, Any] = config_folder / '''_default_config.yaml'''
UpperCAmelCase : List[Any] = Path('''tests/test_configs''' )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] ):
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def lowerCAmelCase_ ( cls : Tuple ):
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def lowerCAmelCase_ ( self : Optional[int] ):
for config in sorted(self.test_config_path.glob('**/*.yaml' ) ):
with self.subTest(config_file=_UpperCAmelCase ):
execute_subprocess_async(
self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() )
def lowerCAmelCase_ ( self : Any ):
execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Dict = '''test-tpu'''
UpperCAmelCase : Optional[int] = '''us-central1-a'''
UpperCAmelCase : List[str] = '''ls'''
UpperCAmelCase : str = ['''accelerate''', '''tpu-config''']
UpperCAmelCase : Optional[Any] = '''cd /usr/share'''
UpperCAmelCase : Optional[Any] = '''tests/test_samples/test_command_file.sh'''
UpperCAmelCase : str = '''Running gcloud compute tpus tpu-vm ssh'''
def lowerCAmelCase_ ( self : Any ):
_A = run_command(
self.cmd
+ ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : Dict ):
_A = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command',
self.command,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : str ):
_A = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : List[str] ):
_A = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--command',
self.command,
'--command',
'echo "Hello World"',
'--debug',
] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : str ):
_A = run_command(
self.cmd
+ ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : List[Any] ):
_A = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command_file',
self.command_file,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : int ):
_A = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--install_accelerate',
'--accelerate_version',
'12.0.0',
'--debug',
] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
| 271 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : Union[str, Any] = {"configuration_timm_backbone": ["TimmBackboneConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[Any] = ["TimmBackbone"]
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 51 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase : Any = {
"""configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""],
"""tokenization_convbert""": ["""ConvBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[Any] = ["""ConvBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[str] = [
"""CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvBertForMaskedLM""",
"""ConvBertForMultipleChoice""",
"""ConvBertForQuestionAnswering""",
"""ConvBertForSequenceClassification""",
"""ConvBertForTokenClassification""",
"""ConvBertLayer""",
"""ConvBertModel""",
"""ConvBertPreTrainedModel""",
"""load_tf_weights_in_convbert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
"""TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFConvBertForMaskedLM""",
"""TFConvBertForMultipleChoice""",
"""TFConvBertForQuestionAnswering""",
"""TFConvBertForSequenceClassification""",
"""TFConvBertForTokenClassification""",
"""TFConvBertLayer""",
"""TFConvBertModel""",
"""TFConvBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 95 | 0 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : str , lowercase : List[str] , lowercase : Optional[Any]=7 , lowercase : Union[str, Any]=3 , lowercase : List[Any]=30 , lowercase : Dict=400 , lowercase : Any=True , lowercase : Tuple=None , lowercase : Optional[int]=True , lowercase : List[str]=[0.5, 0.5, 0.5] , lowercase : Optional[int]=[0.5, 0.5, 0.5] , lowercase : str=True , lowercase : Tuple=1 / 255 , lowercase : Dict=True , ):
'''simple docstring'''
_snake_case = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
_snake_case = parent
_snake_case = batch_size
_snake_case = num_channels
_snake_case = min_resolution
_snake_case = max_resolution
_snake_case = do_resize
_snake_case = size
_snake_case = do_normalize
_snake_case = image_mean
_snake_case = image_std
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_pad
def A ( self : List[str] ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def A ( self : Dict , lowercase : Union[str, Any] , lowercase : Optional[int]=False ):
'''simple docstring'''
if not batched:
_snake_case = image_inputs[0]
if isinstance(lowercase , Image.Image ):
_snake_case , _snake_case = image.size
else:
_snake_case , _snake_case = image.shape[1], image.shape[2]
if w < h:
_snake_case = int(self.size['shortest_edge'] * h / w )
_snake_case = self.size['shortest_edge']
elif w > h:
_snake_case = self.size['shortest_edge']
_snake_case = int(self.size['shortest_edge'] * w / h )
else:
_snake_case = self.size['shortest_edge']
_snake_case = self.size['shortest_edge']
else:
_snake_case = []
for image in image_inputs:
_snake_case , _snake_case = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_snake_case = max(lowercase , key=lambda lowercase : item[0] )[0]
_snake_case = max(lowercase , key=lambda lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ):
'''simple docstring'''
_UpperCAmelCase : str = ConditionalDetrImageProcessor if is_vision_available() else None
def A ( self : Optional[Any] ):
'''simple docstring'''
_snake_case = ConditionalDetrImageProcessingTester(self )
@property
def A ( self : int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : int ):
'''simple docstring'''
_snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase , 'image_mean' ) )
self.assertTrue(hasattr(lowercase , 'image_std' ) )
self.assertTrue(hasattr(lowercase , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase , 'do_resize' ) )
self.assertTrue(hasattr(lowercase , 'size' ) )
def A ( self : Optional[Any] ):
'''simple docstring'''
_snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad , lowercase )
_snake_case = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , lowercase )
def A ( self : Any ):
'''simple docstring'''
pass
def A ( self : List[Any] ):
'''simple docstring'''
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , Image.Image )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase )
_snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Union[str, Any] ):
'''simple docstring'''
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , np.ndarray )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Optional[int] ):
'''simple docstring'''
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , torch.Tensor )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def A ( self : int ):
'''simple docstring'''
_snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
_snake_case = json.loads(f.read() )
_snake_case = {'image_id': 39_769, 'annotations': target}
# encode them
_snake_case = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
_snake_case = image_processing(images=lowercase , annotations=lowercase , return_tensors='pt' )
# verify pixel values
_snake_case = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape , lowercase )
_snake_case = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) )
# verify area
_snake_case = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) )
# verify boxes
_snake_case = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase )
_snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) )
# verify image_id
_snake_case = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) )
# verify is_crowd
_snake_case = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) )
# verify class_labels
_snake_case = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) )
# verify orig_size
_snake_case = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) )
# verify size
_snake_case = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
@slow
def A ( self : List[str] ):
'''simple docstring'''
_snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
_snake_case = json.loads(f.read() )
_snake_case = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
_snake_case = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
_snake_case = ConditionalDetrImageProcessor(format='coco_panoptic' )
_snake_case = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors='pt' )
# verify pixel values
_snake_case = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape , lowercase )
_snake_case = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) )
# verify area
_snake_case = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) )
# verify boxes
_snake_case = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase )
_snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) )
# verify image_id
_snake_case = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) )
# verify is_crowd
_snake_case = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) )
# verify class_labels
_snake_case = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) )
# verify masks
_snake_case = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase )
# verify orig_size
_snake_case = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) )
# verify size
_snake_case = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
| 130 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_lowerCamelCase : int = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE__ :
'''simple docstring'''
_UpperCAmelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
_UpperCAmelCase : Optional[str] = field(
default=UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_UpperCAmelCase : Optional[str] = field(
default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
_UpperCAmelCase : Optional[str] = field(
default=UpperCAmelCase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
_UpperCAmelCase : bool = field(default=UpperCAmelCase ,metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_UpperCAmelCase : Optional[str] = field(
default=UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
@dataclass
class SCREAMING_SNAKE_CASE__ :
'''simple docstring'''
_UpperCAmelCase : str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
_UpperCAmelCase : Optional[str] = field(
default=UpperCAmelCase ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,)
_UpperCAmelCase : int = field(
default=1_2_8 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
_UpperCAmelCase : bool = field(
default=UpperCAmelCase ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
def a_ ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_snake_case , _snake_case , _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
_snake_case = import_module('tasks' )
try:
_snake_case = getattr(__lowercase , model_args.task_type )
_snake_case = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , __lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
_snake_case = token_classification_task.get_labels(data_args.labels )
_snake_case = dict(enumerate(__lowercase ) )
_snake_case = len(__lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_snake_case = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowercase , idalabel=__lowercase , labelaid={label: i for i, label in enumerate(__lowercase )} , cache_dir=model_args.cache_dir , )
_snake_case = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
_snake_case = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
_snake_case = (
TokenClassificationDataset(
token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_snake_case = (
TokenClassificationDataset(
token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(__lowercase : np.ndarray , __lowercase : np.ndarray ) -> Tuple[List[int], List[int]]:
_snake_case = np.argmax(__lowercase , axis=2 )
_snake_case , _snake_case = preds.shape
_snake_case = [[] for _ in range(__lowercase )]
_snake_case = [[] for _ in range(__lowercase )]
for i in range(__lowercase ):
for j in range(__lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__lowercase : EvalPrediction ) -> Dict:
_snake_case , _snake_case = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(__lowercase , __lowercase ),
"precision": precision_score(__lowercase , __lowercase ),
"recall": recall_score(__lowercase , __lowercase ),
"f1": fa_score(__lowercase , __lowercase ),
}
# Data collator
_snake_case = DataCollatorWithPadding(__lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_snake_case = Trainer(
model=__lowercase , args=__lowercase , train_dataset=__lowercase , eval_dataset=__lowercase , compute_metrics=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_snake_case = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
_snake_case = trainer.evaluate()
_snake_case = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(__lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , __lowercase , __lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(__lowercase )
# Predict
if training_args.do_predict:
_snake_case = TokenClassificationDataset(
token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
_snake_case , _snake_case , _snake_case = trainer.predict(__lowercase )
_snake_case , _snake_case = align_predictions(__lowercase , __lowercase )
_snake_case = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(__lowercase , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , __lowercase , __lowercase )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
_snake_case = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(__lowercase , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(__lowercase , __lowercase , __lowercase )
return results
def a_ ( __lowercase : Optional[Any] ) -> Optional[int]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 130 | 1 |
from __future__ import annotations
__a = list[tuple[int, int]]
__a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__a = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class __SCREAMING_SNAKE_CASE :
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ):
lowercase : Any = pos_x
lowercase : str = pos_y
lowercase : Optional[Any] = (pos_y, pos_x)
lowercase : int = goal_x
lowercase : Optional[Any] = goal_y
lowercase : int = g_cost
lowercase : Any = parent
lowercase : Optional[int] = self.calculate_heuristic()
def __lowerCamelCase ( self ):
lowercase : Optional[Any] = abs(self.pos_x - self.goal_x )
lowercase : List[str] = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , SCREAMING_SNAKE_CASE__ ):
return self.f_cost < other.f_cost
class __SCREAMING_SNAKE_CASE :
def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase : str = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase__ )
lowercase : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , UpperCamelCase__ )
lowercase : int = [self.start]
lowercase : int = []
lowercase : Any = False
def __lowerCamelCase ( self ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
lowercase : Optional[int] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
lowercase : List[Any] = True
return self.retrace_path(UpperCamelCase__ )
self.closed_nodes.append(UpperCamelCase__ )
lowercase : Dict = self.get_successors(UpperCamelCase__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(UpperCamelCase__ )
else:
# retrieve the best current path
lowercase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(UpperCamelCase__ )
else:
self.open_nodes.append(UpperCamelCase__ )
if not self.reached:
return [self.start.pos]
return None
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : int = []
for action in delta:
lowercase : Tuple = parent.pos_x + action[1]
lowercase : Any = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
UpperCamelCase__ , UpperCamelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase__ , ) )
return successors
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : str = node
lowercase : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowercase : List[str] = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
__a = (0, 0)
__a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('''------''')
__a = GreedyBestFirst(init, goal)
__a = greedy_bf.search()
if path:
for pos_x, pos_y in path:
__a = 2
for elem in grid:
print(elem)
| 337 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
'''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''',
'''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''',
}
class A__ ( _snake_case ):
lowercase = "luke"
def __init__( self , UpperCamelCase__=50267 , UpperCamelCase__=500000 , UpperCamelCase__=768 , UpperCamelCase__=256 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
A_ = vocab_size
A_ = entity_vocab_size
A_ = hidden_size
A_ = entity_emb_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = hidden_act
A_ = intermediate_size
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = max_position_embeddings
A_ = type_vocab_size
A_ = initializer_range
A_ = layer_norm_eps
A_ = use_entity_aware_attention
A_ = classifier_dropout
| 162 | 0 |
'''simple docstring'''
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('''repo_id''', ['''canonical_dataset_name''', '''org-name/dataset-name'''] )
@pytest.mark.parametrize('''path''', ['''filename.csv''', '''filename with blanks.csv'''] )
@pytest.mark.parametrize('''revision''', [None, '''v2'''] )
def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str =hf_hub_url(repo_id=UpperCamelCase__, path=UpperCamelCase__, revision=UpperCamelCase__ )
assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(UpperCamelCase__ )}"
| 222 |
'''simple docstring'''
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
a_ = get_logger(__name__)
a_ = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n'
class __SCREAMING_SNAKE_CASE :
@add_start_docstrings(__lowercase )
def __call__( self : Any , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray ) -> jnp.ndarray:
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
class __SCREAMING_SNAKE_CASE :
@add_start_docstrings(__lowercase )
def __call__( self : List[str] , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray ) -> jnp.ndarray:
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
@add_start_docstrings(__lowercase )
def __call__( self : Any , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int , **__lowercase : List[str] ) -> jnp.ndarray:
for processor in self:
SCREAMING_SNAKE_CASE__ : Optional[Any] =inspect.signature(processor.__call__ ).parameters
if len(__lowercase ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F"Make sure that all the required parameters: {list(function_args.keys() )} for "
F"{processor.__class__} are passed to the logits processor." )
SCREAMING_SNAKE_CASE__ : List[Any] =processor(__lowercase , __lowercase , __lowercase , **__lowercase )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] =processor(__lowercase , __lowercase , __lowercase )
return scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : List[str] , __lowercase : float ) -> Tuple:
if not isinstance(__lowercase , __lowercase ) or not (temperature > 0):
raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}" )
SCREAMING_SNAKE_CASE__ : Optional[int] =temperature
def __call__( self : Optional[int] , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int ) -> jnp.ndarray:
SCREAMING_SNAKE_CASE__ : int =scores / self.temperature
return scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : Tuple , __lowercase : float , __lowercase : float = -float('''Inf''' ) , __lowercase : int = 1 ) -> List[str]:
if not isinstance(__lowercase , __lowercase ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}" )
if not isinstance(__lowercase , __lowercase ) or (min_tokens_to_keep < 1):
raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" )
SCREAMING_SNAKE_CASE__ : Tuple =top_p
SCREAMING_SNAKE_CASE__ : List[str] =filter_value
SCREAMING_SNAKE_CASE__ : Optional[Any] =min_tokens_to_keep
def __call__( self : int , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int ) -> jnp.ndarray:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =lax.top_k(__lowercase , scores.shape[-1] )
SCREAMING_SNAKE_CASE__ : List[str] =jnp.full_like(__lowercase , self.filter_value )
SCREAMING_SNAKE_CASE__ : Tuple =jax.nn.softmax(__lowercase , axis=-1 ).cumsum(axis=-1 )
SCREAMING_SNAKE_CASE__ : Dict =cumulative_probs < self.top_p
# include the token that is higher than top_p as well
SCREAMING_SNAKE_CASE__ : Optional[Any] =jnp.roll(__lowercase , 1 )
score_mask |= score_mask.at[:, 0].set(__lowercase )
# min tokens to keep
SCREAMING_SNAKE_CASE__ : Optional[Any] =score_mask.at[:, : self.min_tokens_to_keep].set(__lowercase )
SCREAMING_SNAKE_CASE__ : Dict =jnp.where(__lowercase , __lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : int =jax.lax.sort_key_val(__lowercase , __lowercase )[-1]
return next_scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : List[str] , __lowercase : int , __lowercase : float = -float('''Inf''' ) , __lowercase : int = 1 ) -> List[Any]:
if not isinstance(__lowercase , __lowercase ) or top_k <= 0:
raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}" )
SCREAMING_SNAKE_CASE__ : str =max(__lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] =filter_value
def __call__( self : List[Any] , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int ) -> jnp.ndarray:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =scores.shape
SCREAMING_SNAKE_CASE__ : str =jnp.full(batch_size * vocab_size , self.filter_value )
SCREAMING_SNAKE_CASE__ : List[Any] =min(self.top_k , scores.shape[-1] ) # Safety check
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =lax.top_k(__lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : int =jnp.broadcast_to((jnp.arange(__lowercase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
SCREAMING_SNAKE_CASE__ : str =topk_scores.flatten()
SCREAMING_SNAKE_CASE__ : int =topk_indices.flatten() + shift
SCREAMING_SNAKE_CASE__ : str =next_scores_flat.at[topk_indices_flat].set(__lowercase )
SCREAMING_SNAKE_CASE__ : Any =next_scores_flat.reshape(__lowercase , __lowercase )
return next_scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : Any , __lowercase : int ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ : List[str] =bos_token_id
def __call__( self : Tuple , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int ) -> jnp.ndarray:
SCREAMING_SNAKE_CASE__ : Tuple =jnp.full(scores.shape , -float('''inf''' ) )
SCREAMING_SNAKE_CASE__ : str =1 - jnp.bool_(cur_len - 1 )
SCREAMING_SNAKE_CASE__ : Optional[int] =jnp.where(__lowercase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowercase )
return scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : Union[str, Any] , __lowercase : int , __lowercase : int ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Optional[int] =max_length
SCREAMING_SNAKE_CASE__ : int =eos_token_id
def __call__( self : Any , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int ) -> jnp.ndarray:
SCREAMING_SNAKE_CASE__ : Optional[int] =jnp.full(scores.shape , -float('''inf''' ) )
SCREAMING_SNAKE_CASE__ : str =1 - jnp.bool_(cur_len - self.max_length + 1 )
SCREAMING_SNAKE_CASE__ : Optional[int] =jnp.where(__lowercase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowercase )
return scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : Union[str, Any] , __lowercase : int , __lowercase : int ) -> Tuple:
if not isinstance(__lowercase , __lowercase ) or min_length < 0:
raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}" )
if not isinstance(__lowercase , __lowercase ) or eos_token_id < 0:
raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}" )
SCREAMING_SNAKE_CASE__ : str =min_length
SCREAMING_SNAKE_CASE__ : Tuple =eos_token_id
def __call__( self : Tuple , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int ) -> jnp.ndarray:
# create boolean flag to decide if min length penalty should be applied
SCREAMING_SNAKE_CASE__ : List[str] =1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
SCREAMING_SNAKE_CASE__ : Tuple =jnp.where(__lowercase , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , __lowercase )
return scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : int , __lowercase : Optional[Any] , __lowercase : Tuple ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Dict =list(__lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] =begin_index
def __call__( self : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : int ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Any =1 - jnp.bool_(cur_len - self.begin_index )
SCREAMING_SNAKE_CASE__ : Optional[int] =jnp.where(__lowercase , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , __lowercase )
return scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : Optional[Any] , __lowercase : list ) -> Dict:
SCREAMING_SNAKE_CASE__ : int =list(__lowercase )
def __call__( self : str , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int ) -> jnp.ndarray:
SCREAMING_SNAKE_CASE__ : Optional[int] =scores.at[..., self.suppress_tokens].set(-float('''inf''' ) )
return scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : List[Any] , __lowercase : List[str] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : List[str] =dict(__lowercase )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
SCREAMING_SNAKE_CASE__ : Any =jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
SCREAMING_SNAKE_CASE__ : Tuple =force_token_array.at[index].set(__lowercase )
SCREAMING_SNAKE_CASE__ : Dict =jnp.intaa(__lowercase )
def __call__( self : Optional[Any] , __lowercase : jnp.ndarray , __lowercase : jnp.ndarray , __lowercase : int ) -> jnp.ndarray:
def _force_token(__lowercase : Union[str, Any] ):
SCREAMING_SNAKE_CASE__ : Dict =scores.shape[0]
SCREAMING_SNAKE_CASE__ : Optional[int] =self.force_token_array[generation_idx]
SCREAMING_SNAKE_CASE__ : Optional[int] =jnp.ones_like(__lowercase , dtype=scores.dtype ) * -float('''inf''' )
SCREAMING_SNAKE_CASE__ : Tuple =jnp.zeros((batch_size, 1) , dtype=scores.dtype )
SCREAMING_SNAKE_CASE__ : Union[str, Any] =lax.dynamic_update_slice(__lowercase , __lowercase , (0, current_token) )
return new_scores
SCREAMING_SNAKE_CASE__ : Tuple =lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowercase ) , lambda: scores , ) , )
return scores
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
def __init__( self : List[str] , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : Any ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Optional[int] =generate_config.eos_token_id
SCREAMING_SNAKE_CASE__ : List[Any] =generate_config.no_timestamps_token_id
SCREAMING_SNAKE_CASE__ : List[Any] =generate_config.no_timestamps_token_id + 1
SCREAMING_SNAKE_CASE__ : Dict =decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(__lowercase , '''max_initial_timestamp_index''' ):
SCREAMING_SNAKE_CASE__ : int =generate_config.max_initial_timestamp_index
else:
SCREAMING_SNAKE_CASE__ : Optional[int] =model_config.vocab_size
if self.max_initial_timestamp_index is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] =model_config.vocab_size
def __call__( self : List[Any] , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : str ) -> Optional[Any]:
# suppress <|notimestamps|> which is handled by without_timestamps
SCREAMING_SNAKE_CASE__ : Any =scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) )
def handle_pairs(__lowercase : Any , __lowercase : Optional[int] ):
SCREAMING_SNAKE_CASE__ : Optional[int] =jnp.where((cur_len - self.begin_index) >= 1 , __lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] =jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowercase , )
SCREAMING_SNAKE_CASE__ : List[str] =jnp.where((cur_len - self.begin_index) < 2 , __lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : Any =jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowercase , __lowercase , )
return jnp.where(
__lowercase , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , __lowercase , )
SCREAMING_SNAKE_CASE__ : List[str] =jax.vmap(__lowercase )(__lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] =jnp.where(cur_len == self.begin_index , __lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : int =jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowercase , )
SCREAMING_SNAKE_CASE__ : Optional[int] =self.timestamp_begin + self.max_initial_timestamp_index
SCREAMING_SNAKE_CASE__ : int =jnp.where(
__lowercase , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , __lowercase , )
# if sum of probability over timestamps is above any other token, sample timestamp
SCREAMING_SNAKE_CASE__ : Any =jax.nn.log_softmax(__lowercase , axis=-1 )
def handle_cumulative_probs(__lowercase : Optional[int] , __lowercase : str ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] =jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
SCREAMING_SNAKE_CASE__ : List[Any] =jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , __lowercase , )
SCREAMING_SNAKE_CASE__ : Any =jax.vmap(__lowercase )(__lowercase , __lowercase )
return scores
| 222 | 1 |
'''simple docstring'''
import string
import numpy
def a_ ( __snake_case : int , __snake_case : int ) -> int:
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , __snake_case )
class __UpperCamelCase :
lowercase : Optional[int] =string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
lowercase : Any =numpy.vectorize(lambda lowerCamelCase__ : x % 36 )
lowercase : List[str] =numpy.vectorize(lowerCamelCase__ )
def __init__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.modulus(lowerCAmelCase ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
lowerCamelCase_ =encrypt_key.shape[0]
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return self.key_string.index(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return self.key_string[round(lowerCAmelCase )]
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
lowerCamelCase_ =det % len(self.key_string )
lowerCamelCase_ =len(self.key_string )
if greatest_common_divisor(lowerCAmelCase, len(self.key_string ) ) != 1:
lowerCamelCase_ =(
f'''determinant modular {req_l} of encryption key({det}) '''
f'''is not co prime w.r.t {req_l}.\nTry another key.'''
)
raise ValueError(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[char for char in text.upper() if char in self.key_string]
lowerCamelCase_ =chars[-1]
while len(lowerCAmelCase ) % self.break_key != 0:
chars.append(lowerCAmelCase )
return "".join(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.process_text(text.upper() )
lowerCamelCase_ =''''''
for i in range(0, len(lowerCAmelCase ) - self.break_key + 1, self.break_key ):
lowerCamelCase_ =text[i : i + self.break_key]
lowerCamelCase_ =[self.replace_letters(lowerCAmelCase ) for char in batch]
lowerCamelCase_ =numpy.array([vec] ).T
lowerCamelCase_ =self.modulus(self.encrypt_key.dot(lowerCAmelCase ) ).T.tolist()[
0
]
lowerCamelCase_ =''''''.join(
self.replace_digits(lowerCAmelCase ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
lowerCamelCase_ =det % len(self.key_string )
lowerCamelCase_ =None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
lowerCamelCase_ =i
break
lowerCamelCase_ =(
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(lowerCAmelCase ) )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.make_decrypt_key()
lowerCamelCase_ =self.process_text(text.upper() )
lowerCamelCase_ =''''''
for i in range(0, len(lowerCAmelCase ) - self.break_key + 1, self.break_key ):
lowerCamelCase_ =text[i : i + self.break_key]
lowerCamelCase_ =[self.replace_letters(lowerCAmelCase ) for char in batch]
lowerCamelCase_ =numpy.array([vec] ).T
lowerCamelCase_ =self.modulus(decrypt_key.dot(lowerCAmelCase ) ).T.tolist()[0]
lowerCamelCase_ =''''''.join(
self.replace_digits(lowerCAmelCase ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def a_ ( ) -> None:
"""simple docstring"""
lowerCamelCase_ =int(input('''Enter the order of the encryption key: ''' ) )
lowerCamelCase_ =[]
print('''Enter each row of the encryption key with space separated integers''' )
for _ in range(__snake_case ):
lowerCamelCase_ =[int(__snake_case ) for x in input().split()]
hill_matrix.append(__snake_case )
lowerCamelCase_ =HillCipher(numpy.array(__snake_case ) )
print('''Would you like to encrypt or decrypt some text? (1 or 2)''' )
lowerCamelCase_ =input('''\n1. Encrypt\n2. Decrypt\n''' )
if option == "1":
lowerCamelCase_ =input('''What text would you like to encrypt?: ''' )
print('''Your encrypted text is:''' )
print(hc.encrypt(__snake_case ) )
elif option == "2":
lowerCamelCase_ =input('''What text would you like to decrypt?: ''' )
print('''Your decrypted text is:''' )
print(hc.decrypt(__snake_case ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 75 |
'''simple docstring'''
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return 0.0
def a_ ( __snake_case : np.ndarray , __snake_case : int ) -> tuple[int | float, int | float]:
"""simple docstring"""
lowerCamelCase_ =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
lowerCamelCase_ =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def a_ ( __snake_case : FilterType , __snake_case : int ) -> None:
"""simple docstring"""
lowerCamelCase_ =512
lowerCamelCase_ =[1] + [0] * (size - 1)
lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs]
lowerCamelCase_ =[0] * (samplerate - size) # zero-padding
outputs += filler
lowerCamelCase_ =np.abs(np.fft.fft(__snake_case ) )
lowerCamelCase_ =20 * np.logaa(__snake_case )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
# Display within reasonable bounds
lowerCamelCase_ =get_bounds(__snake_case , __snake_case )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel('''Gain (dB)''' )
plt.plot(__snake_case )
plt.show()
def a_ ( __snake_case : FilterType , __snake_case : int ) -> None:
"""simple docstring"""
lowerCamelCase_ =512
lowerCamelCase_ =[1] + [0] * (size - 1)
lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs]
lowerCamelCase_ =[0] * (samplerate - size) # zero-padding
outputs += filler
lowerCamelCase_ =np.angle(np.fft.fft(__snake_case ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel('''Phase shift (Radians)''' )
plt.plot(np.unwrap(__snake_case , -2 * pi ) )
plt.show()
| 75 | 1 |
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__(_UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
lowercase_ = OpenAIGPTTokenizer
lowercase_ = OpenAIGPTTokenizerFast
lowercase_ = True
lowercase_ = False
def snake_case ( self : Dict ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase__ : Dict = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
lowercase__ : List[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) )
lowercase__ : Dict = ["#version: 0.2", "l o", "lo w", "e r</w>", ""]
lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(SCREAMING_SNAKE_CASE ) )
def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : Tuple ):
return "lower newer", "lower newer"
def snake_case ( self : Optional[int] ):
lowercase__ : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file )
lowercase__ : int = "lower"
lowercase__ : List[str] = ["low", "er</w>"]
lowercase__ : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowercase__ : Any = tokens + ["<unk>"]
lowercase__ : List[str] = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Any=15 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# Simple input
lowercase__ : Dict = "This is a simple input"
lowercase__ : Tuple = ["This is a simple input 1", "This is a simple input 2"]
lowercase__ : Optional[Any] = ("This is a simple input", "This is a pair")
lowercase__ : Dict = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" )
# Simple input
self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" )
# Simple input
self.assertRaises(
SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" )
# Pair input
self.assertRaises(
SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , )
def snake_case ( self : Union[str, Any] ):
pass
@require_ftfy
@require_spacy
@require_tokenizers
class snake_case__(_UpperCamelCase ):
"""simple docstring"""
pass
| 121 |
from __future__ import annotations
lowerCAmelCase__ = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
lowercase__ : Optional[int] = [
[0 for col in range(len(grid[0] ) )] for row in range(len(lowerCamelCase__ ) )
] # the reference grid
lowercase__ : List[Any] = 1
lowercase__ : Tuple = [
[0 for col in range(len(grid[0] ) )] for row in range(len(lowerCamelCase__ ) )
] # the action grid
lowercase__ : Union[str, Any] = init[0]
lowercase__ : List[str] = init[1]
lowercase__ : Optional[Any] = 0
lowercase__ : Optional[int] = g + heuristic[x][y] # cost from starting cell to destination cell
lowercase__ : Tuple = [[f, g, x, y]]
lowercase__ : Union[str, Any] = False # flag that is set when search is complete
lowercase__ : Any = False # flag set if we can't find expand
while not found and not resign:
if len(lowerCamelCase__ ) == 0:
raise ValueError("Algorithm is unable to find solution" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
lowercase__ : Tuple = cell.pop()
lowercase__ : Optional[Any] = next_cell[2]
lowercase__ : int = next_cell[3]
lowercase__ : Union[str, Any] = next_cell[1]
if x == goal[0] and y == goal[1]:
lowercase__ : Tuple = True
else:
for i in range(len(lowerCamelCase__ ) ): # to try out different valid actions
lowercase__ : Tuple = x + DIRECTIONS[i][0]
lowercase__ : str = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(lowerCamelCase__ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
lowercase__ : List[Any] = g + cost
lowercase__ : Tuple = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
lowercase__ : Dict = 1
lowercase__ : Union[str, Any] = i
lowercase__ : Optional[int] = []
lowercase__ : List[Any] = goal[0]
lowercase__ : Optional[int] = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
lowercase__ : int = x - DIRECTIONS[action[x][y]][0]
lowercase__ : List[Any] = y - DIRECTIONS[action[x][y]][1]
lowercase__ : Optional[Any] = xa
lowercase__ : Dict = ya
invpath.append([x, y] )
lowercase__ : List[str] = []
for i in range(len(lowerCamelCase__ ) ):
path.append(invpath[len(lowerCamelCase__ ) - 1 - i] )
return path, action
if __name__ == "__main__":
lowerCAmelCase__ = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
lowerCAmelCase__ = [0, 0]
# all coordinates are given in format [y,x]
lowerCAmelCase__ = [len(grid) - 1, len(grid[0]) - 1]
lowerCAmelCase__ = 1
# the cost map which pushes the path closer to the goal
lowerCAmelCase__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
lowerCAmelCase__ = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
lowerCAmelCase__ = 9_9
lowerCAmelCase__ , lowerCAmelCase__ = search(grid, init, goal, cost, heuristic)
print('''ACTION MAP''')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 121 | 1 |
import baseaa
import io
import json
import os
from copy import deepcopy
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
class __lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase ):
"""simple docstring"""
if isinstance(UpperCAmelCase , UpperCAmelCase ):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
_UpperCAmelCase = deepcopy(UpperCAmelCase )
elif os.path.exists(UpperCAmelCase ):
with io.open(UpperCAmelCase , 'r' , encoding='utf-8' ) as f:
_UpperCAmelCase = json.load(UpperCAmelCase )
else:
try:
_UpperCAmelCase = baseaa.urlsafe_baadecode(UpperCAmelCase ).decode('utf-8' )
_UpperCAmelCase = json.loads(UpperCAmelCase )
except (UnicodeDecodeError, AttributeError, ValueError):
raise ValueError(
F"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" )
_UpperCAmelCase = config
self.set_stage_and_offload()
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = self.get_value('zero_optimization.stage' , -1 )
# offload
_UpperCAmelCase = False
if self.is_zeroa() or self.is_zeroa():
_UpperCAmelCase = set(['cpu', 'nvme'] )
_UpperCAmelCase = set(
[
self.get_value('zero_optimization.offload_optimizer.device' ),
self.get_value('zero_optimization.offload_param.device' ),
] )
if len(offload_devices & offload_devices_valid ) > 0:
_UpperCAmelCase = True
def UpperCamelCase ( self , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = self.config
# find the config node of interest if it exists
_UpperCAmelCase = ds_key_long.split('.' )
_UpperCAmelCase = nodes.pop()
for node in nodes:
_UpperCAmelCase = config.get(UpperCAmelCase )
if config is None:
return None, ds_key
return config, ds_key
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=None ):
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.find_config_node(UpperCAmelCase )
if config is None:
return default
return config.get(UpperCAmelCase , UpperCAmelCase )
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=False ):
"""simple docstring"""
_UpperCAmelCase = self.config
# find the config node of interest if it exists
_UpperCAmelCase = ds_key_long.split('.' )
for node in nodes:
_UpperCAmelCase = config
_UpperCAmelCase = config.get(UpperCAmelCase )
if config is None:
if must_exist:
raise ValueError(F"""Can't find {ds_key_long} entry in the config: {self.config}""" )
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(UpperCAmelCase )
def UpperCamelCase ( self , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = self.get_value(UpperCAmelCase )
return False if value is None else bool(UpperCAmelCase )
def UpperCamelCase ( self , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = self.get_value(UpperCAmelCase )
return False if value is None else not bool(UpperCAmelCase )
def UpperCamelCase ( self ):
"""simple docstring"""
return self._stage == 2
def UpperCamelCase ( self ):
"""simple docstring"""
return self._stage == 3
def UpperCamelCase ( self ):
"""simple docstring"""
return self._offload
class __lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = engine
def UpperCamelCase ( self , UpperCAmelCase , **UpperCAmelCase ):
"""simple docstring"""
self.engine.backward(UpperCAmelCase , **UpperCAmelCase )
# Deepspeed's `engine.step` performs the following operations:
# - gradient accumulation check
# - gradient clipping
# - optimizer step
# - zero grad
# - checking overflow
# - lr_scheduler step (only if engine.lr_scheduler is not None)
self.engine.step()
# and this plugin overrides the above calls with no-ops when Accelerate runs under
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
# training loop that works transparently under many training regimes.
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
def __init__( self , UpperCAmelCase ):
"""simple docstring"""
super().__init__(UpperCAmelCase , device_placement=UpperCAmelCase , scaler=UpperCAmelCase )
_UpperCAmelCase = hasattr(self.optimizer , 'overflow' )
def UpperCamelCase ( self , UpperCAmelCase=None ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
def UpperCamelCase ( self ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
@property
def UpperCamelCase ( self ):
"""simple docstring"""
if self.__has_overflow__:
return self.optimizer.overflow
return False
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase ):
"""simple docstring"""
super().__init__(UpperCAmelCase , UpperCAmelCase )
def UpperCamelCase ( self ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
class __lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=0.0_01 , UpperCAmelCase=0 , **UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = params
_UpperCAmelCase = lr
_UpperCAmelCase = weight_decay
_UpperCAmelCase = kwargs
class __lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=0 , **UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = optimizer
_UpperCAmelCase = total_num_steps
_UpperCAmelCase = warmup_num_steps
_UpperCAmelCase = kwargs
| 39 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class UpperCAmelCase__ ( lowercase__ ):
"""simple docstring"""
__UpperCAmelCase : UNetaDModel
__UpperCAmelCase : KarrasVeScheduler
def __init__( self : Union[str, Any] ,_a : UNetaDModel ,_a : KarrasVeScheduler ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=_a ,scheduler=_a )
@torch.no_grad()
def __call__( self : List[Any] ,_a : int = 1 ,_a : int = 50 ,_a : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_a : Optional[str] = "pil" ,_a : bool = True ,**_a : List[Any] ,):
'''simple docstring'''
_a : Any = self.unet.config.sample_size
_a : Optional[int] = (batch_size, 3, img_size, img_size)
_a : Dict = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_a : Dict = randn_tensor(_a ,generator=_a ,device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_a )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_a : Optional[int] = self.scheduler.schedule[t]
_a : List[str] = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_a, _a : List[Any] = self.scheduler.add_noise_to_input(_a ,_a ,generator=_a )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_a : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2 ,sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_a : Tuple = self.scheduler.step(_a ,_a ,_a ,_a )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_a : Optional[int] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 ,sigma_prev / 2 ).sample
_a : Optional[Any] = self.scheduler.step_correct(
_a ,_a ,_a ,_a ,step_output.prev_sample ,step_output['derivative'] ,)
_a : Dict = step_output.prev_sample
_a : Tuple = (sample / 2 + 0.5).clamp(0 ,1 )
_a : Optional[Any] = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
_a : List[str] = self.numpy_to_pil(_a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_a )
| 271 | 0 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'van'
def __init__( self ,__UpperCamelCase=224 ,__UpperCamelCase=3 ,__UpperCamelCase=[7, 3, 3, 3] ,__UpperCamelCase=[4, 2, 2, 2] ,__UpperCamelCase=[64, 128, 320, 512] ,__UpperCamelCase=[3, 3, 12, 3] ,__UpperCamelCase=[8, 8, 4, 4] ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-6 ,__UpperCamelCase=1e-2 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,**__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
lowercase_ : List[str] = image_size
lowercase_ : Any = num_channels
lowercase_ : Dict = patch_sizes
lowercase_ : Optional[int] = strides
lowercase_ : Any = hidden_sizes
lowercase_ : List[str] = depths
lowercase_ : Any = mlp_ratios
lowercase_ : List[str] = hidden_act
lowercase_ : Tuple = initializer_range
lowercase_ : Tuple = layer_norm_eps
lowercase_ : int = layer_scale_init_value
lowercase_ : List[Any] = drop_path_rate
lowercase_ : Any = dropout_rate
| 321 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 130 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = ['''model.decoder.embed_positions.weights''']
def __lowerCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
if "emb" in name:
lowercase__ : int = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
lowercase__ : Any = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
lowercase__ : int = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
lowercase__ : int = name.replace("linear1" , "fc1" )
if "linear2" in name:
lowercase__ : int = name.replace("linear2" , "fc2" )
if "norm1" in name:
lowercase__ : Union[str, Any] = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
lowercase__ : Union[str, Any] = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
lowercase__ : Dict = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
lowercase__ : Union[str, Any] = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
lowercase__ : Union[str, Any] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowercase__ : Optional[Any] = list(state_dict.keys() )
lowercase__ : Dict = {}
for key in keys:
lowercase__ : Tuple = state_dict.pop(lowerCamelCase__ )
lowercase__ : Union[str, Any] = rename_keys(lowerCamelCase__ )
if "in_proj_weight" in key:
# split fused qkv proj
lowercase__ : Optional[int] = val[:hidden_size, :]
lowercase__ : Optional[int] = val[hidden_size : 2 * hidden_size, :]
lowercase__ : List[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
lowercase__ : Union[str, Any] = val
else:
lowercase__ : List[Any] = val
return state_dict, enc_dec_proj_state_dict
def __lowerCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
if checkpoint == "small":
# default config values
lowercase__ : Optional[Any] = 1_024
lowercase__ : int = 24
lowercase__ : Optional[Any] = 16
elif checkpoint == "medium":
lowercase__ : str = 1_536
lowercase__ : Union[str, Any] = 48
lowercase__ : Optional[int] = 24
elif checkpoint == "large":
lowercase__ : Tuple = 2_048
lowercase__ : Union[str, Any] = 48
lowercase__ : Dict = 32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
lowercase__ : int = MusicgenDecoderConfig(
hidden_size=lowerCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCamelCase__ , num_attention_heads=lowerCamelCase__ , )
return config
@torch.no_grad()
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="cpu" ):
"""simple docstring"""
lowercase__ : List[Any] = MusicGen.get_pretrained(lowerCamelCase__ , device=lowerCamelCase__ )
lowercase__ : str = decoder_config_from_checkpoint(lowerCamelCase__ )
lowercase__ : Optional[Any] = fairseq_model.lm.state_dict()
lowercase__ , lowercase__ : Tuple = rename_state_dict(
lowerCamelCase__ , hidden_size=decoder_config.hidden_size )
lowercase__ : str = TaEncoderModel.from_pretrained("t5-base" )
lowercase__ : Tuple = EncodecModel.from_pretrained("facebook/encodec_32khz" )
lowercase__ : List[str] = MusicgenForCausalLM(lowerCamelCase__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
lowercase__ , lowercase__ : List[str] = decoder.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(lowerCamelCase__ ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
lowercase__ : Any = MusicgenForConditionalGeneration(text_encoder=lowerCamelCase__ , audio_encoder=lowerCamelCase__ , decoder=lowerCamelCase__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowerCamelCase__ )
# check we can do a forward pass
lowercase__ : List[str] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
lowercase__ : Any = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
lowercase__ : List[str] = model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
lowercase__ : List[Any] = AutoTokenizer.from_pretrained("t5-base" )
lowercase__ : Dict = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
lowercase__ : Optional[Any] = MusicgenProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ )
# set the appropriate bos/pad token ids
lowercase__ : List[Any] = 2_048
lowercase__ : List[Any] = 2_048
# set other default generation config params
lowercase__ : str = int(30 * audio_encoder.config.frame_rate )
lowercase__ : List[Any] = True
lowercase__ : Dict = 3.0
if pytorch_dump_folder is not None:
Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(lowerCamelCase__ )
processor.save_pretrained(lowerCamelCase__ )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(lowerCamelCase__ )
processor.push_to_hub(lowerCamelCase__ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint''',
default='''small''',
type=str,
help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''',
)
parser.add_argument(
'''--pytorch_dump_folder''',
required=True,
default=None,
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
parser.add_argument(
'''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.'''
)
lowerCAmelCase__ = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 130 | 1 |
class UpperCamelCase :
'''simple docstring'''
def __init__( self , UpperCamelCase_ = "" , UpperCamelCase_ = False ):
# Mapping from the first character of the prefix of the node
lowercase_ :dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
lowercase_ :str = is_leaf
lowercase_ :Tuple = prefix
def UpperCamelCase ( self , UpperCamelCase_ ):
lowercase_ :Any = 0
for q, w in zip(self.prefix , UpperCamelCase_ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def UpperCamelCase ( self , UpperCamelCase_ ):
for word in words:
self.insert(UpperCamelCase_ )
def UpperCamelCase ( self , UpperCamelCase_ ):
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
lowercase_ :Tuple = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowercase_ :Optional[Any] = RadixNode(prefix=UpperCamelCase_ , is_leaf=UpperCamelCase_ )
else:
lowercase_ :Tuple = self.nodes[word[0]]
lowercase_ , lowercase_ , lowercase_ :List[str] = incoming_node.match(
UpperCamelCase_ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(UpperCamelCase_ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowercase_ :Optional[int] = remaining_prefix
lowercase_ :Optional[Any] = self.nodes[matching_string[0]]
lowercase_ :Optional[Any] = RadixNode(UpperCamelCase_ , UpperCamelCase_ )
lowercase_ :List[str] = aux_node
if remaining_word == "":
lowercase_ :str = True
else:
self.nodes[matching_string[0]].insert(UpperCamelCase_ )
def UpperCamelCase ( self , UpperCamelCase_ ):
lowercase_ :List[Any] = self.nodes.get(word[0] , UpperCamelCase_ )
if not incoming_node:
return False
else:
lowercase_ , lowercase_ , lowercase_ :Union[str, Any] = incoming_node.match(
UpperCamelCase_ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(UpperCamelCase_ )
def UpperCamelCase ( self , UpperCamelCase_ ):
lowercase_ :List[Any] = self.nodes.get(word[0] , UpperCamelCase_ )
if not incoming_node:
return False
else:
lowercase_ , lowercase_ , lowercase_ :int = incoming_node.match(
UpperCamelCase_ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(UpperCamelCase_ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowercase_ :Optional[int] = list(self.nodes.values() )[0]
lowercase_ :Optional[int] = merging_node.is_leaf
self.prefix += merging_node.prefix
lowercase_ :Dict = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowercase_ :Optional[int] = False
# If there is 1 edge, we merge it with its child
else:
lowercase_ :Optional[int] = list(incoming_node.nodes.values() )[0]
lowercase_ :Dict = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowercase_ :Optional[Any] = merging_node.nodes
return True
def UpperCamelCase ( self , UpperCamelCase_ = 0 ):
if self.prefix != "":
print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def UpperCamelCase ( ) -> bool:
'''simple docstring'''
lowercase_ :Optional[int] = '''banana bananas bandana band apple all beast'''.split()
lowercase_ :Optional[Any] = RadixNode()
root.insert_many(_a )
assert all(root.find(_a ) for word in words )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def UpperCamelCase ( ) -> None:
'''simple docstring'''
assert test_trie()
def UpperCamelCase ( ) -> None:
'''simple docstring'''
lowercase_ :List[Any] = RadixNode()
lowercase_ :int = '''banana bananas bandanas bandana band apple all beast'''.split()
root.insert_many(_a )
print('''Words:''' , _a )
print('''Tree:''' )
root.print_tree()
if __name__ == "__main__":
main()
| 252 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase :
'''simple docstring'''
lowercase : Dict =MBartConfig
lowercase : Union[str, Any] ={}
lowercase : Optional[int] ="""gelu"""
def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=20 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ):
lowercase_ :int = parent
lowercase_ :Any = batch_size
lowercase_ :Any = seq_length
lowercase_ :Union[str, Any] = is_training
lowercase_ :Optional[Any] = use_labels
lowercase_ :List[str] = vocab_size
lowercase_ :Union[str, Any] = hidden_size
lowercase_ :Optional[Any] = num_hidden_layers
lowercase_ :Optional[int] = num_attention_heads
lowercase_ :Any = intermediate_size
lowercase_ :str = hidden_dropout_prob
lowercase_ :List[Any] = attention_probs_dropout_prob
lowercase_ :Union[str, Any] = max_position_embeddings
lowercase_ :str = eos_token_id
lowercase_ :List[Any] = pad_token_id
lowercase_ :List[str] = bos_token_id
def UpperCamelCase ( self ):
lowercase_ :Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowercase_ :Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowercase_ :Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
lowercase_ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase_ :List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowercase_ :Optional[Any] = prepare_mbart_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
return config, inputs_dict
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ):
lowercase_ :Tuple = TFMBartModel(config=UpperCamelCase_ ).get_decoder()
lowercase_ :Any = inputs_dict['''input_ids''']
lowercase_ :List[Any] = input_ids[:1, :]
lowercase_ :List[Any] = inputs_dict['''attention_mask'''][:1, :]
lowercase_ :str = inputs_dict['''head_mask''']
lowercase_ :List[str] = 1
# first forward pass
lowercase_ :Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ )
lowercase_ , lowercase_ :int = outputs.to_tuple()
lowercase_ :List[Any] = past_key_values[1]
def UpperCamelCase ( _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> int:
'''simple docstring'''
if attention_mask is None:
lowercase_ :Dict = tf.cast(tf.math.not_equal(_a , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowercase_ :Optional[int] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowercase_ :Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase_ :Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase_ :Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[Any] =(TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase : Optional[Any] =(TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase : Optional[Any] =(
{
"""conversational""": TFMBartForConditionalGeneration,
"""feature-extraction""": TFMBartModel,
"""summarization""": TFMBartForConditionalGeneration,
"""text2text-generation""": TFMBartForConditionalGeneration,
"""translation""": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase : Optional[Any] =True
lowercase : Optional[Any] =False
lowercase : List[str] =False
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def UpperCamelCase ( self ):
lowercase_ :Optional[int] = TFMBartModelTester(self )
lowercase_ :str = ConfigTester(self , config_class=UpperCamelCase_ )
def UpperCamelCase ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase ( self ):
lowercase_ :str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] =[
""" UN Chief Says There Is No Military Solution in Syria""",
]
lowercase : Optional[int] =[
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
]
lowercase : Any ="""facebook/mbart-large-en-ro"""
@cached_property
def UpperCamelCase ( self ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def UpperCamelCase ( self ):
lowercase_ :Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def UpperCamelCase ( self , **UpperCamelCase_ ):
lowercase_ :Any = self.translate_src_text(**UpperCamelCase_ )
self.assertListEqual(self.expected_text , UpperCamelCase_ )
def UpperCamelCase ( self , **UpperCamelCase_ ):
lowercase_ :Optional[Any] = self.tokenizer(self.src_text , **UpperCamelCase_ , return_tensors='''tf''' )
lowercase_ :Union[str, Any] = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
lowercase_ :Any = self.tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
return generated_words
@slow
def UpperCamelCase ( self ):
self._assert_generated_batch_equal_expected()
| 252 | 1 |
import os
def A ( ) -> Any:
'''simple docstring'''
UpperCamelCase = os.path.dirname(os.path.realpath(lowercase ) )
UpperCamelCase = os.path.join(lowercase , 'triangle.txt' )
with open(lowercase ) as f:
UpperCamelCase = f.readlines()
UpperCamelCase = []
for line in triangle:
UpperCamelCase = []
for number in line.strip().split(' ' ):
numbers_from_line.append(int(lowercase ) )
a.append(lowercase )
for i in range(1 , len(lowercase ) ):
for j in range(len(a[i] ) ):
UpperCamelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0
UpperCamelCase = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(lowercase , lowercase )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 222 |
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
if index == number_of_items:
return 0
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = knapsack(lowercase , lowercase , lowercase , lowercase , index + 1 )
if weights[index] <= max_weight:
UpperCamelCase = values[index] + knapsack(
lowercase , lowercase , lowercase , max_weight - weights[index] , index + 1 )
return max(lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 222 | 1 |
def lowerCAmelCase_ ( __UpperCAmelCase: Dict = 100 ) -> int:
UpperCamelCase__ : int = 0
UpperCamelCase__ : Tuple = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(F'''{solution() = }''')
| 352 |
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowerCAmelCase_ ( ) -> List[str]:
UpperCamelCase__ : List[str] = {
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
UpperCamelCase__ : Dict = Dataset.from_dict(__UpperCAmelCase )
return dataset
class lowercase__ ( __lowerCamelCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ) -> Any:
"""simple docstring"""
UpperCamelCase__ : List[Any] = get_dataset()
UpperCamelCase__ : List[str] = make_duplicate_clusters(__magic_name__, 0.85 )
self.assertEqual(len(duplicate_clusters[0] ), 2 )
def UpperCamelCase__ ( self ) -> str:
"""simple docstring"""
UpperCamelCase__ : List[Any] = get_dataset()
UpperCamelCase__ ,UpperCamelCase__ : Dict = deduplicate_dataset(__magic_name__ )
self.assertEqual(len(__magic_name__ ), 2 )
print(__magic_name__ )
self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], __magic_name__ )
| 247 | 0 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
UpperCAmelCase__ : Any = get_logger(__name__)
class UpperCAmelCase ( enum.Enum ):
'''simple docstring'''
__UpperCamelCase : List[str] = '''all_checks'''
__UpperCamelCase : str = '''basic_checks'''
__UpperCamelCase : int = '''no_checks'''
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def lowerCamelCase__ ( a , a , a=None ) -> Union[str, Any]:
if expected_checksums is None:
logger.info('''Unable to verify checksums.''' )
return
if len(set(a ) - set(a ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(a ) - set(a ) ) )
if len(set(a ) - set(a ) ) > 0:
raise UnexpectedDownloadedFile(str(set(a ) - set(a ) ) )
_A: Tuple = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
_A: Tuple = ''' for ''' + verification_name if verification_name is not None else ''''''
if len(a ) > 0:
raise NonMatchingChecksumError(
f"""Checksums didn't match{for_verification_name}:\n"""
f"""{bad_urls}\n"""
'''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' )
logger.info('''All the checksums matched successfully''' + for_verification_name )
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def lowerCamelCase__ ( a , a ) -> Any:
if expected_splits is None:
logger.info('''Unable to verify splits sizes.''' )
return
if len(set(a ) - set(a ) ) > 0:
raise ExpectedMoreSplits(str(set(a ) - set(a ) ) )
if len(set(a ) - set(a ) ) > 0:
raise UnexpectedSplits(str(set(a ) - set(a ) ) )
_A: Dict = [
{'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(a ) > 0:
raise NonMatchingSplitsSizesError(str(a ) )
logger.info('''All the splits matched successfully.''' )
def lowerCamelCase__ ( a , a = True ) -> dict:
if record_checksum:
_A: str = shaaaa()
with open(a , '''rb''' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ):
m.update(a )
_A: Any = m.hexdigest()
else:
_A: List[Any] = None
return {"num_bytes": os.path.getsize(a ), "checksum": checksum}
def lowerCamelCase__ ( a ) -> Optional[int]:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 121 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def lowerCamelCase__ ( a=None ) -> int:
_A: Union[str, Any] = argparse.ArgumentParser(add_help=a , allow_abbrev=a )
# The main config parser
_A: str = config_command_parser(a )
# The subparser to add commands to
_A: str = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' )
# Then add other parsers with the parent parser
default_command_parser(a , parents=[parent_parser] )
update_command_parser(a , parents=[parent_parser] )
return config_parser
def lowerCamelCase__ ( ) -> Union[str, Any]:
_A: Any = get_config_parser()
_A: Tuple = config_parser.parse_args()
if not hasattr(a , '''func''' ):
config_parser.print_help()
exit(1 )
# Run
args.func(a )
if __name__ == "__main__":
main()
| 121 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __a ( lowerCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ : List[str] = DDIMPipeline
SCREAMING_SNAKE_CASE__ : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
SCREAMING_SNAKE_CASE__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
SCREAMING_SNAKE_CASE__ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ : int = False
def snake_case_ ( self ):
torch.manual_seed(0 )
_lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
_lowerCamelCase = DDIMScheduler()
_lowerCamelCase = {'unet': unet, 'scheduler': scheduler}
return components
def snake_case_ ( self , a__ , a__=0 ):
if str(a__ ).startswith('mps' ):
_lowerCamelCase = torch.manual_seed(a__ )
else:
_lowerCamelCase = torch.Generator(device=a__ ).manual_seed(a__ )
_lowerCamelCase = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self ):
_lowerCamelCase = 'cpu'
_lowerCamelCase = self.get_dummy_components()
_lowerCamelCase = self.pipeline_class(**a__ )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
_lowerCamelCase = self.get_dummy_inputs(a__ )
_lowerCamelCase = pipe(**a__ ).images
_lowerCamelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
_lowerCamelCase = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
_lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(a__ , 1e-3 )
def snake_case_ ( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def snake_case_ ( self ):
super().test_save_load_local(expected_max_difference=3e-3 )
def snake_case_ ( self ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def snake_case_ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __a ( unittest.TestCase ):
def snake_case_ ( self ):
_lowerCamelCase = 'google/ddpm-cifar10-32'
_lowerCamelCase = UNetaDModel.from_pretrained(a__ )
_lowerCamelCase = DDIMScheduler()
_lowerCamelCase = DDIMPipeline(unet=a__ , scheduler=a__ )
ddim.to(a__ )
ddim.set_progress_bar_config(disable=a__ )
_lowerCamelCase = torch.manual_seed(0 )
_lowerCamelCase = ddim(generator=a__ , eta=0.0 , output_type='numpy' ).images
_lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_lowerCamelCase = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ):
_lowerCamelCase = 'google/ddpm-ema-bedroom-256'
_lowerCamelCase = UNetaDModel.from_pretrained(a__ )
_lowerCamelCase = DDIMScheduler.from_pretrained(a__ )
_lowerCamelCase = DDIMPipeline(unet=a__ , scheduler=a__ )
ddpm.to(a__ )
ddpm.set_progress_bar_config(disable=a__ )
_lowerCamelCase = torch.manual_seed(0 )
_lowerCamelCase = ddpm(generator=a__ , output_type='numpy' ).images
_lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
_lowerCamelCase = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 365 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ : int =logging.get_logger(__name__)
A_ : Tuple ={
"""ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""",
}
class __a ( lowerCAmelCase__ ):
SCREAMING_SNAKE_CASE__ : int = "deta"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , a__=None , a__=9_00 , a__=20_48 , a__=6 , a__=20_48 , a__=8 , a__=6 , a__=10_24 , a__=8 , a__=0.0 , a__=True , a__="relu" , a__=2_56 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.02 , a__=1.0 , a__=True , a__=False , a__="sine" , a__=5 , a__=4 , a__=4 , a__=True , a__=3_00 , a__=True , a__=True , a__=1 , a__=5 , a__=2 , a__=1 , a__=1 , a__=5 , a__=2 , a__=0.1 , a__=0.25 , **a__ , ):
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
_lowerCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] )
else:
if isinstance(a__ , a__ ):
_lowerCamelCase = backbone_config.pop('model_type' )
_lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
_lowerCamelCase = config_class.from_dict(a__ )
_lowerCamelCase = backbone_config
_lowerCamelCase = num_queries
_lowerCamelCase = max_position_embeddings
_lowerCamelCase = d_model
_lowerCamelCase = encoder_ffn_dim
_lowerCamelCase = encoder_layers
_lowerCamelCase = encoder_attention_heads
_lowerCamelCase = decoder_ffn_dim
_lowerCamelCase = decoder_layers
_lowerCamelCase = decoder_attention_heads
_lowerCamelCase = dropout
_lowerCamelCase = attention_dropout
_lowerCamelCase = activation_dropout
_lowerCamelCase = activation_function
_lowerCamelCase = init_std
_lowerCamelCase = init_xavier_std
_lowerCamelCase = encoder_layerdrop
_lowerCamelCase = auxiliary_loss
_lowerCamelCase = position_embedding_type
# deformable attributes
_lowerCamelCase = num_feature_levels
_lowerCamelCase = encoder_n_points
_lowerCamelCase = decoder_n_points
_lowerCamelCase = two_stage
_lowerCamelCase = two_stage_num_proposals
_lowerCamelCase = with_box_refine
_lowerCamelCase = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError('If two_stage is True, with_box_refine must be True.' )
# Hungarian matcher
_lowerCamelCase = class_cost
_lowerCamelCase = bbox_cost
_lowerCamelCase = giou_cost
# Loss coefficients
_lowerCamelCase = mask_loss_coefficient
_lowerCamelCase = dice_loss_coefficient
_lowerCamelCase = bbox_loss_coefficient
_lowerCamelCase = giou_loss_coefficient
_lowerCamelCase = eos_coefficient
_lowerCamelCase = focal_alpha
super().__init__(is_encoder_decoder=a__ , **a__ )
@property
def snake_case_ ( self ):
return self.encoder_attention_heads
@property
def snake_case_ ( self ):
return self.d_model
def snake_case_ ( self ):
_lowerCamelCase = copy.deepcopy(self.__dict__ )
_lowerCamelCase = self.backbone_config.to_dict()
_lowerCamelCase = self.__class__.model_type
return output
| 80 | 0 |
'''simple docstring'''
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]:
UpperCamelCase = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""")
UpperCamelCase = (
("""layer.""", """layer_"""),
("""word_embeddings.weight""", """word_embeddings"""),
("""position_embeddings.weight""", """position_embeddings"""),
("""token_type_embeddings.weight""", """token_type_embeddings"""),
(""".""", """/"""),
("""LayerNorm/weight""", """LayerNorm/gamma"""),
("""LayerNorm/bias""", """LayerNorm/beta"""),
("""weight""", """kernel"""),
)
if not os.path.isdir(__UpperCamelCase ):
os.makedirs(__UpperCamelCase )
UpperCamelCase = model.state_dict()
def to_tf_var_name(__UpperCamelCase ):
for patt, repl in iter(__UpperCamelCase ):
UpperCamelCase = name.replace(__UpperCamelCase , __UpperCamelCase )
return F"bert/{name}"
def create_tf_var(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
UpperCamelCase = tf.dtypes.as_dtype(tensor.dtype )
UpperCamelCase = tf.get_variable(dtype=__UpperCamelCase , shape=tensor.shape , name=__UpperCamelCase , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(__UpperCamelCase )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
UpperCamelCase = to_tf_var_name(__UpperCamelCase )
UpperCamelCase = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
UpperCamelCase = torch_tensor.T
UpperCamelCase = create_tf_var(tensor=__UpperCamelCase , name=__UpperCamelCase , session=__UpperCamelCase )
tf.keras.backend.set_value(__UpperCamelCase , __UpperCamelCase )
UpperCamelCase = session.run(__UpperCamelCase )
print(F"Successfully created {tf_name}: {np.allclose(__UpperCamelCase , __UpperCamelCase )}" )
UpperCamelCase = tf.train.Saver(tf.trainable_variables() )
saver.save(__UpperCamelCase , os.path.join(__UpperCamelCase , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) )
def lowercase__ ( __UpperCamelCase=None )-> Tuple:
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""model name e.g. bert-base-uncased""" )
parser.add_argument(
"""--cache_dir""" , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase , help="""Directory containing pytorch model""" )
parser.add_argument("""--pytorch_model_path""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""/path/to/<pytorch-model-name>.bin""" )
parser.add_argument("""--tf_cache_dir""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""Directory in which to save tensorflow model""" )
UpperCamelCase = parser.parse_args(__UpperCamelCase )
UpperCamelCase = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=__UpperCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 321 |
'''simple docstring'''
def lowercase__ ( __UpperCamelCase = 4000000 )-> int:
UpperCamelCase = []
UpperCamelCase ,UpperCamelCase = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(__UpperCamelCase )
UpperCamelCase ,UpperCamelCase = b, a + b
return sum(__UpperCamelCase )
if __name__ == "__main__":
print(f'{solution() = }')
| 321 | 1 |
"""simple docstring"""
def _UpperCAmelCase ( __lowerCamelCase : str ) -> int:
_snake_case = hex_num.strip()
if not hex_num:
raise ValueError('''No value was passed to the function''' )
_snake_case = hex_num[0] == '''-'''
if is_negative:
_snake_case = hex_num[1:]
try:
_snake_case = int(__lowerCamelCase , 16 )
except ValueError:
raise ValueError('''Invalid value was passed to the function''' )
_snake_case = ''''''
while int_num > 0:
_snake_case = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(('''-''' + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : dict ) -> str:
_snake_case = BeautifulSoup(requests.get(__lowerCamelCase , params=__lowerCamelCase ).content , '''html.parser''' )
_snake_case = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
_snake_case = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
UpperCAmelCase__ = {
'title': (
'Precisely geometry controlled microsupercapacitors for ultrahigh areal '
'capacitance, volumetric capacitance, and energy density'
),
'journal': 'Chem. Mater.',
'volume': 30,
'pages': '3979-3990',
'year': 2018,
'hl': 'en',
}
print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
| 40 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
UpperCAmelCase : str = logging.get_logger(__name__)
UpperCAmelCase : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase : Tuple = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
UpperCAmelCase : Optional[int] = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase : Optional[Any] = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names}
UpperCAmelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names}
class __lowercase ( a_ ):
"""simple docstring"""
UpperCamelCase : int = VOCAB_FILES_NAMES
UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase : Any = FunnelTokenizer
UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : int = 2
def __init__( self , A=None , A=None , A=True , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A="<s>" , A="</s>" , A=True , A=True , A=None , A="##" , **A , ) -> Tuple:
'''simple docstring'''
super().__init__(
A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , bos_token=A , eos_token=A , clean_text=A , tokenize_chinese_chars=A , strip_accents=A , wordpieces_prefix=A , **A , )
lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , A ) != do_lower_case
or normalizer_state.get("""strip_accents""" , A ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , A ) != tokenize_chinese_chars
):
lowerCamelCase = getattr(A , normalizer_state.pop("""type""" ) )
lowerCamelCase = do_lower_case
lowerCamelCase = strip_accents
lowerCamelCase = tokenize_chinese_chars
lowerCamelCase = normalizer_class(**A )
lowerCamelCase = do_lower_case
def __A ( self , A , A=None ) -> Tuple:
'''simple docstring'''
lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , A , A = None ) -> List[int]:
'''simple docstring'''
lowerCamelCase = [self.sep_token_id]
lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , A , A = None ) -> Tuple[str]:
'''simple docstring'''
lowerCamelCase = self._tokenizer.model.save(A , name=A )
return tuple(A )
| 252 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : List[str] = {
"configuration_x_clip": [
"XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XCLIPConfig",
"XCLIPTextConfig",
"XCLIPVisionConfig",
],
"processing_x_clip": ["XCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
"XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"XCLIPModel",
"XCLIPPreTrainedModel",
"XCLIPTextModel",
"XCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 252 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
_lowerCamelCase = MBartConfig
_lowerCamelCase = {}
_lowerCamelCase = '''gelu'''
def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=1_3 ,lowerCamelCase_=7 ,lowerCamelCase_=True ,lowerCamelCase_=False ,lowerCamelCase_=9_9 ,lowerCamelCase_=3_2 ,lowerCamelCase_=2 ,lowerCamelCase_=4 ,lowerCamelCase_=3_7 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=2_0 ,lowerCamelCase_=2 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,) -> int:
A = parent
A = batch_size
A = seq_length
A = is_training
A = use_labels
A = vocab_size
A = hidden_size
A = num_hidden_layers
A = num_attention_heads
A = intermediate_size
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = max_position_embeddings
A = eos_token_id
A = pad_token_id
A = bos_token_id
def UpperCamelCase__ ( self ) -> Optional[int]:
A = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size )
A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 )
A = tf.concat([input_ids, eos_tensor] ,axis=1 )
A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
A = self.config_cls(
vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,)
A = prepare_mbart_inputs_dict(_a ,_a ,_a )
return config, inputs_dict
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]:
A = TFMBartModel(config=_a ).get_decoder()
A = inputs_dict["""input_ids"""]
A = input_ids[:1, :]
A = inputs_dict["""attention_mask"""][:1, :]
A = inputs_dict["""head_mask"""]
A = 1
# first forward pass
A = model(_a ,attention_mask=_a ,head_mask=_a ,use_cache=_a )
A , A = outputs.to_tuple()
A = past_key_values[1]
def _A ( _a : Dict , _a : Optional[int] , _a : Optional[int] , _a : Optional[Any]=None , _a : Tuple=None , _a : Dict=None , _a : Tuple=None , _a : Tuple=None , ):
"""simple docstring"""
if attention_mask is None:
A = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
A = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
A = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
A = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
_lowerCamelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase = True
_lowerCamelCase = False
_lowerCamelCase = False
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def UpperCamelCase__ ( self ) -> Optional[int]:
A = TFMBartModelTester(self )
A = ConfigTester(self ,config_class=_a )
def UpperCamelCase__ ( self ) -> Any:
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ) -> Optional[Any]:
A = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_sentencepiece
@require_tokenizers
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
_lowerCamelCase = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
_lowerCamelCase = '''facebook/mbart-large-en-ro'''
@cached_property
def UpperCamelCase__ ( self ) -> Union[str, Any]:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def UpperCamelCase__ ( self ) -> Optional[int]:
A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> Tuple:
A = self.translate_src_text(**_a )
self.assertListEqual(self.expected_text ,_a )
def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> int:
A = self.tokenizer(self.src_text ,**_a ,return_tensors="""tf""" )
A = self.model.generate(
model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 )
A = self.tokenizer.batch_decode(_a ,skip_special_tokens=_a )
return generated_words
@slow
def UpperCamelCase__ ( self ) -> List[str]:
self._assert_generated_batch_equal_expected()
| 363 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowerCamelCase = ['''image_processor''', '''tokenizer''']
_lowerCamelCase = '''OwlViTImageProcessor'''
_lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Tuple:
A = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" ,lowerCamelCase_ ,)
A = kwargs.pop("""feature_extractor""" )
A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(lowerCamelCase_ ,lowerCamelCase_ )
def __call__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="max_length" ,lowerCamelCase_="np" ,**lowerCamelCase_ ) -> Optional[Any]:
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and not isinstance(text[0] ,lowerCamelCase_ )):
A = [self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ )]
elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and isinstance(text[0] ,lowerCamelCase_ ):
A = []
# Maximum number of queries across batch
A = max([len(lowerCamelCase_ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(lowerCamelCase_ ) != max_num_queries:
A = t + [""" """] * (max_num_queries - len(lowerCamelCase_ ))
A = self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ )
encodings.append(lowerCamelCase_ )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
A = np.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 )
A = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
A = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 )
A = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
A = torch.cat([encoding["""input_ids"""] for encoding in encodings] ,dim=0 )
A = torch.cat([encoding["""attention_mask"""] for encoding in encodings] ,dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
A = tf.stack([encoding["""input_ids"""] for encoding in encodings] ,axis=0 )
A = tf.stack([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
A = BatchEncoding()
A = input_ids
A = attention_mask
if query_images is not None:
A = BatchEncoding()
A = self.image_processor(
lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ).pixel_values
A = query_pixel_values
if images is not None:
A = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ )
if text is not None and images is not None:
A = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
A = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> int:
return self.image_processor.post_process(*lowerCamelCase_ ,**lowerCamelCase_ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]:
return self.image_processor.post_process_object_detection(*lowerCamelCase_ ,**lowerCamelCase_ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]:
return self.image_processor.post_process_image_guided_detection(*lowerCamelCase_ ,**lowerCamelCase_ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]:
return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]:
return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ )
@property
def UpperCamelCase__ ( self ) -> Union[str, Any]:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,)
return self.image_processor_class
@property
def UpperCamelCase__ ( self ) -> Union[str, Any]:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase_ ,)
return self.image_processor
| 77 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__lowercase = logging.get_logger(__name__)
__lowercase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
__lowercase = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
__lowercase = {
"""roberta-base""": 512,
"""roberta-large""": 512,
"""roberta-large-mnli""": 512,
"""distilroberta-base""": 512,
"""roberta-base-openai-detector""": 512,
"""roberta-large-openai-detector""": 512,
}
class _A ( _a ):
"""simple docstring"""
UpperCAmelCase : str = VOCAB_FILES_NAMES
UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Any = ["""input_ids""", """attention_mask"""]
UpperCAmelCase : int = RobertaTokenizer
def __init__( self : Tuple , __UpperCAmelCase : Any=None , __UpperCAmelCase : str=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]="replace" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : str="<s>" , __UpperCAmelCase : Dict="<unk>" , __UpperCAmelCase : Dict="<pad>" , __UpperCAmelCase : Dict="<mask>" , __UpperCAmelCase : int=False , __UpperCAmelCase : Dict=True , **__UpperCAmelCase : Dict , ):
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , )
a : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space" , __UpperCAmelCase) != add_prefix_space:
a : Optional[Any] = getattr(__UpperCAmelCase , pre_tok_state.pop("type"))
a : Optional[int] = add_prefix_space
a : Dict = pre_tok_class(**__UpperCAmelCase)
a : Tuple = add_prefix_space
a : str = "post_processor"
a : Dict = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase)
if tokenizer_component_instance:
a : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
a : int = tuple(state["sep"])
if "cls" in state:
a : Any = tuple(state["cls"])
a : Dict = False
if state.get("add_prefix_space" , __UpperCAmelCase) != add_prefix_space:
a : Optional[int] = add_prefix_space
a : int = True
if state.get("trim_offsets" , __UpperCAmelCase) != trim_offsets:
a : List[str] = trim_offsets
a : List[str] = True
if changes_to_apply:
a : str = getattr(__UpperCAmelCase , state.pop("type"))
a : Optional[int] = component_class(**__UpperCAmelCase)
setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase)
@property
def __snake_case ( self : List[Any]):
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet.")
return None
return str(self._mask_token)
@mask_token.setter
def __snake_case ( self : int , __UpperCAmelCase : Any):
a : Any = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else value
a : str = value
def __snake_case ( self : Dict , *__UpperCAmelCase : int , **__UpperCAmelCase : Tuple):
a : Tuple = kwargs.get("is_split_into_words" , __UpperCAmelCase)
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase)
def __snake_case ( self : Optional[int] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[Any]):
a : Dict = kwargs.get("is_split_into_words" , __UpperCAmelCase)
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase)
def __snake_case ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None):
a : str = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase)
return tuple(__UpperCAmelCase)
def __snake_case ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Dict=None):
a : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __snake_case ( self : List[str] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None):
a : Tuple = [self.sep_token_id]
a : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 40 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
A__ = len(lowercase_ )
while cur > 1:
# Find the maximum number in arr
A__ = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
A__ = arr[mi::-1] + arr[mi + 1 : len(lowercase_ )]
# Reverse whole list
A__ = arr[cur - 1 :: -1] + arr[cur : len(lowercase_ )]
cur -= 1
return arr
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip()
SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")]
print(pancake_sort(unsorted))
| 247 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'''vocab_file''': '''spiece.model'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
}
}
__UpperCAmelCase = {
'''albert-base-v1''': 5_12,
'''albert-large-v1''': 5_12,
'''albert-xlarge-v1''': 5_12,
'''albert-xxlarge-v1''': 5_12,
'''albert-base-v2''': 5_12,
'''albert-large-v2''': 5_12,
'''albert-xlarge-v2''': 5_12,
'''albert-xxlarge-v2''': 5_12,
}
__UpperCAmelCase = '''▁'''
class lowerCamelCase__ ( __lowercase ):
_lowerCAmelCase = VOCAB_FILES_NAMES
_lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Dict , _a : Optional[int] , _a : Tuple=True , _a : Any=True , _a : List[Any]=False , _a : List[str]="[CLS]" , _a : List[Any]="[SEP]" , _a : List[str]="<unk>" , _a : Dict="[SEP]" , _a : Tuple="<pad>" , _a : str="[CLS]" , _a : List[str]="[MASK]" , _a : Optional[Dict[str, Any]] = None , **_a : Tuple , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
a__: List[Any] =(
AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ )
if isinstance(snake_case_ , snake_case_ )
else mask_token
)
a__: int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , )
a__: List[str] =do_lower_case
a__: Optional[int] =remove_space
a__: int =keep_accents
a__: Dict =vocab_file
a__: List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case_ )
@property
def _lowerCamelCase ( self : Optional[Any] ):
return len(self.sp_model )
def _lowerCamelCase ( self : List[Any] ):
a__: Optional[Any] ={self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
a__: Union[str, Any] =self.__dict__.copy()
a__: Optional[int] =None
return state
def __setstate__( self : Any , _a : Optional[int] ):
a__: Tuple =d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
a__: Union[str, Any] ={}
a__: List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCamelCase ( self : Optional[Any] , _a : Union[str, Any] ):
if self.remove_space:
a__: int =''' '''.join(inputs.strip().split() )
else:
a__: Union[str, Any] =inputs
a__: int =outputs.replace("``" , "\"" ).replace("\'\'" , "\"" )
if not self.keep_accents:
a__: Dict =unicodedata.normalize("NFKD" , snake_case_ )
a__: str =''''''.join([c for c in outputs if not unicodedata.combining(snake_case_ )] )
if self.do_lower_case:
a__: Optional[Any] =outputs.lower()
return outputs
def _lowerCamelCase ( self : Optional[int] , _a : str ):
a__: List[Any] =self.preprocess_text(snake_case_ )
a__: Any =self.sp_model.encode(snake_case_ , out_type=snake_case_ )
a__: str =[]
for piece in pieces:
if len(snake_case_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
a__: Tuple =self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case_ , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
a__: int =cur_pieces[1:]
else:
a__: str =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(snake_case_ )
else:
new_pieces.append(snake_case_ )
return new_pieces
def _lowerCamelCase ( self : List[Any] , _a : Dict ):
return self.sp_model.PieceToId(snake_case_ )
def _lowerCamelCase ( self : int , _a : Tuple ):
return self.sp_model.IdToPiece(snake_case_ )
def _lowerCamelCase ( self : Union[str, Any] , _a : Union[str, Any] ):
a__: Any =[]
a__: Optional[Any] =''''''
a__: Dict =False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(snake_case_ ) + token
a__: Optional[int] =True
a__: int =[]
else:
current_sub_tokens.append(snake_case_ )
a__: Any =False
out_string += self.sp_model.decode(snake_case_ )
return out_string.strip()
def _lowerCamelCase ( self : List[Any] , _a : List[int] , _a : Optional[List[int]] = None ):
a__: Tuple =[self.sep_token_id]
a__: Any =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowerCamelCase ( self : str , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ )
if token_ids_a is not None:
return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1]
return [1] + ([0] * len(snake_case_ )) + [1]
def _lowerCamelCase ( self : Union[str, Any] , _a : List[int] , _a : Optional[List[int]] = None ):
a__: Union[str, Any] =[self.sep_token_id]
a__: Optional[Any] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowerCamelCase ( self : str , _a : str , _a : Optional[str] = None ):
if not os.path.isdir(snake_case_ ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
a__: Optional[Any] =os.path.join(
snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case_ )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case_ , "wb" ) as fi:
a__: int =self.sp_model.serialized_model_proto()
fi.write(snake_case_ )
return (out_vocab_file,)
| 351 |
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True)
def __lowerCamelCase ( __magic_name__ : List[Any] ):
if hor == 128:
a__: Union[str, Any] =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
a__: Optional[int] =(32, 128, 256)
a__: Tuple =("UpResnetBlock1D", "UpResnetBlock1D")
elif hor == 32:
a__: Tuple =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
a__: List[Any] =(32, 64, 128, 256)
a__: List[str] =("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D")
a__: Dict =torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" )
a__: Optional[int] =model.state_dict()
a__: str ={
"down_block_types": down_block_types,
"block_out_channels": block_out_channels,
"up_block_types": up_block_types,
"layers_per_block": 1,
"use_timestep_embedding": True,
"out_block_type": "OutConv1DBlock",
"norm_num_groups": 8,
"downsample_each_block": False,
"in_channels": 14,
"out_channels": 14,
"extra_in_channels": 0,
"time_embedding_type": "positional",
"flip_sin_to_cos": False,
"freq_shift": 1,
"sample_size": 65_536,
"mid_block_type": "MidResTemporalBlock1D",
"act_fn": "mish",
}
a__: List[Any] =UNetaDModel(**__magic_name__ )
print(F"length of state dict: {len(state_dict.keys() )}" )
print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
a__: Tuple =dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
a__: Dict =state_dict.pop(__magic_name__ )
hf_value_function.load_state_dict(__magic_name__ )
torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" )
with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f:
json.dump(__magic_name__ , __magic_name__ )
def __lowerCamelCase ( ):
a__: Union[str, Any] ={
"in_channels": 14,
"down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
"up_block_types": (),
"out_block_type": "ValueFunction",
"mid_block_type": "ValueFunctionMidBlock1D",
"block_out_channels": (32, 64, 128, 256),
"layers_per_block": 1,
"downsample_each_block": True,
"sample_size": 65_536,
"out_channels": 14,
"extra_in_channels": 0,
"time_embedding_type": "positional",
"use_timestep_embedding": True,
"flip_sin_to_cos": False,
"freq_shift": 1,
"norm_num_groups": 8,
"act_fn": "mish",
}
a__: Union[str, Any] =torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" )
a__: Any =model
a__: str =UNetaDModel(**__magic_name__ )
print(F"length of state dict: {len(state_dict.keys() )}" )
print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
a__: List[str] =dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
a__: List[Any] =state_dict.pop(__magic_name__ )
hf_value_function.load_state_dict(__magic_name__ )
torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" )
with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f:
json.dump(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 42 | 0 |
'''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> str:
if number > 0:
raise ValueError("""input must be a negative integer""" )
lowercase_ : Dict = len(bin(__A )[3:] )
lowercase_ : Union[str, Any] = bin(abs(__A ) - (1 << binary_number_length) )[3:]
lowercase_ : Optional[int] = (
(
"""1"""
+ """0""" * (binary_number_length - len(__A ))
+ twos_complement_number
)
if number < 0
else """0"""
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 239 |
'''simple docstring'''
from __future__ import annotations
import math
def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> int:
'''simple docstring'''
if depth < 0:
raise ValueError("Depth cannot be less than 0" )
if not scores:
raise ValueError("Scores cannot be empty" )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , )
)
def _UpperCamelCase ( ) -> None:
'''simple docstring'''
UpperCamelCase__ = [90, 23, 6, 33, 21, 65, 123, 34423]
UpperCamelCase__ = math.log(len(__A ) , 2 )
print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 80 | 0 |
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
UpperCAmelCase_ = logging.getLogger(__name__)
UpperCAmelCase_ = tf.data.AUTOTUNE
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""" , type=SCREAMING_SNAKE_CASE__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , )
parser.add_argument(
"""--tokenizer""" , type=SCREAMING_SNAKE_CASE__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , )
parser.add_argument(
"""--per_replica_batch_size""" , type=SCREAMING_SNAKE_CASE__ , default=8 , help="""Batch size per TPU core.""" , )
parser.add_argument(
"""--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , )
parser.add_argument(
"""--tpu_name""" , type=SCREAMING_SNAKE_CASE__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , )
parser.add_argument(
"""--tpu_zone""" , type=SCREAMING_SNAKE_CASE__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , )
parser.add_argument(
"""--gcp_project""" , type=SCREAMING_SNAKE_CASE__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , )
parser.add_argument(
"""--train_dataset""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--shuffle_buffer_size""" , type=SCREAMING_SNAKE_CASE__ , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , )
parser.add_argument(
"""--eval_dataset""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--num_epochs""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""Number of epochs to train for.""" , )
parser.add_argument(
"""--learning_rate""" , type=SCREAMING_SNAKE_CASE__ , default=1e-4 , help="""Learning rate to use for training.""" , )
parser.add_argument(
"""--weight_decay_rate""" , type=SCREAMING_SNAKE_CASE__ , default=1e-3 , help="""Weight decay rate to use for training.""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , )
parser.add_argument(
"""--mlm_probability""" , type=SCREAMING_SNAKE_CASE__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , )
parser.add_argument("""--output_dir""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""" , type=SCREAMING_SNAKE_CASE__ , help="""Model ID to upload to on the Hugging Face Hub.""" )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
try:
if args.tpu_name:
UpperCAmelCase__ = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
UpperCAmelCase__ = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(SCREAMING_SNAKE_CASE__ )
tf.tpu.experimental.initialize_tpu_system(SCREAMING_SNAKE_CASE__ )
return tpu
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
for file in file_list:
UpperCAmelCase__ = file.split("""/""" )[-1]
UpperCAmelCase__ = re.search(r"""-\d+-(\d+)\.tfrecord""" , SCREAMING_SNAKE_CASE__ ).group(1 )
UpperCAmelCase__ = int(SCREAMING_SNAKE_CASE__ )
num_samples += sample_count
return num_samples
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=None ):
'''simple docstring'''
UpperCAmelCase__ = count_samples(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.data.Dataset.from_tensor_slices(SCREAMING_SNAKE_CASE__ )
if shuffle:
UpperCAmelCase__ = dataset.shuffle(len(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = tf.data.TFRecordDataset(SCREAMING_SNAKE_CASE__ , num_parallel_reads=SCREAMING_SNAKE_CASE__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
UpperCAmelCase__ = dataset.apply(tf.data.experimental.assert_cardinality(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , num_parallel_calls=SCREAMING_SNAKE_CASE__ )
if shuffle:
assert shuffle_buffer_size is not None
UpperCAmelCase__ = dataset.shuffle(args.shuffle_buffer_size )
UpperCAmelCase__ = dataset.batch(SCREAMING_SNAKE_CASE__ , drop_remainder=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , num_parallel_calls=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.prefetch(SCREAMING_SNAKE_CASE__ )
return dataset
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
if not args.no_tpu:
UpperCAmelCase__ = initialize_tpu(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.distribute.TPUStrategy(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer )
UpperCAmelCase__ = AutoConfig.from_pretrained(args.pretrained_model_config )
UpperCAmelCase__ = tokenizer.vocab_size
UpperCAmelCase__ = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) )
if not training_records:
raise ValueError(F'''No .tfrecord files found in {args.train_dataset}.''' )
UpperCAmelCase__ = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) )
if not eval_records:
raise ValueError(F'''No .tfrecord files found in {args.eval_dataset}.''' )
UpperCAmelCase__ = count_samples(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
UpperCAmelCase__ = steps_per_epoch * args.num_epochs
with strategy.scope():
UpperCAmelCase__ = TFAutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
UpperCAmelCase__ , UpperCAmelCase__ = create_optimizer(
num_train_steps=SCREAMING_SNAKE_CASE__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=SCREAMING_SNAKE_CASE__ , metrics=["""accuracy"""] )
def decode_fn(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
UpperCAmelCase__ = {
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
UpperCAmelCase__ = DataCollatorForLanguageModeling(
tokenizer=SCREAMING_SNAKE_CASE__ , mlm_probability=args.mlm_probability , mlm=SCREAMING_SNAKE_CASE__ , return_tensors="""tf""" )
def mask_with_collator(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# TF really needs an isin() function
UpperCAmelCase__ = (
~tf.cast(batch["""attention_mask"""] , tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
UpperCAmelCase__ , UpperCAmelCase__ = data_collator.tf_mask_tokens(
batch["""input_ids"""] , vocab_size=len(SCREAMING_SNAKE_CASE__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=SCREAMING_SNAKE_CASE__ , )
return batch
UpperCAmelCase__ = args.per_replica_batch_size * strategy.num_replicas_in_sync
UpperCAmelCase__ = prepare_dataset(
SCREAMING_SNAKE_CASE__ , decode_fn=SCREAMING_SNAKE_CASE__ , mask_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , shuffle_buffer_size=args.shuffle_buffer_size , )
UpperCAmelCase__ = prepare_dataset(
SCREAMING_SNAKE_CASE__ , decode_fn=SCREAMING_SNAKE_CASE__ , mask_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=SCREAMING_SNAKE_CASE__ ) )
model.fit(
SCREAMING_SNAKE_CASE__ , validation_data=SCREAMING_SNAKE_CASE__ , epochs=args.num_epochs , callbacks=SCREAMING_SNAKE_CASE__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 368 |
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
UpperCAmelCase_ = logging.getLogger(__name__)
UpperCAmelCase_ = 'Hello world! cécé herlolip'
UpperCAmelCase_ = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = BertAbsConfig(
temp_dir=""".""" , finetune_bert=SCREAMING_SNAKE_CASE__ , large=SCREAMING_SNAKE_CASE__ , share_emb=SCREAMING_SNAKE_CASE__ , use_bert_emb=SCREAMING_SNAKE_CASE__ , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , )
UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : storage )
UpperCAmelCase__ = AbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) , SCREAMING_SNAKE_CASE__ )
original.eval()
UpperCAmelCase__ = BertAbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("""convert the model""" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("""Make sure that the models' outputs are identical""" )
UpperCAmelCase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" )
# prepare the model inputs
UpperCAmelCase__ = tokenizer.encode("""This is sample éàalj'-.""" )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) )
UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
UpperCAmelCase__ = tokenizer.encode("""This is sample 3 éàalj'-.""" )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) )
UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
UpperCAmelCase__ = encoder_input_ids
UpperCAmelCase__ = decoder_input_ids
UpperCAmelCase__ = UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = UpperCAmelCase__ = None
UpperCAmelCase__ = UpperCAmelCase__ = None
UpperCAmelCase__ = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
UpperCAmelCase__ = original(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0]
UpperCAmelCase__ = original.generator(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = new_model(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0]
UpperCAmelCase__ = new_model.generator(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 )
if are_identical:
logging.info("""all weights are equal up to 1e-3""" )
else:
raise ValueError("""the weights are different. The new model is likely different from the original one.""" )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("""saving the model's state dictionary""" )
torch.save(
new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
UpperCAmelCase_ = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 61 | 0 |
"""simple docstring"""
import unittest
from knapsack import knapsack as k
class _A ( unittest.TestCase ):
"""simple docstring"""
def __snake_case ( self : List[Any]):
a : str = 0
a : Optional[int] = [0]
a : Union[str, Any] = [0]
a : Any = len(__UpperCAmelCase)
self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0)
a : List[str] = [60]
a : str = [10]
a : Optional[int] = len(__UpperCAmelCase)
self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0)
def __snake_case ( self : Optional[int]):
a : Any = 3
a : str = [1, 2, 3]
a : Tuple = [3, 2, 1]
a : Any = len(__UpperCAmelCase)
self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 5)
def __snake_case ( self : Tuple):
a : int = 50
a : List[Any] = [60, 100, 120]
a : Optional[int] = [10, 20, 30]
a : str = len(__UpperCAmelCase)
self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 220)
if __name__ == "__main__":
unittest.main()
| 40 |
"""simple docstring"""
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def lowercase ( A_ , A_ , A_ = False )-> list[float]:
'''simple docstring'''
if radian_mode:
return [magnitude * cos(A_ ), magnitude * sin(A_ )]
return [magnitude * cos(radians(A_ ) ), magnitude * sin(radians(A_ ) )]
def lowercase ( A_ , A_ , A_ = 10**-1 )-> bool:
'''simple docstring'''
a : NDArray[floataa] = cross(A_ , A_ )
a : float = sum(A_ )
return abs(A_ ) < eps
if __name__ == "__main__":
# Test to check if it works
__lowercase = array(
[
polar_force(7_18.4, 180 - 30),
polar_force(8_79.54, 45),
polar_force(100, -90),
]
)
__lowercase = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
__lowercase = array(
[
polar_force(30 * 9.81, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
__lowercase = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
__lowercase = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]])
__lowercase = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 40 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = ["""input_features""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Tuple=8_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_6_0_0_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_0 , SCREAMING_SNAKE_CASE_ : str=2_5 , SCREAMING_SNAKE_CASE_ : Optional[int]="hamming_window" , SCREAMING_SNAKE_CASE_ : List[Any]=3_2_7_6_8.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.97 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1.0 , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Any=False , **SCREAMING_SNAKE_CASE_ : Any , ):
super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : str = feature_size
lowerCAmelCase_ : Dict = sampling_rate
lowerCAmelCase_ : List[Any] = padding_value
lowerCAmelCase_ : Tuple = hop_length
lowerCAmelCase_ : int = win_length
lowerCAmelCase_ : Optional[int] = frame_signal_scale
lowerCAmelCase_ : Dict = preemphasis_coeff
lowerCAmelCase_ : Optional[Any] = mel_floor
lowerCAmelCase_ : List[Any] = normalize_means
lowerCAmelCase_ : List[Any] = normalize_vars
lowerCAmelCase_ : Any = win_function
lowerCAmelCase_ : Optional[Any] = return_attention_mask
lowerCAmelCase_ : Optional[int] = win_length * sampling_rate // 1_0_0_0
lowerCAmelCase_ : Optional[int] = hop_length * sampling_rate // 1_0_0_0
lowerCAmelCase_ : List[str] = optimal_fft_length(self.sample_size )
lowerCAmelCase_ : str = (self.n_fft // 2) + 1
def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : np.array ):
if self.win_function == "hamming_window":
lowerCAmelCase_ : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=SCREAMING_SNAKE_CASE_ )
else:
lowerCAmelCase_ : str = window_function(window_length=self.sample_size , name=self.win_function )
lowerCAmelCase_ : Dict = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
lowerCAmelCase_ : List[Any] = spectrogram(
one_waveform * self.frame_signal_scale , window=SCREAMING_SNAKE_CASE_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=SCREAMING_SNAKE_CASE_ , preemphasis=self.preemphasis_coeff , mel_filters=SCREAMING_SNAKE_CASE_ , mel_floor=self.mel_floor , log_mel='log' , )
return msfc_features.T
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ):
# make sure we normalize float32 arrays
if self.normalize_means:
lowerCAmelCase_ : int = x[:input_length].mean(axis=0 )
lowerCAmelCase_ : str = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if self.normalize_vars:
lowerCAmelCase_ : int = x[:input_length].std(axis=0 )
lowerCAmelCase_ : List[str] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if input_length < x.shape[0]:
lowerCAmelCase_ : str = padding_value
# make sure array is in float32
lowerCAmelCase_ : List[Any] = x.astype(np.floataa )
return x
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ):
lowerCAmelCase_ : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
F" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
F" {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
lowerCAmelCase_ : List[Any] = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
lowerCAmelCase_ : Tuple = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase_ : Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ):
lowerCAmelCase_ : List[Any] = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase_ : Union[str, Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase_ : str = [raw_speech]
# extract fbank features
lowerCAmelCase_ : Dict = [self._extract_mfsc_features(SCREAMING_SNAKE_CASE_ ) for one_waveform in raw_speech]
# convert into correct format for padding
lowerCAmelCase_ : str = BatchFeature({'input_features': features} )
lowerCAmelCase_ : Union[str, Any] = self.pad(
SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
# make sure list is in array format
lowerCAmelCase_ : Any = padded_inputs.get('input_features' )
if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ):
lowerCAmelCase_ : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features]
lowerCAmelCase_ : Union[str, Any] = padded_inputs.get('attention_mask' )
if attention_mask is not None:
lowerCAmelCase_ : int = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
lowerCAmelCase_ : Optional[int] = (
np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa )
if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
lowerCAmelCase_ : Optional[int] = self.normalize(
padded_inputs['input_features'] , attention_mask=SCREAMING_SNAKE_CASE_ )
if return_tensors is not None:
lowerCAmelCase_ : Union[str, Any] = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ )
return padded_inputs
| 361 |
"""simple docstring"""
from __future__ import annotations
def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> list[int]:
"""simple docstring"""
lowerCAmelCase_ : Any = 2
lowerCAmelCase_ : List[Any] = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(lowerCAmelCase__ )
if n > 1:
factors.append(lowerCAmelCase__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 289 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import GPTaLMHeadModel, RobertaForMaskedLM
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser(
description=(
'''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned'''
''' Distillation'''
)
)
parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2'''])
parser.add_argument('''--model_name''', default='''roberta-large''', type=str)
parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str)
parser.add_argument('''--vocab_transform''', action='''store_true''')
__A : Union[str, Any] = parser.parse_args()
if args.model_type == "roberta":
__A : Any = RobertaForMaskedLM.from_pretrained(args.model_name)
__A : Optional[Any] = '''roberta'''
elif args.model_type == "gpt2":
__A : Tuple = GPTaLMHeadModel.from_pretrained(args.model_name)
__A : List[Any] = '''transformer'''
__A : Any = model.state_dict()
__A : Any = {}
# Embeddings #
if args.model_type == "gpt2":
for param_name in ["wte.weight", "wpe.weight"]:
__A : Optional[int] = state_dict[F"""{prefix}.{param_name}"""]
else:
for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]:
__A : Tuple = F"""{prefix}.embeddings.{w}.weight"""
__A : Union[str, Any] = state_dict[param_name]
for w in ["weight", "bias"]:
__A : Union[str, Any] = F"""{prefix}.embeddings.LayerNorm.{w}"""
__A : List[str] = state_dict[param_name]
# Transformer Blocks #
__A : Optional[int] = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
if args.model_type == "gpt2":
for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]:
for w in ["weight", "bias"]:
__A : Union[str, Any] = state_dict[
F"""{prefix}.h.{teacher_idx}.{layer}.{w}"""
]
__A : int = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""]
else:
for layer in [
"attention.self.query",
"attention.self.key",
"attention.self.value",
"attention.output.dense",
"attention.output.LayerNorm",
"intermediate.dense",
"output.dense",
"output.LayerNorm",
]:
for w in ["weight", "bias"]:
__A : Optional[Any] = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}"""
]
std_idx += 1
# Language Modeling Head ###s
if args.model_type == "roberta":
for layer in ["lm_head.decoder.weight", "lm_head.bias"]:
__A : List[str] = state_dict[F"""{layer}"""]
if args.vocab_transform:
for w in ["weight", "bias"]:
__A : List[str] = state_dict[F"""lm_head.dense.{w}"""]
__A : Optional[int] = state_dict[F"""lm_head.layer_norm.{w}"""]
elif args.model_type == "gpt2":
for w in ["weight", "bias"]:
__A : Union[str, Any] = state_dict[F"""{prefix}.ln_f.{w}"""]
__A : Optional[int] = state_dict['''lm_head.weight''']
print(F"""N layers selected for distillation: {std_idx}""")
print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 33 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_a)
class UpperCAmelCase_ ( _a):
lowerCamelCase__ : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True})
lowerCamelCase__ : ClassVar[Features] = Features({"text": Value("string")})
lowerCamelCase__ : ClassVar[Features] = Features({})
lowerCamelCase__ : str = "text"
@property
def _UpperCAmelCase ( self ) -> Dict[str, str]:
return {self.text_column: "text"}
| 77 | 0 |
'''simple docstring'''
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class _snake_case :
@staticmethod
def UpperCamelCase__ ( *_snake_case ,**_snake_case ):
pass
def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> str:
UpperCAmelCase_ : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class _snake_case (unittest.TestCase):
__A : List[Any] =MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ):
UpperCAmelCase_ : int = DepthEstimationPipeline(model=_UpperCAmelCase ,image_processor=_UpperCAmelCase )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ):
UpperCAmelCase_ : List[str] = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" )
self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} ,_UpperCAmelCase )
import datasets
UpperCAmelCase_ : Optional[int] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" ,"image" ,split="test" )
UpperCAmelCase_ : Dict = depth_estimator(
[
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
] )
self.assertEqual(
[
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
] ,_UpperCAmelCase ,)
@require_tf
@unittest.skip("Depth estimation is not implemented in TF" )
def UpperCamelCase__ ( self ):
pass
@slow
@require_torch
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : List[str] = 'Intel/dpt-large'
UpperCAmelCase_ : Optional[int] = pipeline("depth-estimation" ,model=_UpperCAmelCase )
UpperCAmelCase_ : Optional[int] = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" )
UpperCAmelCase_ : Any = hashimage(outputs["depth"] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) ,29.304 )
self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) ,2.662 )
@require_torch
def UpperCamelCase__ ( self ):
# This is highly irregular to have no small tests.
self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
| 368 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class _snake_case :
def __init__( self ,_snake_case ,_snake_case=12 ,_snake_case=7 ,_snake_case=True ,_snake_case=True ,_snake_case=True ,_snake_case=99 ,_snake_case=32 ,_snake_case=32 ,_snake_case=2 ,_snake_case=4 ,_snake_case=37 ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=0.02 ,_snake_case=0 ,_snake_case=None ,):
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : int = batch_size
UpperCAmelCase_ : Optional[int] = seq_length
UpperCAmelCase_ : Union[str, Any] = is_training
UpperCAmelCase_ : str = use_input_mask
UpperCAmelCase_ : List[Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : List[Any] = hidden_size
UpperCAmelCase_ : Any = projection_dim
UpperCAmelCase_ : Optional[Any] = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = intermediate_size
UpperCAmelCase_ : Any = dropout
UpperCAmelCase_ : Dict = attention_dropout
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : Optional[int] = scope
UpperCAmelCase_ : List[str] = bos_token_id
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
UpperCAmelCase_ : List[Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase_ : Any = input_mask.numpy()
UpperCAmelCase_ , UpperCAmelCase_ : str = input_mask.shape
UpperCAmelCase_ : str = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) )
for batch_idx, start_index in enumerate(_snake_case ):
UpperCAmelCase_ : Optional[int] = 1
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, tf.convert_to_tensor(_snake_case )
def UpperCamelCase__ ( self ):
return BlipTextConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,)
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ):
UpperCAmelCase_ : Union[str, Any] = TFBlipTextModel(config=_snake_case )
UpperCAmelCase_ : Optional[int] = model(_snake_case ,attention_mask=_snake_case ,training=_snake_case )
UpperCAmelCase_ : Dict = model(_snake_case ,training=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = config_and_inputs
UpperCAmelCase_ : str = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase):
__A : Tuple =(TFBlipTextModel,) if is_tf_available() else ()
__A : List[Any] =False
__A : List[Any] =False
__A : Any =False
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Any = BlipTextModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 )
def UpperCamelCase__ ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
pass
def UpperCamelCase__ ( self ):
pass
@unittest.skip(reason="Blip does not use inputs_embeds" )
def UpperCamelCase__ ( self ):
pass
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" )
def UpperCamelCase__ ( self ):
pass
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" )
def UpperCamelCase__ ( self ):
pass
@slow
def UpperCamelCase__ ( self ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : int = TFBlipTextModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def UpperCamelCase__ ( self ,_snake_case=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
| 67 | 0 |
'''simple docstring'''
import string
def __lowerCamelCase ( lowerCAmelCase_ ) -> None:
for key in range(len(string.ascii_uppercase ) ):
_a : Union[str, Any] = ''
for symbol in message:
if symbol in string.ascii_uppercase:
_a : Optional[Any] = string.ascii_uppercase.find(lowerCAmelCase_ )
_a : List[str] = num - key
if num < 0:
_a : str = num + len(string.ascii_uppercase )
_a : int = translated + string.ascii_uppercase[num]
else:
_a : Dict = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def __lowerCamelCase ( ) -> None:
_a : int = input('Encrypted message: ' )
_a : Tuple = message.upper()
decrypt(lowerCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 89 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase : List[str] = {
"configuration_pix2struct": [
"PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Pix2StructConfig",
"Pix2StructTextConfig",
"Pix2StructVisionConfig",
],
"processing_pix2struct": ["Pix2StructProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[int] = ["Pix2StructImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Tuple = [
"PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Pix2StructPreTrainedModel",
"Pix2StructForConditionalGeneration",
"Pix2StructVisionModel",
"Pix2StructTextModel",
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 42 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase: List[Any] = logging.get_logger(__name__)
class UpperCamelCase ( _lowerCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = ["pixel_values"]
def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,):
super().__init__(**UpperCAmelCase_ )
_lowercase : List[Any] = size if size is not None else {"""shortest_edge""": 2_56}
_lowercase : Any = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ )
_lowercase : Dict = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
_lowercase : Dict = get_size_dict(UpperCAmelCase_ )
_lowercase : List[str] = do_resize
_lowercase : List[Any] = size
_lowercase : Optional[int] = resample
_lowercase : Dict = do_center_crop
_lowercase : Dict = crop_size
_lowercase : Dict = do_rescale
_lowercase : Any = rescale_factor
_lowercase : Optional[int] = do_normalize
_lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowercase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,):
_lowercase : str = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_lowercase : Any = get_resize_output_image_size(UpperCAmelCase_ ,size=size["""shortest_edge"""] ,default_to_square=UpperCAmelCase_ )
return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ )
def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,):
_lowercase : List[Any] = get_size_dict(UpperCAmelCase_ )
return center_crop(UpperCAmelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ )
def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ):
return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ )
def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,):
return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ )
def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,):
_lowercase : List[str] = do_resize if do_resize is not None else self.do_resize
_lowercase : Dict = size if size is not None else self.size
_lowercase : Union[str, Any] = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ )
_lowercase : Optional[int] = resample if resample is not None else self.resample
_lowercase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowercase : Tuple = crop_size if crop_size is not None else self.crop_size
_lowercase : Any = get_size_dict(UpperCAmelCase_ )
_lowercase : Tuple = do_rescale if do_rescale is not None else self.do_rescale
_lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowercase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
_lowercase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
_lowercase : Optional[int] = image_std if image_std is not None else self.image_std
_lowercase : Any = make_list_of_images(UpperCAmelCase_ )
if not valid_images(UpperCAmelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_lowercase : Optional[int] = [to_numpy_array(UpperCAmelCase_ ) for image in images]
if do_resize:
_lowercase : List[str] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images]
if do_center_crop:
_lowercase : Any = [self.center_crop(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ) for image in images]
if do_rescale:
_lowercase : List[Any] = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images]
if do_normalize:
_lowercase : Union[str, Any] = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images]
_lowercase : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images]
_lowercase : Dict = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ )
| 353 |
"""simple docstring"""
import pprint
import requests
UpperCAmelCase: Tuple = """https://zenquotes.io/api"""
def __SCREAMING_SNAKE_CASE ( ):
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def __SCREAMING_SNAKE_CASE ( ):
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
UpperCAmelCase: int = random_quotes()
pprint.pprint(response)
| 336 | 0 |
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowerCamelCase_ ( *_a ):
"""simple docstring"""
with open(__lowerCamelCase , '''r''' ) as fh:
fcntl.flock(__lowerCamelCase , fcntl.LOCK_EX )
try:
print(*__lowerCamelCase )
finally:
fcntl.flock(__lowerCamelCase , fcntl.LOCK_UN )
lowerCamelCase = int(os.environ['''LOCAL_RANK'''])
torch.cuda.set_device(local_rank)
lowerCamelCase = torch.device('''cuda''', local_rank)
lowerCamelCase = socket.gethostname()
lowerCamelCase = f'''[{hostname}-{local_rank}]'''
try:
# test distributed
dist.init_process_group('''nccl''')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
lowerCamelCase = dist.get_rank()
lowerCamelCase = dist.get_world_size()
printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''')
dist.barrier()
if rank == 0:
printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''')
except Exception:
printflock(f'''{gpu} is broken''')
raise
| 131 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = (DDIMParallelScheduler,)
SCREAMING_SNAKE_CASE__ : Optional[Any] = (("""eta""", 0.0), ("""num_inference_steps""", 50))
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**lowercase_ )
return config
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.scheduler_classes[0]
UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : int = scheduler_class(**lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : str = 10, 0.0
UpperCAmelCase_ : Optional[int] = self.dummy_model()
UpperCAmelCase_ : str = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for t in scheduler.timesteps:
UpperCAmelCase_ : Dict = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Dict = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
UpperCAmelCase_ : str = self.scheduler_classes[0]
UpperCAmelCase_ : List[str] = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=lowercase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=lowercase_ , eta=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0]
UpperCAmelCase_ : List[str] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.scheduler_classes[0]
UpperCAmelCase_ : Optional[int] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 10, 0.0
scheduler.set_timesteps(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.dummy_model()
UpperCAmelCase_ : List[str] = self.dummy_sample_deter
UpperCAmelCase_ : Any = self.dummy_sample_deter + 0.1
UpperCAmelCase_ : int = self.dummy_sample_deter - 0.1
UpperCAmelCase_ : List[Any] = samplea.shape[0]
UpperCAmelCase_ : int = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCAmelCase_ : int = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ )
UpperCAmelCase_ : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCAmelCase_ : Optional[Any] = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : str = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2
assert abs(result_mean.item() - 0.49_82 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.full_loop()
UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : List[str] = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 52.53_02 ) < 1E-2
assert abs(result_mean.item() - 0.06_84 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : List[str] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : Dict = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2
assert abs(result_mean.item() - 0.19_51 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : int = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2
assert abs(result_mean.item() - 0.19_41 ) < 1E-3
| 61 | 0 |
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
return "".join(chr(ord(SCREAMING_SNAKE_CASE_ ) - 32 ) if "a" <= char <= "z" else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 224 |
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"""deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class _snake_case ( lowercase__):
UpperCamelCase__ : Any ="""perceiver"""
def __init__( self : Any, __lowercase : Optional[Any]=256, __lowercase : List[str]=1280, __lowercase : Dict=768, __lowercase : int=1, __lowercase : Dict=26, __lowercase : Any=8, __lowercase : List[Any]=8, __lowercase : Dict=None, __lowercase : List[Any]=None, __lowercase : str="kv", __lowercase : str=1, __lowercase : Optional[Any]=1, __lowercase : str="gelu", __lowercase : List[str]=0.1, __lowercase : int=0.02, __lowercase : Union[str, Any]=1e-1_2, __lowercase : Optional[Any]=True, __lowercase : Optional[Any]=262, __lowercase : str=2048, __lowercase : Optional[Any]=56, __lowercase : str=[368, 496], __lowercase : str=16, __lowercase : int=1920, __lowercase : Dict=16, __lowercase : List[Any]=[1, 16, 224, 224], **__lowercase : str, ):
super().__init__(**__lowercase )
lowercase__ = num_latents
lowercase__ = d_latents
lowercase__ = d_model
lowercase__ = num_blocks
lowercase__ = num_self_attends_per_block
lowercase__ = num_self_attention_heads
lowercase__ = num_cross_attention_heads
lowercase__ = qk_channels
lowercase__ = v_channels
lowercase__ = cross_attention_shape_for_attention
lowercase__ = self_attention_widening_factor
lowercase__ = cross_attention_widening_factor
lowercase__ = hidden_act
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = use_query_residual
# masked language modeling attributes
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
# image classification attributes
lowercase__ = image_size
# flow attributes
lowercase__ = train_size
# multimodal autoencoding attributes
lowercase__ = num_frames
lowercase__ = audio_samples_per_frame
lowercase__ = samples_per_patch
lowercase__ = output_shape
class _snake_case ( lowercase__):
@property
def A__ ( self : Optional[int] ):
if self.task == "multiple-choice":
lowercase__ = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowercase__ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("inputs", dynamic_axis),
("attention_mask", dynamic_axis),
] )
@property
def A__ ( self : Optional[Any] ):
return 1e-4
def A__ ( self : Tuple, __lowercase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], __lowercase : int = -1, __lowercase : int = -1, __lowercase : int = -1, __lowercase : bool = False, __lowercase : Optional[TensorType] = None, __lowercase : int = 3, __lowercase : int = 40, __lowercase : int = 40, ):
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(__lowercase, __lowercase ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase__ = compute_effective_axis_dimension(
__lowercase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase__ = preprocessor.num_special_tokens_to_add(__lowercase )
lowercase__ = compute_effective_axis_dimension(
__lowercase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=__lowercase )
# Generate dummy inputs according to compute batch and sequence
lowercase__ = [" ".join(["a"] ) * seq_length] * batch_size
lowercase__ = dict(preprocessor(__lowercase, return_tensors=__lowercase ) )
lowercase__ = inputs.pop("input_ids" )
return inputs
elif isinstance(__lowercase, __lowercase ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase__ = compute_effective_axis_dimension(__lowercase, fixed_dimension=OnnxConfig.default_fixed_batch )
lowercase__ = self._generate_dummy_images(__lowercase, __lowercase, __lowercase, __lowercase )
lowercase__ = dict(preprocessor(images=__lowercase, return_tensors=__lowercase ) )
lowercase__ = inputs.pop("pixel_values" )
return inputs
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
| 224 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class A ( lowerCAmelCase_ ):
def __init__( self ) -> Optional[int]:
'''simple docstring'''
self.test()
def A__ ( self ) -> int:
'''simple docstring'''
lowercase__ = 0
lowercase__ = False
while not completed:
if counter == 1:
self.reset()
lowercase__ = self.advance()
if not self.does_advance(__lowerCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
lowercase__ , lowercase__ , lowercase__ = self.update(__lowerCAmelCase )
counter += 1
if counter > 10_000:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def A__ ( self ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def A__ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def A__ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def A__ ( self ) -> str:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def A__ ( self ) -> List[str]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def A__ ( self , lowerCamelCase__=False ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class A ( lowerCAmelCase_ ):
def __init__( self , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
super(__lowerCAmelCase , self ).__init__()
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or len(__lowerCAmelCase ) == 0:
raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
lowercase__ = token_ids
lowercase__ = len(self.token_ids )
lowercase__ = -1 # the index of the currently fulfilled step
lowercase__ = False
def A__ ( self ) -> str:
'''simple docstring'''
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def A__ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def A__ ( self , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' )
lowercase__ = False
lowercase__ = False
lowercase__ = False
if self.does_advance(__lowerCAmelCase ):
self.fulfilled_idx += 1
lowercase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
lowercase__ = True
lowercase__ = completed
else:
# failed to make progress.
lowercase__ = True
self.reset()
return stepped, completed, reset
def A__ ( self ) -> Optional[int]:
'''simple docstring'''
lowercase__ = False
lowercase__ = 0
def A__ ( self ) -> int:
'''simple docstring'''
return self.seqlen - (self.fulfilled_idx + 1)
def A__ ( self , lowerCamelCase__=False ) -> Optional[Any]:
'''simple docstring'''
lowercase__ = PhrasalConstraint(self.token_ids )
if stateful:
lowercase__ = self.seqlen
lowercase__ = self.fulfilled_idx
lowercase__ = self.completed
return new_constraint
class A :
def __init__( self , lowerCamelCase__ , lowerCamelCase__=True ) -> Optional[int]:
'''simple docstring'''
lowercase__ = max([len(__lowerCAmelCase ) for one in nested_token_ids] )
lowercase__ = {}
for token_ids in nested_token_ids:
lowercase__ = root
for tidx, token_id in enumerate(__lowerCAmelCase ):
if token_id not in level:
lowercase__ = {}
lowercase__ = level[token_id]
if no_subsets and self.has_subsets(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
F''' {nested_token_ids}.''' )
lowercase__ = root
def A__ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
lowercase__ = self.trie
for current_token in current_seq:
lowercase__ = start[current_token]
lowercase__ = list(start.keys() )
return next_tokens
def A__ ( self , lowerCamelCase__ ) -> Any:
'''simple docstring'''
lowercase__ = self.next_tokens(__lowerCAmelCase )
return len(__lowerCAmelCase ) == 0
def A__ ( self , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
lowercase__ = list(root.values() )
if len(__lowerCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(__lowerCAmelCase ) for nn in next_nodes] )
def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
lowercase__ = self.count_leaves(__lowerCAmelCase )
return len(__lowerCAmelCase ) != leaf_count
class A ( lowerCAmelCase_ ):
def __init__( self , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
super(__lowerCAmelCase , self ).__init__()
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or len(__lowerCAmelCase ) == 0:
raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
lowercase__ = DisjunctiveTrie(__lowerCAmelCase )
lowercase__ = nested_token_ids
lowercase__ = self.trie.max_height
lowercase__ = []
lowercase__ = False
def A__ ( self ) -> Tuple:
'''simple docstring'''
lowercase__ = self.trie.next_tokens(self.current_seq )
if len(__lowerCAmelCase ) == 0:
return None
else:
return token_list
def A__ ( self , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' )
lowercase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def A__ ( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' )
lowercase__ = False
lowercase__ = False
lowercase__ = False
if self.does_advance(__lowerCAmelCase ):
self.current_seq.append(__lowerCAmelCase )
lowercase__ = True
else:
lowercase__ = True
self.reset()
lowercase__ = self.trie.reached_leaf(self.current_seq )
lowercase__ = completed
return stepped, completed, reset
def A__ ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase__ = False
lowercase__ = []
def A__ ( self ) -> Dict:
'''simple docstring'''
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def A__ ( self , lowerCamelCase__=False ) -> Optional[Any]:
'''simple docstring'''
lowercase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
lowercase__ = self.seqlen
lowercase__ = self.current_seq
lowercase__ = self.completed
return new_constraint
class A :
def __init__( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
lowercase__ = constraints
# max # of steps required to fulfill a given constraint
lowercase__ = max([c.seqlen for c in constraints] )
lowercase__ = len(__lowerCAmelCase )
lowercase__ = False
self.init_state()
def A__ ( self ) -> int:
'''simple docstring'''
lowercase__ = []
lowercase__ = None
lowercase__ = [constraint.copy(stateful=__lowerCAmelCase ) for constraint in self.constraints]
def A__ ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def A__ ( self ) -> Any:
'''simple docstring'''
lowercase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
lowercase__ = constraint.advance()
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
token_list.append(__lowerCAmelCase )
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
token_list.extend(__lowerCAmelCase )
else:
lowercase__ = self.inprogress_constraint.advance()
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
token_list.append(__lowerCAmelCase )
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
token_list.extend(__lowerCAmelCase )
if len(__lowerCAmelCase ) == 0:
return None
else:
return token_list
def A__ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
lowercase__ , lowercase__ = self.add(__lowerCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def A__ ( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' )
lowercase__ , lowercase__ = False, False
if self.completed:
lowercase__ = True
lowercase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
lowercase__ , lowercase__ , lowercase__ = self.inprogress_constraint.update(__lowerCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowerCAmelCase ) )
lowercase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
lowercase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
lowercase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(__lowerCAmelCase ):
lowercase__ , lowercase__ , lowercase__ = pending_constraint.update(__lowerCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(__lowerCAmelCase )
lowercase__ = None
if not complete and stepped:
lowercase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
lowercase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
lowercase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def A__ ( self , lowerCamelCase__=True ) -> List[Any]:
'''simple docstring'''
lowercase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
lowercase__ = [
constraint.copy(stateful=__lowerCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
lowercase__ = self.inprogress_constraint.copy(stateful=__lowerCAmelCase )
lowercase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 164 |
"""simple docstring"""
import requests
UpperCAmelCase__ = """""" # <-- Put your OpenWeatherMap appid here!
UpperCAmelCase__ = """https://api.openweathermap.org/data/2.5/"""
def __UpperCAmelCase ( lowercase = "Chicago" ,lowercase = APPID ):
"""simple docstring"""
return requests.get(URL_BASE + """weather""" ,params=locals() ).json()
def __UpperCAmelCase ( lowercase = "Kolkata, India" ,lowercase = APPID ):
"""simple docstring"""
return requests.get(URL_BASE + """forecast""" ,params=locals() ).json()
def __UpperCAmelCase ( lowercase = 55.68 ,lowercase = 12.57 ,lowercase = APPID ):
"""simple docstring"""
return requests.get(URL_BASE + """onecall""" ,params=locals() ).json()
if __name__ == "__main__":
from pprint import pprint
while True:
UpperCAmelCase__ = input("""Enter a location:""").strip()
if location:
pprint(current_weather(location))
else:
break
| 289 | 0 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("""Googling.....""")
lowerCamelCase_ : Any = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:])
lowerCamelCase_ : Any = requests.get(url, headers={"""UserAgent""": UserAgent().random})
# res.raise_for_status()
with open("""project1a.html""", """wb""") as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCamelCase_ : Optional[int] = BeautifulSoup(res.text, """html.parser""")
lowerCamelCase_ : List[Any] = list(soup.select(""".eZt8xd"""))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("""href"""))
else:
webbrowser.open(F"""https://google.com{link.get('href')}""")
| 223 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase_ : Optional[int] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""}
class _UpperCamelCase ( _A ):
'''simple docstring'''
__UpperCamelCase : int = """ctrl"""
__UpperCamelCase : Dict = ["""past_key_values"""]
__UpperCamelCase : List[str] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Dict , snake_case_ : Any=24_6534 , snake_case_ : Dict=256 , snake_case_ : str=1280 , snake_case_ : Optional[int]=8192 , snake_case_ : Union[str, Any]=48 , snake_case_ : Any=16 , snake_case_ : Optional[int]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Any=1e-6 , snake_case_ : Optional[Any]=0.02 , snake_case_ : Optional[int]=True , **snake_case_ : Union[str, Any] , ):
UpperCamelCase_: Union[str, Any] = vocab_size
UpperCamelCase_: Union[str, Any] = n_positions
UpperCamelCase_: Optional[int] = n_embd
UpperCamelCase_: int = n_layer
UpperCamelCase_: str = n_head
UpperCamelCase_: Optional[int] = dff
UpperCamelCase_: Optional[Any] = resid_pdrop
UpperCamelCase_: Union[str, Any] = embd_pdrop
UpperCamelCase_: List[str] = layer_norm_epsilon
UpperCamelCase_: Optional[Any] = initializer_range
UpperCamelCase_: Optional[Any] = use_cache
super().__init__(**snake_case_ )
| 223 | 1 |
"""simple docstring"""
from torch import nn
class __UpperCamelCase ( nn.Module ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]:
super().__init__()
a : Optional[Any] = class_size
a : Any = embed_size
# self.mlp1 = nn.Linear(embed_size, embed_size)
# self.mlp2 = (nn.Linear(embed_size, class_size))
a : Optional[Any] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( self , lowerCAmelCase__ ) -> str:
# hidden_state = nn.functional.relu(self.mlp1(hidden_state))
# hidden_state = self.mlp2(hidden_state)
a : List[Any] = self.mlp(lowerCAmelCase__ )
return logits
| 105 |
'''simple docstring'''
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int:
while second != 0:
__lowerCamelCase = first & second
first ^= second
__lowerCamelCase = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase =int(input("Enter the first number: ").strip())
__UpperCAmelCase =int(input("Enter the second number: ").strip())
print(f'{add(first, second) = }')
| 67 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=400 , __a=True , __a=None , __a=True , ):
'''simple docstring'''
__a : List[Any] = size if size is not None else {'height': 18, 'width': 18}
__a : int = parent
__a : Dict = batch_size
__a : Optional[int] = num_channels
__a : List[Any] = image_size
__a : Tuple = min_resolution
__a : str = max_resolution
__a : str = do_resize
__a : Optional[Any] = size
__a : str = apply_ocr
def __UpperCAmelCase ( self ):
'''simple docstring'''
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ):
A_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Dict = LayoutLMvaImageProcessingTester(self )
@property
def __UpperCAmelCase ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__a , 'do_resize' ) )
self.assertTrue(hasattr(__a , 'size' ) )
self.assertTrue(hasattr(__a , 'apply_ocr' ) )
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__a : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def __UpperCAmelCase ( self ):
'''simple docstring'''
pass
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a )
for image in image_inputs:
self.assertIsInstance(__a , Image.Image )
# Test not batched input
__a : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , __a )
self.assertIsInstance(encoding.boxes , __a )
# Test batched
__a : Any = image_processing(__a , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a )
for image in image_inputs:
self.assertIsInstance(__a , np.ndarray )
# Test not batched input
__a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__a : Tuple = image_processing(__a , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a )
for image in image_inputs:
self.assertIsInstance(__a , torch.Tensor )
# Test not batched input
__a : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__a : List[str] = image_processing(__a , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : List[str] = LayoutLMvaImageProcessor()
from datasets import load_dataset
__a : str = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__a : Tuple = Image.open(ds[0]['file'] ).convert('RGB' )
__a : Optional[Any] = image_processing(__a , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__a : Optional[Any] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__a : Union[str, Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __a )
self.assertListEqual(encoding.boxes , __a )
# with apply_OCR = False
__a : List[Any] = LayoutLMvaImageProcessor(apply_ocr=__a )
__a : List[Any] = image_processing(__a , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
| 294 |
'''simple docstring'''
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
__lowercase : List[Any] = {
'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json',
'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json',
}
class __UpperCamelCase ( lowerCAmelCase_ ):
A_ = "ernie_m"
A_ = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self , __a = 25_0002 , __a = 768 , __a = 12 , __a = 12 , __a = 3072 , __a = "gelu" , __a = 0.1 , __a = 0.1 , __a = 514 , __a = 0.02 , __a = 1 , __a = 1E-0_5 , __a=None , __a=False , __a=0.0 , **__a , ):
'''simple docstring'''
super().__init__(pad_token_id=__a , **__a )
__a : int = vocab_size
__a : Dict = hidden_size
__a : str = num_hidden_layers
__a : Dict = num_attention_heads
__a : List[str] = intermediate_size
__a : Union[str, Any] = hidden_act
__a : List[Any] = hidden_dropout_prob
__a : str = attention_probs_dropout_prob
__a : Any = max_position_embeddings
__a : int = initializer_range
__a : Dict = layer_norm_eps
__a : int = classifier_dropout
__a : Dict = is_decoder
__a : int = act_dropout
| 294 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = XGLMConfig
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {}
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu"""
def __init__( self , lowercase_ , lowercase_=14 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.02 , ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = parent
UpperCAmelCase_ : Tuple = batch_size
UpperCAmelCase_ : Optional[int] = seq_length
UpperCAmelCase_ : Union[str, Any] = is_training
UpperCAmelCase_ : List[Any] = use_input_mask
UpperCAmelCase_ : Tuple = use_labels
UpperCAmelCase_ : List[Any] = vocab_size
UpperCAmelCase_ : Union[str, Any] = d_model
UpperCAmelCase_ : Optional[int] = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : List[Any] = ffn_dim
UpperCAmelCase_ : int = activation_function
UpperCAmelCase_ : List[str] = activation_dropout
UpperCAmelCase_ : List[Any] = attention_dropout
UpperCAmelCase_ : List[str] = max_position_embeddings
UpperCAmelCase_ : Optional[Any] = initializer_range
UpperCAmelCase_ : Optional[Any] = None
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : List[str] = 2
UpperCAmelCase_ : Tuple = 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
UpperCAmelCase_ : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : Union[str, Any] = self.get_config()
UpperCAmelCase_ : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def UpperCamelCase__ ( self ):
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Any = config_and_inputs
UpperCAmelCase_ : List[str] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ : Tuple = (TFXGLMForCausalLM,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ : List[str] = (
{"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {}
)
SCREAMING_SNAKE_CASE__ : List[str] = False
SCREAMING_SNAKE_CASE__ : List[str] = False
SCREAMING_SNAKE_CASE__ : Tuple = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = TFXGLMModelTester(self )
UpperCAmelCase_ : Dict = ConfigTester(self , config_class=lowercase_ , n_embd=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Union[str, Any] = TFXGLMModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A_ (unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ ( self , lowercase_=True ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
UpperCAmelCase_ : Union[str, Any] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
UpperCAmelCase_ : Tuple = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581]
# fmt: on
UpperCAmelCase_ : List[str] = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
UpperCAmelCase_ : Any = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer("Today is a nice day and" , return_tensors="tf" )
UpperCAmelCase_ : Optional[Any] = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
UpperCAmelCase_ : List[Any] = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] )
UpperCAmelCase_ : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ )
UpperCAmelCase_ : Dict = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowercase_ , lowercase_ )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Any = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
UpperCAmelCase_ : Tuple = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
UpperCAmelCase_ : Any = "left"
# use different length sentences to test batching
UpperCAmelCase_ : List[str] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
UpperCAmelCase_ : List[Any] = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ )
UpperCAmelCase_ : Optional[int] = inputs["input_ids"]
UpperCAmelCase_ : Union[str, Any] = model.generate(input_ids=lowercase_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 )
UpperCAmelCase_ : Optional[int] = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
UpperCAmelCase_ : Optional[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 )
UpperCAmelCase_ : List[str] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
UpperCAmelCase_ : List[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 )
UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
UpperCAmelCase_ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
UpperCAmelCase_ : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
UpperCAmelCase_ : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
| 61 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : Dict = {"vocab_file": "vocab.txt"}
_lowerCamelCase : List[str] = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase : List[Any] = {
"facebook/esm2_t6_8M_UR50D": 1_0_2_4,
"facebook/esm2_t12_35M_UR50D": 1_0_2_4,
}
def a__ ( UpperCAmelCase : List[str] ) -> Any:
with open(UpperCAmelCase , '''r''' ) as f:
UpperCAmelCase : Dict = f.read().splitlines()
return [l.strip() for l in lines]
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ):
super().__init__(**__A )
UpperCAmelCase : Tuple = load_vocab_file(__A )
UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) )
UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase : Union[str, Any] = unk_token
UpperCAmelCase : Optional[Any] = cls_token
UpperCAmelCase : Optional[int] = pad_token
UpperCAmelCase : Optional[int] = mask_token
UpperCAmelCase : List[str] = eos_token
UpperCAmelCase : Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __magic_name__ ( self : Tuple, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : List[Any], __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ):
return text.split()
def __magic_name__ ( self : Optional[int], __A : Dict=False ):
return len(self._id_to_token )
def __magic_name__ ( self : int ):
return {token: i for i, token in enumerate(self.all_tokens )}
def __magic_name__ ( self : Tuple, __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ):
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
mask += [0] * len(__A ) + [1]
return mask
def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ):
UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(__A, '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __magic_name__ ( self : Dict ):
return self.get_vocab_size(with_added_tokens=__A )
def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ):
return super()._add_tokens(__A, special_tokens=__A )
| 336 | 0 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case_ : List[Any] = logging.get_logger(__name__)
snake_case_ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all BART models at https://huggingface.co/models?filter=bart
snake_case_ : Union[str, Any] = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
}
snake_case_ : Any = {
'facebook/bart-base': 1024,
'facebook/bart-large': 1024,
'facebook/bart-large-mnli': 1024,
'facebook/bart-large-cnn': 1024,
'facebook/bart-large-xsum': 1024,
'yjernite/bart_eli5': 1024,
}
@lru_cache()
def A__ ( ):
_UpperCamelCase : str = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
_UpperCamelCase : Any = bs[:]
_UpperCamelCase : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(UpperCAmelCase_ )
cs.append(2**8 + n )
n += 1
_UpperCamelCase : Any = [chr(UpperCAmelCase_ ) for n in cs]
return dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) )
def A__ ( UpperCAmelCase_ ):
_UpperCamelCase : Tuple = set()
_UpperCamelCase : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_UpperCamelCase : Any = char
return pairs
class lowercase__ ( lowercase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[int] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]="replace" ,lowerCamelCase__ : str="<s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : Any="<s>" ,lowerCamelCase__ : Tuple="<unk>" ,lowerCamelCase__ : List[str]="<pad>" ,lowerCamelCase__ : Optional[Any]="<mask>" ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : List[str] ,):
'''simple docstring'''
_UpperCamelCase : Dict = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else bos_token
_UpperCamelCase : Tuple = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token
_UpperCamelCase : Optional[int] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else sep_token
_UpperCamelCase : Tuple = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else cls_token
_UpperCamelCase : Union[str, Any] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token
_UpperCamelCase : List[str] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase : str = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token
super().__init__(
errors=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,add_prefix_space=lowerCamelCase__ ,**lowerCamelCase__ ,)
with open(lowerCamelCase__ ,encoding='utf-8' ) as vocab_handle:
_UpperCamelCase : List[str] = json.load(lowerCamelCase__ )
_UpperCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()}
_UpperCamelCase : Optional[Any] = errors # how to handle errors in decoding
_UpperCamelCase : Tuple = bytes_to_unicode()
_UpperCamelCase : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase__ ,encoding='utf-8' ) as merges_handle:
_UpperCamelCase : Dict = merges_handle.read().split('\n' )[1:-1]
_UpperCamelCase : str = [tuple(merge.split() ) for merge in bpe_merges]
_UpperCamelCase : Dict = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) )
_UpperCamelCase : Tuple = {}
_UpperCamelCase : List[Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_UpperCamelCase : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Any ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
_UpperCamelCase : Dict = tuple(lowerCamelCase__ )
_UpperCamelCase : List[str] = get_pairs(lowerCamelCase__ )
if not pairs:
return token
while True:
_UpperCamelCase : List[str] = min(lowerCamelCase__ ,key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_UpperCamelCase , _UpperCamelCase : int = bigram
_UpperCamelCase : Optional[int] = []
_UpperCamelCase : Dict = 0
while i < len(lowerCamelCase__ ):
try:
_UpperCamelCase : int = word.index(lowerCamelCase__ ,lowerCamelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_UpperCamelCase : Dict = j
if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_UpperCamelCase : int = tuple(lowerCamelCase__ )
_UpperCamelCase : Union[str, Any] = new_word
if len(lowerCamelCase__ ) == 1:
break
else:
_UpperCamelCase : Any = get_pairs(lowerCamelCase__ )
_UpperCamelCase : int = ' '.join(lowerCamelCase__ )
_UpperCamelCase : List[Any] = word
return word
def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[Any] ):
'''simple docstring'''
_UpperCamelCase : int = []
for token in re.findall(self.pat ,lowerCamelCase__ ):
_UpperCamelCase : int = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) )
return bpe_tokens
def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : List[Any] ):
'''simple docstring'''
return self.encoder.get(lowerCamelCase__ ,self.encoder.get(self.unk_token ) )
def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : int ):
'''simple docstring'''
return self.decoder.get(lowerCamelCase__ )
def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Any ):
'''simple docstring'''
_UpperCamelCase : Dict = ''.join(lowerCamelCase__ )
_UpperCamelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors )
return text
def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_UpperCamelCase : List[Any] = os.path.join(
lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_UpperCamelCase : Union[str, Any] = os.path.join(
lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase__ ,ensure_ascii=lowerCamelCase__ ) + '\n' )
_UpperCamelCase : Optional[Any] = 0
with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!' )
_UpperCamelCase : int = token_index
writer.write(' '.join(lowerCamelCase__ ) + '\n' )
index += 1
return vocab_file, merge_file
def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase : Optional[Any] = [self.cls_token_id]
_UpperCamelCase : str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase__ )) + [1]
return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1]
def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ):
'''simple docstring'''
_UpperCamelCase : Tuple = [self.sep_token_id]
_UpperCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : Optional[int] ):
'''simple docstring'''
_UpperCamelCase : Tuple = kwargs.pop('add_prefix_space' ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()):
_UpperCamelCase : List[str] = ' ' + text
return (text, kwargs)
| 236 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
snake_case_ : List[str] = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
snake_case_ : Tuple = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
snake_case_ : str = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
snake_case_ : str = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
snake_case_ : List[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' ) ),
'references': datasets.Value('string' ),
} ) ,homepage='https://github.com/openai/human-eval' ,codebase_urls=['https://github.com/openai/human-eval'] ,reference_urls=['https://github.com/openai/human-eval'] ,license=_LICENSE ,)
def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any]=[1, 10, 100] ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : List[Any]=3.0 ):
'''simple docstring'''
if os.getenv('HF_ALLOW_CODE_EVAL' ,0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError('This metric is currently not supported on Windows.' )
with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor:
_UpperCamelCase : Optional[int] = []
_UpperCamelCase : Optional[int] = Counter()
_UpperCamelCase : int = 0
_UpperCamelCase : Dict = defaultdict(lowerCamelCase__ )
for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ ,lowerCamelCase__ ) ):
for candidate in candidates:
_UpperCamelCase : int = candidate + '\n' + test_case
_UpperCamelCase : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id])
_UpperCamelCase : Dict = executor.submit(lowerCamelCase__ ,*lowerCamelCase__ )
futures.append(lowerCamelCase__ )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(lowerCamelCase__ ):
_UpperCamelCase : Dict = future.result()
results[result["task_id"]].append((result['completion_id'], result) )
_UpperCamelCase , _UpperCamelCase : List[str] = [], []
for result in results.values():
result.sort()
_UpperCamelCase : Optional[Any] = [r[1]['passed'] for r in result]
total.append(len(lowerCamelCase__ ) )
correct.append(sum(lowerCamelCase__ ) )
_UpperCamelCase : List[str] = np.array(lowerCamelCase__ )
_UpperCamelCase : List[Any] = np.array(lowerCamelCase__ )
_UpperCamelCase : Tuple = k
_UpperCamelCase : Tuple = {F'pass@{k}': estimate_pass_at_k(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
def estimator(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase : int = itertools.repeat(UpperCAmelCase_ , len(UpperCAmelCase_ ) )
else:
assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ )
_UpperCamelCase : Optional[Any] = iter(UpperCAmelCase_ )
return np.array([estimator(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , UpperCAmelCase_ ) for n, c in zip(UpperCAmelCase_ , UpperCAmelCase_ )] )
| 236 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_3 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : List[Any]=3 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : List[Any]=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE_ : List[Any]=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Tuple=3_7 , SCREAMING_SNAKE_CASE_ : int="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE_ : List[Any]=[2, 3, 4] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , ):
lowerCAmelCase_ : Tuple = parent
lowerCAmelCase_ : int = batch_size
lowerCAmelCase_ : List[str] = image_size
lowerCAmelCase_ : List[Any] = num_channels
lowerCAmelCase_ : Tuple = num_stages
lowerCAmelCase_ : Optional[int] = hidden_sizes
lowerCAmelCase_ : int = depths
lowerCAmelCase_ : Tuple = is_training
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : List[str] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = num_labels
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[Any] = out_features
lowerCAmelCase_ : Optional[Any] = out_indices
lowerCAmelCase_ : Optional[int] = scope
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[Any] = None
if self.use_labels:
lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase_ : Dict = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ):
lowerCAmelCase_ : Tuple = ConvNextModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCAmelCase_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ):
lowerCAmelCase_ : Optional[int] = ConvNextForImageClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ):
lowerCAmelCase_ : int = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCAmelCase_ : Optional[int] = model(SCREAMING_SNAKE_CASE_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowerCAmelCase_ : List[str] = None
lowerCAmelCase_ : Any = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCAmelCase_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : Any = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE = True
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
def SCREAMING_SNAKE_CASE__ ( self : int ):
lowerCAmelCase_ : List[str] = ConvNextModelTester(self )
lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
return
@unittest.skip(reason='ConvNext does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
pass
@unittest.skip(reason='ConvNext does not support input and output embeddings' )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
pass
@unittest.skip(reason='ConvNext does not use feedforward chunking' )
def SCREAMING_SNAKE_CASE__ ( self : str ):
pass
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
lowerCAmelCase_ ,lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ):
lowerCAmelCase_ : int = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
lowerCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
lowerCAmelCase_ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase_ : int = self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase_ : Dict = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : int ):
lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Optional[Any] = ConvNextModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase_ ( ) -> List[str]:
"""simple docstring"""
lowerCAmelCase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : int ):
return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowerCAmelCase_ : Optional[Any] = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Union[str, Any] = self.default_image_processor
lowerCAmelCase_ : Union[str, Any] = prepare_img()
lowerCAmelCase_ : Any = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
lowerCAmelCase_ : Optional[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Optional[int] = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
@require_torch
class UpperCamelCase__ ( unittest.TestCase, lowercase_ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = (ConvNextBackbone,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE = ConvNextConfig
_SCREAMING_SNAKE_CASE = False
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
lowerCAmelCase_ : List[str] = ConvNextModelTester(self )
| 224 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : Any=3_2 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_0 , SCREAMING_SNAKE_CASE_ : Dict=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE_ : int=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : int="relu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : List[str]=None , ):
lowerCAmelCase_ : Optional[int] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Optional[int] = image_size
lowerCAmelCase_ : Optional[int] = num_channels
lowerCAmelCase_ : Any = embeddings_size
lowerCAmelCase_ : Dict = hidden_sizes
lowerCAmelCase_ : Any = depths
lowerCAmelCase_ : Optional[int] = is_training
lowerCAmelCase_ : int = use_labels
lowerCAmelCase_ : List[Any] = hidden_act
lowerCAmelCase_ : Dict = num_labels
lowerCAmelCase_ : Optional[int] = scope
lowerCAmelCase_ : Tuple = len(SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
lowerCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Union[str, Any] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase_ : List[str] = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self : str ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ):
lowerCAmelCase_ : List[Any] = TFRegNetModel(config=SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
lowerCAmelCase_ : int = self.num_labels
lowerCAmelCase_ : int = TFRegNetForImageClassification(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Dict = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
lowerCAmelCase_ : str = self.prepare_config_and_inputs()
lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
_SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification}
if is_tf_available()
else {}
)
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowerCAmelCase_ : List[Any] = TFRegNetModelTester(self )
lowerCAmelCase_ : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
return
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
super().test_keras_fit()
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self : int ):
lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : int = model_class(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Dict = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[Any] = [*signature.parameters.keys()]
lowerCAmelCase_ : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ):
lowerCAmelCase_ : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase_ : Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Optional[int] = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowerCAmelCase_ : str = layer_type
lowerCAmelCase_ : List[str] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase_ : List[str] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
lowerCAmelCase_ ,lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str={} ):
lowerCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , msg=(
'Tuple and dict output are not equal. Difference:'
F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
lowerCAmelCase_ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : int = TFRegNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase_ ( ) -> List[str]:
"""simple docstring"""
lowerCAmelCase_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowerCAmelCase_ : int = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Dict = prepare_img()
lowerCAmelCase_ : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' )
# forward pass
lowerCAmelCase_ : List[str] = model(**SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )
# verify the logits
lowerCAmelCase_ : Optional[Any] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[Any] = tf.constant([-0.41_80, -1.50_51, -3.48_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 )
| 224 | 1 |
"""simple docstring"""
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
A__ : Any = True
except ImportError:
A__ : Optional[Any] = False
A__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _snake_case ( lowerCamelCase__ : Namespace ) -> Dict:
return AddNewModelCommand(args.testing , args.testing_file , path=args.path )
class lowercase__ ( snake_case__ ):
@staticmethod
def UpperCAmelCase__ ( snake_case__ : List[str] ):
lowerCamelCase_ : Any =parser.add_parser("add-new-model" )
add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." )
add_new_model_parser.add_argument("--testing_file" , type=_a , help="Configuration file on which to run." )
add_new_model_parser.add_argument(
"--path" , type=_a , help="Path to cookiecutter. Should only be used for testing purposes." )
add_new_model_parser.set_defaults(func=_a )
def __init__( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str]=None , *snake_case__ : List[Any] ):
lowerCamelCase_ : Dict =testing
lowerCamelCase_ : Tuple =testing_file
lowerCamelCase_ : int =path
def UpperCAmelCase__ ( self : Optional[Any] ):
warnings.warn(
"The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. "
"It is not actively maintained anymore, so might give a result that won't pass all tests and quality "
"checks, you should use `transformers-cli add-new-model-like` instead." )
if not _has_cookiecutter:
raise ImportError(
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
"the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" )
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
lowerCamelCase_ : Any =[directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]]
if len(_a ) > 0:
raise ValueError(
"Several directories starting with `cookiecutter-template-` in current working directory. "
"Please clean your directory by removing all folders starting with `cookiecutter-template-` or "
"change your working directory." )
lowerCamelCase_ : Tuple =(
Path(_a ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent
)
lowerCamelCase_ : List[Any] =path_to_transformer_root / "templates" / "adding_a_new_model"
# Execute cookiecutter
if not self._testing:
cookiecutter(str(_a ) )
else:
with open(self._testing_file , "r" ) as configuration_file:
lowerCamelCase_ : int =json.load(_a )
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path ) , no_input=_a , extra_context=_a , )
lowerCamelCase_ : Optional[Any] =[directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0]
# Retrieve configuration
with open(directory + "/configuration.json" , "r" ) as configuration_file:
lowerCamelCase_ : Any =json.load(_a )
lowerCamelCase_ : Tuple =configuration["lowercase_modelname"]
lowerCamelCase_ : Optional[Any] =configuration["generate_tensorflow_pytorch_and_flax"]
os.remove(F"""{directory}/configuration.json""" )
lowerCamelCase_ : List[Any] ="PyTorch" in generate_tensorflow_pytorch_and_flax
lowerCamelCase_ : int ="TensorFlow" in generate_tensorflow_pytorch_and_flax
lowerCamelCase_ : List[Any] ="Flax" in generate_tensorflow_pytorch_and_flax
lowerCamelCase_ : Tuple =F"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"""
os.makedirs(_a , exist_ok=_a )
os.makedirs(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=_a )
# Tests require submodules as they have parent imports
with open(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , "w" ):
pass
shutil.move(
F"""{directory}/__init__.py""" , F"""{model_dir}/__init__.py""" , )
shutil.move(
F"""{directory}/configuration_{lowercase_model_name}.py""" , F"""{model_dir}/configuration_{lowercase_model_name}.py""" , )
def remove_copy_lines(snake_case__ : Any ):
with open(_a , "r" ) as f:
lowerCamelCase_ : int =f.readlines()
with open(_a , "w" ) as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(_a )
if output_pytorch:
if not self._testing:
remove_copy_lines(F"""{directory}/modeling_{lowercase_model_name}.py""" )
shutil.move(
F"""{directory}/modeling_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_{lowercase_model_name}.py""" , )
shutil.move(
F"""{directory}/test_modeling_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , )
else:
os.remove(F"""{directory}/modeling_{lowercase_model_name}.py""" )
os.remove(F"""{directory}/test_modeling_{lowercase_model_name}.py""" )
if output_tensorflow:
if not self._testing:
remove_copy_lines(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
shutil.move(
F"""{directory}/modeling_tf_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , )
shutil.move(
F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , )
else:
os.remove(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
os.remove(F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" )
if output_flax:
if not self._testing:
remove_copy_lines(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
F"""{directory}/modeling_flax_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , )
shutil.move(
F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , )
else:
os.remove(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
os.remove(F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
F"""{directory}/{lowercase_model_name}.md""" , F"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , )
shutil.move(
F"""{directory}/tokenization_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}.py""" , )
shutil.move(
F"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , )
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any] ):
# Create temp file
lowerCamelCase_ : List[str] =mkstemp()
lowerCamelCase_ : Tuple =False
with fdopen(_a , "w" ) as new_file:
with open(_a ) as old_file:
for line in old_file:
new_file.write(_a )
if line_to_copy_below in line:
lowerCamelCase_ : str =True
for line_to_copy in lines_to_copy:
new_file.write(_a )
if not line_found:
raise ValueError(F"""Line {line_to_copy_below} was not found in file.""" )
# Copy the file permissions from the old file to the new file
copymode(_a , _a )
# Remove original file
remove(_a )
# Move new file
move(_a , _a )
def skip_units(snake_case__ : List[str] ):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(snake_case__ : Optional[Any] ):
with open(_a ) as datafile:
lowerCamelCase_ : Tuple =[]
lowerCamelCase_ : str =False
lowerCamelCase_ : Tuple =False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
lowerCamelCase_ : int =line.split("\"" )[1]
lowerCamelCase_ : Optional[Any] =skip_units(_a )
elif "# Below: " in line and "##" not in line:
lowerCamelCase_ : Any =line.split("\"" )[1]
lowerCamelCase_ : str =skip_units(_a )
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(_a , _a , _a )
lowerCamelCase_ : Optional[Any] =[]
elif "# Replace with" in line and "##" not in line:
lowerCamelCase_ : Dict =[]
elif "##" not in line:
lines_to_copy.append(_a )
remove(_a )
replace_in_files(F"""{directory}/to_replace_{lowercase_model_name}.py""" )
os.rmdir(_a )
| 369 |
"""simple docstring"""
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
A__ : int = {
'n_samples': 64,
'horizon': 32,
'num_inference_steps': 20,
'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network
'scale_grad_by_std': True,
'scale': 0.1,
'eta': 0.0,
't_grad_cutoff': 2,
'device': 'cpu',
}
if __name__ == "__main__":
A__ : str = 'hopper-medium-v2'
A__ : Dict = gym.make(env_name)
A__ : List[Any] = ValueGuidedRLPipeline.from_pretrained(
'bglick13/hopper-medium-v2-value-function-hor32',
env=env,
)
env.seed(0)
A__ : Dict = env.reset()
A__ : Optional[int] = 0
A__ : str = 0
A__ : List[Any] = 1_000
A__ : Tuple = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
A__ : Union[str, Any] = pipeline(obs, planning_horizon=32)
# execute action in environment
A__ , A__ , A__ , A__ : Any = env.step(denorm_actions)
A__ : List[Any] = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:'
f' {total_score}'
)
# save observations for rendering
rollout.append(next_observation.copy())
A__ : Optional[Any] = next_observation
except KeyboardInterrupt:
pass
print(f'Total reward: {total_reward}')
| 209 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def UpperCAmelCase_ ( __lowerCamelCase : Tuple ,__lowerCamelCase : List[str] ,__lowerCamelCase : List[Any] ):
# Construct model
if gpta_config_file == "":
lowercase_ :Optional[int] = GPTaConfig()
else:
lowercase_ :List[str] = GPTaConfig.from_json_file(__lowerCamelCase )
lowercase_ :Dict = GPTaModel(__lowerCamelCase )
# Load weights from numpy
load_tf_weights_in_gpta(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
# Save pytorch-model
lowercase_ :Tuple = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
lowercase_ :int = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() ,__lowerCamelCase )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase : List[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--gpt2_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
lowerCAmelCase : Optional[int] =parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 223 |
'''simple docstring'''
import math
def UpperCAmelCase_ ( __lowerCamelCase : int ):
lowercase_ :Dict = []
lowercase_ :List[Any] = 2
lowercase_ :Optional[Any] = int(math.sqrt(__lowerCamelCase ) ) # Size of every segment
lowercase_ :Optional[Any] = [True] * (end + 1)
lowercase_ :Dict = []
while start <= end:
if temp[start] is True:
in_prime.append(__lowerCamelCase )
for i in range(start * start ,end + 1 ,__lowerCamelCase ):
lowercase_ :List[str] = False
start += 1
prime += in_prime
lowercase_ :Dict = end + 1
lowercase_ :Dict = min(2 * end ,__lowerCamelCase )
while low <= n:
lowercase_ :Any = [True] * (high - low + 1)
for each in in_prime:
lowercase_ :List[Any] = math.floor(low / each ) * each
if t < low:
t += each
for j in range(__lowerCamelCase ,high + 1 ,__lowerCamelCase ):
lowercase_ :str = False
for j in range(len(__lowerCamelCase ) ):
if temp[j] is True:
prime.append(j + low )
lowercase_ :Dict = high + 1
lowercase_ :Dict = min(high + end ,__lowerCamelCase )
return prime
print(sieve(10**6))
| 223 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
lowercase : List[str] = logging.get_logger(__name__)
class __UpperCAmelCase ( _lowerCamelCase ):
def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
warnings.warn(
'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use LayoutLMv2ImageProcessor instead.' , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 160 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def SCREAMING_SNAKE_CASE__ ( __A , __A=1_000 ) -> str:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
_snake_case = n - 1
_snake_case = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
_snake_case = 0
while count < prec:
_snake_case = random.randint(2 , n - 1 )
_snake_case = bin_exp_mod(__A , __A , __A )
if b != 1:
_snake_case = True
for _ in range(__A ):
if b == n - 1:
_snake_case = False
break
_snake_case = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
lowercase : Optional[int] = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 160 | 1 |
"""simple docstring"""
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
_snake_case = logging.get_logger(__name__)
# General docstring
_snake_case = 'MobileNetV1Config'
# Base docstring
_snake_case = 'google/mobilenet_v1_1.0_224'
_snake_case = [1, 1024, 7, 7]
# Image classification docstring
_snake_case = 'google/mobilenet_v1_1.0_224'
_snake_case = 'tabby, tabby cat'
_snake_case = [
'google/mobilenet_v1_1.0_224',
'google/mobilenet_v1_0.75_192',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ):
'''simple docstring'''
_a : Optional[int] = {}
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_a : Dict = model.mobilenet_va
else:
_a : Optional[Any] = model
_a : int = """MobilenetV1/Conv2d_0/"""
_a : Any = backbone.conv_stem.convolution.weight
_a : str = backbone.conv_stem.normalization.bias
_a : Any = backbone.conv_stem.normalization.weight
_a : Any = backbone.conv_stem.normalization.running_mean
_a : int = backbone.conv_stem.normalization.running_var
for i in range(1_3 ):
_a : int = i + 1
_a : Optional[int] = i * 2
_a : Optional[Any] = backbone.layer[pt_index]
_a : List[str] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/"""
_a : Any = pointer.convolution.weight
_a : Dict = pointer.normalization.bias
_a : Tuple = pointer.normalization.weight
_a : Optional[Any] = pointer.normalization.running_mean
_a : int = pointer.normalization.running_var
_a : Optional[int] = backbone.layer[pt_index + 1]
_a : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/"""
_a : Optional[int] = pointer.convolution.weight
_a : str = pointer.normalization.bias
_a : Optional[Any] = pointer.normalization.weight
_a : Any = pointer.normalization.running_mean
_a : Union[str, Any] = pointer.normalization.running_var
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_a : Optional[int] = """MobilenetV1/Logits/Conv2d_1c_1x1/"""
_a : Any = model.classifier.weight
_a : Union[str, Any] = model.classifier.bias
return tf_to_pt_map
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"""Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """
"""https://www.tensorflow.org/install/ for installation instructions.""" )
raise
# Load weights from TF model
_a : List[str] = tf.train.list_variables(UpperCamelCase__ )
_a : List[Any] = {}
for name, shape in init_vars:
logger.info(F"""Loading TF weight {name} with shape {shape}""" )
_a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ )
_a : int = array
# Build TF to PyTorch weights loading map
_a : Optional[Any] = _build_tf_to_pytorch_map(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for name, pointer in tf_to_pt_map.items():
logger.info(F"""Importing {name}""" )
if name not in tf_weights:
logger.info(F"""{name} not in tf pre-trained weights, skipping""" )
continue
_a : Optional[int] = tf_weights[name]
if "depthwise_weights" in name:
logger.info("""Transposing depthwise""" )
_a : Tuple = np.transpose(UpperCamelCase__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info("""Transposing""" )
if len(pointer.shape ) == 2: # copying into linear layer
_a : List[Any] = array.squeeze().transpose()
else:
_a : List[str] = np.transpose(UpperCamelCase__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" )
logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" )
_a : Optional[Any] = torch.from_numpy(UpperCamelCase__ )
tf_weights.pop(UpperCamelCase__ , UpperCamelCase__ )
tf_weights.pop(name + """/RMSProp""" , UpperCamelCase__ )
tf_weights.pop(name + """/RMSProp_1""" , UpperCamelCase__ )
tf_weights.pop(name + """/ExponentialMovingAverage""" , UpperCamelCase__ )
logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" )
return model
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a , _a : Optional[Any] = features.shape[-2:]
_a , _a : Dict = conv_layer.stride
_a , _a : Dict = conv_layer.kernel_size
if in_height % stride_height == 0:
_a : Optional[Any] = max(kernel_height - stride_height , 0 )
else:
_a : Optional[int] = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
_a : Any = max(kernel_width - stride_width , 0 )
else:
_a : int = max(kernel_width - (in_width % stride_width) , 0 )
_a : str = pad_along_width // 2
_a : Union[str, Any] = pad_along_width - pad_left
_a : Optional[int] = pad_along_height // 2
_a : List[Any] = pad_along_height - pad_top
_a : Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(UpperCamelCase__ , UpperCamelCase__ , """constant""" , 0.0 )
class UpperCamelCase ( nn.Module ):
def __init__( self : Optional[Any] , UpperCAmelCase__ : MobileNetVaConfig , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[bool] = True , UpperCAmelCase__ : Optional[bool or str] = True , ) -> None:
super().__init__()
_a : Any = config
if in_channels % groups != 0:
raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" )
if out_channels % groups != 0:
raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" )
_a : Dict = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
_a : List[Any] = nn.Convad(
in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , stride=UpperCAmelCase__ , padding=UpperCAmelCase__ , groups=UpperCAmelCase__ , bias=UpperCAmelCase__ , padding_mode="""zeros""" , )
if use_normalization:
_a : int = nn.BatchNormad(
num_features=UpperCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=UpperCAmelCase__ , track_running_stats=UpperCAmelCase__ , )
else:
_a : int = None
if use_activation:
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
_a : Optional[int] = ACTaFN[use_activation]
elif isinstance(config.hidden_act , UpperCAmelCase__ ):
_a : int = ACTaFN[config.hidden_act]
else:
_a : str = config.hidden_act
else:
_a : Union[str, Any] = None
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : torch.Tensor ) -> torch.Tensor:
if self.config.tf_padding:
_a : List[str] = apply_tf_padding(UpperCAmelCase__ , self.convolution )
_a : List[str] = self.convolution(UpperCAmelCase__ )
if self.normalization is not None:
_a : Optional[int] = self.normalization(UpperCAmelCase__ )
if self.activation is not None:
_a : Dict = self.activation(UpperCAmelCase__ )
return features
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Dict = MobileNetVaConfig
UpperCamelCase : Optional[Any] = load_tf_weights_in_mobilenet_va
UpperCamelCase : Dict = '''mobilenet_v1'''
UpperCamelCase : Any = '''pixel_values'''
UpperCamelCase : str = False
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union[nn.Linear, nn.Convad] ) -> None:
if isinstance(UpperCAmelCase__ , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(UpperCAmelCase__ , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
_snake_case = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
_snake_case = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , snake_case_ , )
class UpperCamelCase ( snake_case_ ):
def __init__( self : Any , UpperCAmelCase__ : MobileNetVaConfig , UpperCAmelCase__ : bool = True ) -> Optional[int]:
super().__init__(UpperCAmelCase__ )
_a : List[Any] = config
_a : Any = 32
_a : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
_a : Optional[Any] = MobileNetVaConvLayer(
UpperCAmelCase__ , in_channels=config.num_channels , out_channels=UpperCAmelCase__ , kernel_size=3 , stride=2 , )
_a : int = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
_a : List[Any] = nn.ModuleList()
for i in range(13 ):
_a : List[Any] = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
_a : Union[str, Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
UpperCAmelCase__ , in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase__ , ) )
self.layer.append(
MobileNetVaConvLayer(
UpperCAmelCase__ , in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , kernel_size=1 , ) )
_a : Dict = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Dict ) -> Any:
raise NotImplementedError
@add_start_docstrings_to_model_forward(UpperCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _lowercase ( self : Any , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
_a : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_a : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
_a : Tuple = self.conv_stem(UpperCAmelCase__ )
_a : Tuple = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
_a : Optional[int] = layer_module(UpperCAmelCase__ )
if output_hidden_states:
_a : int = all_hidden_states + (hidden_states,)
_a : int = hidden_states
if self.pooler is not None:
_a : Tuple = torch.flatten(self.pooler(UpperCAmelCase__ ) , start_dim=1 )
else:
_a : str = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=UpperCAmelCase__ , pooler_output=UpperCAmelCase__ , hidden_states=UpperCAmelCase__ , )
@add_start_docstrings(
'''
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , snake_case_ , )
class UpperCamelCase ( snake_case_ ):
def __init__( self : List[Any] , UpperCAmelCase__ : MobileNetVaConfig ) -> None:
super().__init__(UpperCAmelCase__ )
_a : int = config.num_labels
_a : List[Any] = MobileNetVaModel(UpperCAmelCase__ )
_a : Union[str, Any] = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
_a : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase__ )
_a : Tuple = nn.Linear(UpperCAmelCase__ , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
_a : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
_a : Any = self.mobilenet_va(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ )
_a : Optional[int] = outputs.pooler_output if return_dict else outputs[1]
_a : List[Any] = self.classifier(self.dropout(UpperCAmelCase__ ) )
_a : List[Any] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_a : str = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_a : str = """single_label_classification"""
else:
_a : Union[str, Any] = """multi_label_classification"""
if self.config.problem_type == "regression":
_a : Optional[Any] = MSELoss()
if self.num_labels == 1:
_a : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_a : Optional[int] = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_a : Optional[Any] = CrossEntropyLoss()
_a : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_a : Any = BCEWithLogitsLoss()
_a : Union[str, Any] = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ )
if not return_dict:
_a : str = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states , )
| 294 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {'vocab_file': 'vocab.json'}
_snake_case = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
_snake_case = {'mgp-str': 27}
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : List[str] = VOCAB_FILES_NAMES
UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any]="[GO]" , UpperCAmelCase__ : Tuple="[GO]" , UpperCAmelCase__ : Optional[int]="[s]" , UpperCAmelCase__ : int="[GO]" , **UpperCAmelCase__ : Dict ) -> int:
super().__init__(
unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , **UpperCAmelCase__ , )
with open(UpperCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
_a : int = json.load(UpperCAmelCase__ )
_a : Optional[int] = {v: k for k, v in self.vocab.items()}
@property
def _lowercase ( self : Dict ) -> Union[str, Any]:
return len(self.vocab )
def _lowercase ( self : Union[str, Any] ) -> str:
return dict(self.vocab , **self.added_tokens_encoder )
def _lowercase ( self : Dict , UpperCAmelCase__ : str ) -> Union[str, Any]:
_a : Tuple = []
for s in text:
char_tokens.extend(UpperCAmelCase__ )
return char_tokens
def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> Dict:
return self.vocab.get(UpperCAmelCase__ , self.vocab.get(self.unk_token ) )
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> List[Any]:
return self.decoder.get(UpperCAmelCase__ )
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(UpperCAmelCase__ ):
logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCAmelCase__ ) )
return
_a : Tuple = os.path.join(
UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) + """\n""" )
return (vocab_file,)
| 294 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowercase__ :Dict = logging.get_logger(__name__)
lowercase__ :List[str] = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class lowercase ( SCREAMING_SNAKE_CASE__ ):
lowercase_ : Tuple ='''deberta-v2'''
def __init__( self ,A__=1_2_8_1_0_0 ,A__=1_5_3_6 ,A__=2_4 ,A__=2_4 ,A__=6_1_4_4 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=0 ,A__=0.02 ,A__=1E-7 ,A__=False ,A__=-1 ,A__=0 ,A__=True ,A__=None ,A__=0 ,A__="gelu" ,**A__ ,):
super().__init__(**A__)
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = intermediate_size
lowercase = hidden_act
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = type_vocab_size
lowercase = initializer_range
lowercase = relative_attention
lowercase = max_relative_positions
lowercase = pad_token_id
lowercase = position_biased_input
# Backwards compatibility
if type(A__) == str:
lowercase = [x.strip() for x in pos_att_type.lower().split('''|''')]
lowercase = pos_att_type
lowercase = vocab_size
lowercase = layer_norm_eps
lowercase = kwargs.get('''pooler_hidden_size''' ,A__)
lowercase = pooler_dropout
lowercase = pooler_hidden_act
class lowercase ( SCREAMING_SNAKE_CASE__ ):
@property
def A__ ( self):
if self.task == "multiple-choice":
lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowercase = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)])
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)])
@property
def A__ ( self):
return 1_2
def A__ ( self ,A__ ,A__ = -1 ,A__ = -1 ,A__ = -1 ,A__ = False ,A__ = None ,A__ = 3 ,A__ = 4_0 ,A__ = 4_0 ,A__ = None ,):
lowercase = super().generate_dummy_inputs(preprocessor=A__ ,framework=A__)
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 97 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
lowercase = np.inf
def set_batch_size(lowerCAmelCase__ ) -> None:
nonlocal batch_size
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and feature.dtype == "binary":
lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(lowerCAmelCase__ , lowerCAmelCase__ )
return None if batch_size is np.inf else batch_size
class lowercase ( SCREAMING_SNAKE_CASE__ ):
def __init__( self ,A__ ,A__ = None ,A__ = None ,A__ = None ,A__ = False ,A__ = False ,A__ = None ,**A__ ,):
super().__init__(
A__ ,split=A__ ,features=A__ ,cache_dir=A__ ,keep_in_memory=A__ ,streaming=A__ ,num_proc=A__ ,**A__ ,)
lowercase = path_or_paths if isinstance(A__ ,A__) else {self.split: path_or_paths}
lowercase = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
lowercase = Parquet(
cache_dir=A__ ,data_files=A__ ,features=A__ ,hash=A__ ,**A__ ,)
def A__ ( self):
# Build iterable dataset
if self.streaming:
lowercase = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
lowercase = None
lowercase = None
lowercase = None
lowercase = None
self.builder.download_and_prepare(
download_config=A__ ,download_mode=A__ ,verification_mode=A__ ,base_path=A__ ,num_proc=self.num_proc ,)
lowercase = self.builder.as_dataset(
split=self.split ,verification_mode=A__ ,in_memory=self.keep_in_memory)
return dataset
class lowercase :
def __init__( self ,A__ ,A__ ,A__ = None ,**A__ ,):
lowercase = dataset
lowercase = path_or_buf
lowercase = batch_size or get_writer_batch_size(dataset.features)
lowercase = parquet_writer_kwargs
def A__ ( self):
lowercase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf ,(str, bytes, os.PathLike)):
with open(self.path_or_buf ,'''wb+''') as buffer:
lowercase = self._write(file_obj=A__ ,batch_size=A__ ,**self.parquet_writer_kwargs)
else:
lowercase = self._write(file_obj=self.path_or_buf ,batch_size=A__ ,**self.parquet_writer_kwargs)
return written
def A__ ( self ,A__ ,A__ ,**A__):
lowercase = 0
lowercase = parquet_writer_kwargs.pop('''path_or_buf''' ,A__)
lowercase = self.dataset.features.arrow_schema
lowercase = pq.ParquetWriter(A__ ,schema=A__ ,**A__)
for offset in logging.tqdm(
range(0 ,len(self.dataset) ,A__) ,unit='''ba''' ,disable=not logging.is_progress_bar_enabled() ,desc='''Creating parquet from Arrow format''' ,):
lowercase = query_table(
table=self.dataset._data ,key=slice(A__ ,offset + batch_size) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,)
writer.write_table(A__)
written += batch.nbytes
writer.close()
return written
| 97 | 1 |
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowerCAmelCase :
def __init__( self: List[str] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[int]=3 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Tuple=3 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: Optional[int]=[10, 20, 30, 40] , _lowerCAmelCase: int=[1, 1, 2, 1] , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Dict="relu" , _lowerCAmelCase: Union[str, Any]=3 , _lowerCAmelCase: List[Any]=None , ):
lowercase :int = parent
lowercase :Tuple = batch_size
lowercase :List[str] = image_size
lowercase :Optional[int] = num_channels
lowercase :Optional[int] = embeddings_size
lowercase :Union[str, Any] = hidden_sizes
lowercase :List[str] = depths
lowercase :Union[str, Any] = is_training
lowercase :List[Any] = use_labels
lowercase :Optional[int] = hidden_act
lowercase :str = num_labels
lowercase :List[Any] = scope
lowercase :List[Any] = len(_lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self: List[Any] ):
lowercase :Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase :List[Any] = None
if self.use_labels:
lowercase :List[str] = ids_tensor([self.batch_size] , self.num_labels )
lowercase :int = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self: Tuple ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ):
lowercase :Optional[int] = RegNetModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowercase :Optional[int] = model(_lowerCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[int] ):
lowercase :Any = self.num_labels
lowercase :str = RegNetForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowercase :List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self: Tuple ):
lowercase :Optional[int] = self.prepare_config_and_inputs()
lowercase , lowercase , lowercase :Union[str, Any] = config_and_inputs
lowercase :int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase):
_a = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
_a = (
{'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def SCREAMING_SNAKE_CASE ( self: List[Any] ):
lowercase :Tuple = RegNetModelTester(self )
lowercase :Any = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self: List[Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE ( self: List[Any] ):
return
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def SCREAMING_SNAKE_CASE ( self: List[Any] ):
pass
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def SCREAMING_SNAKE_CASE ( self: Any ):
pass
def SCREAMING_SNAKE_CASE ( self: Dict ):
lowercase , lowercase :Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase :List[str] = model_class(_lowerCAmelCase )
lowercase :Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase :Optional[int] = [*signature.parameters.keys()]
lowercase :List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self: Optional[Any] ):
lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self: List[Any] ):
lowercase , lowercase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase :Optional[Any] = model_class(config=_lowerCAmelCase )
for name, module in model.named_modules():
if isinstance(_lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
def SCREAMING_SNAKE_CASE ( self: Any ):
def check_hidden_states_output(_lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Dict ):
lowercase :List[str] = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowercase :Optional[int] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
lowercase :Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase :Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
lowercase , lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
lowercase :str = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase :str = layer_type
lowercase :Union[str, Any] = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase :Optional[Any] = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self: Dict ):
lowercase :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def SCREAMING_SNAKE_CASE ( self: Tuple ):
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase :int = RegNetModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def UpperCAmelCase__ ( ):
lowercase :Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase):
@cached_property
def SCREAMING_SNAKE_CASE ( self: List[str] ):
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self: Dict ):
lowercase :Union[str, Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCAmelCase )
lowercase :int = self.default_image_processor
lowercase :List[str] = prepare_img()
lowercase :int = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowercase :Optional[int] = model(**_lowerCAmelCase )
# verify the logits
lowercase :str = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
lowercase :Dict = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
| 236 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Dict = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
_UpperCAmelCase : Union[str, Any] = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
_UpperCAmelCase : List[Any] = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
class __lowerCAmelCase ( lowerCAmelCase):
_a = '''whisper'''
_a = ['''past_key_values''']
_a = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self: int , _lowerCAmelCase: str=5_18_65 , _lowerCAmelCase: str=80 , _lowerCAmelCase: int=6 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=6 , _lowerCAmelCase: List[Any]=4 , _lowerCAmelCase: Any=15_36 , _lowerCAmelCase: Union[str, Any]=15_36 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: List[Any]=5_02_57 , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Dict=2_56 , _lowerCAmelCase: Union[str, Any]=0.0 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Dict=0.0 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: Any=False , _lowerCAmelCase: List[str]=15_00 , _lowerCAmelCase: Tuple=4_48 , _lowerCAmelCase: Optional[Any]=5_02_56 , _lowerCAmelCase: Dict=5_02_56 , _lowerCAmelCase: List[Any]=5_02_56 , _lowerCAmelCase: Union[str, Any]=None , _lowerCAmelCase: str=[2_20, 5_02_56] , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Optional[int]=2_56 , _lowerCAmelCase: int=False , _lowerCAmelCase: Dict=0.05 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: List[str]=2 , _lowerCAmelCase: Tuple=0.0 , _lowerCAmelCase: str=10 , _lowerCAmelCase: Union[str, Any]=0 , _lowerCAmelCase: List[Any]=7 , **_lowerCAmelCase: Union[str, Any] , ):
lowercase :Optional[Any] = vocab_size
lowercase :Optional[int] = num_mel_bins
lowercase :Union[str, Any] = d_model
lowercase :List[Any] = encoder_layers
lowercase :Optional[Any] = encoder_attention_heads
lowercase :Union[str, Any] = decoder_layers
lowercase :List[str] = decoder_attention_heads
lowercase :Optional[int] = decoder_ffn_dim
lowercase :List[Any] = encoder_ffn_dim
lowercase :Optional[Any] = dropout
lowercase :Tuple = attention_dropout
lowercase :Tuple = activation_dropout
lowercase :Optional[Any] = activation_function
lowercase :Any = init_std
lowercase :Optional[int] = encoder_layerdrop
lowercase :Optional[int] = decoder_layerdrop
lowercase :str = use_cache
lowercase :Optional[Any] = encoder_layers
lowercase :List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase :Any = max_source_positions
lowercase :Optional[Any] = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
lowercase :int = classifier_proj_size
lowercase :List[str] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase :Tuple = apply_spec_augment
lowercase :int = mask_time_prob
lowercase :Union[str, Any] = mask_time_length
lowercase :Dict = mask_time_min_masks
lowercase :Tuple = mask_feature_prob
lowercase :List[Any] = mask_feature_length
lowercase :List[Any] = mask_feature_min_masks
lowercase :Any = median_filter_width
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , suppress_tokens=_lowerCAmelCase , begin_suppress_tokens=_lowerCAmelCase , **_lowerCAmelCase , )
class __lowerCAmelCase ( lowerCAmelCase):
@property
def SCREAMING_SNAKE_CASE ( self: str ):
lowercase :Tuple = OrderedDict(
[
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
] )
if self.use_past:
lowercase :List[Any] = {0: "batch"}
else:
lowercase :str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" )
return common_inputs
def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase: int = -1 , _lowerCAmelCase: int = -1 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional["TensorType"] = None , _lowerCAmelCase: int = 2_20_50 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 2_20 , ):
lowercase :List[str] = OrderedDict()
lowercase :str = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=_lowerCAmelCase , framework=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , time_duration=_lowerCAmelCase , frequency=_lowerCAmelCase , )
lowercase :Optional[Any] = encoder_inputs["input_features"].shape[2]
lowercase :List[str] = encoder_sequence_length // 2 if self.use_past else seq_length
lowercase :Dict = super().generate_dummy_inputs(
preprocessor.tokenizer , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
lowercase :str = encoder_inputs.pop("input_features" )
lowercase :Optional[int] = decoder_inputs.pop("decoder_input_ids" )
if "past_key_values" in decoder_inputs:
lowercase :List[str] = decoder_inputs.pop("past_key_values" )
return dummy_inputs
@property
def SCREAMING_SNAKE_CASE ( self: str ):
return 1e-3
| 236 | 1 |
'''simple docstring'''
from __future__ import annotations
lowerCamelCase__ = "#"
class lowerCAmelCase__ :
def __init__( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = {}
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->str:
'''simple docstring'''
_UpperCAmelCase : Tuple = self._trie
for char in text:
if char not in trie:
_UpperCAmelCase : Tuple = {}
_UpperCAmelCase : str = trie[char]
_UpperCAmelCase : List[Any] = True
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = self._trie
for char in prefix:
if char in trie:
_UpperCAmelCase : str = trie[char]
else:
return []
return self._elements(a_ )
def lowerCAmelCase__ ( self : int , lowerCamelCase__ : dict ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Dict = []
for c, v in d.items():
_UpperCAmelCase : List[Any] = [" "] if c == END else [(c + s) for s in self._elements(a_ )]
result.extend(a_ )
return tuple(a_ )
lowerCamelCase__ = Trie()
lowerCamelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : Optional[Any] = trie.find_word(_UpperCamelCase )
return tuple(string + word for word in suffixes )
def __lowerCAmelCase ():
print(autocomplete_using_trie("de" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 359 |
'''simple docstring'''
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __lowerCAmelCase (__lowerCAmelCase ):
if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ):
return False
return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule )
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ):
_UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
_UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase )
if is_compiled:
_UpperCAmelCase : Optional[int] = model
_UpperCAmelCase : Any = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Any = model.module
if not keep_fpaa_wrapper:
_UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" )
_UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase )
if original_forward is not None:
while hasattr(__lowerCAmelCase , "__wrapped__" ):
_UpperCAmelCase : Optional[int] = forward.__wrapped__
if forward == original_forward:
break
_UpperCAmelCase : Dict = forward
if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ):
convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase )
if is_compiled:
_UpperCAmelCase : int = model
_UpperCAmelCase : str = compiled_model
return model
def __lowerCAmelCase ():
PartialState().wait_for_everyone()
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ):
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__lowerCAmelCase , __lowerCAmelCase )
elif PartialState().local_process_index == 0:
torch.save(__lowerCAmelCase , __lowerCAmelCase )
@contextmanager
def __lowerCAmelCase (**__lowerCAmelCase ):
for key, value in kwargs.items():
_UpperCAmelCase : str = str(__lowerCAmelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __lowerCAmelCase (__lowerCAmelCase ):
if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ):
_UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase )
if hasattr(__lowerCAmelCase , "__qualname__" ):
return obj.__qualname__
if hasattr(__lowerCAmelCase , "__name__" ):
return obj.__name__
return str(__lowerCAmelCase )
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ):
for key, value in source.items():
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} )
merge_dicts(__lowerCAmelCase , __lowerCAmelCase )
else:
_UpperCAmelCase : Optional[int] = value
return destination
def __lowerCAmelCase (__lowerCAmelCase = None ):
if port is None:
_UpperCAmelCase : Tuple = 29_500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 322 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class UpperCAmelCase_ ( a):
lowerCamelCase__ = 'trocr'
lowerCamelCase__ = ['past_key_values']
lowerCamelCase__ = {
'num_attention_heads': 'decoder_attention_heads',
'hidden_size': 'd_model',
'num_hidden_layers': 'decoder_layers',
}
def __init__( self, __a=5_0265, __a=1024, __a=12, __a=16, __a=4096, __a="gelu", __a=512, __a=0.1, __a=0.0, __a=0.0, __a=2, __a=0.02, __a=0.0, __a=True, __a=False, __a=True, __a=True, __a=1, __a=0, __a=2, **__a, ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Dict = d_model
_lowerCAmelCase : str = decoder_layers
_lowerCAmelCase : Dict = decoder_attention_heads
_lowerCAmelCase : int = decoder_ffn_dim
_lowerCAmelCase : int = activation_function
_lowerCAmelCase : str = max_position_embeddings
_lowerCAmelCase : Optional[Any] = dropout
_lowerCAmelCase : str = attention_dropout
_lowerCAmelCase : str = activation_dropout
_lowerCAmelCase : List[Any] = init_std
_lowerCAmelCase : Optional[Any] = decoder_layerdrop
_lowerCAmelCase : Optional[int] = use_cache
_lowerCAmelCase : str = scale_embedding
_lowerCAmelCase : Optional[int] = use_learned_position_embeddings
_lowerCAmelCase : Optional[Any] = layernorm_embedding
super().__init__(
pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, **__a, )
| 36 |
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
_a = random.Random()
def lowerCAmelCase__(__snake_case ,__snake_case=1.0 ,__snake_case=None ,__snake_case=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
lowerCamelCase__ = global_rng
lowerCamelCase__ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class __A ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=4_0_0 , __lowerCAmelCase=2_0_0_0 , __lowerCAmelCase=2_4 , __lowerCAmelCase=2_4 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1_6_0_0_0 , __lowerCAmelCase=True , __lowerCAmelCase=True , ):
'''simple docstring'''
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = min_seq_length
lowerCamelCase__ = max_seq_length
lowerCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowerCamelCase__ = feature_size
lowerCamelCase__ = num_mel_bins
lowerCamelCase__ = padding_value
lowerCamelCase__ = sampling_rate
lowerCamelCase__ = return_attention_mask
lowerCamelCase__ = do_normalize
def __lowerCamelCase ( self ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __lowerCamelCase ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ):
'''simple docstring'''
def _flatten(__lowerCAmelCase ):
return list(itertools.chain(*__lowerCAmelCase ) )
if equal_length:
lowerCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
lowerCamelCase__ = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
lowerCamelCase__ = [np.asarray(__lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __A ( lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = SpeechaTextFeatureExtractor if is_speech_available() else None
def __lowerCamelCase ( self ):
'''simple docstring'''
lowerCamelCase__ = SpeechaTextFeatureExtractionTester(self )
def __lowerCamelCase ( self , __lowerCAmelCase ):
'''simple docstring'''
self.assertTrue(np.all(np.mean(__lowerCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
lowerCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs]
# Test feature size
lowerCamelCase__ = feature_extractor(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''np''' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
lowerCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features
lowerCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features
self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) )
# Test batched
lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features
lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ):
self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
lowerCamelCase__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)]
lowerCamelCase__ = np.asarray(__lowerCAmelCase )
lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features
lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ):
self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
lowerCamelCase__ = ['''longest''', '''max_length''', '''do_not_pad''']
lowerCamelCase__ = [None, 1_6, None]
for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = feature_extractor(
__lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase )
lowerCamelCase__ = inputs.input_features
lowerCamelCase__ = inputs.attention_mask
lowerCamelCase__ = [np.sum(__lowerCAmelCase ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __lowerCamelCase ( self ):
'''simple docstring'''
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
lowerCamelCase__ = ['''longest''', '''max_length''', '''do_not_pad''']
lowerCamelCase__ = [None, 1_6, None]
for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = feature_extractor(
__lowerCAmelCase , max_length=__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase )
lowerCamelCase__ = inputs.input_features
lowerCamelCase__ = inputs.attention_mask
lowerCamelCase__ = [np.sum(__lowerCAmelCase ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __lowerCamelCase ( self ):
'''simple docstring'''
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
lowerCamelCase__ = feature_extractor(
__lowerCAmelCase , padding='''max_length''' , max_length=4 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , )
lowerCamelCase__ = inputs.input_features
lowerCamelCase__ = inputs.attention_mask
lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def __lowerCamelCase ( self ):
'''simple docstring'''
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
lowerCamelCase__ = feature_extractor(
__lowerCAmelCase , padding='''longest''' , max_length=4 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , )
lowerCamelCase__ = inputs.input_features
lowerCamelCase__ = inputs.attention_mask
lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 2_4) )
lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
lowerCamelCase__ = feature_extractor(
__lowerCAmelCase , padding='''longest''' , max_length=1_6 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , )
lowerCamelCase__ = inputs.input_features
lowerCamelCase__ = inputs.attention_mask
lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 2_4) )
def __lowerCamelCase ( self ):
'''simple docstring'''
import torch
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa )
lowerCamelCase__ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
lowerCamelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
lowerCamelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def __lowerCamelCase ( self , __lowerCAmelCase ):
'''simple docstring'''
from datasets import load_dataset
lowerCamelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
lowerCamelCase__ = ds.sort('''id''' ).select(range(__lowerCAmelCase ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def __lowerCamelCase ( self ):
'''simple docstring'''
lowerCamelCase__ = np.array([
-1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241,
-1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128,
-1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625,
] )
# fmt: on
lowerCamelCase__ = self._load_datasamples(1 )
lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''pt''' ).input_features
self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) )
self.assertTrue(np.allclose(input_features[0, 0, :3_0] , __lowerCAmelCase , atol=1E-4 ) )
| 209 | 0 |
from pathlib import Path
import numpy as np
from PIL import Image
def _a ( SCREAMING_SNAKE_CASE_ : np.ndarray ):
"""simple docstring"""
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def _a ( SCREAMING_SNAKE_CASE_ : np.ndarray ):
"""simple docstring"""
return (gray > 1_27) & (gray <= 2_55)
def _a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ):
"""simple docstring"""
__lowerCAmelCase = np.zeros_like(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowerCAmelCase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowerCAmelCase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowerCAmelCase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
UpperCamelCase__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
UpperCamelCase__ = np.array(Image.open(lena_path))
# kernel to be applied
UpperCamelCase__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
UpperCamelCase__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
UpperCamelCase__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 352 |
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
UpperCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument(
"""--original_config_file""",
type=str,
required=True,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--image_size""",
default=512,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ):
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F"""could not parse string as bool {string}""" )
parser.add_argument(
"""--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool
)
parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int)
UpperCamelCase__ = parser.parse_args()
UpperCamelCase__ = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 102 | 0 |
"""simple docstring"""
class __lowercase :
'''simple docstring'''
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : Any = name
__a : str = value
__a : Dict = weight
def __repr__( self ):
return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"""
def _lowerCamelCase ( self ):
return self.value
def _lowerCamelCase ( self ):
return self.name
def _lowerCamelCase ( self ):
return self.weight
def _lowerCamelCase ( self ):
return self.value / self.weight
def __A ( a_ :List[str] , a_ :Dict , a_ :str) -> List[str]:
__a : Optional[int] = []
for i in range(len(a_)):
menu.append(Things(name[i] , value[i] , weight[i]))
return menu
def __A ( a_ :List[Any] , a_ :Tuple , a_ :List[str]) -> Optional[int]:
__a : Tuple = sorted(a_ , key=a_ , reverse=a_)
__a : Optional[Any] = []
__a , __a : List[Any] = 0.0, 0.0
for i in range(len(a_)):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i])
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def __A ( ) -> int:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 160 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
A = {
'''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''],
'''tokenization_ctrl''': ['''CTRLTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = [
'''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CTRLForSequenceClassification''',
'''CTRLLMHeadModel''',
'''CTRLModel''',
'''CTRLPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = [
'''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFCTRLForSequenceClassification''',
'''TFCTRLLMHeadModel''',
'''TFCTRLModel''',
'''TFCTRLPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 160 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_lowerCamelCase = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
_lowerCamelCase = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
_lowerCamelCase = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class a ( _A ):
'''simple docstring'''
lowerCAmelCase : int = VOCAB_FILES_NAMES
lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase : List[Any] = SqueezeBertTokenizer
def __init__( self : List[Any] , __snake_case : Any=None , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Union[str, Any]="[UNK]" , __snake_case : List[str]="[SEP]" , __snake_case : Dict="[PAD]" , __snake_case : Any="[CLS]" , __snake_case : Dict="[MASK]" , __snake_case : str=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ):
super().__init__(
__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , )
UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __snake_case ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __snake_case ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __snake_case ) != tokenize_chinese_chars
):
UpperCAmelCase_ = getattr(__snake_case , normalizer_state.pop('''type''' ) )
UpperCAmelCase_ = do_lower_case
UpperCAmelCase_ = strip_accents
UpperCAmelCase_ = tokenize_chinese_chars
UpperCAmelCase_ = normalizer_class(**__snake_case )
UpperCAmelCase_ = do_lower_case
def lowerCamelCase_ ( self : int , __snake_case : Dict , __snake_case : List[Any]=None ):
UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase_ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ):
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase_ ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ):
UpperCAmelCase_ = self._tokenizer.model.save(__snake_case , name=__snake_case )
return tuple(__snake_case )
| 177 |
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ = len(__UpperCamelCase )
while cur > 1:
# Find the maximum number in arr
UpperCAmelCase_ = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
UpperCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__UpperCamelCase )]
# Reverse whole list
UpperCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__UpperCamelCase )]
cur -= 1
return arr
if __name__ == "__main__":
_lowerCamelCase = input('Enter numbers separated by a comma:\n').strip()
_lowerCamelCase = [int(item) for item in user_input.split(',')]
print(pancake_sort(unsorted))
| 177 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__snake_case = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''OwlViTFeatureExtractor''']
__snake_case = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 97 |
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def a ( __a ) -> bool:
'''simple docstring'''
UpperCamelCase__ :int = int(number**0.5 )
return number == sq * sq
def a ( __a , __a , __a , __a , __a , __a ) -> tuple[int, int]:
'''simple docstring'''
UpperCamelCase__ :int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
UpperCamelCase__ :int = x_den * y_den * z_den
UpperCamelCase__ :int = gcd(__a , __a )
top //= hcf
bottom //= hcf
return top, bottom
def a ( __a = 35 ) -> int:
'''simple docstring'''
UpperCamelCase__ :set = set()
UpperCamelCase__ :int
UpperCamelCase__ :Fraction = Fraction(0 )
UpperCamelCase__ :tuple[int, int]
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
UpperCamelCase__ :int = x_num * y_den + x_den * y_num
UpperCamelCase__ :Any = x_den * y_den
UpperCamelCase__ :Tuple = gcd(__a , __a )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCamelCase__ :Tuple = add_three(
__a , __a , __a , __a , __a , __a )
unique_s.add(__a )
# n=2
UpperCamelCase__ :List[str] = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
UpperCamelCase__ :Dict = x_den * x_den * y_den * y_den
if is_sq(__a ) and is_sq(__a ):
UpperCamelCase__ :Any = int(sqrt(__a ) )
UpperCamelCase__ :Optional[int] = int(sqrt(__a ) )
UpperCamelCase__ :int = gcd(__a , __a )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCamelCase__ :Tuple = add_three(
__a , __a , __a , __a , __a , __a )
unique_s.add(__a )
# n=-1
UpperCamelCase__ :Tuple = x_num * y_num
UpperCamelCase__ :Union[str, Any] = x_den * y_num + x_num * y_den
UpperCamelCase__ :List[str] = gcd(__a , __a )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCamelCase__ :Union[str, Any] = add_three(
__a , __a , __a , __a , __a , __a )
unique_s.add(__a )
# n=2
UpperCamelCase__ :Optional[Any] = x_num * x_num * y_num * y_num
UpperCamelCase__ :Tuple = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__a ) and is_sq(__a ):
UpperCamelCase__ :str = int(sqrt(__a ) )
UpperCamelCase__ :Any = int(sqrt(__a ) )
UpperCamelCase__ :Dict = gcd(__a , __a )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCamelCase__ :int = add_three(
__a , __a , __a , __a , __a , __a )
unique_s.add(__a )
for num, den in unique_s:
total += Fraction(__a , __a )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F"""{solution() = }""")
| 97 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 36 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def lowerCAmelCase__ ( _a : str ):
snake_case_ : str = FileLock(str(tmpdir / "foo.lock" ) )
snake_case_ : Optional[Any] = FileLock(str(tmpdir / "foo.lock" ) )
snake_case_ : Any = 0.01
with locka.acquire():
with pytest.raises(_a ):
snake_case_ : Optional[int] = time.time()
locka.acquire(_a )
assert time.time() - _start > timeout
def lowerCAmelCase__ ( _a : Union[str, Any] ):
snake_case_ : List[str] = "a" * 10_00 + ".lock"
snake_case_ : Optional[int] = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith(".lock" )
assert not locka._lock_file.endswith(_a )
assert len(os.path.basename(locka._lock_file ) ) <= 2_55
snake_case_ : int = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(_a ):
locka.acquire(0 )
| 36 | 1 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__: Tuple = logging.get_logger(__name__)
UpperCamelCase__: Optional[Any] = "▁"
UpperCamelCase__: Tuple = {
"vocab_file": "vocab.json",
"spm_file": "sentencepiece.bpe.model",
"tokenizer_config_file": "tokenizer_config.json",
}
UpperCamelCase__: Any = {
"vocab_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json",
},
"spm_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_config_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json",
},
}
UpperCamelCase__: Dict = {
"facebook/m2m100_418M": 1024,
}
# fmt: off
UpperCamelCase__: str = {
"m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"],
"wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"]
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
lowerCamelCase__ = []
lowerCamelCase__ = []
def __init__( self : Dict , __snake_case : Any , __snake_case : Tuple , __snake_case : Any=None , __snake_case : Any=None , __snake_case : Optional[int]="<s>" , __snake_case : List[Any]="</s>" , __snake_case : Optional[int]="</s>" , __snake_case : Dict="<pad>" , __snake_case : str="<unk>" , __snake_case : int="m2m100" , __snake_case : Optional[Dict[str, Any]] = None , __snake_case : int=8 , **__snake_case : Optional[Any] , ) -> None:
UpperCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
UpperCAmelCase : Tuple = language_codes
UpperCAmelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes]
UpperCAmelCase : Union[str, Any] = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code}
UpperCAmelCase : List[Any] = kwargs.get('''additional_special_tokens''' , [] )
kwargs["additional_special_tokens"] += [
self.get_lang_token(__snake_case )
for lang_code in fairseq_language_code
if self.get_lang_token(__snake_case ) not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__snake_case , tgt_lang=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , language_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__snake_case , **__snake_case , )
UpperCAmelCase : Any = vocab_file
UpperCAmelCase : List[Any] = load_json(__snake_case )
UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()}
UpperCAmelCase : Tuple = spm_file
UpperCAmelCase : Tuple = load_spm(__snake_case , self.sp_model_kwargs )
UpperCAmelCase : Optional[Any] = len(self.encoder )
UpperCAmelCase : Union[str, Any] = {
self.get_lang_token(__snake_case ): self.encoder_size + i for i, lang_code in enumerate(__snake_case )
}
UpperCAmelCase : Optional[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__snake_case )}
UpperCAmelCase : List[Any] = {v: k for k, v in self.lang_token_to_id.items()}
UpperCAmelCase : Union[str, Any] = src_lang if src_lang is not None else '''en'''
UpperCAmelCase : Union[str, Any] = tgt_lang
UpperCAmelCase : List[str] = self.get_lang_id(self._src_lang )
self.set_src_lang_special_tokens(self._src_lang )
UpperCAmelCase : Optional[int] = num_madeup_words
@property
def A ( self : int ) -> int:
return len(self.encoder ) + len(self.lang_token_to_id )
@property
def A ( self : List[str] ) -> str:
return self._src_lang
@src_lang.setter
def A ( self : str , __snake_case : str ) -> None:
UpperCAmelCase : Union[str, Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def A ( self : List[str] , __snake_case : str ) -> List[str]:
return self.sp_model.encode(__snake_case , out_type=__snake_case )
def A ( self : str , __snake_case : Tuple ) -> Tuple:
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(__snake_case , self.encoder[self.unk_token] )
def A ( self : Any , __snake_case : int ) -> str:
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(__snake_case , self.unk_token )
def A ( self : Optional[Any] , __snake_case : Tuple ) -> Tuple:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Dict = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__snake_case ) + token
UpperCAmelCase : Optional[Any] = []
else:
current_sub_tokens.append(__snake_case )
out_string += self.sp_model.decode(__snake_case )
return out_string.strip()
def A ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
UpperCAmelCase : Optional[Any] = [1] * len(self.prefix_tokens )
UpperCAmelCase : Union[str, Any] = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__snake_case )) + suffix_ones
return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones
def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def A ( self : Optional[Any] ) -> Dict:
UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ) -> Dict:
UpperCAmelCase : List[Any] = self.__dict__.copy()
UpperCAmelCase : int = None
return state
def __setstate__( self : List[Any] , __snake_case : Dict ) -> None:
UpperCAmelCase : Optional[int] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase : Optional[int] = {}
UpperCAmelCase : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs )
def A ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
UpperCAmelCase : Optional[Any] = Path(__snake_case )
if not save_dir.is_dir():
raise OSError(F"""{save_directory} should be a directory""" )
UpperCAmelCase : List[Any] = save_dir / (
(filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file''']
)
UpperCAmelCase : Optional[int] = save_dir / (
(filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file''']
)
save_json(self.encoder , __snake_case )
if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __snake_case )
elif not os.path.isfile(self.spm_file ):
with open(__snake_case , '''wb''' ) as fi:
UpperCAmelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(__snake_case )
return (str(__snake_case ), str(__snake_case ))
def A ( self : int , __snake_case : List[str] , __snake_case : str = "en" , __snake_case : Optional[List[str]] = None , __snake_case : str = "ro" , **__snake_case : Optional[int] , ) -> BatchEncoding:
UpperCAmelCase : List[Any] = src_lang
UpperCAmelCase : List[Any] = tgt_lang
self.set_src_lang_special_tokens(self.src_lang )
return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case )
def A ( self : int , __snake_case : Any , __snake_case : Optional[str] , __snake_case : Optional[str] , **__snake_case : Any ) -> Optional[int]:
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
UpperCAmelCase : Union[str, Any] = src_lang
UpperCAmelCase : Dict = self(__snake_case , add_special_tokens=__snake_case , **__snake_case )
UpperCAmelCase : Any = self.get_lang_id(__snake_case )
UpperCAmelCase : Dict = tgt_lang_id
return inputs
def A ( self : str ) -> int:
self.set_src_lang_special_tokens(self.src_lang )
def A ( self : Any ) -> int:
self.set_tgt_lang_special_tokens(self.tgt_lang )
def A ( self : Any , __snake_case : str ) -> None:
UpperCAmelCase : Dict = self.get_lang_token(__snake_case )
UpperCAmelCase : str = self.lang_token_to_id[lang_token]
UpperCAmelCase : Any = [self.cur_lang_id]
UpperCAmelCase : str = [self.eos_token_id]
def A ( self : Dict , __snake_case : str ) -> None:
UpperCAmelCase : Union[str, Any] = self.get_lang_token(__snake_case )
UpperCAmelCase : str = self.lang_token_to_id[lang_token]
UpperCAmelCase : Optional[int] = [self.cur_lang_id]
UpperCAmelCase : int = [self.eos_token_id]
def A ( self : Optional[Any] , __snake_case : str ) -> str:
return self.lang_code_to_token[lang]
def A ( self : Any , __snake_case : str ) -> int:
UpperCAmelCase : Any = self.get_lang_token(__snake_case )
return self.lang_token_to_id[lang_token]
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
UpperCAmelCase : Any = sentencepiece.SentencePieceProcessor(**_lowerCAmelCase )
spm.Load(str(_lowerCAmelCase ) )
return spm
def snake_case_ ( _lowerCAmelCase : str ) -> Union[Dict, List]:
with open(_lowerCAmelCase , '''r''' ) as f:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ) -> None:
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=2 )
| 23 |
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60
return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}'''
def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int:
"""simple docstring"""
return f'''
<div>
{prefix}
<progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>
{label}
</div>
'''
def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n'
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f''' <th>{i}</th>\n'''
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
__lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE )
html_code += f''' <td>{elt}</td>\n'''
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class A_ :
_lowercase : str = 5
_lowercase : str = 0.2
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]:
__lowerCAmelCase: List[str] = total
__lowerCAmelCase: Optional[int] = '' if prefix is None else prefix
__lowerCAmelCase: int = leave
__lowerCAmelCase: List[str] = parent
__lowerCAmelCase: Optional[Any] = width
__lowerCAmelCase: List[str] = None
__lowerCAmelCase: Dict = None
__lowerCAmelCase: List[str] = None
def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]:
__lowerCAmelCase: int = value
if comment is not None:
__lowerCAmelCase: Any = comment
if self.last_value is None:
__lowerCAmelCase: List[Any] = time.time()
__lowerCAmelCase: Any = value
__lowerCAmelCase: List[str] = None
__lowerCAmelCase: Dict = self.warmup
__lowerCAmelCase: List[str] = 1
self.update_bar(UpperCAmelCase )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
__lowerCAmelCase: Union[str, Any] = time.time()
__lowerCAmelCase: str = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
__lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value)
else:
__lowerCAmelCase: int = None
if value >= self.total:
__lowerCAmelCase: Any = self.total
__lowerCAmelCase: str = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
__lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value)
self.update_bar(UpperCAmelCase )
__lowerCAmelCase: Tuple = value
__lowerCAmelCase: int = current_time
if self.average_time_per_item is None:
__lowerCAmelCase: Optional[int] = 1
else:
__lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 )
def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]:
__lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase )
if self.elapsed_time is None:
__lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :'''
elif self.predicted_remaining is None:
__lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}'''
else:
__lowerCAmelCase: Any = (
F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <'''
F''' {format_time(self.predicted_remaining )}'''
)
self.label += F''', {1/self.average_time_per_item:.2f} it/s'''
self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]'''
self.display()
def UpperCAmelCase ( self : Any ) -> Optional[Any]:
__lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
__lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def UpperCAmelCase ( self : str ) -> Optional[Any]:
if self.parent is None and self.output is not None:
self.output.update(disp.HTML('' ) )
class A_ ( snake_case__ ):
def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any:
super().__init__(UpperCAmelCase )
__lowerCAmelCase: Tuple = None if column_names is None else [column_names]
__lowerCAmelCase: Union[str, Any] = None
def UpperCAmelCase ( self : Union[str, Any] ) -> Any:
__lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
__lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict:
if self.inner_table is None:
__lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )]
else:
__lowerCAmelCase: Any = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(UpperCAmelCase )
__lowerCAmelCase: List[Any] = columns
self.inner_table.append([values[c] for c in columns] )
def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]:
__lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase )
return self.child_bar
def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]:
__lowerCAmelCase: Tuple = None
self.display()
class A_ ( snake_case__ ):
def __init__( self : Any ) -> List[str]:
__lowerCAmelCase: int = None
__lowerCAmelCase: Optional[int] = None
__lowerCAmelCase: str = False
def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str:
__lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step'
__lowerCAmelCase: Optional[int] = 0
__lowerCAmelCase: Any = 0
__lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss']
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append('Validation Loss' )
__lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase )
def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any:
__lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}'''
self.training_tracker.update(
state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , )
__lowerCAmelCase: Any = False
def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]:
if not has_length(UpperCAmelCase ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
__lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) )
else:
__lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]:
if self.prediction_bar is not None:
self.prediction_bar.close()
__lowerCAmelCase: Any = None
def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
__lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']}
# First column is necessarily Step sine we're not in epoch eval strategy
__lowerCAmelCase: Dict = state.global_step
self.training_tracker.write_line(UpperCAmelCase )
def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]:
if self.training_tracker is not None:
__lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'}
for log in reversed(state.log_history ):
if "loss" in log:
__lowerCAmelCase: List[str] = log['loss']
break
if self.first_column == "Epoch":
__lowerCAmelCase: int = int(state.epoch )
else:
__lowerCAmelCase: Tuple = state.global_step
__lowerCAmelCase: Optional[int] = 'eval'
for k in metrics:
if k.endswith('_loss' ):
__lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase )
__lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase )
__lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase )
__lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase )
__lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase )
__lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase )
__lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase )
for k, v in metrics.items():
if k == F'''{metric_key_prefix}_loss''':
__lowerCAmelCase: Tuple = v
else:
__lowerCAmelCase: int = k.split('_' )
__lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] )
__lowerCAmelCase: List[Any] = v
self.training_tracker.write_line(UpperCAmelCase )
self.training_tracker.remove_child()
__lowerCAmelCase: List[str] = None
# Evaluation takes a long time so we should force the next update.
__lowerCAmelCase: str = True
def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]:
self.training_tracker.update(
state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase )
__lowerCAmelCase: Union[str, Any] = None
| 322 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : int = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ["""NllbTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict = ["""NllbTokenizerFast"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
_lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 91 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class UpperCamelCase__( nn.Module ):
__magic_name__ : int
__magic_name__ : int
__magic_name__ : float = 0.0
__magic_name__ : int = 1
__magic_name__ : int = 1
__magic_name__ : bool = True
__magic_name__ : bool = False
__magic_name__ : bool = False
__magic_name__ : bool = False
__magic_name__ : jnp.dtype = jnp.floataa
def a__( self : str )-> Dict:
"""simple docstring"""
UpperCAmelCase = []
UpperCAmelCase = []
for i in range(self.num_layers ):
UpperCAmelCase = self.in_channels if i == 0 else self.out_channels
UpperCAmelCase = FlaxResnetBlockaD(
in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(lowerCAmelCase )
UpperCAmelCase = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(lowerCAmelCase )
UpperCAmelCase = resnets
UpperCAmelCase = attentions
if self.add_downsample:
UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=True )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase = ()
for resnet, attn in zip(self.resnets , self.attentions ):
UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase )
UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
UpperCAmelCase = self.downsamplers_a(lowerCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class UpperCamelCase__( nn.Module ):
__magic_name__ : int
__magic_name__ : int
__magic_name__ : float = 0.0
__magic_name__ : int = 1
__magic_name__ : bool = True
__magic_name__ : jnp.dtype = jnp.floataa
def a__( self : List[str] )-> Any:
"""simple docstring"""
UpperCAmelCase = []
for i in range(self.num_layers ):
UpperCAmelCase = self.in_channels if i == 0 else self.out_channels
UpperCAmelCase = FlaxResnetBlockaD(
in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(lowerCAmelCase )
UpperCAmelCase = resnets
if self.add_downsample:
UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=True )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase = ()
for resnet in self.resnets:
UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
UpperCAmelCase = self.downsamplers_a(lowerCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class UpperCamelCase__( nn.Module ):
__magic_name__ : int
__magic_name__ : int
__magic_name__ : int
__magic_name__ : float = 0.0
__magic_name__ : int = 1
__magic_name__ : int = 1
__magic_name__ : bool = True
__magic_name__ : bool = False
__magic_name__ : bool = False
__magic_name__ : bool = False
__magic_name__ : jnp.dtype = jnp.floataa
def a__( self : List[str] )-> Tuple:
"""simple docstring"""
UpperCAmelCase = []
UpperCAmelCase = []
for i in range(self.num_layers ):
UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels
UpperCAmelCase = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(lowerCAmelCase )
UpperCAmelCase = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(lowerCAmelCase )
UpperCAmelCase = resnets
UpperCAmelCase = attentions
if self.add_upsample:
UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any]=True )-> Optional[int]:
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
UpperCAmelCase = res_hidden_states_tuple[-1]
UpperCAmelCase = res_hidden_states_tuple[:-1]
UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase )
UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase )
if self.add_upsample:
UpperCAmelCase = self.upsamplers_a(lowerCAmelCase )
return hidden_states
class UpperCamelCase__( nn.Module ):
__magic_name__ : int
__magic_name__ : int
__magic_name__ : int
__magic_name__ : float = 0.0
__magic_name__ : int = 1
__magic_name__ : bool = True
__magic_name__ : jnp.dtype = jnp.floataa
def a__( self : Optional[int] )-> str:
"""simple docstring"""
UpperCAmelCase = []
for i in range(self.num_layers ):
UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels
UpperCAmelCase = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(lowerCAmelCase )
UpperCAmelCase = resnets
if self.add_upsample:
UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=True )-> Tuple:
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
UpperCAmelCase = res_hidden_states_tuple[-1]
UpperCAmelCase = res_hidden_states_tuple[:-1]
UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase )
if self.add_upsample:
UpperCAmelCase = self.upsamplers_a(lowerCAmelCase )
return hidden_states
class UpperCamelCase__( nn.Module ):
__magic_name__ : int
__magic_name__ : float = 0.0
__magic_name__ : int = 1
__magic_name__ : int = 1
__magic_name__ : bool = False
__magic_name__ : bool = False
__magic_name__ : jnp.dtype = jnp.floataa
def a__( self : int )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
UpperCAmelCase = []
for _ in range(self.num_layers ):
UpperCAmelCase = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(lowerCAmelCase )
UpperCAmelCase = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(lowerCAmelCase )
UpperCAmelCase = resnets
UpperCAmelCase = attentions
def __call__( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Any=True )-> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = self.resnets[0](lowerCAmelCase , lowerCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase )
UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase )
return hidden_states
| 91 | 1 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase( UpperCAmelCase_ ):
return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ):
UpperCAmelCase : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
UpperCAmelCase : Union[str, Any] = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' )
UpperCAmelCase : List[Any] = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' )
UpperCAmelCase : str = key.replace('heads.cmd.itm_head.cls' , 'itm_head' )
UpperCAmelCase : Optional[Any] = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' )
UpperCAmelCase : str = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' )
UpperCAmelCase : List[str] = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' )
UpperCAmelCase : Optional[Any] = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' )
UpperCAmelCase : str = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' )
UpperCAmelCase : str = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' )
UpperCAmelCase : Any = key.replace('image_encoder.module' , 'flava.image_model' )
UpperCAmelCase : Tuple = key.replace('text_encoder.module' , 'flava.text_model' )
UpperCAmelCase : Any = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' )
UpperCAmelCase : List[str] = key.replace('mm_encoder.module' , 'flava.multimodal_model' )
UpperCAmelCase : Any = key.replace('text_projection' , 'flava.text_projection' )
UpperCAmelCase : Optional[Any] = key.replace('image_projection' , 'flava.image_projection' )
UpperCAmelCase : Any = value.float()
for key, value in codebook_state_dict.items():
UpperCAmelCase : Union[str, Any] = value
return upgrade
@torch.no_grad()
def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ):
if config_path is not None:
UpperCAmelCase : Dict = FlavaConfig.from_pretrained(_snake_case )
else:
UpperCAmelCase : Optional[Any] = FlavaConfig()
UpperCAmelCase : List[Any] = FlavaForPreTraining(_snake_case ).eval()
UpperCAmelCase : Union[str, Any] = convert_dalle_checkpoint(_snake_case , _snake_case , save_checkpoint=_snake_case )
if os.path.exists(_snake_case ):
UpperCAmelCase : List[str] = torch.load(_snake_case , map_location='cpu' )
else:
UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' )
UpperCAmelCase : Any = upgrade_state_dict(_snake_case , _snake_case )
hf_model.load_state_dict(_snake_case )
UpperCAmelCase : int = hf_model.state_dict()
UpperCAmelCase : Union[str, Any] = count_parameters(_snake_case )
UpperCAmelCase : List[Any] = count_parameters(_snake_case ) + count_parameters(_snake_case )
assert torch.allclose(_snake_case , _snake_case , atol=1E-3 )
hf_model.save_pretrained(_snake_case )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
lowercase__ = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 151 |
"""simple docstring"""
import numpy as np
def lowercase ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : Union[str, Any] ) ->Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = int(np.ceil((x_end - xa) / h ) )
__snake_case : Dict = np.zeros((n + 1,) )
__snake_case : List[Any] = ya
__snake_case : int = xa
for k in range(_snake_case ):
__snake_case : Any = f(_snake_case , y[k] )
__snake_case : List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__snake_case : int = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__snake_case : Optional[int] = f(x + h , y[k] + h * ka )
__snake_case : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 102 | 0 |
"""simple docstring"""
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
__UpperCamelCase : Dict = datasets.logging.get_logger(__name__)
__UpperCamelCase : Dict = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n"
__UpperCamelCase : Tuple = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n"
__UpperCamelCase : Any = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n"
__UpperCamelCase : Any = {
"bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip",
"bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip",
"bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip",
"bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip",
"bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip",
"bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip",
"BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip",
"BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip",
"BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip",
"BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __magic_name__ ( datasets.Metric):
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , )
def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : int ) -> Optional[int]:
'''simple docstring'''
if self.config_name == "default":
logger.warning(
'''Using default BLEURT-Base checkpoint for sequence maximum length 128. '''
'''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' )
UpperCamelCase__ : List[str] = '''bleurt-base-128'''
if self.config_name.lower() in CHECKPOINT_URLS:
UpperCamelCase__ : Tuple = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
UpperCamelCase__ : Union[str, Any] = self.config_name.upper()
else:
raise KeyError(
F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" )
# download the model checkpoint specified by self.config_name and set up the scorer
UpperCamelCase__ : Dict = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
UpperCamelCase__ : Any = score.BleurtScorer(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) )
def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ : Optional[int] = self.scorer.score(references=lowerCamelCase__ , candidates=lowerCamelCase__ )
return {"scores": scores}
| 367 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple="attention" ):
"""simple docstring"""
UpperCamelCase__ : List[Any] = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"]
UpperCamelCase__ : Optional[Any] = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"]
UpperCamelCase__ : Union[str, Any] = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"]
UpperCamelCase__ : int = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"]
return k, o, q, v
def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any=False ):
"""simple docstring"""
if split_mlp_wi:
UpperCamelCase__ : Optional[int] = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"]
UpperCamelCase__ : int = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"]
UpperCamelCase__ : Any = (wi_a, wi_a)
else:
UpperCamelCase__ : Union[str, Any] = params[F"{prefix}/layers_{i}/mlp/wi/kernel"]
UpperCamelCase__ : Any = params[F"{prefix}/layers_{i}/mlp/wo/kernel"]
return wi, wo
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
return params[F"{prefix}/layers_{i}/{layer_name}/scale"]
def _a ( SCREAMING_SNAKE_CASE : dict , *, SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool ):
"""simple docstring"""
UpperCamelCase__ : List[Any] = traverse_util.flatten_dict(variables['''target'''] )
UpperCamelCase__ : List[str] = {'''/'''.join(SCREAMING_SNAKE_CASE ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
UpperCamelCase__ : List[Any] = '''encoder/layers_0/mlp/wi_0/kernel''' in old
print('''Split MLP:''' , SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Any = collections.OrderedDict()
# Shared embeddings.
UpperCamelCase__ : List[Any] = old['''token_embedder/embedding''']
# Encoder.
for i in range(SCREAMING_SNAKE_CASE ):
# Block i, layer 0 (Self Attention).
UpperCamelCase__ : int = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_attention_layer_norm''' )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''attention''' )
UpperCamelCase__ : Tuple = layer_norm
UpperCamelCase__ : Optional[int] = k.T
UpperCamelCase__ : Any = o.T
UpperCamelCase__ : Dict = q.T
UpperCamelCase__ : List[str] = v.T
# Block i, layer 1 (MLP).
UpperCamelCase__ : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_mlp_layer_norm''' )
UpperCamelCase__ , UpperCamelCase__ : Dict = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Union[str, Any] = layer_norm
if split_mlp_wi:
UpperCamelCase__ : Optional[int] = wi[0].T
UpperCamelCase__ : Tuple = wi[1].T
else:
UpperCamelCase__ : List[Any] = wi.T
UpperCamelCase__ : Optional[int] = wo.T
UpperCamelCase__ : List[str] = old[
'''encoder/relpos_bias/rel_embedding'''
].T
UpperCamelCase__ : str = old['''encoder/encoder_norm/scale''']
if not is_encoder_only:
# Decoder.
for i in range(SCREAMING_SNAKE_CASE ):
# Block i, layer 0 (Self Attention).
UpperCamelCase__ : List[Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_self_attention_layer_norm''' )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''self_attention''' )
UpperCamelCase__ : Dict = layer_norm
UpperCamelCase__ : Optional[Any] = k.T
UpperCamelCase__ : Tuple = o.T
UpperCamelCase__ : Any = q.T
UpperCamelCase__ : Optional[Any] = v.T
# Block i, layer 1 (Cross Attention).
UpperCamelCase__ : Optional[Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_cross_attention_layer_norm''' )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Any = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''encoder_decoder_attention''' )
UpperCamelCase__ : Optional[int] = layer_norm
UpperCamelCase__ : List[Any] = k.T
UpperCamelCase__ : Optional[Any] = o.T
UpperCamelCase__ : Dict = q.T
UpperCamelCase__ : Any = v.T
# Block i, layer 2 (MLP).
UpperCamelCase__ : Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_mlp_layer_norm''' )
UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[Any] = layer_norm
if split_mlp_wi:
UpperCamelCase__ : str = wi[0].T
UpperCamelCase__ : Any = wi[1].T
else:
UpperCamelCase__ : Tuple = wi.T
UpperCamelCase__ : Tuple = wo.T
UpperCamelCase__ : Optional[int] = old['''decoder/decoder_norm/scale''']
UpperCamelCase__ : Any = old[
'''decoder/relpos_bias/rel_embedding'''
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
UpperCamelCase__ : Dict = old['''decoder/logits_dense/kernel'''].T
return new
def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : bool ):
"""simple docstring"""
UpperCamelCase__ : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
UpperCamelCase__ : Optional[Any] = state_dict['''shared.weight''']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
UpperCamelCase__ : List[Any] = state_dict['''shared.weight''']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print('''Using shared word embeddings as lm_head.''' )
UpperCamelCase__ : List[str] = state_dict['''shared.weight''']
return state_dict
def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ):
"""simple docstring"""
UpperCamelCase__ : Tuple = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Dict = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[str] = make_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE )
def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : bool = False ):
"""simple docstring"""
UpperCamelCase__ : Tuple = TaConfig.from_json_file(SCREAMING_SNAKE_CASE )
print(F"Building PyTorch model from configuration: {config}" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
UpperCamelCase__ : Any = TaEncoderModel(SCREAMING_SNAKE_CASE )
else:
UpperCamelCase__ : Union[str, Any] = TaForConditionalGeneration(SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tax_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(F"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Verify that we can load the checkpoint.
model.from_pretrained(SCREAMING_SNAKE_CASE )
print('''Done''' )
if __name__ == "__main__":
__UpperCamelCase : Union[str, Any] = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.")
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False
)
__UpperCamelCase : int = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 51 | 0 |
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool:
lowercase__: int = len(__UpperCAmelCase ) + 1
lowercase__: List[Any] = len(__UpperCAmelCase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
lowercase__: Dict = [[0 for i in range(__UpperCAmelCase )] for j in range(__UpperCAmelCase )]
# since string of zero length match pattern of zero length
lowercase__: Union[str, Any] = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , __UpperCAmelCase ):
lowercase__: Union[str, Any] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , __UpperCAmelCase ):
lowercase__: Optional[Any] = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , __UpperCAmelCase ):
for j in range(1 , __UpperCAmelCase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
lowercase__: int = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
lowercase__: List[str] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
lowercase__: str = dp[i - 1][j]
else:
lowercase__: str = 0
else:
lowercase__: Optional[Any] = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
__A = "aab"
__A = "c*a*b"
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f'''{input_string} matches the given pattern {pattern}''')
else:
print(f'''{input_string} does not match with the given pattern {pattern}''')
| 177 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = logging.get_logger(__name__)
__A = {
"ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json",
}
class UpperCAmelCase (_UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase :Dict = "deta"
_UpperCAmelCase :Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=900 , _UpperCAmelCase=2048 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=1024 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=True , _UpperCAmelCase=300 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.25 , **_UpperCAmelCase , ):
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
lowercase__: str = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] )
else:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowercase__: Tuple = backbone_config.pop('''model_type''' )
lowercase__: str = CONFIG_MAPPING[backbone_model_type]
lowercase__: Optional[int] = config_class.from_dict(_UpperCAmelCase )
lowercase__: int = backbone_config
lowercase__: Any = num_queries
lowercase__: List[str] = max_position_embeddings
lowercase__: Optional[Any] = d_model
lowercase__: List[Any] = encoder_ffn_dim
lowercase__: Tuple = encoder_layers
lowercase__: Dict = encoder_attention_heads
lowercase__: Any = decoder_ffn_dim
lowercase__: Union[str, Any] = decoder_layers
lowercase__: List[Any] = decoder_attention_heads
lowercase__: int = dropout
lowercase__: List[str] = attention_dropout
lowercase__: Tuple = activation_dropout
lowercase__: Tuple = activation_function
lowercase__: int = init_std
lowercase__: Optional[Any] = init_xavier_std
lowercase__: Optional[Any] = encoder_layerdrop
lowercase__: Optional[int] = auxiliary_loss
lowercase__: Union[str, Any] = position_embedding_type
# deformable attributes
lowercase__: List[str] = num_feature_levels
lowercase__: Optional[Any] = encoder_n_points
lowercase__: int = decoder_n_points
lowercase__: str = two_stage
lowercase__: Optional[int] = two_stage_num_proposals
lowercase__: Tuple = with_box_refine
lowercase__: str = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
lowercase__: Union[str, Any] = class_cost
lowercase__: Optional[int] = bbox_cost
lowercase__: int = giou_cost
# Loss coefficients
lowercase__: Optional[int] = mask_loss_coefficient
lowercase__: List[str] = dice_loss_coefficient
lowercase__: str = bbox_loss_coefficient
lowercase__: Union[str, Any] = giou_loss_coefficient
lowercase__: Optional[int] = eos_coefficient
lowercase__: str = focal_alpha
super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase )
@property
def _snake_case ( self ):
return self.encoder_attention_heads
@property
def _snake_case ( self ):
return self.d_model
def _snake_case ( self ):
lowercase__: Union[str, Any] = copy.deepcopy(self.__dict__ )
lowercase__: Dict = self.backbone_config.to_dict()
lowercase__: Union[str, Any] = self.__class__.model_type
return output
| 177 | 1 |
"""simple docstring"""
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def lowercase__(A , A , A , A , A ) ->np.ndarray:
"""simple docstring"""
lowercase__ : int= cva.getAffineTransform(A , A )
return cva.warpAffine(A , A , (rows, cols) )
if __name__ == "__main__":
# read original image
a : List[Any] = cva.imread(
str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""")
)
# turn image in gray scale value
a : Any = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
a , a : Tuple = gray_img.shape
# set different points to rotate image
a : str = np.array([[50, 50], [200, 50], [50, 200]], np.floataa)
a : Union[str, Any] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa)
a : str = np.array([[50, 50], [150, 50], [120, 200]], np.floataa)
a : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa)
# add all rotated images in a list
a : Optional[int] = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
a : Dict = plt.figure(1)
a : Optional[int] = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""]
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""")
plt.title(titles[i])
plt.axis("""off""")
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 150 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
a : Any = """src/diffusers"""
# Matches is_xxx_available()
a : Optional[Any] = re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
a : Dict = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
a : Dict = """
{0} = None
"""
a : List[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
a : Any = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def lowercase__(A ) ->List[str]:
"""simple docstring"""
lowercase__ : Optional[int]= _re_backend.findall(A )
if len(A ) == 0:
return None
return "_and_".join(A )
def lowercase__() ->int:
"""simple docstring"""
with open(os.path.join(A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
lowercase__ : Union[str, Any]= f.readlines()
# Get to the point we do the actual imports for type checking
lowercase__ : List[Any]= 0
lowercase__ : List[Any]= {}
# Go through the end of the file
while line_index < len(A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowercase__ : Optional[Any]= find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
lowercase__ : str= []
# Until we unindent, add backend objects to the list
while line_index < len(A ) and len(lines[line_index] ) > 1:
lowercase__ : List[str]= lines[line_index]
lowercase__ : Any= _re_single_line_import.search(A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(A ) > 0:
lowercase__ : str= objects
else:
line_index += 1
return backend_specific_objects
def lowercase__(A , A ) ->List[Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(A )
elif name.islower():
return DUMMY_FUNCTION.format(A , A )
else:
return DUMMY_CLASS.format(A , A )
def lowercase__(A=None ) ->Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
lowercase__ : int= read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowercase__ : Dict= {}
for backend, objects in backend_specific_objects.items():
lowercase__ : str= "[" + ", ".join(f'''"{b}"''' for b in backend.split("_and_" ) ) + "]"
lowercase__ : List[str]= "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(A , A ) for o in objects] )
lowercase__ : Optional[Any]= dummy_file
return dummy_files
def lowercase__(A=False ) ->List[Any]:
"""simple docstring"""
lowercase__ : Tuple= create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowercase__ : int= {"torch": "pt"}
# Locate actual dummy modules and read their content.
lowercase__ : Dict= os.path.join(A , "utils" )
lowercase__ : str= {
backend: os.path.join(A , f'''dummy_{short_names.get(A , A )}_objects.py''' )
for backend in dummy_files.keys()
}
lowercase__ : Union[str, Any]= {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(A ):
with open(A , "r" , encoding="utf-8" , newline="\n" ) as f:
lowercase__ : List[Any]= f.read()
else:
lowercase__ : Tuple= ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(A , A )}_objects.py as the main '''
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
f'''diffusers.utils.dummy_{short_names.get(A , A )}_objects.py. Run `make fix-copies` '''
"to fix this." )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
a : Tuple = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 150 | 1 |
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
_snake_case = logging.get_logger(__name__)
class UpperCAmelCase_ ( a):
lowerCamelCase__ = ['input_features', 'attention_mask']
def __init__( self, __a=80, __a=1_6000, __a=0.0, __a=10, __a=25, __a="hamming_window", __a=32_768.0, __a=0.97, __a=1.0, __a=True, __a=True, __a=False, **__a, ):
'''simple docstring'''
super().__init__(feature_size=__a, sampling_rate=__a, padding_value=__a, **__a)
_lowerCAmelCase : int = feature_size
_lowerCAmelCase : Optional[Any] = sampling_rate
_lowerCAmelCase : Tuple = padding_value
_lowerCAmelCase : int = hop_length
_lowerCAmelCase : str = win_length
_lowerCAmelCase : str = frame_signal_scale
_lowerCAmelCase : Union[str, Any] = preemphasis_coeff
_lowerCAmelCase : Optional[Any] = mel_floor
_lowerCAmelCase : str = normalize_means
_lowerCAmelCase : Union[str, Any] = normalize_vars
_lowerCAmelCase : List[str] = win_function
_lowerCAmelCase : str = return_attention_mask
_lowerCAmelCase : str = win_length * sampling_rate // 1000
_lowerCAmelCase : Union[str, Any] = hop_length * sampling_rate // 1000
_lowerCAmelCase : Tuple = optimal_fft_length(self.sample_size)
_lowerCAmelCase : Tuple = (self.n_fft // 2) + 1
def snake_case__ ( self, __a):
'''simple docstring'''
if self.win_function == "hamming_window":
_lowerCAmelCase : str = window_function(window_length=self.sample_size, name=self.win_function, periodic=__a)
else:
_lowerCAmelCase : Union[str, Any] = window_function(window_length=self.sample_size, name=self.win_function)
_lowerCAmelCase : List[Any] = mel_filter_bank(
num_frequency_bins=self.n_freqs, num_mel_filters=self.feature_size, min_frequency=0.0, max_frequency=self.sampling_rate / 2.0, sampling_rate=self.sampling_rate, )
_lowerCAmelCase : Optional[Any] = spectrogram(
one_waveform * self.frame_signal_scale, window=__a, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, center=__a, preemphasis=self.preemphasis_coeff, mel_filters=__a, mel_floor=self.mel_floor, log_mel="log", )
return msfc_features.T
def snake_case__ ( self, __a, __a, __a):
'''simple docstring'''
if self.normalize_means:
_lowerCAmelCase : Dict = x[:input_length].mean(axis=0)
_lowerCAmelCase : Optional[Any] = np.subtract(__a, __a)
if self.normalize_vars:
_lowerCAmelCase : List[str] = x[:input_length].std(axis=0)
_lowerCAmelCase : Optional[int] = np.divide(__a, __a)
if input_length < x.shape[0]:
_lowerCAmelCase : Union[str, Any] = padding_value
# make sure array is in float32
_lowerCAmelCase : Optional[int] = x.astype(np.floataa)
return x
def snake_case__ ( self, __a, __a = None):
'''simple docstring'''
_lowerCAmelCase : int = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(__a, __a, self.padding_value) for x, n in zip(__a, __a)]
def __call__( self, __a, __a = False, __a = None, __a = False, __a = None, __a = None, __a = None, __a = None, **__a, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}.")
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug.")
_lowerCAmelCase : List[Any] = isinstance(__a, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
_lowerCAmelCase : int = is_batched_numpy or (
isinstance(__a, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
_lowerCAmelCase : Any = [np.asarray(__a, dtype=np.floataa) for speech in raw_speech]
elif not is_batched and not isinstance(__a, np.ndarray):
_lowerCAmelCase : Tuple = np.asarray(__a, dtype=np.floataa)
elif isinstance(__a, np.ndarray) and raw_speech.dtype is np.dtype(np.floataa):
_lowerCAmelCase : Union[str, Any] = raw_speech.astype(np.floataa)
# always return batch
if not is_batched:
_lowerCAmelCase : Optional[Any] = [raw_speech]
# extract fbank features
_lowerCAmelCase : List[str] = [self._extract_mfsc_features(__a) for one_waveform in raw_speech]
# convert into correct format for padding
_lowerCAmelCase : int = BatchFeature({"input_features": features})
_lowerCAmelCase : str = self.pad(
__a, padding=__a, max_length=__a, truncation=__a, pad_to_multiple_of=__a, return_attention_mask=__a, **__a, )
# make sure list is in array format
_lowerCAmelCase : Optional[Any] = padded_inputs.get("input_features")
if isinstance(input_features[0], __a):
_lowerCAmelCase : int = [np.asarray(__a, dtype=np.floataa) for feature in input_features]
_lowerCAmelCase : str = padded_inputs.get("attention_mask")
if attention_mask is not None:
_lowerCAmelCase : Optional[Any] = [np.asarray(__a, dtype=np.intaa) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
_lowerCAmelCase : int = (
np.array(__a, dtype=np.intaa)
if self._get_padding_strategies(__a, max_length=__a) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
_lowerCAmelCase : List[Any] = self.normalize(
padded_inputs["input_features"], attention_mask=__a)
if return_tensors is not None:
_lowerCAmelCase : Tuple = padded_inputs.convert_to_tensors(__a)
return padded_inputs
| 36 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def A ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = "huggingface/label-files"
_lowerCAmelCase : int = "imagenet-1k-id2label.json"
_lowerCAmelCase : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCAmelCase : Tuple = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
_lowerCAmelCase : Tuple = "std_conv" if "bit" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
_lowerCAmelCase : Optional[int] = BitConfig(
conv_layer=_lowerCamelCase , num_labels=1_000 , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , )
return config
def A ( _lowerCamelCase ):
'''simple docstring'''
if "stem.conv" in name:
_lowerCAmelCase : List[str] = name.replace("stem.conv" , "bit.embedder.convolution" )
if "blocks" in name:
_lowerCAmelCase : Any = name.replace("blocks" , "layers" )
if "head.fc" in name:
_lowerCAmelCase : Optional[Any] = name.replace("head.fc" , "classifier.1" )
if name.startswith("norm" ):
_lowerCAmelCase : Any = "bit." + name
if "bit" not in name and "classifier" not in name:
_lowerCAmelCase : Dict = "bit.encoder." + name
return name
def A ( ):
'''simple docstring'''
_lowerCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCAmelCase : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ):
'''simple docstring'''
_lowerCAmelCase : Dict = get_config(_lowerCamelCase )
# load original model from timm
_lowerCAmelCase : int = create_model(_lowerCamelCase , pretrained=_lowerCamelCase )
timm_model.eval()
# load state_dict of original model
_lowerCAmelCase : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
_lowerCAmelCase : Dict = state_dict.pop(_lowerCamelCase )
_lowerCAmelCase : Tuple = val.squeeze() if "head" in key else val
# load HuggingFace model
_lowerCAmelCase : Optional[Any] = BitForImageClassification(_lowerCamelCase )
model.eval()
model.load_state_dict(_lowerCamelCase )
# create image processor
_lowerCAmelCase : Dict = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) )
_lowerCAmelCase : Optional[int] = transform.transforms
_lowerCAmelCase : Tuple = {
"bilinear": PILImageResampling.BILINEAR,
"bicubic": PILImageResampling.BICUBIC,
"nearest": PILImageResampling.NEAREST,
}
_lowerCAmelCase : Tuple = BitImageProcessor(
do_resize=_lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
_lowerCAmelCase : Optional[int] = prepare_img()
_lowerCAmelCase : Any = transform(_lowerCamelCase ).unsqueeze(0 )
_lowerCAmelCase : Optional[int] = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values
# verify pixel values
assert torch.allclose(_lowerCamelCase , _lowerCamelCase )
# verify logits
with torch.no_grad():
_lowerCAmelCase : Tuple = model(_lowerCamelCase )
_lowerCAmelCase : str = outputs.logits
print("Logits:" , logits[0, :3] )
print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] )
_lowerCAmelCase : Union[str, Any] = timm_model(_lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"Saving model {model_name} and processor to {pytorch_dump_folder_path}" )
model.save_pretrained(_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
if push_to_hub:
print(F"Pushing model {model_name} and processor to the hub" )
model.push_to_hub(F"ybelkada/{model_name}" )
processor.push_to_hub(F"ybelkada/{model_name}" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="resnetv2_50x1_bitm",
type=str,
help="Name of the BiT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model to the hub.",
)
_snake_case = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 36 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCAmelCase ( lowerCamelCase__ ):
def __init__( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : int ) -> Optional[int]:
super().__init__()
self.register_modules(unet=__A , scheduler=__A )
@torch.no_grad()
def __call__( self : int , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 100 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : bool = True , ) -> Dict:
if audio_length_in_s is None:
lowerCamelCase__ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate
lowerCamelCase__ : Dict = audio_length_in_s * self.unet.config.sample_rate
lowerCamelCase__ : int = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
F"""{audio_length_in_s} is too small. Make sure it\'s bigger or equal to"""
F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" )
lowerCamelCase__ : List[Any] = int(__A )
if sample_size % down_scale_factor != 0:
lowerCamelCase__ : Union[str, Any] = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"""
F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"""
' process.' )
lowerCamelCase__ : List[str] = int(__A )
lowerCamelCase__ : Any = next(iter(self.unet.parameters() ) ).dtype
lowerCamelCase__ : List[Any] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(__A , __A ) and len(__A ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__A )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
lowerCamelCase__ : Optional[int] = randn_tensor(__A , generator=__A , device=self.device , dtype=__A )
# set step values
self.scheduler.set_timesteps(__A , device=audio.device )
lowerCamelCase__ : str = self.scheduler.timesteps.to(__A )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCamelCase__ : Tuple = self.unet(__A , __A ).sample
# 2. compute previous image: x_t -> t_t-1
lowerCamelCase__ : Union[str, Any] = self.scheduler.step(__A , __A , __A ).prev_sample
lowerCamelCase__ : str = audio.clamp(-1 , 1 ).float().cpu().numpy()
lowerCamelCase__ : int = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=__A )
| 360 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase : int = {
"""configuration_bigbird_pegasus""": [
"""BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BigBirdPegasusConfig""",
"""BigBirdPegasusOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : List[str] = [
"""BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BigBirdPegasusForCausalLM""",
"""BigBirdPegasusForConditionalGeneration""",
"""BigBirdPegasusForQuestionAnswering""",
"""BigBirdPegasusForSequenceClassification""",
"""BigBirdPegasusModel""",
"""BigBirdPegasusPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 45 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Tuple=3 , lowercase_ : Union[str, Any]=32 , lowercase_ : Optional[Any]=3 , lowercase_ : Tuple=10 , lowercase_ : Dict=[8, 16, 32, 64] , lowercase_ : List[Any]=[1, 1, 2, 1] , lowercase_ : int=True , lowercase_ : Any=True , lowercase_ : List[str]="relu" , lowercase_ : Dict=3 , lowercase_ : List[str]=None , lowercase_ : Dict=["stage2", "stage3", "stage4"] , lowercase_ : Optional[Any]=[2, 3, 4] , lowercase_ : Any=1 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = parent
SCREAMING_SNAKE_CASE_ : List[str] = batch_size
SCREAMING_SNAKE_CASE_ : List[Any] = image_size
SCREAMING_SNAKE_CASE_ : Tuple = num_channels
SCREAMING_SNAKE_CASE_ : List[str] = embeddings_size
SCREAMING_SNAKE_CASE_ : Tuple = hidden_sizes
SCREAMING_SNAKE_CASE_ : str = depths
SCREAMING_SNAKE_CASE_ : List[str] = is_training
SCREAMING_SNAKE_CASE_ : List[str] = use_labels
SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act
SCREAMING_SNAKE_CASE_ : List[Any] = num_labels
SCREAMING_SNAKE_CASE_ : Optional[int] = scope
SCREAMING_SNAKE_CASE_ : List[str] = len(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = out_features
SCREAMING_SNAKE_CASE_ : Tuple = out_indices
SCREAMING_SNAKE_CASE_ : str = num_groups
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE_ : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels)
SCREAMING_SNAKE_CASE_ : str = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = BitModel(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.num_labels
SCREAMING_SNAKE_CASE_ : Optional[int] = BitForImageClassification(lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = BitBackbone(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:])
# verify backbone works with out_features=None
SCREAMING_SNAKE_CASE_ : Dict = None
SCREAMING_SNAKE_CASE_ : str = BitBackbone(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : Any = model(lowercase_)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels) , 1)
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]])
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = config_and_inputs
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__UpperCamelCase = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = BitModelTester(self)
SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
return
@unittest.skip(reason='''Bit does not output attentions''')
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''')
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''')
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : Any = model_class(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE_ : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE_ : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : Dict = model_class(config=lowercase_)
for name, module in model.named_modules():
if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm)):
self.assertTrue(
torch.all(module.weight == 1) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
self.assertTrue(
torch.all(module.bias == 0) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
def check_hidden_states_output(lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : List[str]):
SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(lowercase_)
model.to(lowercase_)
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : int = model(**self._prepare_for_class(lowercase_ , lowercase_))
SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.num_stages
self.assertEqual(len(lowercase_) , expected_num_stages + 1)
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ : Any = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_type
SCREAMING_SNAKE_CASE_ : str = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_)
@unittest.skip(reason='''Bit does not use feedforward chunking''')
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_)
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_ : Dict = BitModel.from_pretrained(lowercase_)
self.assertIsNotNone(lowercase_)
def _A () -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowercase_)
SCREAMING_SNAKE_CASE_ : str = self.default_image_processor
SCREAMING_SNAKE_CASE_ : Dict = prepare_img()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_)
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : str = model(**lowercase_)
# verify the logits
SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]]).to(lowercase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = (BitBackbone,) if is_torch_available() else ()
__UpperCamelCase = BitConfig
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = BitModelTester(self)
| 91 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
UpperCAmelCase_ : int = logging.get_logger(__name__)
def _A (__a ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(__a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(__a , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(__a ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = ["pixel_values"]
def __init__( self : Dict , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Dict , ):
'''simple docstring'''
super().__init__(**lowercase_)
SCREAMING_SNAKE_CASE_ : str = size if size is not None else {'''shortest_edge''': 256}
SCREAMING_SNAKE_CASE_ : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(lowercase_ , param_name='''crop_size''')
SCREAMING_SNAKE_CASE_ : Optional[int] = do_resize
SCREAMING_SNAKE_CASE_ : List[Any] = size
SCREAMING_SNAKE_CASE_ : Tuple = do_center_crop
SCREAMING_SNAKE_CASE_ : Dict = crop_size
SCREAMING_SNAKE_CASE_ : List[Any] = resample
SCREAMING_SNAKE_CASE_ : List[str] = do_rescale
SCREAMING_SNAKE_CASE_ : List[str] = rescale_factor
SCREAMING_SNAKE_CASE_ : List[Any] = offset
SCREAMING_SNAKE_CASE_ : List[Any] = do_normalize
SCREAMING_SNAKE_CASE_ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
SCREAMING_SNAKE_CASE_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_)
if "shortest_edge" in size:
SCREAMING_SNAKE_CASE_ : List[Any] = get_resize_output_image_size(lowercase_ , size['''shortest_edge'''] , default_to_square=lowercase_)
elif "height" in size and "width" in size:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = (size['''height'''], size['''width'''])
else:
raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}')
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = get_size_dict(lowercase_)
if "height" not in size or "width" not in size:
raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}')
return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : bool = True , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = image.astype(np.floataa)
if offset:
SCREAMING_SNAKE_CASE_ : Tuple = image - (scale / 2)
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ):
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''')
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''')
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''')
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE_ : List[str] = to_numpy_array(lowercase_)
if do_resize:
SCREAMING_SNAKE_CASE_ : List[Any] = self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_)
if do_center_crop:
SCREAMING_SNAKE_CASE_ : Dict = self.center_crop(lowercase_ , size=lowercase_)
if do_rescale:
SCREAMING_SNAKE_CASE_ : int = self.rescale(image=lowercase_ , scale=lowercase_ , offset=lowercase_)
if do_normalize:
SCREAMING_SNAKE_CASE_ : Dict = self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = to_channel_dimension_format(lowercase_ , lowercase_)
return image
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Optional[Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE_ : int = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE_ : Dict = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE_ : Dict = offset if offset is not None else self.offset
SCREAMING_SNAKE_CASE_ : str = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE_ : Dict = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE_ : List[str] = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else self.size
SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(lowercase_ , param_name='''crop_size''')
if not valid_images(lowercase_):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''')
SCREAMING_SNAKE_CASE_ : Tuple = make_batched(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = [
[
self._preprocess_image(
image=lowercase_ , do_resize=lowercase_ , size=lowercase_ , resample=lowercase_ , do_center_crop=lowercase_ , crop_size=lowercase_ , do_rescale=lowercase_ , rescale_factor=lowercase_ , offset=lowercase_ , do_normalize=lowercase_ , image_mean=lowercase_ , image_std=lowercase_ , data_format=lowercase_ , )
for img in video
]
for video in videos
]
SCREAMING_SNAKE_CASE_ : int = {'''pixel_values''': videos}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
| 91 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__lowercase = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _lowercase ( __a ):
"""simple docstring"""
lowercase__ = ['''pixel_values''']
def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : bool = True , **UpperCamelCase__ : List[Any] , ) -> None:
'''simple docstring'''
super().__init__(**UpperCamelCase__ )
__UpperCamelCase =size if size is not None else {'''shortest_edge''': 224}
__UpperCamelCase =get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
__UpperCamelCase =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
__UpperCamelCase =get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ , param_name='''crop_size''' )
__UpperCamelCase =do_resize
__UpperCamelCase =size
__UpperCamelCase =resample
__UpperCamelCase =do_center_crop
__UpperCamelCase =crop_size
__UpperCamelCase =do_rescale
__UpperCamelCase =rescale_factor
__UpperCamelCase =do_normalize
__UpperCamelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCamelCase =image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCamelCase =do_convert_rgb
def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , ) -> np.ndarray:
'''simple docstring'''
__UpperCamelCase =get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
__UpperCamelCase =get_resize_output_image_size(UpperCamelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCamelCase__ )
return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , ) -> np.ndarray:
'''simple docstring'''
__UpperCamelCase =get_size_dict(UpperCamelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(UpperCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Any , ) -> List[str]:
'''simple docstring'''
return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : float = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Tuple , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCamelCase =do_resize if do_resize is not None else self.do_resize
__UpperCamelCase =size if size is not None else self.size
__UpperCamelCase =get_size_dict(UpperCamelCase__ , param_name='''size''' , default_to_square=UpperCamelCase__ )
__UpperCamelCase =resample if resample is not None else self.resample
__UpperCamelCase =do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase =crop_size if crop_size is not None else self.crop_size
__UpperCamelCase =get_size_dict(UpperCamelCase__ , param_name='''crop_size''' , default_to_square=UpperCamelCase__ )
__UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase =do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase =image_mean if image_mean is not None else self.image_mean
__UpperCamelCase =image_std if image_std is not None else self.image_std
__UpperCamelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCamelCase =make_list_of_images(UpperCamelCase__ )
if not valid_images(UpperCamelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCamelCase =[convert_to_rgb(UpperCamelCase__ ) for image in images]
# All transformations expect numpy arrays.
__UpperCamelCase =[to_numpy_array(UpperCamelCase__ ) for image in images]
if do_resize:
__UpperCamelCase =[self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images]
if do_center_crop:
__UpperCamelCase =[self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images]
if do_rescale:
__UpperCamelCase =[self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images]
if do_normalize:
__UpperCamelCase =[self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images]
__UpperCamelCase =[to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images]
__UpperCamelCase ={'''pixel_values''': images}
return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
| 85 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__lowercase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = ['''GPTNeoXTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = [
'''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXForCausalLM''',
'''GPTNeoXForQuestionAnswering''',
'''GPTNeoXForSequenceClassification''',
'''GPTNeoXForTokenClassification''',
'''GPTNeoXLayer''',
'''GPTNeoXModel''',
'''GPTNeoXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
__lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 85 | 1 |
def A_ ( snake_case : int ) -> None:
'''simple docstring'''
__UpperCamelCase = generate_pascal_triangle(__A )
for row_idx in range(__A ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=''' ''' )
else:
print(triangle[row_idx][col_idx] , end='''''' )
print()
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(__A , __A ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = []
for current_row_idx in range(__A ):
__UpperCamelCase = populate_current_row(__A , __A )
triangle.append(__A )
return triangle
def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]:
'''simple docstring'''
__UpperCamelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCamelCase , __UpperCamelCase = 1, 1
for current_col_idx in range(1 , __A ):
calculate_current_element(
__A , __A , __A , __A )
return current_row
def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None:
'''simple docstring'''
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx]
__UpperCamelCase = above_to_left_elt + above_to_right_elt
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(__A , __A ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = [[1]]
for row_index in range(1 , __A ):
__UpperCamelCase = [0] + result[-1] + [0]
__UpperCamelCase = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCamelCase = sum(divmod(__A , 2 ) )
__UpperCamelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCamelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCamelCase = row_first_half + row_second_half
result.append(__A )
return result
def A_ ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None:
__UpperCamelCase = f"{func.__name__}({value})"
__UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(__A , __A )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ : int = {
"configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"],
"tokenization_deberta": ["DebertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : int = ["DebertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[str] = [
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaForMaskedLM",
"DebertaForQuestionAnswering",
"DebertaForSequenceClassification",
"DebertaForTokenClassification",
"DebertaModel",
"DebertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Any = [
"TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDebertaForMaskedLM",
"TFDebertaForQuestionAnswering",
"TFDebertaForSequenceClassification",
"TFDebertaForTokenClassification",
"TFDebertaModel",
"TFDebertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 51 | 0 |
import os
import sys
import unittest
a : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
a : List[str] = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
a : Any = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class _a ( unittest.TestCase ):
def __snake_case (self ) -> Tuple:
UpperCAmelCase_: Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Union[str, Any] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Optional[Any] = {"""BertModelTest""": """BertModelTester"""}
UpperCAmelCase_: str = {
"""BlipModelTest""": """BlipModelTester""",
"""BlipTextImageModelTest""": """BlipTextImageModelsModelTester""",
"""BlipTextModelTest""": """BlipTextModelTester""",
"""BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""",
"""BlipVQAModelTest""": """BlipVQAModelTester""",
"""BlipVisionModelTest""": """BlipVisionModelTester""",
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
def __snake_case (self ) -> Optional[Any]:
UpperCAmelCase_: Optional[Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: str = {
"""BertForMaskedLM""": ["""BertModelTest"""],
"""BertForMultipleChoice""": ["""BertModelTest"""],
"""BertForNextSentencePrediction""": ["""BertModelTest"""],
"""BertForPreTraining""": ["""BertModelTest"""],
"""BertForQuestionAnswering""": ["""BertModelTest"""],
"""BertForSequenceClassification""": ["""BertModelTest"""],
"""BertForTokenClassification""": ["""BertModelTest"""],
"""BertLMHeadModel""": ["""BertModelTest"""],
"""BertModel""": ["""BertModelTest"""],
}
UpperCAmelCase_: int = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTest"""],
"""BlipModel""": ["""BlipModelTest"""],
"""BlipTextModel""": ["""BlipTextModelTest"""],
"""BlipVisionModel""": ["""BlipVisionModelTest"""],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
def __snake_case (self ) -> int:
UpperCAmelCase_: Optional[int] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: List[Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Dict = {
"""BertForMaskedLM""": ["""BertModelTester"""],
"""BertForMultipleChoice""": ["""BertModelTester"""],
"""BertForNextSentencePrediction""": ["""BertModelTester"""],
"""BertForPreTraining""": ["""BertModelTester"""],
"""BertForQuestionAnswering""": ["""BertModelTester"""],
"""BertForSequenceClassification""": ["""BertModelTester"""],
"""BertForTokenClassification""": ["""BertModelTester"""],
"""BertLMHeadModel""": ["""BertModelTester"""],
"""BertModel""": ["""BertModelTester"""],
}
UpperCAmelCase_: Optional[int] = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTester"""],
"""BlipModel""": ["""BlipModelTester"""],
"""BlipTextModel""": ["""BlipTextModelTester"""],
"""BlipVisionModel""": ["""BlipVisionModelTester"""],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
| 82 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( _lowerCAmelCase ):
A = 42
A = None
def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[int]=0.999 , lowerCAmelCase__: List[str]="cosine" , ):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowerCAmelCase__: List[str] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowerCAmelCase__: str ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' )
UpperCAmelCase_: List[Any] = []
for i in range(lowerCAmelCase__ ):
UpperCAmelCase_: Optional[int] = i / num_diffusion_timesteps
UpperCAmelCase_: int = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) )
return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa )
class _a ( _lowerCAmelCase , _lowerCAmelCase ):
@register_to_config
def __init__(self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = "fixed_small_log", SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2", ) -> List[Any]:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" )
UpperCAmelCase_: Tuple = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Dict = 1.0 - self.betas
UpperCAmelCase_: int = torch.cumprod(self.alphas, dim=0 )
UpperCAmelCase_: Tuple = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
UpperCAmelCase_: List[str] = 1.0
# setable values
UpperCAmelCase_: str = None
UpperCAmelCase_: str = torch.from_numpy(np.arange(0, SCREAMING_SNAKE_CASE_ )[::-1].copy() )
UpperCAmelCase_: Dict = variance_type
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> torch.FloatTensor:
return sample
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]:
UpperCAmelCase_: Optional[Any] = num_inference_steps
UpperCAmelCase_: Tuple = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
UpperCAmelCase_: Tuple = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa )
UpperCAmelCase_: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> List[Any]:
if prev_timestep is None:
UpperCAmelCase_: Any = t - 1
UpperCAmelCase_: int = self.alphas_cumprod[t]
UpperCAmelCase_: Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase_: int = 1 - alpha_prod_t
UpperCAmelCase_: List[Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase_: List[str] = self.betas[t]
else:
UpperCAmelCase_: List[str] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase_: Tuple = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
UpperCAmelCase_: List[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
UpperCAmelCase_: str = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_, min=1E-20 ) )
UpperCAmelCase_: Dict = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
UpperCAmelCase_: Dict = variance.log()
UpperCAmelCase_: Tuple = beta.log()
UpperCAmelCase_: int = (predicted_variance + 1) / 2
UpperCAmelCase_: int = frac * max_log + (1 - frac) * min_log
return variance
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = True, ) -> Union[UnCLIPSchedulerOutput, Tuple]:
UpperCAmelCase_: List[Any] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
UpperCAmelCase_ , UpperCAmelCase_: List[str] = torch.split(SCREAMING_SNAKE_CASE_, sample.shape[1], dim=1 )
else:
UpperCAmelCase_: Union[str, Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
UpperCAmelCase_: List[Any] = t - 1
UpperCAmelCase_: Optional[int] = self.alphas_cumprod[t]
UpperCAmelCase_: Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase_: Optional[Any] = 1 - alpha_prod_t
UpperCAmelCase_: Optional[Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase_: Tuple = self.betas[t]
UpperCAmelCase_: Dict = self.alphas[t]
else:
UpperCAmelCase_: List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev
UpperCAmelCase_: List[str] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase_: Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase_: int = model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase_: Optional[int] = torch.clamp(
SCREAMING_SNAKE_CASE_, -self.config.clip_sample_range, self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase_: Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
UpperCAmelCase_: Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase_: List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
UpperCAmelCase_: Union[str, Any] = 0
if t > 0:
UpperCAmelCase_: Any = randn_tensor(
model_output.shape, dtype=model_output.dtype, generator=SCREAMING_SNAKE_CASE_, device=model_output.device )
UpperCAmelCase_: Dict = self._get_variance(
SCREAMING_SNAKE_CASE_, predicted_variance=SCREAMING_SNAKE_CASE_, prev_timestep=SCREAMING_SNAKE_CASE_, )
if self.variance_type == "fixed_small_log":
UpperCAmelCase_: Optional[int] = variance
elif self.variance_type == "learned_range":
UpperCAmelCase_: Dict = (0.5 * variance).exp()
else:
raise ValueError(
f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'
""" for the UnCLIPScheduler.""" )
UpperCAmelCase_: int = variance * variance_noise
UpperCAmelCase_: List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_, pred_original_sample=SCREAMING_SNAKE_CASE_ )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
UpperCAmelCase_: Tuple = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype )
UpperCAmelCase_: Union[str, Any] = timesteps.to(original_samples.device )
UpperCAmelCase_: Dict = alphas_cumprod[timesteps] ** 0.5
UpperCAmelCase_: int = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase_: str = sqrt_alpha_prod.unsqueeze(-1 )
UpperCAmelCase_: Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCAmelCase_: Optional[Any] = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase_: Optional[int] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
UpperCAmelCase_: List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 82 | 1 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
SCREAMING_SNAKE_CASE__ = "src/diffusers"
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(R"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
SCREAMING_SNAKE_CASE__ = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
SCREAMING_SNAKE_CASE__ = "\n{0} = None\n"
SCREAMING_SNAKE_CASE__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
SCREAMING_SNAKE_CASE__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Union[str, Any]:
"""simple docstring"""
snake_case = _re_backend.findall(_UpperCamelCase )
if len(_UpperCamelCase ) == 0:
return None
return "_and_".join(_UpperCamelCase )
def lowerCAmelCase__ ( ) -> List[str]:
"""simple docstring"""
with open(os.path.join(_UpperCamelCase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
snake_case = f.readlines()
# Get to the point we do the actual imports for type checking
snake_case = 0
snake_case = {}
# Go through the end of the file
while line_index < len(_UpperCamelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
snake_case = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
snake_case = []
# Until we unindent, add backend objects to the list
while line_index < len(_UpperCamelCase ) and len(lines[line_index] ) > 1:
snake_case = lines[line_index]
snake_case = _re_single_line_import.search(_UpperCamelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_UpperCamelCase ) > 0:
snake_case = objects
else:
line_index += 1
return backend_specific_objects
def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) -> int:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_UpperCamelCase )
elif name.islower():
return DUMMY_FUNCTION.format(_UpperCamelCase , _UpperCamelCase )
else:
return DUMMY_CLASS.format(_UpperCamelCase , _UpperCamelCase )
def lowerCAmelCase__ ( _UpperCamelCase : Any=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
snake_case = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
snake_case = {}
for backend, objects in backend_specific_objects.items():
snake_case = '[' + ', '.join(f"""\"{b}\"""" for b in backend.split('_and_' ) ) + ']'
snake_case = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_UpperCamelCase , _UpperCamelCase ) for o in objects] )
snake_case = dummy_file
return dummy_files
def lowerCAmelCase__ ( _UpperCamelCase : Optional[int]=False ) -> Optional[Any]:
"""simple docstring"""
snake_case = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
snake_case = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
snake_case = os.path.join(_UpperCamelCase , 'utils' )
snake_case = {
backend: os.path.join(_UpperCamelCase , f"""dummy_{short_names.get(_UpperCamelCase , _UpperCamelCase )}_objects.py""" )
for backend in dummy_files.keys()
}
snake_case = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_UpperCamelCase ):
with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
snake_case = f.read()
else:
snake_case = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f"""Updating diffusers.utils.dummy_{short_names.get(_UpperCamelCase , _UpperCamelCase )}_objects.py as the main """
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f"""diffusers.utils.dummy_{short_names.get(_UpperCamelCase , _UpperCamelCase )}_objects.py. Run `make fix-copies` """
'to fix this.' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 150 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class lowerCAmelCase_ :
"""simple docstring"""
# setable values
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : Optional[jnp.ndarray] = None
_lowerCAmelCase : Optional[jnp.ndarray] = None # sigma(t_i)
@classmethod
def snake_case ( cls ):
"""simple docstring"""
return cls()
@dataclass
class lowerCAmelCase_ ( lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase : jnp.ndarray
_lowerCAmelCase : jnp.ndarray
_lowerCAmelCase : KarrasVeSchedulerState
class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
@property
def snake_case ( self ):
"""simple docstring"""
return True
@register_to_config
def __init__( self , lowerCAmelCase = 0.02 , lowerCAmelCase = 1_00 , lowerCAmelCase = 1.0_07 , lowerCAmelCase = 80 , lowerCAmelCase = 0.05 , lowerCAmelCase = 50 , ):
"""simple docstring"""
pass
def snake_case ( self ):
"""simple docstring"""
return KarrasVeSchedulerState.create()
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = () ):
"""simple docstring"""
snake_case = jnp.arange(0 , lowerCAmelCase )[::-1].copy()
snake_case = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=lowerCAmelCase , schedule=jnp.array(lowerCAmelCase , dtype=jnp.floataa ) , timesteps=lowerCAmelCase , )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ):
"""simple docstring"""
if self.config.s_min <= sigma <= self.config.s_max:
snake_case = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 )
else:
snake_case = 0
# sample eps ~ N(0, S_noise^2 * I)
snake_case = random.split(lowerCAmelCase , num=1 )
snake_case = self.config.s_noise * random.normal(key=lowerCAmelCase , shape=sample.shape )
snake_case = sigma + gamma * sigma
snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ):
"""simple docstring"""
snake_case = sample_hat + sigma_hat * model_output
snake_case = (sample_hat - pred_original_sample) / sigma_hat
snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase , derivative=lowerCAmelCase , state=lowerCAmelCase )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ):
"""simple docstring"""
snake_case = sample_prev + sigma_prev * model_output
snake_case = (sample_prev - pred_original_sample) / sigma_prev
snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase , derivative=lowerCAmelCase , state=lowerCAmelCase )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
raise NotImplementedError()
| 150 | 1 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
_snake_case = pytest.mark.integration
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: Union[str, Any] ) -> str:
__UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
__UpperCAmelCase : int = dset.map(
lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase )
__UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
__UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
dset.drop_index("vecs" )
def _lowerCamelCase ( self: List[str] ) -> int:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
dset.save_faiss_index("vecs" , tmp_file.name )
dset.load_faiss_index("vecs2" , tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" )
dset.drop_index("vecs" )
self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
from elasticsearch import Elasticsearch
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : int = {"acknowledged": True}
mocked_bulk.return_value([(True, None)] * 30 )
__UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}}
__UpperCAmelCase : Any = Elasticsearch()
dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
import faiss
__UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1]
__UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] )
__UpperCAmelCase : Dict = [scores[0] for scores in total_scores]
__UpperCAmelCase : int = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> List[str]:
import faiss
__UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__lowerCamelCase ):
__UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
import faiss
__UpperCAmelCase : str = faiss.IndexFlat(5 )
__UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
import faiss
__UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
index.save(tmp_file.name )
__UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
import faiss
__UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
__UpperCAmelCase : Optional[Any] = "index.faiss"
__UpperCAmelCase : Optional[int] = f'''mock://{index_name}'''
index.save(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : str = np.zeros(5, dtype=np.floataa )
__UpperCAmelCase : Any = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
from elasticsearch import Elasticsearch
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : Optional[Any] = Elasticsearch()
__UpperCAmelCase : Dict = {"acknowledged": True}
__UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["foo", "bar", "foobar"] )
# single query
__UpperCAmelCase : Dict = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__UpperCAmelCase : int = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__UpperCAmelCase : int = ["foo", "bar", "foobar"]
__UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase )
__UpperCAmelCase : Tuple = [scores[0] for scores in total_scores]
__UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
# batched queries with timeout
__UpperCAmelCase : str = ["foo", "bar", "foobar"]
__UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 )
__UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores]
__UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
| 342 |
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = num_stages
__UpperCAmelCase : List[str] = hidden_sizes
__UpperCAmelCase : Any = depths
__UpperCAmelCase : Optional[int] = is_training
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = num_labels
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : List[str] = out_features
__UpperCAmelCase : Tuple = out_indices
__UpperCAmelCase : List[Any] = scope
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[str] = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs
__UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__: str = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: Tuple = False
lowerCamelCase__: int = False
lowerCamelCase__: Dict = False
lowerCamelCase__: int = False
lowerCamelCase__: Any = False
def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self )
__UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _lowerCamelCase ( self: Dict ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self: List[Any] ) -> int:
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def _lowerCamelCase ( self: Any ) -> Any:
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: List[Any] ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : Optional[Any] = True
if model_class.__name__ in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]:
continue
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
__UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCAmelCase : int = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: List[str] ) -> Dict:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__lowerCamelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : List[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ):
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: Dict ) -> List[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _UpperCamelCase ( ) -> List[Any]:
__UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : Optional[Any] = prepare_img()
__UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : str = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
"""simple docstring"""
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def a_ ( lowerCamelCase ):
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
lowerCAmelCase__ : List[Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n'
class snake_case ( __UpperCAmelCase ):
"""simple docstring"""
@staticmethod
def __lowerCAmelCase ( lowerCamelCase__ : ArgumentParser ):
UpperCAmelCase__ = parser.add_parser(
'convert' ,help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' ,)
train_parser.add_argument('--model_type' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Model\'s type.' )
train_parser.add_argument(
'--tf_checkpoint' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='TensorFlow checkpoint path or folder.' )
train_parser.add_argument(
'--pytorch_dump_output' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Path to the PyTorch saved model output.' )
train_parser.add_argument('--config' ,type=lowerCamelCase__ ,default='' ,help='Configuration file path or folder.' )
train_parser.add_argument(
'--finetuning_task_name' ,type=lowerCamelCase__ ,default=lowerCamelCase__ ,help='Optional fine-tuning task name if the TF model was a finetuned model.' ,)
train_parser.set_defaults(func=lowerCamelCase__ )
def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,*lowerCamelCase__ : Any ,):
UpperCAmelCase__ = logging.get_logger('transformers-cli/converting' )
self._logger.info(f'''Loading model {model_type}''' )
UpperCAmelCase__ = model_type
UpperCAmelCase__ = tf_checkpoint
UpperCAmelCase__ = pytorch_dump_output
UpperCAmelCase__ = config
UpperCAmelCase__ = finetuning_task_name
def __lowerCAmelCase ( self : str ):
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
if "ckpt" in self._tf_checkpoint.lower():
UpperCAmelCase__ = self._tf_checkpoint
UpperCAmelCase__ = ''
else:
UpperCAmelCase__ = self._tf_checkpoint
UpperCAmelCase__ = ''
convert_transfo_xl_checkpoint_to_pytorch(
lowerCamelCase__ ,self._config ,self._pytorch_dump_output ,lowerCamelCase__ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
else:
raise ValueError(
'--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
| 98 |
"""simple docstring"""
import numpy as np
def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> np.ndarray:
return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 45 | 0 |
"""simple docstring"""
from ....utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
class A_ ( _a ):
def __init__( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: Optional[Any]=2_048 ):
'''simple docstring'''
_lowerCamelCase : str = config.__dict__
_lowerCamelCase : Any = modal_hidden_size
if num_labels:
_lowerCamelCase : Optional[int] = num_labels
| 340 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Optional[Any] = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 | 1 |
'''simple docstring'''
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
_SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__)
def UpperCamelCase_( snake_case : torch.nn.Module , snake_case : BnbQuantizationConfig , snake_case : Union[str, os.PathLike] = None , snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None , snake_case : Optional[List[str]] = None , snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None , snake_case : Optional[Union[str, os.PathLike]] = None , snake_case : bool = False , ):
'''simple docstring'''
snake_case_ = bnb_quantization_config.load_in_abit
snake_case_ = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"
" make sure you have the latest version of `bitsandbytes` installed." )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"
"make sure you have the latest version of `bitsandbytes` installed." )
snake_case_ = []
# custom device map
if isinstance(snake_case , snake_case ) and len(device_map.keys() ) > 1:
snake_case_ = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
snake_case_ = get_keys_to_not_convert(snake_case )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(snake_case )
snake_case_ = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
snake_case_ = []
snake_case_ = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(snake_case )
# compatibility with peft
snake_case_ = load_in_abit
snake_case_ = load_in_abit
snake_case_ = get_parameter_device(snake_case )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"It is not recommended to quantize a loaded model. "
"The model should be instantiated under the `init_empty_weights` context manager." )
snake_case_ = replace_with_bnb_layers(snake_case , snake_case , modules_to_not_convert=snake_case )
# convert param to the right dtype
snake_case_ = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
snake_case_ = name.replace(".weight" , "" ).replace(".bias" , "" )
snake_case_ = getattr(snake_case , snake_case , snake_case )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(snake_case ):
param.to(snake_case )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("No GPU found. A GPU is needed for quantization." )
logger.info(
f'The model device type is {model_device.type}. However, cuda is needed for quantization.'
"We move the model to cuda." )
return model
elif weights_location is None:
raise RuntimeError(
f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' )
else:
with init_empty_weights():
snake_case_ = replace_with_bnb_layers(
snake_case , snake_case , modules_to_not_convert=snake_case )
snake_case_ = get_quantized_model_device_map(
snake_case , snake_case , snake_case , max_memory=snake_case , no_split_module_classes=snake_case , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
snake_case_ = True
snake_case_ = any(x in list(device_map.values() ) for x in ["cpu", "disk"] )
load_checkpoint_in_model(
snake_case , snake_case , snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case , offload_state_dict=snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(snake_case , device_map=snake_case , offload_dir=snake_case )
def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Optional[Any]=None , snake_case : Any=None , snake_case : Any=None ):
'''simple docstring'''
if device_map is None:
if torch.cuda.is_available():
snake_case_ = {"": torch.cuda.current_device()}
else:
raise RuntimeError("No GPU found. A GPU is needed for quantization." )
logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." )
if isinstance(snake_case , snake_case ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'." )
snake_case_ = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
snake_case_ = {}
snake_case_ = special_dtypes
snake_case_ = no_split_module_classes
snake_case_ = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
snake_case_ = get_balanced_memory(
snake_case , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case , **snake_case , )
snake_case_ = max_memory
snake_case_ = infer_auto_device_map(snake_case , **snake_case )
if isinstance(snake_case , snake_case ):
# check if don't have any quantized module on the cpu
snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
snake_case_ = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " )
else:
logger.info(
"Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" )
del device_map_without_some_modules
return device_map
def UpperCamelCase_( snake_case : Tuple , snake_case : str , snake_case : int=None , snake_case : Optional[Any]=None ):
'''simple docstring'''
if modules_to_not_convert is None:
snake_case_ = []
snake_case_ , snake_case_ = _replace_with_bnb_layers(
snake_case , snake_case , snake_case , snake_case )
if not has_been_replaced:
logger.warning(
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."
" Please double check your model architecture, or submit an issue on github if you think this is"
" a bug." )
return model
def UpperCamelCase_( snake_case : List[Any] , snake_case : Optional[int] , snake_case : int=None , snake_case : Any=None , ):
'''simple docstring'''
snake_case_ = False
for name, module in model.named_children():
if current_key_name is None:
snake_case_ = []
current_key_name.append(snake_case )
if isinstance(snake_case , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
snake_case_ = ".".join(snake_case )
snake_case_ = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
snake_case_ = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
snake_case_ = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
snake_case_ = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError("load_in_8bit and load_in_4bit can't be both False" )
snake_case_ = module.weight.data
if module.bias is not None:
snake_case_ = module.bias.data
bnb_module.requires_grad_(snake_case )
setattr(snake_case , snake_case , snake_case )
snake_case_ = True
if len(list(module.children() ) ) > 0:
snake_case_ , snake_case_ = _replace_with_bnb_layers(
snake_case , snake_case , snake_case , snake_case )
snake_case_ = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCamelCase_( snake_case : Optional[Any] ):
'''simple docstring'''
with init_empty_weights():
snake_case_ = deepcopy(snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
snake_case_ = find_tied_parameters(snake_case )
# For compatibility with Accelerate < 0.18
if isinstance(snake_case , snake_case ):
snake_case_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
snake_case_ = sum(snake_case , [] )
snake_case_ = len(snake_case ) > 0
# Check if it is a base model
snake_case_ = False
if hasattr(snake_case , "base_model_prefix" ):
snake_case_ = not hasattr(snake_case , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
snake_case_ = list(model.named_children() )
snake_case_ = [list_modules[-1][0]]
# add last module together with tied weights
snake_case_ = set(snake_case ) - set(snake_case )
snake_case_ = list(set(snake_case ) ) + list(snake_case )
# remove ".weight" from the keys
snake_case_ = [".weight", ".bias"]
snake_case_ = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
snake_case_ = name.replace(snake_case , "" )
filtered_module_names.append(snake_case )
return filtered_module_names
def UpperCamelCase_( snake_case : List[Any] ):
'''simple docstring'''
for m in model.modules():
if isinstance(snake_case , bnb.nn.Linearabit ):
return True
return False
def UpperCamelCase_( snake_case : nn.Module ):
'''simple docstring'''
return next(parameter.parameters() ).device
def UpperCamelCase_( snake_case : int , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict , snake_case : int , snake_case : int ):
'''simple docstring'''
if fpaa_statistics is None:
set_module_tensor_to_device(snake_case , snake_case , 0 , dtype=snake_case , value=snake_case )
snake_case_ = param_name
snake_case_ = model
if "." in tensor_name:
snake_case_ = tensor_name.split("." )
for split in splits[:-1]:
snake_case_ = getattr(snake_case , snake_case )
if new_module is None:
raise ValueError(f'{module} has no attribute {split}.' )
snake_case_ = new_module
snake_case_ = splits[-1]
# offload weights
snake_case_ = False
offload_weight(module._parameters[tensor_name] , snake_case , snake_case , index=snake_case )
if hasattr(module._parameters[tensor_name] , "SCB" ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , snake_case , index=snake_case , )
else:
offload_weight(snake_case , snake_case , snake_case , index=snake_case )
offload_weight(snake_case , param_name.replace("weight" , "SCB" ) , snake_case , index=snake_case )
set_module_tensor_to_device(snake_case , snake_case , "meta" , dtype=snake_case , value=torch.empty(*param.size() ) )
| 85 |
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
_SCREAMING_SNAKE_CASE : Any = False
try:
_SCREAMING_SNAKE_CASE : Optional[Any] = _is_package_available("google.colab")
except ModuleNotFoundError:
pass
@input.register
class _snake_case :
def __init__( self , a__ = None , a__ = [] ) -> List[str]:
'''simple docstring'''
snake_case_ = 0
snake_case_ = choices
snake_case_ = prompt
if sys.platform == "win32":
snake_case_ = "*"
else:
snake_case_ = "➔ "
def lowerCAmelCase__ ( self , a__ , a__ = "" ) -> int:
'''simple docstring'''
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , a__ )
else:
forceWrite(self.choices[index] , a__ )
def lowerCAmelCase__ ( self , a__ ) -> Tuple:
'''simple docstring'''
if index == self.position:
forceWrite(F' {self.arrow_char} ' )
self.write_choice(a__ )
else:
forceWrite(F' {self.choices[index]}' )
reset_cursor()
def lowerCAmelCase__ ( self , a__ , a__ = 1 ) -> List[str]:
'''simple docstring'''
snake_case_ = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(a__ )
move_cursor(a__ , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP["up"] )
def lowerCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
self.move_direction(Direction.UP )
@input.mark(KEYMAP["down"] )
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP["newline"] )
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
move_cursor(len(self.choices ) - self.position , "DOWN" )
return self.position
@input.mark(KEYMAP["interrupt"] )
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
move_cursor(len(self.choices ) - self.position , "DOWN" )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(a__ )] for number in range(10 )] )
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
snake_case_ = int(chr(self.current_selection ) )
snake_case_ = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , a__ )
else:
return
else:
return
def lowerCAmelCase__ ( self , a__ = 0 ) -> List[str]:
'''simple docstring'''
if self.prompt:
linebreak()
forceWrite(self.prompt , "\n" )
if in_colab:
forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" )
else:
forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" )
snake_case_ = default_choice
for i in range(len(self.choices ) ):
self.print_choice(a__ )
forceWrite("\n" )
move_cursor(len(self.choices ) - self.position , "UP" )
with cursor.hide():
while True:
if in_colab:
try:
snake_case_ = int(builtins.input() )
except ValueError:
snake_case_ = default_choice
else:
snake_case_ = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , "UP" )
clear_line()
self.write_choice(a__ , "\n" )
return choice
| 85 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : List[str] = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 1 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self , _snake_case , _snake_case=2 , _snake_case=3 , _snake_case=4 , _snake_case=2 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=36 , _snake_case=3 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=6 , _snake_case=6 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=1000 , ):
"""simple docstring"""
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = text_seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = coordinate_size
_lowerCAmelCase = shape_size
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
_lowerCAmelCase = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
_lowerCAmelCase = text_seq_length
_lowerCAmelCase = (image_size // patch_size) ** 2 + 1
_lowerCAmelCase = self.text_seq_length + self.image_seq_length
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowerCAmelCase = bbox[i, j, 3]
_lowerCAmelCase = bbox[i, j, 1]
_lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowerCAmelCase = bbox[i, j, 2]
_lowerCAmelCase = bbox[i, j, 0]
_lowerCAmelCase = t
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
_lowerCAmelCase = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = LayoutLMvaModel(config=_snake_case )
model.to(_snake_case )
model.eval()
# text + image
_lowerCAmelCase = model(_snake_case , pixel_values=_snake_case )
_lowerCAmelCase = model(
_snake_case , bbox=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
_lowerCAmelCase = model(_snake_case , bbox=_snake_case , pixel_values=_snake_case , token_type_ids=_snake_case )
_lowerCAmelCase = model(_snake_case , bbox=_snake_case , pixel_values=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
_lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
_lowerCAmelCase = model(pixel_values=_snake_case )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = LayoutLMvaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
_lowerCAmelCase = model(
_snake_case , bbox=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = LayoutLMvaForTokenClassification(config=_snake_case )
model.to(_snake_case )
model.eval()
_lowerCAmelCase = model(
_snake_case , bbox=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=_snake_case )
model.to(_snake_case )
model.eval()
_lowerCAmelCase = model(
_snake_case , bbox=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowerCamelCase = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
return True
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = LayoutLMvaModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def snake_case ( self , _snake_case , _snake_case , _snake_case=False ):
"""simple docstring"""
_lowerCAmelCase = copy.deepcopy(_snake_case )
if model_class in get_values(_snake_case ):
_lowerCAmelCase = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(_snake_case , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_snake_case ):
_lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
elif model_class in get_values(_snake_case ):
_lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
_lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
elif model_class in [
*get_values(_snake_case ),
]:
_lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
elif model_class in [
*get_values(_snake_case ),
]:
_lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_snake_case , )
return inputs_dict
def snake_case ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_snake_case )
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
@slow
def snake_case ( self ):
"""simple docstring"""
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = LayoutLMvaModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def _UpperCAmelCase ( ):
"""simple docstring"""
_lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def snake_case ( self ):
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=_snake_case ) if is_vision_available() else None
@slow
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(_snake_case )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=_snake_case , return_tensors="""pt""" ).pixel_values.to(_snake_case )
_lowerCAmelCase = torch.tensor([[1, 2]] )
_lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
_lowerCAmelCase = model(
input_ids=input_ids.to(_snake_case ) , bbox=bbox.to(_snake_case ) , pixel_values=pixel_values.to(_snake_case ) , )
# verify the logits
_lowerCAmelCase = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , _snake_case )
_lowerCAmelCase = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_snake_case )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1e-4 ) )
| 82 |
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def _UpperCAmelCase ( snake_case ):
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __lowerCAmelCase ( lowerCamelCase__ ):
@staticmethod
def snake_case ( _snake_case ):
"""simple docstring"""
_lowerCAmelCase = parser.add_parser("""download""" )
download_parser.add_argument(
"""--cache-dir""" , type=_snake_case , default=_snake_case , help="""Path to location to store the models""" )
download_parser.add_argument(
"""--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" )
download_parser.add_argument(
"""--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , )
download_parser.add_argument("""model""" , type=_snake_case , help="""Name of the model to download""" )
download_parser.set_defaults(func=_snake_case )
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = model
_lowerCAmelCase = cache
_lowerCAmelCase = force
_lowerCAmelCase = trust_remote_code
def snake_case ( self ):
"""simple docstring"""
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 82 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_UpperCAmelCase : int = {
"""configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""],
"""configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : str = ["""MaskFormerFeatureExtractor"""]
_UpperCAmelCase : List[str] = ["""MaskFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Union[str, Any] = [
"""MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MaskFormerForInstanceSegmentation""",
"""MaskFormerModel""",
"""MaskFormerPreTrainedModel""",
]
_UpperCAmelCase : Any = [
"""MaskFormerSwinBackbone""",
"""MaskFormerSwinModel""",
"""MaskFormerSwinPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 371 |
from __future__ import annotations
import os
from typing import Any
import requests
_UpperCAmelCase : int = """https://api.github.com"""
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
_UpperCAmelCase : Dict = BASE_URL + """/user"""
# https://github.com/settings/tokens
_UpperCAmelCase : Optional[Any] = os.environ.get("""USER_TOKEN""", """""")
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
snake_case_ = {
'Authorization': F'''token {auth_token}''',
'Accept': 'application/vnd.github.v3+json',
}
return requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(F'''{key}: {value}''')
else:
raise ValueError("""'USER_TOKEN' field cannot be empty.""")
| 200 | 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
__magic_name__: str = pytest.mark.integration
@require_faiss
class snake_case__ ( _lowerCAmelCase ):
def __magic_name__ ( self ) -> str:
__magic_name__ : Optional[Any] = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(lowerCAmelCase__ ) for x in np.arange(30 ).tolist()]} )
return dset
def __magic_name__ ( self ) -> List[str]:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
__magic_name__ : Union[str, Any] = dset.map(
lambda lowerCAmelCase__ , lowerCAmelCase__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ )
__magic_name__ : Dict = dset.add_faiss_index("""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
__magic_name__ ,__magic_name__ : str = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" )
dset.drop_index("""vecs""" )
def __magic_name__ ( self ) -> int:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__magic_name__ ,__magic_name__ : int = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" )
def __magic_name__ ( self ) -> Optional[int]:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowerCAmelCase__ ) as tmp_file:
dset.save_faiss_index("""vecs""" , tmp_file.name )
dset.load_faiss_index("""vecs2""" , tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ ,__magic_name__ : Dict = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" )
dset.drop_index("""vecs""" )
self.assertRaises(lowerCAmelCase__ , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) )
def __magic_name__ ( self ) -> List[str]:
from elasticsearch import Elasticsearch
__magic_name__ : Dataset = self._create_dummy_dataset()
with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch(
"""elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk:
__magic_name__ : List[Any] = {"""acknowledged""": True}
mocked_bulk.return_value([(True, None)] * 30 )
__magic_name__ : int = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}}
__magic_name__ : Optional[Any] = Elasticsearch()
dset.add_elasticsearch_index("""filename""" , es_client=lowerCAmelCase__ )
__magic_name__ ,__magic_name__ : Any = dset.get_nearest_examples("""filename""" , """my_name-train_29""" )
self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" )
@require_faiss
class snake_case__ ( _lowerCAmelCase ):
def __magic_name__ ( self ) -> str:
import faiss
__magic_name__ : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__magic_name__ : int = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Dict = 1
__magic_name__ ,__magic_name__ : int = index.search(lowerCAmelCase__ )
self.assertRaises(lowerCAmelCase__ , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1]
__magic_name__ ,__magic_name__ : int = index.search_batch(lowerCAmelCase__ )
self.assertRaises(lowerCAmelCase__ , index.search_batch , queries[0] )
__magic_name__ : str = [scores[0] for scores in total_scores]
__magic_name__ : Tuple = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCAmelCase__ ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[Any]:
import faiss
__magic_name__ : List[str] = FaissIndex(string_factory="""Flat""" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__magic_name__ : Dict = FaissIndex(string_factory="""LSH""" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(lowerCAmelCase__ ):
__magic_name__ : List[Any] = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) )
def __magic_name__ ( self ) -> Optional[Any]:
import faiss
__magic_name__ : int = faiss.IndexFlat(5 )
__magic_name__ : Dict = FaissIndex(custom_index=lowerCAmelCase__ )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __magic_name__ ( self ) -> str:
import faiss
__magic_name__ : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowerCAmelCase__ ) as tmp_file:
index.save(tmp_file.name )
__magic_name__ : str = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Union[str, Any] = 1
__magic_name__ ,__magic_name__ : Optional[int] = index.search(lowerCAmelCase__ )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def UpperCamelCase ( _A ):
"""simple docstring"""
import faiss
__magic_name__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
__magic_name__ : List[Any] = """index.faiss"""
__magic_name__ : Tuple = f'mock://{index_name}'
index.save(_A, storage_options=mockfs.storage_options )
__magic_name__ : str = FaissIndex.load(_A, storage_options=mockfs.storage_options )
__magic_name__ : List[str] = np.zeros(5, dtype=np.floataa )
__magic_name__ : Union[str, Any] = 1
__magic_name__ ,__magic_name__ : List[Any] = index.search(_A )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class snake_case__ ( _lowerCAmelCase ):
def __magic_name__ ( self ) -> Dict:
from elasticsearch import Elasticsearch
with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch(
"""elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk:
__magic_name__ : str = Elasticsearch()
__magic_name__ : List[Any] = {"""acknowledged""": True}
__magic_name__ : Dict = ElasticSearchIndex(es_client=lowerCAmelCase__ )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["""foo""", """bar""", """foobar"""] )
# single query
__magic_name__ : Tuple = """foo"""
__magic_name__ : Optional[int] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}}
__magic_name__ ,__magic_name__ : int = index.search(lowerCAmelCase__ )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__magic_name__ : List[Any] = """foo"""
__magic_name__ : Optional[int] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}}
__magic_name__ ,__magic_name__ : Any = index.search(lowerCAmelCase__ , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__magic_name__ : List[Any] = ["""foo""", """bar""", """foobar"""]
__magic_name__ : Optional[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}}
__magic_name__ ,__magic_name__ : Union[str, Any] = index.search_batch(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = [scores[0] for scores in total_scores]
__magic_name__ : Optional[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCAmelCase__ ) , 0 )
self.assertListEqual([1, 1, 1] , lowerCAmelCase__ )
# batched queries with timeout
__magic_name__ : Any = ["""foo""", """bar""", """foobar"""]
__magic_name__ : List[str] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}}
__magic_name__ ,__magic_name__ : Optional[Any] = index.search_batch(lowerCAmelCase__ , request_timeout=30 )
__magic_name__ : Tuple = [scores[0] for scores in total_scores]
__magic_name__ : int = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCAmelCase__ ) , 0 )
self.assertListEqual([1, 1, 1] , lowerCAmelCase__ )
| 342 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class snake_case__ :
def __init__( self , lowerCAmelCase__ = None ) -> None:
if components is None:
__magic_name__ : Any = []
__magic_name__ : List[str] = list(lowerCAmelCase__ )
def __len__( self ) -> int:
return len(self.__components )
def __str__( self ) -> str:
return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")"
def __add__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : Dict = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else:
raise Exception("""must have the same size""" )
def __sub__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : int = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else: # error case
raise Exception("""must have the same size""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> float:
...
def __mul__( self , lowerCAmelCase__ ) -> float | Vector:
if isinstance(lowerCAmelCase__ , (float, int) ):
__magic_name__ : Optional[Any] = [c * other for c in self.__components]
return Vector(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ):
__magic_name__ : Optional[Any] = len(self )
__magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return sum(lowerCAmelCase__ )
else: # error case
raise Exception("""invalid operand!""" )
def __magic_name__ ( self ) -> Vector:
return Vector(self.__components )
def __magic_name__ ( self , lowerCAmelCase__ ) -> float:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("""index out of range""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
assert -len(self.__components ) <= pos < len(self.__components )
__magic_name__ : Optional[int] = value
def __magic_name__ ( self ) -> float:
if len(self.__components ) == 0:
raise Exception("""Vector is empty""" )
__magic_name__ : Dict = [c**2 for c in self.__components]
return math.sqrt(sum(lowerCAmelCase__ ) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float:
__magic_name__ : Optional[Any] = self * other
__magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def UpperCamelCase ( _A ):
"""simple docstring"""
assert isinstance(_A, _A )
return Vector([0] * dimension )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
assert isinstance(_A, _A ) and (isinstance(_A, _A ))
__magic_name__ : Union[str, Any] = [0] * dimension
__magic_name__ : Optional[int] = 1
return Vector(_A )
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
assert (
isinstance(_A, _A )
and isinstance(_A, _A )
and (isinstance(_A, (int, float) ))
)
return x * scalar + y
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )]
return Vector(_A )
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
__magic_name__ : Dict = matrix
__magic_name__ : Tuple = w
__magic_name__ : Union[str, Any] = h
def __str__( self ) -> str:
__magic_name__ : Dict = """"""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Tuple = []
for i in range(self.__height ):
__magic_name__ : Tuple = [
self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrix must have the same dimension!""" )
def __sub__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Optional[Any] = []
for i in range(self.__height ):
__magic_name__ : int = [
self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrices must have the same dimension!""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Matrix:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector
if len(lowerCAmelCase__ ) == self.__width:
__magic_name__ : Tuple = zero_vector(self.__height )
for i in range(self.__height ):
__magic_name__ : Optional[int] = [
self.__matrix[i][j] * other.component(lowerCAmelCase__ )
for j in range(self.__width )
]
ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) )
return ans
else:
raise Exception(
"""vector must have the same size as the """
"""number of columns of the matrix!""" )
elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar
__magic_name__ : Any = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
return None
def __magic_name__ ( self ) -> int:
return self.__height
def __magic_name__ ( self ) -> int:
return self.__width
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
if 0 <= x < self.__height and 0 <= y < self.__width:
__magic_name__ : List[Any] = value
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
__magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(lowerCAmelCase__ ) ):
__magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant()
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ )
else:
raise Exception("""Indices out of bounds""" )
def __magic_name__ ( self ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if self.__height < 1:
raise Exception("""Matrix has no element""" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__magic_name__ : str = [
self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width )
]
return sum(lowerCAmelCase__ )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )]
return Matrix(_A, _A, _A )
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : list[list[float]] = [
[random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A )
]
return Matrix(_A, _A, _A )
| 342 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''pixel_values''']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =size if size is not None else {"""shortest_edge""": 3_84}
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =do_resize
_lowerCAmelCase =size
# Default value set here for backwards compatibility where the value in config is None
_lowerCAmelCase =crop_pct if crop_pct is not None else 2_24 / 2_56
_lowerCAmelCase =resample
_lowerCAmelCase =do_rescale
_lowerCAmelCase =rescale_factor
_lowerCAmelCase =do_normalize
_lowerCAmelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCAmelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' )
_lowerCAmelCase =size["""shortest_edge"""]
if shortest_edge < 3_84:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
_lowerCAmelCase =int(shortest_edge / crop_pct )
_lowerCAmelCase =get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=__UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
__UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_lowerCAmelCase =do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase =crop_pct if crop_pct is not None else self.crop_pct
_lowerCAmelCase =resample if resample is not None else self.resample
_lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase =image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase =image_std if image_std is not None else self.image_std
_lowerCAmelCase =size if size is not None else self.size
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None:
raise ValueError("""crop_pct must be specified if size < 384.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_lowerCAmelCase =[to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase =[self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase =[self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase =[self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_lowerCAmelCase =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_lowerCAmelCase ={"""pixel_values""": images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 1 |
from ....utils import logging
a_ = logging.get_logger(__name__)
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=2048 )-> int:
'''simple docstring'''
lowerCAmelCase__ = config.__dict__
lowerCAmelCase__ = modal_hidden_size
if num_labels:
lowerCAmelCase__ = num_labels
| 340 |
import requests
from bsa import BeautifulSoup
def _a ( UpperCamelCase_ : str = "AAPL" ) -> str:
"""simple docstring"""
lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" )
lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 340 | 1 |
import os
def UpperCAmelCase__ ( ):
lowercase :Optional[Any] = os.path.join(os.path.dirname(lowerCamelCase ), "num.txt" )
with open(lowerCamelCase ) as file_hand:
return str(sum(int(lowerCamelCase ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 158 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __lowerCAmelCase ( lowerCAmelCase):
def __init__( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: Union[str, Any] ):
lowercase :List[str] = dataset
lowercase :Optional[int] = process
lowercase :Union[str, Any] = params
def __len__( self: str ):
return len(self.dataset )
def __getitem__( self: int , _lowerCAmelCase: Dict ):
lowercase :Union[str, Any] = self.dataset[i]
lowercase :Optional[int] = self.process(_lowerCAmelCase , **self.params )
return processed
class __lowerCAmelCase ( lowerCAmelCase):
def __init__( self: int , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int]=None ):
lowercase :Optional[Any] = loader
lowercase :int = infer
lowercase :Dict = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
lowercase :Union[str, Any] = None
lowercase :Any = loader_batch_size
# Internal bookkeeping
lowercase :Optional[Any] = None
lowercase :Dict = None
def __len__( self: Tuple ):
return len(self.loader )
def __iter__( self: List[str] ):
lowercase :Dict = iter(self.loader )
return self
def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ):
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
lowercase :Optional[int] = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
lowercase :str = {}
for k, element in self._loader_batch_data.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Convert ModelOutput to tuple first
lowercase :Dict = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
lowercase :int = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
lowercase :List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
lowercase :Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
lowercase :List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
lowercase :Optional[int] = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
lowercase :Optional[Any] = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
lowercase :Any = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
lowercase :List[Any] = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
lowercase :List[Any] = self._loader_batch_data.__class__(_lowerCAmelCase )
self._loader_batch_index += 1
return result
def SCREAMING_SNAKE_CASE ( self: Optional[Any] ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
lowercase :Tuple = next(self.iterator )
lowercase :Dict = self.infer(_lowerCAmelCase , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_lowerCAmelCase , torch.Tensor ):
lowercase :List[str] = processed
else:
lowercase :Tuple = list(processed.keys() )[0]
lowercase :Optional[Any] = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
lowercase :Optional[int] = len(_lowerCAmelCase )
else:
lowercase :Dict = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
lowercase :Tuple = observed_batch_size
# Setting internal index to unwrap the batch
lowercase :int = processed
lowercase :Optional[Any] = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __lowerCAmelCase ( lowerCAmelCase):
def __init__( self: Union[str, Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __iter__( self: Tuple ):
lowercase :List[str] = iter(self.loader )
lowercase :str = None
return self
def SCREAMING_SNAKE_CASE ( self: Optional[Any] ):
if self.subiterator is None:
lowercase :List[Any] = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
lowercase :str = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
lowercase :Tuple = self.infer(next(self.iterator ) , **self.params )
lowercase :Dict = next(self.subiterator )
return processed
class __lowerCAmelCase ( lowerCAmelCase):
def __iter__( self: str ):
lowercase :List[Any] = iter(self.loader )
return self
def SCREAMING_SNAKE_CASE ( self: str ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
lowercase :str = False
lowercase :int = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
lowercase :str = self.loader_batch_item()
lowercase :int = item.pop("is_last" )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
while not is_last:
lowercase :str = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_lowerCAmelCase , torch.Tensor ):
lowercase :Tuple = processed
else:
lowercase :Union[str, Any] = list(processed.keys() )[0]
lowercase :Any = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
lowercase :Dict = len(_lowerCAmelCase )
else:
lowercase :List[str] = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
lowercase :Union[str, Any] = observed_batch_size
lowercase :str = processed
lowercase :Optional[int] = 0
while self._loader_batch_index < self.loader_batch_size:
lowercase :Any = self.loader_batch_item()
lowercase :int = item.pop("is_last" )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
else:
lowercase :Optional[Any] = processed
lowercase :str = item.pop("is_last" )
accumulator.append(_lowerCAmelCase )
return accumulator
class __lowerCAmelCase ( lowerCAmelCase):
def __init__( self: Union[str, Any] , _lowerCAmelCase: Dataset , _lowerCAmelCase: str ):
lowercase :Tuple = dataset
lowercase :Dict = key
def __len__( self: Any ):
return len(self.dataset )
def __getitem__( self: int , _lowerCAmelCase: int ):
return self.dataset[i][self.key]
class __lowerCAmelCase ( lowerCAmelCase):
def __init__( self: List[Any] , _lowerCAmelCase: Dataset , _lowerCAmelCase: str , _lowerCAmelCase: str ):
lowercase :Union[str, Any] = dataset
lowercase :Optional[int] = keya
lowercase :str = keya
def __len__( self: Optional[Any] ):
return len(self.dataset )
def __getitem__( self: Optional[Any] , _lowerCAmelCase: int ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 158 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.