code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ = 25_0004 lowercase__ = 25_0020 @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def A_ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Tuple = MBartTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = MBartTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) _lowerCamelCase : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCamelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCamelCase : List[str] = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def A_ ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : List[str] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) _lowerCamelCase : int = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) _lowerCamelCase : str = tempfile.mkdtemp() _lowerCamelCase : Dict = tokenizer_r.save_pretrained(UpperCamelCase__ ) _lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCamelCase : Optional[int] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ ) # Checks everything loads correctly in the same way _lowerCamelCase : Optional[Any] = tokenizer_r.from_pretrained(UpperCamelCase__ ) _lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase__ ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCamelCase : Tuple = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ ) _lowerCamelCase : Dict = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ ) # Checks everything loads correctly in the same way _lowerCamelCase : Dict = tokenizer_r.from_pretrained(UpperCamelCase__ ) _lowerCamelCase : Dict = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) shutil.rmtree(UpperCamelCase__ ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : List[Any] = tempfile.mkdtemp() _lowerCamelCase : str = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ ) _lowerCamelCase : str = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : List[str] = tokenizer_r.from_pretrained(UpperCamelCase__ ) _lowerCamelCase : List[str] = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) shutil.rmtree(UpperCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = """facebook/mbart-large-en-ro""" lowerCamelCase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowerCamelCase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowerCamelCase__ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def A_ ( cls ): _lowerCamelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCamelCase : Dict = 1 return cls def A_ ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def A_ ( self ): _lowerCamelCase : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) def A_ ( self ): self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids ) _lowerCamelCase : List[Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _lowerCamelCase : Optional[Any] = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) _lowerCamelCase : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ ) def A_ ( self ): _lowerCamelCase : Any = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , UpperCamelCase__ ) _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = self.tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) def A_ ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def A_ ( self ): _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase__ ) _lowerCamelCase : int = MBartTokenizer.from_pretrained(UpperCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase__ ) @require_torch def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , return_tensors='pt' ) _lowerCamelCase : str = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCamelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCamelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def A_ ( self ): _lowerCamelCase : int = self.tokenizer(self.src_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=3 , return_tensors='pt' ) _lowerCamelCase : List[str] = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=10 , return_tensors='pt' ) _lowerCamelCase : Tuple = targets["input_ids"] _lowerCamelCase : List[Any] = shift_tokens_right(UpperCamelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
96
from math import sqrt def A ( _SCREAMING_SNAKE_CASE = 100_0000 ) -> int: lowerCamelCase : int = 0 lowerCamelCase : int = 0 lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_SCREAMING_SNAKE_CASE ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
48
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _UpperCAmelCase = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' _UpperCAmelCase = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' _UpperCAmelCase = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' _UpperCAmelCase = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' _UpperCAmelCase = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str=[1, 10, 100] , _SCREAMING_SNAKE_CASE: List[Any]=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3.0 ) -> Union[str, Any]: """simple docstring""" if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=_SCREAMING_SNAKE_CASE ) as executor: UpperCamelCase_ = [] UpperCamelCase_ = Counter() UpperCamelCase_ = 0 UpperCamelCase_ = defaultdict(_SCREAMING_SNAKE_CASE ) for task_id, (candidates, test_case) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): for candidate in candidates: UpperCamelCase_ = candidate + "\n" + test_case UpperCamelCase_ = (test_program, timeout, task_id, completion_id[task_id]) UpperCamelCase_ = executor.submit(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) futures.append(_SCREAMING_SNAKE_CASE ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = future.result() results[result["task_id"]].append((result["completion_id"], result) ) UpperCamelCase_ , UpperCamelCase_ = [], [] for result in results.values(): result.sort() UpperCamelCase_ = [r[1]["passed"] for r in result] total.append(len(_SCREAMING_SNAKE_CASE ) ) correct.append(sum(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = np.array(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.array(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = k UpperCamelCase_ = {f'''pass@{k}''': estimate_pass_at_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: def estimator(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = itertools.repeat(UpperCamelCase_ , len(UpperCamelCase_ ) ) else: assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase_ = iter(UpperCamelCase_ ) return np.array([estimator(int(UpperCamelCase_ ) , int(UpperCamelCase_ ) , UpperCamelCase_ ) for n, c in zip(UpperCamelCase_ , UpperCamelCase_ )] )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : str = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'cvt' def __init__( self :Union[str, Any] , a :List[str]=3 , a :Union[str, Any]=[7, 3, 3] , a :Optional[int]=[4, 2, 2] , a :Dict=[2, 1, 1] , a :Optional[int]=[6_4, 1_9_2, 3_8_4] , a :List[str]=[1, 3, 6] , a :Dict=[1, 2, 1_0] , a :Union[str, Any]=[4.0, 4.0, 4.0] , a :List[Any]=[0.0, 0.0, 0.0] , a :str=[0.0, 0.0, 0.0] , a :Optional[Any]=[0.0, 0.0, 0.1] , a :Optional[int]=[True, True, True] , a :Tuple=[False, False, True] , a :Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , a :Dict=[3, 3, 3] , a :Any=[1, 1, 1] , a :List[str]=[2, 2, 2] , a :List[str]=[1, 1, 1] , a :int=[1, 1, 1] , a :List[str]=0.02 , a :Dict=1E-1_2 , **a :Union[str, Any] , ) -> str: super().__init__(**a ) __UpperCamelCase : int = num_channels __UpperCamelCase : Dict = patch_sizes __UpperCamelCase : Optional[int] = patch_stride __UpperCamelCase : Tuple = patch_padding __UpperCamelCase : str = embed_dim __UpperCamelCase : Optional[int] = num_heads __UpperCamelCase : Any = depth __UpperCamelCase : List[Any] = mlp_ratio __UpperCamelCase : Union[str, Any] = attention_drop_rate __UpperCamelCase : Dict = drop_rate __UpperCamelCase : Tuple = drop_path_rate __UpperCamelCase : List[str] = qkv_bias __UpperCamelCase : Optional[int] = cls_token __UpperCamelCase : int = qkv_projection_method __UpperCamelCase : Dict = kernel_qkv __UpperCamelCase : Dict = padding_kv __UpperCamelCase : int = stride_kv __UpperCamelCase : List[Any] = padding_q __UpperCamelCase : List[str] = stride_q __UpperCamelCase : Dict = initializer_range __UpperCamelCase : Tuple = layer_norm_eps
232
import math def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCamelCase : List[Any] = input("Enter message: ") __UpperCamelCase : Optional[int] = int(input(F'Enter key [2-{len(_lowerCamelCase) - 1}]: ')) __UpperCamelCase : str = input("Encryption/Decryption [e/d]: ") if mode.lower().startswith("e"): __UpperCamelCase : List[str] = encrypt_message(_lowerCamelCase , _lowerCamelCase) elif mode.lower().startswith("d"): __UpperCamelCase : Dict = decrypt_message(_lowerCamelCase , _lowerCamelCase) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : str) -> str: '''simple docstring''' __UpperCamelCase : Optional[Any] = [""] * key for col in range(_lowerCamelCase): __UpperCamelCase : Any = col while pointer < len(_lowerCamelCase): cipher_text[col] += message[pointer] pointer += key return "".join(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : str) -> str: '''simple docstring''' __UpperCamelCase : Any = math.ceil(len(_lowerCamelCase) / key) __UpperCamelCase : Any = key __UpperCamelCase : str = (num_cols * num_rows) - len(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = [""] * num_cols __UpperCamelCase : Dict = 0 __UpperCamelCase : int = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __UpperCamelCase : List[Any] = 0 row += 1 return "".join(_lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod() main()
232
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase : Dict = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=8 ): '''simple docstring''' snake_case_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=512 , UpperCamelCase__=512 ): '''simple docstring''' snake_case_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) snake_case_ = np.array(pil_image.convert('RGB' ) ) snake_case_ = arr.astype(np.floataa ) / 1_27.5 - 1 snake_case_ = np.transpose(UpperCamelCase__ , [2, 0, 1] ) snake_case_ = torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ) return image class lowercase ( lowercase_ ): def __init__( self , snake_case , snake_case , snake_case , ): super().__init__() self.register_modules( unet=snake_case , scheduler=snake_case , movq=snake_case , ) snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a ( self , snake_case , snake_case , snake_case ): # get the original timestep using init_timestep snake_case_ = min(int(num_inference_steps * strength ) , snake_case ) snake_case_ = max(num_inference_steps - init_timestep , 0 ) snake_case_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None ): if not isinstance(snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case )}''' ) snake_case_ = image.to(device=snake_case , dtype=snake_case ) snake_case_ = batch_size * num_images_per_prompt if image.shape[1] == 4: snake_case_ = image else: if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(snake_case )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(snake_case , snake_case ): snake_case_ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case ) ] snake_case_ = torch.cat(snake_case , dim=0 ) else: snake_case_ = self.movq.encode(snake_case ).latent_dist.sample(snake_case ) snake_case_ = self.movq.config.scaling_factor * init_latents snake_case_ = torch.cat([init_latents] , dim=0 ) snake_case_ = init_latents.shape snake_case_ = randn_tensor(snake_case , generator=snake_case , device=snake_case , dtype=snake_case ) # get latents snake_case_ = self.scheduler.add_noise(snake_case , snake_case , snake_case ) snake_case_ = init_latents return latents def a ( self , snake_case=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) snake_case_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case , snake_case ) def a ( self , snake_case=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case_ , snake_case_ = cpu_offload_with_hook(snake_case , snake_case , prev_module_hook=snake_case ) # We'll offload the last model manually. snake_case_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case ) def __call__( self , snake_case , snake_case , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 100 , snake_case = 4.0 , snake_case = 0.3 , snake_case = 1 , snake_case = None , snake_case = "pil" , snake_case = True , ): snake_case_ = self._execution_device snake_case_ = guidance_scale > 1.0 if isinstance(snake_case , snake_case ): snake_case_ = torch.cat(snake_case , dim=0 ) snake_case_ = image_embeds.shape[0] if isinstance(snake_case , snake_case ): snake_case_ = torch.cat(snake_case , dim=0 ) if do_classifier_free_guidance: snake_case_ = image_embeds.repeat_interleave(snake_case , dim=0 ) snake_case_ = negative_image_embeds.repeat_interleave(snake_case , dim=0 ) snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case ) if not isinstance(snake_case , snake_case ): snake_case_ = [image] if not all(isinstance(snake_case , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) snake_case_ = torch.cat([prepare_image(snake_case , snake_case , snake_case ) for i in image] , dim=0 ) snake_case_ = image.to(dtype=image_embeds.dtype , device=snake_case ) snake_case_ = self.movq.encode(snake_case )['latents'] snake_case_ = latents.repeat_interleave(snake_case , dim=0 ) self.scheduler.set_timesteps(snake_case , device=snake_case ) snake_case_ , snake_case_ = self.get_timesteps(snake_case , snake_case , snake_case ) snake_case_ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) snake_case_ , snake_case_ = downscale_height_and_width(snake_case , snake_case , self.movq_scale_factor ) snake_case_ = self.prepare_latents( snake_case , snake_case , snake_case , snake_case , image_embeds.dtype , snake_case , snake_case ) for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = {'image_embeds': image_embeds} snake_case_ = self.unet( sample=snake_case , timestep=snake_case , encoder_hidden_states=snake_case , added_cond_kwargs=snake_case , return_dict=snake_case , )[0] if do_classifier_free_guidance: snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ , snake_case_ = noise_pred.chunk(2 ) snake_case_ , snake_case_ = variance_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step( snake_case , snake_case , snake_case , generator=snake_case , )[0] # post-processing snake_case_ = self.movq.decode(snake_case , force_not_quantize=snake_case )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ = image * 0.5 + 0.5 snake_case_ = image.clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
200
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = len(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: snake_case_ , snake_case_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": _UpperCAmelCase : Dict = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
200
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCamelCase__ = 10 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: for i in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if array[i] == target: return i return -1 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : str = len(SCREAMING_SNAKE_CASE_ ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = (left + right) // 3 + 1 lowerCAmelCase__ : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCAmelCase__ : int = one_third - 1 elif array[two_third] < target: lowerCAmelCase__ : List[str] = two_third + 1 else: lowerCAmelCase__ : Union[str, Any] = one_third + 1 lowerCAmelCase__ : Dict = two_third - 1 else: return -1 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = (left + right) // 3 + 1 lowerCAmelCase__ : Any = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE_ , one_third - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = input("""Enter numbers separated by comma:\n""").strip() lowerCamelCase__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCamelCase__ = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCamelCase__ = ite_ternary_search(collection, target) lowerCamelCase__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("""Not found""")
212
class A__ : def __init__( self : Optional[Any] , a : list ): '''simple docstring''' lowerCAmelCase__ : Dict = set_counts lowerCAmelCase__ : str = max(a ) lowerCAmelCase__ : Any = len(a ) lowerCAmelCase__ : List[str] = [1] * num_sets lowerCAmelCase__ : Dict = list(range(a ) ) def _lowerCamelCase ( self : Dict , a : int , a : int ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.get_parent(a ) lowerCAmelCase__ : Tuple = self.get_parent(a ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase__ : List[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Tuple = src_parent lowerCAmelCase__ : Optional[int] = self.set_counts[src_parent] lowerCAmelCase__ : Optional[Any] = max(self.max_set , a ) return True def _lowerCamelCase ( self : Any , a : int ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase__ : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
212
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __A =logging.get_logger(__name__) __A ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __A ={ """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __A ={ """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = BartTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> Union[str, Any]: super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowerCAmelCase ) != add_prefix_space: lowerCamelCase_ = getattr(__lowerCAmelCase , pre_tok_state.pop("type" ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**__lowerCAmelCase ) lowerCamelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCamelCase_ = "post_processor" lowerCamelCase_ = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: lowerCamelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase_ = tuple(state["sep"] ) if "cls" in state: lowerCamelCase_ = tuple(state["cls"] ) lowerCamelCase_ = False if state.get("add_prefix_space" , __lowerCAmelCase ) != add_prefix_space: lowerCamelCase_ = add_prefix_space lowerCamelCase_ = True if state.get("trim_offsets" , __lowerCAmelCase ) != trim_offsets: lowerCamelCase_ = trim_offsets lowerCamelCase_ = True if changes_to_apply: lowerCamelCase_ = getattr(__lowerCAmelCase , state.pop("type" ) ) lowerCamelCase_ = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: lowerCamelCase_ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value lowerCamelCase_ = value def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Optional[Any]: lowerCamelCase_ = kwargs.get("is_split_into_words" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Optional[Any]: lowerCamelCase_ = kwargs.get("is_split_into_words" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Dict: lowerCamelCase_ = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> str: lowerCamelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Optional[Any]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
360
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return math.pow(lowerCamelCase__ , 2 ) - a def lowerCamelCase_ ( lowerCamelCase__ ): return 2 * x def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(lowerCamelCase__ , 2 ) return start def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 9_9_9_9 , lowerCamelCase__ = 0.00_00_00_00_00_00_01 ): if a < 0: raise ValueError("math domain error" ) lowerCamelCase_ = get_initial_point(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(lowerCamelCase__ , lowerCamelCase__ ) / fx_derivative(lowerCamelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
47
0
"""simple docstring""" from __future__ import annotations def __magic_name__ ( __snake_case : list[int] ) -> list[int]: if len(__snake_case ) == 0: return array lowercase , lowercase : Tuple = min(__snake_case ), max(__snake_case ) # Compute the variables lowercase : Optional[Any] = _max - _min + 1 lowercase , lowercase : List[str] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase : Tuple = i - _min lowercase : str = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase : Union[str, Any] = 0 for i in range(__snake_case ): while holes_repeat[i] > 0: lowercase : Tuple = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _A : str = input("""Enter numbers separated by comma:\n""") _A : Optional[Any] = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
202
"""simple docstring""" def __magic_name__ ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: lowercase : List[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __magic_name__ ( ) -> int: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
202
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE : Dict = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" SCREAMING_SNAKE_CASE : int = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" SCREAMING_SNAKE_CASE : Optional[Any] = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCamelCase ( _a ) -> str: '''simple docstring''' def remove_articles(_a ): lowercase_ :Optional[Any] = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_a , ''' ''' , _a ) def white_space_fix(_a ): return " ".join(text.split() ) def remove_punc(_a ): lowercase_ :Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_a ) ) ) ) def UpperCamelCase ( _a , _a ) -> Tuple: '''simple docstring''' return int(normalize_answer(_a ) == normalize_answer(_a ) ) def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' lowercase_ :Any = [any(compute_exact(_a , _a ) for ref in refs ) for pred, refs in zip(_a , _a )] return (sum(_a ) / len(_a )) * 1_0_0 def UpperCamelCase ( _a , _a , _a , _a ) -> Any: '''simple docstring''' lowercase_ :Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] lowercase_ :Any = Counter(_a ) lowercase_ :str = Counter(_a ) lowercase_ :List[str] = Counter() for sgram, scount in sgramcounter.items(): lowercase_ :Tuple = scount * numref lowercase_ :Union[str, Any] = Counter(_a ) lowercase_ :List[Any] = Counter() for cgram, ccount in cgramcounter.items(): lowercase_ :List[Any] = ccount * numref # KEEP lowercase_ :Tuple = sgramcounter_rep & cgramcounter_rep lowercase_ :Union[str, Any] = keepgramcounter_rep & rgramcounter lowercase_ :str = sgramcounter_rep & rgramcounter lowercase_ :Optional[Any] = 0 lowercase_ :List[str] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ :int = 1 lowercase_ :List[str] = 1 if len(_a ) > 0: lowercase_ :List[Any] = keeptmpscorea / len(_a ) if len(_a ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowercase_ :str = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowercase_ :Optional[int] = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowercase_ :Optional[int] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowercase_ :List[Any] = sgramcounter_rep - cgramcounter_rep lowercase_ :Optional[Any] = delgramcounter_rep - rgramcounter lowercase_ :Union[str, Any] = sgramcounter_rep - rgramcounter lowercase_ :List[str] = 0 lowercase_ :Optional[int] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ :Union[str, Any] = 1 if len(_a ) > 0: lowercase_ :str = deltmpscorea / len(_a ) # ADDITION lowercase_ :Optional[int] = set(_a ) - set(_a ) lowercase_ :Tuple = set(_a ) & set(_a ) lowercase_ :Optional[Any] = set(_a ) - set(_a ) lowercase_ :Union[str, Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ :Optional[int] = 1 lowercase_ :Optional[int] = 1 if len(_a ) > 0: lowercase_ :Optional[Any] = addtmpscore / len(_a ) if len(_a ) > 0: lowercase_ :str = addtmpscore / len(_a ) lowercase_ :List[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: lowercase_ :List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCamelCase ( _a , _a , _a ) -> str: '''simple docstring''' lowercase_ :int = len(_a ) lowercase_ :int = ssent.split(''' ''' ) lowercase_ :Dict = csent.split(''' ''' ) lowercase_ :Optional[Any] = [] lowercase_ :Union[str, Any] = [] lowercase_ :int = [] lowercase_ :Optional[Any] = [] lowercase_ :Any = [] lowercase_ :Optional[int] = [] lowercase_ :Any = [] lowercase_ :Tuple = [] lowercase_ :Union[str, Any] = [] lowercase_ :Optional[int] = [] for rsent in rsents: lowercase_ :Tuple = rsent.split(''' ''' ) lowercase_ :Optional[int] = [] lowercase_ :str = [] lowercase_ :List[str] = [] ragramslist.append(_a ) for i in range(0 , len(_a ) - 1 ): if i < len(_a ) - 1: lowercase_ :Any = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_a ) if i < len(_a ) - 2: lowercase_ :Any = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_a ) if i < len(_a ) - 3: lowercase_ :Optional[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_a ) ragramslist.append(_a ) ragramslist.append(_a ) ragramslist.append(_a ) for i in range(0 , len(_a ) - 1 ): if i < len(_a ) - 1: lowercase_ :List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_a ) if i < len(_a ) - 2: lowercase_ :Any = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_a ) if i < len(_a ) - 3: lowercase_ :Dict = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_a ) for i in range(0 , len(_a ) - 1 ): if i < len(_a ) - 1: lowercase_ :int = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_a ) if i < len(_a ) - 2: lowercase_ :Dict = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_a ) if i < len(_a ) - 3: lowercase_ :int = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_a ) (lowercase_) :List[str] = SARIngram(_a , _a , _a , _a ) (lowercase_) :Optional[int] = SARIngram(_a , _a , _a , _a ) (lowercase_) :str = SARIngram(_a , _a , _a , _a ) (lowercase_) :Dict = SARIngram(_a , _a , _a , _a ) lowercase_ :Optional[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowercase_ :int = sum([delascore, delascore, delascore, delascore] ) / 4 lowercase_ :Dict = sum([addascore, addascore, addascore, addascore] ) / 4 lowercase_ :Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCamelCase ( _a , _a = True , _a = "13a" , _a = True ) -> Optional[Any]: '''simple docstring''' if lowercase: lowercase_ :List[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowercase_ :Optional[Any] = sacrebleu.metrics.bleu._get_tokenizer(_a )()(_a ) else: lowercase_ :Tuple = sacrebleu.TOKENIZERS[tokenizer]()(_a ) elif tokenizer == "moses": lowercase_ :int = sacremoses.MosesTokenizer().tokenize(_a , return_str=_a , escape=_a ) elif tokenizer == "penn": lowercase_ :List[str] = sacremoses.MosesTokenizer().penn_tokenize(_a , return_str=_a ) else: lowercase_ :Optional[int] = sentence if not return_str: lowercase_ :List[str] = normalized_sent.split() return normalized_sent def UpperCamelCase ( _a , _a , _a ) -> List[Any]: '''simple docstring''' if not (len(_a ) == len(_a ) == len(_a )): raise ValueError('''Sources length must match predictions and references lengths.''' ) lowercase_ :Any = 0 for src, pred, refs in zip(_a , _a , _a ): sari_score += SARIsent(normalize(_a ) , normalize(_a ) , [normalize(_a ) for sent in refs] ) lowercase_ :Any = sari_score / len(_a ) return 1_0_0 * sari_score def UpperCamelCase ( _a , _a , _a="exp" , _a=None , _a=False , _a=False , _a=False , ) -> List[Any]: '''simple docstring''' lowercase_ :str = len(references[0] ) if any(len(_a ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowercase_ :List[Any] = [[refs[i] for refs in references] for i in range(_a )] lowercase_ :List[Any] = sacrebleu.corpus_bleu( _a , _a , smooth_method=_a , smooth_value=_a , force=_a , lowercase=_a , use_effective_order=_a , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[int] = {} result.update({'''sari''': compute_sari(sources=UpperCamelCase_ , predictions=UpperCamelCase_ , references=UpperCamelCase_ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=UpperCamelCase_ , references=UpperCamelCase_ )} ) result.update({'''exact''': compute_em(predictions=UpperCamelCase_ , references=UpperCamelCase_ )} ) return result
369
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class UpperCamelCase : '''simple docstring''' lowercase : Optional[str] =field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The column name of the images in the files."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the training data."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the validation data."""} ) lowercase : Optional[float] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase ( self ): lowercase_ :int = {} if self.train_dir is not None: lowercase_ :Union[str, Any] = self.train_dir if self.validation_dir is not None: lowercase_ :int = self.validation_dir lowercase_ :str = data_files if data_files else None @dataclass class UpperCamelCase : '''simple docstring''' lowercase : str =field( default=lowercase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase : str =field(default=lowercase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase : bool =field( default=lowercase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase : float =field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowercase : bool =field( default=lowercase__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : float =field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def UpperCamelCase ( _a ) -> int: '''simple docstring''' lowercase_ :Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowercase_ :str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ :Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , _a , _a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ :Dict = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowercase_ :Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ :List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase_ :Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ :Dict = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: lowercase_ :int = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase_ :Tuple = split['''train'''] lowercase_ :Optional[int] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ :int = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :str = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase_ :int = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase_ :Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase_ :str = ViTMAEForPreTraining(_a ) if training_args.do_train: lowercase_ :str = ds['''train'''].column_names else: lowercase_ :Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase_ :Optional[Any] = data_args.image_column_name elif "image" in column_names: lowercase_ :str = '''image''' elif "img" in column_names: lowercase_ :Any = '''img''' else: lowercase_ :Optional[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase_ :int = image_processor.size['''shortest_edge'''] else: lowercase_ :Union[str, Any] = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase_ :List[str] = Compose( [ Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_a ): lowercase_ :List[Any] = [transforms(_a ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase_ :Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase_ :str = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_a ) # Compute absolute learning rate lowercase_ :Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase_ :str = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer lowercase_ :Any = Trainer( model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: lowercase_ :Any = None if training_args.resume_from_checkpoint is not None: lowercase_ :Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ :Tuple = last_checkpoint lowercase_ :List[Any] = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ :str = trainer.evaluate() trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) # Write model card and (optionally) push to hub lowercase_ :List[Any] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def UpperCamelCase ( _a ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
252
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Optional[Any] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
328
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = jnp.ones((batch_size, length) ) / length return scores def __A ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(batch_size=2 , length=_lowercase ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ = jax.nn.softmax(_lowercase , axis=-1 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_sharper(_lowercase , scores.copy() , cur_len=_lowercase ) , axis=-1 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_smoother(_lowercase , scores.copy() , cur_len=_lowercase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ = top_k_warp_safety_check(_lowercase , _lowercase , cur_len=_lowercase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __A ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ = np.exp(top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __A ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 20) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = min_dist_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = min_dist_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def __A ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 1) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def __A ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 4) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , _lowercase ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) SCREAMING_SNAKE_CASE_ = 10 # no processor list SCREAMING_SNAKE_CASE_ = temp_dist_warp(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = min_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) # with processor list SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(_lowercase , _lowercase , cur_len=_lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __A ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , _lowercase ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) SCREAMING_SNAKE_CASE_ = 10 # no processor list def run_no_processor_list(__magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ): SCREAMING_SNAKE_CASE_ = temp_dist_warp(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = min_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) return scores # with processor list def run_processor_list(__magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict ): SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(_lowercase , _lowercase , cur_len=_lowercase ) return scores SCREAMING_SNAKE_CASE_ = jax.jit(_lowercase ) SCREAMING_SNAKE_CASE_ = jax.jit(_lowercase ) SCREAMING_SNAKE_CASE_ = jitted_run_no_processor_list(_lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = jitted_run_processor_list(_lowercase , _lowercase , _lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
366
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A : Union[str, Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def a__ ( ): SCREAMING_SNAKE_CASE_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE_ = get_sagemaker_input() else: SCREAMING_SNAKE_CASE_ = get_cluster_input() return config def a__ ( __UpperCamelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser("config" , description=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser("Accelerate config command" , description=__UpperCamelCase ) parser.add_argument( "--config_file" , default=__UpperCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE_ = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(F'''accelerate configuration saved at {config_file}''' ) def a__ ( ): SCREAMING_SNAKE_CASE_ = config_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
305
0
'''simple docstring''' import argparse from collections import defaultdict import yaml UpperCAmelCase_ : Dict = 'docs/source/en/_toctree.yml' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = defaultdict(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : int = [] _SCREAMING_SNAKE_CASE : Dict = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = new_doc_list _SCREAMING_SNAKE_CASE : Optional[int] = [key for key, value in counts.items() if value > 1] _SCREAMING_SNAKE_CASE : Union[str, Any] = [] for duplicate_key in duplicates: _SCREAMING_SNAKE_CASE : int = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _SCREAMING_SNAKE_CASE : Any = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(SCREAMING_SNAKE_CASE__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(SCREAMING_SNAKE_CASE__ ) # Sort return overview_doc def snake_case_ ( SCREAMING_SNAKE_CASE__=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE : int = yaml.safe_load(f.read() ) # Get to the API doc _SCREAMING_SNAKE_CASE : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 _SCREAMING_SNAKE_CASE : int = content[api_idx]["""sections"""] # Then to the model doc _SCREAMING_SNAKE_CASE : List[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _SCREAMING_SNAKE_CASE : List[Any] = api_doc[scheduler_idx]["""sections"""] _SCREAMING_SNAKE_CASE : List[Any] = clean_doc_toc(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : List[str] = False if new_scheduler_doc != scheduler_doc: _SCREAMING_SNAKE_CASE : Tuple = True if overwrite: _SCREAMING_SNAKE_CASE : Tuple = new_scheduler_doc if diff: if overwrite: _SCREAMING_SNAKE_CASE : str = api_doc with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE__ , allow_unicode=SCREAMING_SNAKE_CASE__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE : int = yaml.safe_load(f.read() ) # Get to the API doc _SCREAMING_SNAKE_CASE : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _SCREAMING_SNAKE_CASE : Optional[int] = content[api_idx]["""sections"""] # Then to the model doc _SCREAMING_SNAKE_CASE : Dict = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Optional[int] = api_doc[pipeline_idx]["""sections"""] _SCREAMING_SNAKE_CASE : Dict = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline_doc["""section"""] _SCREAMING_SNAKE_CASE : List[Any] = clean_doc_toc(SCREAMING_SNAKE_CASE__ ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(SCREAMING_SNAKE_CASE__ ) # sort overall pipeline doc _SCREAMING_SNAKE_CASE : Dict = clean_doc_toc(SCREAMING_SNAKE_CASE__ ) if new_pipeline_docs != pipeline_docs: _SCREAMING_SNAKE_CASE : str = True if overwrite: _SCREAMING_SNAKE_CASE : Union[str, Any] = new_pipeline_docs if diff: if overwrite: _SCREAMING_SNAKE_CASE : Any = api_doc with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE__ , allow_unicode=SCREAMING_SNAKE_CASE__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCAmelCase_ : List[str] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
200
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[10, 20, 30, 40] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , ): _SCREAMING_SNAKE_CASE : Union[str, Any] = parent _SCREAMING_SNAKE_CASE : Dict = batch_size _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : Any = num_channels _SCREAMING_SNAKE_CASE : Optional[int] = embeddings_size _SCREAMING_SNAKE_CASE : Tuple = hidden_sizes _SCREAMING_SNAKE_CASE : str = depths _SCREAMING_SNAKE_CASE : str = is_training _SCREAMING_SNAKE_CASE : Any = use_labels _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : int = num_labels _SCREAMING_SNAKE_CASE : str = scope _SCREAMING_SNAKE_CASE : Any = len(__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : List[str] = FlaxRegNetModel(config=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = model(__snake_case ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.num_labels _SCREAMING_SNAKE_CASE : List[Any] = FlaxRegNetForImageClassification(config=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase__ ( _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Dict = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A_ : Union[str, Any] = False A_ : List[str] = False A_ : str = False def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = FlaxRegNetModelTester(self ) _SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def UpperCAmelCase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): return def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[Any] = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def UpperCAmelCase_ ( self ): def check_hidden_states_output(__snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Any = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _SCREAMING_SNAKE_CASE : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) @jax.jit def model_jitted(__snake_case , **__snake_case ): return model(pixel_values=__snake_case , **__snake_case ) with self.subTest("""JIT Enabled""" ): _SCREAMING_SNAKE_CASE : Any = model_jitted(**__snake_case ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Optional[int] = model_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) _SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() _SCREAMING_SNAKE_CASE : Tuple = image_processor(images=__snake_case , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE : str = model(**__snake_case ) # verify the logits _SCREAMING_SNAKE_CASE : Tuple = (1, 1000) self.assertEqual(outputs.logits.shape , __snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
200
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase = '''true''' def __lowerCamelCase ( snake_case__ ,snake_case__=82 ,snake_case__=16 ) -> Dict: """simple docstring""" set_seed(42 ) _SCREAMING_SNAKE_CASE = RegressionModel() _SCREAMING_SNAKE_CASE = deepcopy(snake_case__ ) _SCREAMING_SNAKE_CASE = RegressionDataset(length=snake_case__ ) _SCREAMING_SNAKE_CASE = DataLoader(snake_case__ ,batch_size=snake_case__ ) model.to(accelerator.device ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare(snake_case__ ,snake_case__ ) return model, ddp_model, dataloader def __lowerCamelCase ( snake_case__ ,snake_case__=False ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) _SCREAMING_SNAKE_CASE = load_dataset("""glue""" ,"""mrpc""" ,split="""validation""" ) def tokenize_function(snake_case__ ): _SCREAMING_SNAKE_CASE = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case__ ,max_length=snake_case__ ) return outputs with accelerator.main_process_first(): _SCREAMING_SNAKE_CASE = dataset.map( snake_case__ ,batched=snake_case__ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) _SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(snake_case__ ): if use_longest: return tokenizer.pad(snake_case__ ,padding="""longest""" ,return_tensors="""pt""" ) return tokenizer.pad(snake_case__ ,padding="""max_length""" ,max_length=1_28 ,return_tensors="""pt""" ) return DataLoader(snake_case__ ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=16 ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=snake_case__ ,split_batches=snake_case__ ) _SCREAMING_SNAKE_CASE = get_dataloader(snake_case__ ,not dispatch_batches ) _SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" ,return_dict=snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare(snake_case__ ,snake_case__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for batch in dataloader: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = batch.values() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = [], [] for logit, targ in logits_and_targets: logits.append(snake_case__ ) targs.append(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = torch.cat(snake_case__ ), torch.cat(snake_case__ ) return logits, targs def __lowerCamelCase ( snake_case__ ,snake_case__=82 ,snake_case__=False ,snake_case__=False ,snake_case__=16 ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_basic_setup(snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = generate_predictions(snake_case__ ,snake_case__ ,snake_case__ ) assert ( len(snake_case__ ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case__ )}' def __lowerCamelCase ( snake_case__ = False ,snake_case__ = False ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = evaluate.load("""glue""" ,"""mrpc""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_mrpc_setup(snake_case__ ,snake_case__ ) # First do baseline _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = setup["""no"""] model.to(snake_case__ ) model.eval() for batch in dataloader: batch.to(snake_case__ ) with torch.inference_mode(): _SCREAMING_SNAKE_CASE = model(**snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case__ ,references=batch["""labels"""] ) _SCREAMING_SNAKE_CASE = metric.compute() # Then do distributed _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): _SCREAMING_SNAKE_CASE = model(**snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE = batch["""labels"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case__ ,references=snake_case__ ) _SCREAMING_SNAKE_CASE = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = Accelerator(split_batches=snake_case__ ,dispatch_batches=snake_case__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(snake_case__ ,snake_case__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _SCREAMING_SNAKE_CASE = Accelerator(split_batches=snake_case__ ,dispatch_batches=snake_case__ ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(snake_case__ ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) _SCREAMING_SNAKE_CASE = Accelerator() test_torch_metrics(snake_case__ ,5_12 ) accelerator.state._reset_state() def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" main() if __name__ == "__main__": main()
361
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
0
import numpy as np def a ( snake_case__: np.ndarray , snake_case__: float ): '''simple docstring''' return np.where(vector > 0 , snake_case__ , (alpha * (np.exp(snake_case__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
30
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( _UpperCamelCase : int ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =str(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[n] for i in range(1 , len(_UpperCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" if len(str(_UpperCamelCase ) ) > 3: if not is_prime(int(str(_UpperCamelCase )[-3:] ) ) or not is_prime(int(str(_UpperCamelCase )[:3] ) ): return False return True def _lowerCAmelCase ( _UpperCamelCase : int = 11 ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =13 while len(_UpperCamelCase ) != count: if validate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =list_truncated_nums(_UpperCamelCase ) if all(is_prime(_UpperCamelCase ) for i in list_nums ): list_truncated_primes.append(_UpperCamelCase ) num += 2 return list_truncated_primes def _lowerCAmelCase ( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(1_1)) = }''')
47
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE (__lowercase ): _UpperCamelCase : Optional[int] = '''mctct''' def __init__( self : List[str] , a : Dict=8_065 , a : Tuple=1_536 , a : Optional[Any]=36 , a : Dict=6_144 , a : List[Any]=4 , a : Optional[Any]=384 , a : Any=920 , a : Optional[int]=1E-5 , a : Tuple=0.3 , a : Dict="relu" , a : int=0.02 , a : Tuple=0.3 , a : Optional[int]=0.3 , a : Union[str, Any]=1 , a : List[str]=0 , a : Dict=2 , a : str=1 , a : Any=0.3 , a : Optional[Any]=1 , a : Union[str, Any]=(7,) , a : List[str]=(3,) , a : Dict=80 , a : List[str]=1 , a : Any=None , a : int="sum" , a : Dict=False , **a : Tuple , )-> str: """simple docstring""" super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = num_attention_heads lowercase__ = attention_head_dim lowercase__ = max_position_embeddings lowercase__ = layer_norm_eps lowercase__ = layerdrop lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = conv_glu_dim lowercase__ = conv_dropout lowercase__ = num_conv_layers lowercase__ = input_feat_per_channel lowercase__ = input_channels lowercase__ = conv_channels lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # prevents config testing fail with exporting to json lowercase__ = list(a ) lowercase__ = list(a ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' f"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
363
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if is_torch_version('<' , '2.0.0' ) or not hasattr(_SCREAMING_SNAKE_CASE , '_dynamo' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True ) -> Dict: lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: lowercase__ = model lowercase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = model.module if not keep_fpaa_wrapper: lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'forward' ) lowercase__ = model.__dict__.pop('_original_forward' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '__wrapped__' ): lowercase__ = forward.__wrapped__ if forward == original_forward: break lowercase__ = forward if getattr(_SCREAMING_SNAKE_CASE , '_converted_to_transformer_engine' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: lowercase__ = model lowercase__ = compiled_model return model def __UpperCamelCase () -> Tuple: PartialState().wait_for_everyone() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def __UpperCamelCase (**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: for key, value in kwargs.items(): lowercase__ = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if not hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ) and not hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): lowercase__ = getattr(_SCREAMING_SNAKE_CASE , '__class__' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowercase__ = value return destination def __UpperCamelCase (_SCREAMING_SNAKE_CASE = None ) -> bool: if port is None: lowercase__ = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
269
0
'''simple docstring''' from __future__ import annotations def __snake_case ( UpperCAmelCase_ : list[float] , UpperCAmelCase_ : list[float] ): lowerCamelCase_ = sorted(numsa + numsa ) lowerCamelCase_ ,lowerCamelCase_ = divmod(len(lowerCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() a_ : str = [float(x) for x in input("""Enter the elements of first array: """).split()] a_ : int = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
55
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
0
def __a ( lowerCAmelCase_ : int = 10 ,lowerCAmelCase_ : int = 22 ) -> int: '''simple docstring''' UpperCAmelCase_= range(1 ,lowerCAmelCase_ ) UpperCAmelCase_= range(1 ,lowerCAmelCase_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(10, 22) = }')
277
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( snake_case__): """simple docstring""" def __init__( self : int , __UpperCAmelCase : pyspark.sql.DataFrame , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "arrow" , **__UpperCAmelCase : str , ) -> Dict: super().__init__( split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase_= load_from_cache_file UpperCAmelCase_= file_format UpperCAmelCase_= Spark( df=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , working_dir=__UpperCAmelCase , **__UpperCAmelCase , ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCAmelCase_= None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
277
1
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : Any , __A : Dict , __A : str , __A : List[Any]=1_0_2_4 , __A : Tuple=1_0_2_4 , __A : str=3.6 ): __UpperCamelCase = tokenizer __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = dataset __UpperCamelCase = seq_length __UpperCamelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self : Any ): __UpperCamelCase = iter(self.dataset ) __UpperCamelCase = True while more_examples: __UpperCamelCase , __UpperCamelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __UpperCamelCase = False break __UpperCamelCase = tokenizer(__A , truncation=__A )['input_ids'] __UpperCamelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__A ) , self.seq_length ): __UpperCamelCase = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def lowercase__ ( __lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'streaming': True} __UpperCamelCase = load_dataset(args.dataset_name , split='train' , **__lowercase ) __UpperCamelCase = ConstantLengthDataset(__lowercase , __lowercase , seq_length=args.seq_length ) __UpperCamelCase = DataLoader(__lowercase , batch_size=args.batch_size ) return eval_dataloader def lowercase__ ( __lowercase : Tuple ) -> Optional[Any]: """simple docstring""" model.eval() __UpperCamelCase = [] for step, batch in enumerate(__lowercase ): with torch.no_grad(): __UpperCamelCase = model(__lowercase , labels=__lowercase ) __UpperCamelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__lowercase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __UpperCamelCase = torch.mean(torch.cat(__lowercase ) ) try: __UpperCamelCase = torch.exp(__lowercase ) except OverflowError: __UpperCamelCase = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator a__ : int =Accelerator() # Parse configuration a__ : Dict =HfArgumentParser(EvaluationArguments) a__ : Union[str, Any] =parser.parse_args() set_seed(args.seed) # Logging a__ : List[Any] =logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer a__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(args.model_ckpt) a__ : List[Any] =AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader a__ : Union[str, Any] =create_dataloader(args) # Prepare everything with our `accelerator`. a__ , a__ : List[str] =accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') a__ , a__ : Any =evaluate(args) logger.info(f'loss/eval: {eval_loss}, perplexity: {perplexity}')
53
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCamelCase : int = random.Random() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=1.0 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=4_00 , _snake_case=20_00 , _snake_case=1 , _snake_case=0.0 , _snake_case=1_60_00 , _snake_case=True , _snake_case=True , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def UpperCamelCase__ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , _snake_case=False , _snake_case=False ): """simple docstring""" def _flatten(_snake_case ): return list(itertools.chain(*_snake_case ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs class a ( a__ , unittest.TestCase ): snake_case__ = WavaVecaFeatureExtractor def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.assertTrue(np.all(np.mean(_snake_case , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_snake_case , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(_snake_case , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(_snake_case , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase = np.asarray(_snake_case ) lowerCAmelCase = feat_extract(_snake_case , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(_snake_case , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase = [None, 16_00, None] for max_length, padding in zip(_snake_case , _snake_case ): lowerCAmelCase = feat_extract(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = range(8_00 , 14_00 , 2_00 ) lowerCAmelCase = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase = [None, 16_00, None] for max_length, padding in zip(_snake_case , _snake_case ): lowerCAmelCase = feat_extract(_snake_case , max_length=_snake_case , padding=_snake_case ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = feat_extract( _snake_case , truncation=_snake_case , max_length=10_00 , padding='max_length' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = feat_extract( _snake_case , truncation=_snake_case , max_length=10_00 , padding='longest' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = feat_extract( _snake_case , truncation=_snake_case , max_length=20_00 , padding='longest' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase__ ( self ): """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase = WavaVecaConfig.from_pretrained(_snake_case ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_snake_case ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
354
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCamelCase : Optional[int] = flax_key_tuple[:-1] + ("weight",) UpperCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer UpperCamelCase : Optional[Any] = flax_key_tuple[:-1] + ("weight",) UpperCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase : int = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if "metadata" in layer: UpperCamelCase : List[str] = layer.split("metadata" ) UpperCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] UpperCamelCase : Optional[int] = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: UpperCamelCase : str = layer.split("kvstore" ) UpperCamelCase : List[str] = "".join(split_layer[0] )[:-1] UpperCamelCase : Tuple = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: UpperCamelCase : List[Any] = layer.split("/" ) UpperCamelCase : Union[str, Any] = "/".join(split_layer[:-1] ) UpperCamelCase : int = (split_layer[-1],) if "kvstore/path" in layer: UpperCamelCase : Union[str, Any] = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: UpperCamelCase : List[str] = "file" else: UpperCamelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: UpperCamelCase : Optional[int] = rename_keys(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = {} for k, v in current_block.items(): UpperCamelCase : Tuple = v UpperCamelCase : Union[str, Any] = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = WEIGHTS_NAME ) -> Union[str, Any]: UpperCamelCase : List[str] = convert_file_size_to_int(_lowerCAmelCase ) UpperCamelCase : Dict = [] UpperCamelCase : List[str] = {} UpperCamelCase : Any = 0 UpperCamelCase : Any = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: UpperCamelCase : Union[str, Any] = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] UpperCamelCase : Optional[Any] = flatten_dict(_lowerCAmelCase , sep="/" ) UpperCamelCase : Tuple = {} for layer in checkpoint_info.keys(): UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: UpperCamelCase : int = content else: UpperCamelCase : Union[str, Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCamelCase : Optional[int] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCamelCase : Any = torch.tensor(_lowerCAmelCase ) UpperCamelCase : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCamelCase , UpperCamelCase : str = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) UpperCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCamelCase : Dict = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(_lowerCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCamelCase : List[str] = {} UpperCamelCase : Optional[Any] = 0 UpperCamelCase : List[Any] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCamelCase : Optional[int] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(_lowerCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCamelCase : List[str] = {} UpperCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): UpperCamelCase : List[str] = weights_name.replace( ".bin" , F"""-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d} UpperCamelCase : Optional[int] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCamelCase : Any = shard for key in shard: UpperCamelCase : List[str] = shard_file # Add the metadata UpperCamelCase : Optional[int] = {"total_size": total_size} UpperCamelCase : Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: UpperCamelCase : Dict = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) __lowerCamelCase : Union[str, Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ) -> Union[str, Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCamelCase : Tuple = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) UpperCamelCase : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) UpperCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) UpperCamelCase : Dict = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." UpperCamelCase : Tuple = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids UpperCamelCase : Tuple = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
52
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __a : def __init__( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any]=13 , __magic_name__ : int=7 , __magic_name__ : int=False , __magic_name__ : str=True , __magic_name__ : int=False , __magic_name__ : Optional[int]=False , __magic_name__ : List[Any]=19 , __magic_name__ : Any=32 , __magic_name__ : List[Any]=5 , __magic_name__ : Dict=4 , __magic_name__ : Optional[int]=37 , __magic_name__ : str="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[str]=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Union[str, Any]=0.0_2 , __magic_name__ : int=3 , __magic_name__ : Dict=4 , __magic_name__ : str=None , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Tuple = use_input_mask UpperCAmelCase_ : Union[str, Any] = use_token_type_ids UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Tuple = type_vocab_size UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Tuple = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__magic_name__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[str] = EsmForProteinFolding(config=__magic_name__ ).float() model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Any = False __a : Any = (EsmForProteinFolding,) if is_torch_available() else () __a : Any = () __a : Optional[Any] = {} if is_torch_available() else {} __a : List[str] = False def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = EsmFoldModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip('''Does not support attention outputs''' ) def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" pass @unittest.skip def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" pass @unittest.skip('''ESMFold only has one output format.''' ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold does not support input chunking.''' ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" pass @require_torch class __a (lowerCamelCase ): @slow def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() UpperCAmelCase_ : Optional[int] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase_ : Tuple = model(__magic_name__ )['''positions'''] UpperCAmelCase_ : Dict = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __magic_name__ , atol=1E-4 ) )
125
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : int ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=__lowerCAmelCase , ) assert hasattr(self , """env""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings _UpperCAmelCase = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCAmelCase , instance_count=__lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCAmelCase , py_version="""py36""" , ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : List[str] ): TrainingJobAnalytics(__lowerCAmelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[Any] ): # create estimator _UpperCAmelCase = self.create_estimator(__lowerCAmelCase ) # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __lowerCAmelCase )
30
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
1
from itertools import product def __lowerCAmelCase ( a__ , a__ ) -> list[int]: __a = sides_number __a = max_face_number * dice_number __a = [0] * (max_total + 1) __a = 1 __a = range(a__ , max_face_number + 1 ) for dice_numbers in product(a__ , repeat=a__ ): __a = sum(a__ ) totals_frequencies[total] += 1 return totals_frequencies def __lowerCAmelCase ( ) -> float: __a = total_frequency_distribution( sides_number=4 , dice_number=9 ) __a = total_frequency_distribution( sides_number=6 , dice_number=6 ) __a = 0 __a = 9 __a = 4 * 9 __a = 6 for peter_total in range(a__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __a = (4**9) * (6**6) __a = peter_wins_count / total_games_number __a = round(a__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"{solution() = }")
6
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _lowercase ( __snake_case = "laptop" ) -> DataFrame: __lowerCAmelCase : str = F"""https://www.amazon.in/laptop/s?k={product}""" __lowerCAmelCase : Union[str, Any] = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __lowerCAmelCase : List[str] = BeautifulSoup(requests.get(__snake_case ,headers=__snake_case ).text ) # Initialize a Pandas dataframe with the column titles __lowerCAmelCase : Dict = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" ,attrs={"class": "s-result-item", "data-component-type": "s-search-result"} ,) ,soup.find_all("div" ,attrs={"class": "a-row a-size-base a-color-base"} ) ,): try: __lowerCAmelCase : Any = item.ha.text __lowerCAmelCase : Union[str, Any] = "https://www.amazon.in/" + item.ha.a["href"] __lowerCAmelCase : Any = item.find("span" ,attrs={"class": "a-offscreen"} ).text try: __lowerCAmelCase : Union[str, Any] = item.find("span" ,attrs={"class": "a-icon-alt"} ).text except AttributeError: __lowerCAmelCase : Optional[Any] = "Not available" try: __lowerCAmelCase : Union[str, Any] = ( "₹" + item.find( "span" ,attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: __lowerCAmelCase : Dict = "" try: __lowerCAmelCase : str = float( ( ( float(product_mrp.strip("₹" ).replace("," ,"" ) ) - float(product_price.strip("₹" ).replace("," ,"" ) ) ) / float(product_mrp.strip("₹" ).replace("," ,"" ) ) ) * 100 ) except ValueError: __lowerCAmelCase : List[str] = float("nan" ) except AttributeError: pass __lowerCAmelCase : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __lowerCAmelCase : Union[str, Any] = " " __lowerCAmelCase : Union[str, Any] = " " data_frame.index += 1 return data_frame if __name__ == "__main__": __snake_case : Any = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
269
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _snake_case ( tf.keras.layers.Layer ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): super().__init__() a :List[str] = pad_token_id a :int = max_length a :Any = vocab a :Tuple = merges a :int = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): a :List[Any] = [''' '''.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] a :Union[str, Any] = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): a :str = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase ): return cls(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :List[Any] = self.tf_tokenizer(_lowerCamelCase ) a :Dict = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length a :List[str] = max_length if max_length is not None else self.max_length if max_length is not None: a , a :int = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
281
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) snake_case : Any = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" inspect_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) a :List[Any] = path + '''.py''' assert script_name in os.listdir(UpperCAmelCase_ ) assert "__pycache__" not in os.listdir(UpperCAmelCase_ ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any ): """simple docstring""" inspect_metric(UpperCAmelCase_ , UpperCAmelCase_ ) a :Dict = path + '''.py''' assert script_name in os.listdir(UpperCAmelCase_ ) assert "__pycache__" not in os.listdir(UpperCAmelCase_ ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): """simple docstring""" a :List[str] = get_dataset_config_info(UpperCAmelCase_ , config_name=UpperCAmelCase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): """simple docstring""" with pytest.raises(UpperCAmelCase_ ): get_dataset_config_info(UpperCAmelCase_ , config_name=UpperCAmelCase_ ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def __lowerCamelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ): """simple docstring""" a :List[str] = get_dataset_config_names(UpperCAmelCase_ ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def __lowerCamelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :Optional[int] = get_dataset_infos(UpperCAmelCase_ ) assert list(infos.keys() ) == expected_configs a :Union[str, Any] = expected_configs[0] assert expected_config in infos a :List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :Union[str, Any] = get_dataset_infos(UpperCAmelCase_ ) assert expected_config in infos a :int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str ): """simple docstring""" with pytest.raises(UpperCAmelCase_ ): get_dataset_split_names(UpperCAmelCase_ , config_name=UpperCAmelCase_ )
281
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowercase : """simple docstring""" def __init__( self , A , ) -> List[str]: snake_case : Any = parent snake_case : Optional[int] = 1_3 snake_case : Any = 7 snake_case : List[str] = True snake_case : Union[str, Any] = True snake_case : Any = True snake_case : Any = True snake_case : int = True snake_case : Tuple = False snake_case : List[str] = False snake_case : List[str] = False snake_case : Tuple = 2 snake_case : List[str] = 9_9 snake_case : Dict = 0 snake_case : Dict = 3_2 snake_case : Optional[int] = 2 snake_case : Optional[Any] = 4 snake_case : Any = 0.1 snake_case : str = 0.1 snake_case : Union[str, Any] = 5_1_2 snake_case : List[str] = 1_6 snake_case : str = 2 snake_case : Dict = 0.02 snake_case : Dict = 3 snake_case : str = 4 snake_case : int = """last""" snake_case : List[Any] = True snake_case : Optional[int] = None snake_case : Union[str, Any] = 0 def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) snake_case : Union[str, Any] = None if self.use_input_lengths: snake_case : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case : str = None if self.use_token_type_ids: snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case : int = None snake_case : Optional[Any] = None snake_case : Tuple = None if self.use_labels: snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Tuple = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[str] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Union[str, Any]: snake_case : Optional[Any] = TFFlaubertModel(config=A ) snake_case : List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} snake_case : List[str] = model(A ) snake_case : List[str] = [input_ids, input_mask] snake_case : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: snake_case : int = TFFlaubertWithLMHeadModel(A ) snake_case : Optional[int] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} snake_case : Dict = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Any: snake_case : Union[str, Any] = TFFlaubertForQuestionAnsweringSimple(A ) snake_case : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} snake_case : Optional[int] = model(A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> str: snake_case : int = TFFlaubertForSequenceClassification(A ) snake_case : List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} snake_case : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Any: snake_case : Any = self.num_labels snake_case : List[Any] = TFFlaubertForTokenClassification(config=A ) snake_case : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Dict: snake_case : int = self.num_choices snake_case : Optional[Any] = TFFlaubertForMultipleChoice(config=A ) snake_case : Tuple = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) snake_case : List[str] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) snake_case : Optional[Any] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) snake_case : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case : Optional[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Dict: snake_case : List[Any] = self.prepare_config_and_inputs() ( snake_case ) : Tuple = config_and_inputs snake_case : Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __lowercase (UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case = False _snake_case = False def UpperCAmelCase ( self , A , A , A , A , A ) -> Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = TFFlaubertModelTester(self ) snake_case : List[str] = ConfigTester(self , config_class=A , emb_dim=3_7 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A ) def UpperCAmelCase ( self ) -> Dict: snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A ) def UpperCAmelCase ( self ) -> Any: snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A ) def UpperCAmelCase ( self ) -> Dict: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A ) @slow def UpperCAmelCase ( self ) -> str: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = TFFlaubertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf @require_sentencepiece @require_tokenizers class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[str] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) snake_case : List[Any] = tf.convert_to_tensor( [[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" snake_case : Optional[Any] = model(A )[0] snake_case : List[str] = tf.TensorShape((1, 8, 5_1_2) ) self.assertEqual(output.shape , A ) # compare the actual values for a slice. snake_case : List[str] = tf.convert_to_tensor( [ [ [-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18], [-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99], [-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
124
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class A__ ( UpperCAmelCase__ ): __UpperCamelCase : torch.FloatTensor class A__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE :Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE :Tuple[int] = (6_4,) , SCREAMING_SNAKE_CASE :int = 1 , SCREAMING_SNAKE_CASE :str = "silu" , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :int = 3_2 , SCREAMING_SNAKE_CASE :int = 2_5_6 , SCREAMING_SNAKE_CASE :int = 3_2 , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :float = 0.18_215 , SCREAMING_SNAKE_CASE :str = "group" , ) -> Optional[int]: '''simple docstring''' super().__init__() # pass init params to Encoder _a : Union[str, Any] =Encoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , down_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , double_z=SCREAMING_SNAKE_CASE , ) _a : Optional[int] =vq_embed_dim if vq_embed_dim is not None else latent_channels _a : Optional[int] =nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) _a : str =VectorQuantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , beta=0.25 , remap=SCREAMING_SNAKE_CASE , sane_index_shape=SCREAMING_SNAKE_CASE ) _a : List[str] =nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) # pass init params to Decoder _a : List[str] =Decoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , up_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , norm_type=SCREAMING_SNAKE_CASE , ) @apply_forward_hook def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = True ) -> VQEncoderOutput: '''simple docstring''' _a : Optional[int] =self.encoder(SCREAMING_SNAKE_CASE ) _a : int =self.quant_conv(SCREAMING_SNAKE_CASE ) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE ) @apply_forward_hook def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: _a , _a , _a : Tuple =self.quantize(SCREAMING_SNAKE_CASE ) else: _a : str =h _a : Dict =self.post_quant_conv(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =self.decoder(SCREAMING_SNAKE_CASE , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' _a : Tuple =sample _a : int =self.encode(SCREAMING_SNAKE_CASE ).latents _a : List[Any] =self.decode(SCREAMING_SNAKE_CASE ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE )
276
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowercase : List[Any] = ['''text''', '''image''', '''audio'''] def lowerCAmelCase__ ( _a : List[str] ): snake_case_ : Optional[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(_a , _a ): inputs.append(create_inputs(_a ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def lowerCAmelCase__ ( _a : List ): snake_case_ : str = [] for output in outputs: if isinstance(_a , (str, AgentText) ): output_types.append("text" ) elif isinstance(_a , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_a , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class UpperCAmelCase_ : '''simple docstring''' def _lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case_ : int = self.tool.inputs for _input in inputs: if isinstance(_input , _SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case_ : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Optional[Any] = create_inputs(self.tool.inputs ) snake_case_ : Optional[int] = self.tool(*_SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: snake_case_ : Optional[int] = [outputs] self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE ) , self.tool.outputs ) def _lowerCAmelCase ( self ) -> int: self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : Dict = create_inputs(self.tool.inputs ) snake_case_ : Optional[int] = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : List[Any] = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) ) for output, output_type in zip(_SCREAMING_SNAKE_CASE , self.tool.outputs ): snake_case_ : str = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : Optional[int] = create_inputs(self.tool.inputs ) snake_case_ : List[Any] = [] for _input, input_type in zip(_SCREAMING_SNAKE_CASE , self.tool.inputs ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case_ : Optional[Any] = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : Any = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) )
36
def lowerCAmelCase__ ( _a : dict ): snake_case_ : List[Any] = set() # edges = list of graph's edges snake_case_ : int = get_edges(_a ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: snake_case_ , snake_case_ : Dict = edges.pop() chosen_vertices.add(_a ) chosen_vertices.add(_a ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_a ) return chosen_vertices def lowerCAmelCase__ ( _a : dict ): snake_case_ : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
36
1
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def A ( snake_case__ ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase (nn.Module ): def __init__( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = module SCREAMING_SNAKE_CASE__ = nn.Sequential( nn.Linear(module.in_features , snake_case_ , bias=snake_case_ ) , nn.Linear(snake_case_ , module.out_features , bias=snake_case_ ) , ) SCREAMING_SNAKE_CASE__ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=snake_case_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : int , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return self.module(snake_case_ , *snake_case_ , **snake_case_ ) + self.adapter(snake_case_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase (unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase__ : List[Any] = """bigscience/bloom-1b7""" # Constant values lowerCamelCase__ : Optional[int] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase__ : int = """Hello my name is""" lowerCamelCase__ : Tuple = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) lowerCamelCase__ : Optional[Any] = 1_0 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: # Models and tokenizer SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_abit.config self.assertTrue(hasattr(snake_case_ , """quantization_config""" ) ) SCREAMING_SNAKE_CASE__ = config.to_dict() SCREAMING_SNAKE_CASE__ = config.to_diff_dict() SCREAMING_SNAKE_CASE__ = config.to_json_string() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE__ = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) SCREAMING_SNAKE_CASE__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(snake_case_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = BitsAndBytesConfig() SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: with self.assertRaises(snake_case_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(snake_case_ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = BitsAndBytesConfig() with self.assertRaises(snake_case_ ): SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , load_in_abit=snake_case_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: with self.assertRaises(snake_case_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(snake_case_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = self.model_fpaa.to(torch.floataa ) SCREAMING_SNAKE_CASE__ = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.float() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=snake_case_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase (unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = """t5-small""" SCREAMING_SNAKE_CASE__ = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(cls.model_name ) SCREAMING_SNAKE_CASE__ = """Translate in German: Hello, my dog is cute""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ = None # test with `t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**snake_case_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**snake_case_ ) SCREAMING_SNAKE_CASE__ = modules def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**snake_case_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**snake_case_ ) class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: super().setUp() # model_name SCREAMING_SNAKE_CASE__ = """bigscience/bloom-560m""" SCREAMING_SNAKE_CASE__ = """t5-small""" # Different types of model SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # Sequence classification model SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # CausalLM model SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # Seq2seq model SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=snake_case_ , device_map="""auto""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : str ) -> str: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: super().setUp() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: super().setUp() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch SCREAMING_SNAKE_CASE__ = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = """facebook/opt-350m""" super().setUp() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): SCREAMING_SNAKE_CASE__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(snake_case_ ) ): SCREAMING_SNAKE_CASE__ = LoRALayer(module.q_proj , rank=1_6 ) SCREAMING_SNAKE_CASE__ = LoRALayer(module.k_proj , rank=1_6 ) SCREAMING_SNAKE_CASE__ = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch SCREAMING_SNAKE_CASE__ = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE__ = model.forward(**snake_case_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(snake_case_ , snake_case_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(snake_case_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase (_a ): lowerCamelCase__ : Any = """gpt2-xl""" lowerCamelCase__ : Optional[Any] = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
165
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Any ): if index == r: for j in range(UpperCamelCase__ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _UpperCAmelCase : Optional[Any] = arr[i] combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase_ (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ): # A temporary array to store all combination one by one _UpperCAmelCase : List[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 0 , UpperCamelCase__ , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowerCAmelCase :str = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
68
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Tuple: _UpperCAmelCase : str = {} def __lowerCAmelCase ( self , A , A , A=1 ) -> Optional[Any]: if self.graph.get(A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Optional[int] = [[w, v]] if not self.graph.get(A ): _UpperCAmelCase : List[str] = [] def __lowerCAmelCase ( self ) -> Optional[int]: return list(self.graph ) def __lowerCAmelCase ( self , A , A ) -> int: if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Optional[int]: if s == d: return [] _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: _UpperCAmelCase : List[str] = stack[len(A ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(A ) == 0: return visited def __lowerCAmelCase ( self , A=-1 ) -> List[Any]: if c == -1: _UpperCAmelCase : Optional[int] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(A , A , 1 ) def __lowerCAmelCase ( self , A=-2 ) -> Optional[Any]: _UpperCAmelCase : int = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Tuple = list(self.graph )[0] d.append(A ) visited.append(A ) while d: _UpperCAmelCase : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self , A ) -> Optional[int]: _UpperCAmelCase : str = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowerCAmelCase ( self , A ) -> int: return len(self.graph[u] ) def __lowerCAmelCase ( self , A=-2 ) -> str: _UpperCAmelCase : int = [] _UpperCAmelCase : Union[str, Any] = [] if s == -2: _UpperCAmelCase : Any = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : str = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(A ) - 1] else: _UpperCAmelCase : List[str] = ss # check if se have reached the starting point if len(A ) == 0: return sorted_nodes def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Union[str, Any] = -2 _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Union[str, Any] = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Tuple = True if len(A ) != 0: _UpperCAmelCase : Union[str, Any] = stack[len(A ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(A ) _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : int = -2 _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[Any] = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(A ) != 0: _UpperCAmelCase : int = stack[len(A ) - 1] else: _UpperCAmelCase : List[str] = False indirect_parents.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Any = ss # check if se have reached the starting point if len(A ) == 0: return False def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Dict: _UpperCAmelCase : Tuple = time() self.dfs(A , A ) _UpperCAmelCase : Optional[int] = time() return end - begin def __lowerCAmelCase ( self , A=-2 ) -> Dict: _UpperCAmelCase : int = time() self.bfs(A ) _UpperCAmelCase : str = time() return end - begin class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _UpperCAmelCase : str = {} def __lowerCAmelCase ( self , A , A , A=1 ) -> str: # check if the u exists if self.graph.get(A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : int = [[w, v]] # add the other way if self.graph.get(A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : List[Any] = [[w, u]] def __lowerCAmelCase ( self , A , A ) -> List[str]: if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) # the other way round if self.graph.get(A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Any: if s == d: return [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: _UpperCAmelCase : Dict = stack[len(A ) - 1] else: _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(A ) == 0: return visited def __lowerCAmelCase ( self , A=-1 ) -> List[str]: if c == -1: _UpperCAmelCase : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(A , A , 1 ) def __lowerCAmelCase ( self , A=-2 ) -> Tuple: _UpperCAmelCase : List[str] = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] d.append(A ) visited.append(A ) while d: _UpperCAmelCase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self , A ) -> List[str]: return len(self.graph[u] ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : str = [] _UpperCAmelCase : Any = [] _UpperCAmelCase : Optional[Any] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Any = -2 _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(A ) != 0: _UpperCAmelCase : List[str] = stack[len(A ) - 1] else: _UpperCAmelCase : str = False indirect_parents.append(A ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Tuple = -2 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Any = s _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[str] = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(A ) != 0: _UpperCAmelCase : Dict = stack[len(A ) - 1] else: _UpperCAmelCase : str = False indirect_parents.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(A ) == 0: return False def __lowerCAmelCase ( self ) -> int: return list(self.graph ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> str: _UpperCAmelCase : List[Any] = time() self.dfs(A , A ) _UpperCAmelCase : Union[str, Any] = time() return end - begin def __lowerCAmelCase ( self , A=-2 ) -> Optional[int]: _UpperCAmelCase : List[Any] = time() self.bfs(A ) _UpperCAmelCase : Optional[int] = time() return end - begin
68
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __a = logging.get_logger(__name__) @dataclass class lowercase__( UpperCAmelCase ): """simple docstring""" a :Optional[Any] = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : int , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ = deprecated_arg[3:] setattr(self , SCREAMING_SNAKE_CASE_ , not kwargs.pop(SCREAMING_SNAKE_CASE_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ = kwargs.pop('''torchscript''' , self.torchscript ) lowercase_ = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) lowercase_ = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**SCREAMING_SNAKE_CASE_ ) a :bool = field(default=UpperCAmelCase , metadata={'help': 'Trace the models using torchscript'} ) a :bool = field(default=UpperCAmelCase , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) a :str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def _lowercase ( self : Any ) -> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowercase_ = torch.device('''cpu''' ) lowercase_ = 0 elif is_torch_tpu_available(): lowercase_ = xm.xla_device() lowercase_ = 0 else: lowercase_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase_ = torch.cuda.device_count() return device, n_gpu @property def _lowercase ( self : List[Any] ) -> Union[str, Any]: return is_torch_tpu_available() and self.tpu @property def _lowercase ( self : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowercase ( self : List[Any] ) -> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def _lowercase ( self : Any ) -> int: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def _lowercase ( self : Optional[Any] ) -> Dict: return self.n_gpu > 0
30
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['DeiTFeatureExtractor'] __a = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
1
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase : int = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") lowerCAmelCase : List[Any] = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase : int = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase : int = sorted(arg_to_scheduler.keys()) lowerCAmelCase : Optional[int] = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class __magic_name__ ( pl.LightningModule ): '''simple docstring''' def __init__( self , _a , _a=None , _a="base" , _a=None , _a=None , _a=None , **_a , ): """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_a ) lowerCamelCase = 0 lowerCamelCase = Path(self.hparams.output_dir ) lowerCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=_a , **_a , ) else: lowerCamelCase = config lowerCamelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , _a , _a ): assert hasattr(self.config , _a ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , _a , getattr(self.hparams , _a ) ) if tokenizer is None: lowerCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_a , ) else: lowerCamelCase = tokenizer lowerCamelCase = MODEL_MODES[mode] if model is None: lowerCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_a , ) else: lowerCamelCase = model def _lowerCAmelCase ( self , *_a , **_a ): """simple docstring""" lowerCamelCase = self.model_type.from_pretrained(*_a , **_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] lowerCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) lowerCamelCase = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model lowerCamelCase = ["""bias""", """LayerNorm.weight"""] lowerCamelCase = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: lowerCamelCase = Adafactor( _a , lr=self.hparams.learning_rate , scale_parameter=_a , relative_step=_a ) else: lowerCamelCase = AdamW( _a , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) lowerCamelCase = optimizer lowerCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" return self.validation_step(_a , _a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" return self.validation_end(_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _lowerCAmelCase ( self , _a ): """simple docstring""" if stage == "test": lowerCamelCase = len(self.test_dataloader().dataset ) else: lowerCamelCase = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=_a ) lowerCamelCase = len(self.train_dataloader().dataset ) def _lowerCAmelCase ( self , _a , _a , _a = False ): """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def _lowerCAmelCase ( self ): """simple docstring""" return self.train_loader def _lowerCAmelCase ( self ): """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=_a ) def _lowerCAmelCase ( self ): """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=_a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( _a , list(filter(_a , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = self.output_dir.joinpath("""best_tfmr""" ) lowerCamelCase = self.step_count self.model.save_pretrained(_a ) self.tokenizer.save_pretrained(_a ) @staticmethod def _lowerCAmelCase ( _a , _a ): """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=_a , type=_a , required=_a , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=_a , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=_a , type=_a , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(_a ).parent / """test_run""" / """cache""" ) , type=_a , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=_a , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=_a , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=_a , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=_a , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5e-5 , type=_a , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=_a , metavar=_a , type=_a , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=_a , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=_a , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=_a , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=_a , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=_a ) parser.add_argument("""--train_batch_size""" , default=32 , type=_a ) parser.add_argument("""--eval_batch_size""" , default=32 , type=_a ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class __magic_name__ ( pl.Callback ): '''simple docstring''' def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __magic_name__ ( pl.Callback ): '''simple docstring''' def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_a ) class __magic_name__ ( pl.Callback ): '''simple docstring''' def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = trainer.lr_schedulers[0]["""scheduler"""] lowerCamelCase = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_a ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" rank_zero_info("""***** Validation results *****""" ) lowerCamelCase = trainer.callback_metrics # Log results for key in sorted(_a ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(_a , str(metrics[key] ) ) ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" rank_zero_info("""***** Test results *****""" ) lowerCamelCase = trainer.callback_metrics # Log and save results to file lowerCamelCase = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(_a , """w""" ) as writer: for key in sorted(_a ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(_a , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(_a , str(metrics[key] ) ) ) def a__ ( snake_case__ , snake_case__ ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( """--output_dir""" , default=str(Path(snake_case__ ).parent / """test_run""" / """model_checkpoints""" ) , type=snake_case__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=snake_case__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=snake_case__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=snake_case__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=snake_case__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=snake_case__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(snake_case__ ).parent / """test_run""" / """dummy-train-data""" ) , type=snake_case__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def a__ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=True , snake_case__=[] , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model lowerCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case__ ) # add custom checkpoints if checkpoint_callback is None: lowerCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case__ ) if logging_callback is None: lowerCamelCase = LoggingCallback() lowerCamelCase = {} if args.fpaa: lowerCamelCase = 16 if args.gpus > 1: lowerCamelCase = """auto""" lowerCamelCase = """ddp""" lowerCamelCase = args.accumulate_grad_batches lowerCamelCase = None lowerCamelCase = """auto""" lowerCamelCase = pl.Trainer.from_argparse_args( snake_case__ , weights_summary=snake_case__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case__ , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case__ , ) if args.do_train: trainer.fit(snake_case__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
168
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "M-CLIP" def __init__( self , _a=1_024 , _a=768 , **_a ): """simple docstring""" lowerCamelCase = transformerDimSize lowerCamelCase = imageDimSize super().__init__(**_a ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = MCLIPConfig def __init__( self , _a , *_a , **_a ): """simple docstring""" super().__init__(_a , *_a , **_a ) lowerCamelCase = XLMRobertaModel(_a ) lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = self.transformer(input_ids=_a , attention_mask=_a )[0] lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_a ), embs
168
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : List[Any] = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class _snake_case ( snake_case ): UpperCamelCase__ = 'sew' def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a=2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=0.1 , _a=0.02 , _a=1e-5 , _a="group" , _a="gelu" , _a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _a=False , _a=128 , _a=16 , _a=True , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a="mean" , _a=False , _a=False , _a=256 , _a=0 , _a=1 , _a=2 , **_a , ): super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) __magic_name__ : Dict = hidden_size __magic_name__ : Union[str, Any] = feat_extract_norm __magic_name__ : List[Any] = feat_extract_activation __magic_name__ : Tuple = list(_a ) __magic_name__ : int = list(_a ) __magic_name__ : Union[str, Any] = list(_a ) __magic_name__ : Any = conv_bias __magic_name__ : Optional[Any] = num_conv_pos_embeddings __magic_name__ : str = num_conv_pos_embedding_groups __magic_name__ : Optional[int] = len(self.conv_dim ) __magic_name__ : int = num_hidden_layers __magic_name__ : Dict = intermediate_size __magic_name__ : int = squeeze_factor __magic_name__ : List[Any] = hidden_act __magic_name__ : Dict = num_attention_heads __magic_name__ : Optional[int] = hidden_dropout __magic_name__ : Dict = attention_dropout __magic_name__ : Any = activation_dropout __magic_name__ : Any = feat_proj_dropout __magic_name__ : Optional[int] = final_dropout __magic_name__ : Dict = layerdrop __magic_name__ : Optional[Any] = layer_norm_eps __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ : Any = apply_spec_augment __magic_name__ : Optional[Any] = mask_time_prob __magic_name__ : List[Any] = mask_time_length __magic_name__ : Any = mask_time_min_masks __magic_name__ : Tuple = mask_feature_prob __magic_name__ : List[str] = mask_feature_length __magic_name__ : List[str] = mask_feature_min_masks # ctc loss __magic_name__ : str = ctc_loss_reduction __magic_name__ : Optional[int] = ctc_zero_infinity # sequence classification __magic_name__ : Optional[int] = use_weighted_layer_sum __magic_name__ : int = classifier_proj_size @property def SCREAMING_SNAKE_CASE ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
281
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): __magic_name__ : List[Any] = parent __magic_name__ : Optional[Any] = batch_size __magic_name__ : Dict = seq_length __magic_name__ : Union[str, Any] = is_training __magic_name__ : Optional[Any] = use_attention_mask __magic_name__ : Optional[Any] = use_token_type_ids __magic_name__ : int = use_labels __magic_name__ : List[Any] = vocab_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : Any = intermediate_size __magic_name__ : List[Any] = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : List[str] = type_sequence_label_size __magic_name__ : Dict = initializer_range __magic_name__ : List[Any] = num_choices def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_attention_mask: __magic_name__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : str = None if self.use_token_type_ids: __magic_name__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = config_and_inputs __magic_name__ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = config_and_inputs __magic_name__ : Tuple = True __magic_name__ : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_class_name in self.all_model_classes: __magic_name__ : Optional[Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Union[str, Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __magic_name__ : List[str] = model(_a )[0] __magic_name__ : str = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _a ) # compare the actual values for a slice. __magic_name__ : List[str] = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Tuple = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __magic_name__ : Tuple = model(_a )[0] # compare the actual values for a slice. __magic_name__ : Dict = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
281
1
from __future__ import annotations from math import pow, sqrt def lowerCAmelCase__ ( a__ , a__ , a__ ) ->dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(a__ , 2 ) - pow(a__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(a__ , 2 ) - pow(a__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(a__ , 2 ) + pow(a__ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
63
import math class _UpperCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self : Dict , lowercase_ : list[list[float]] , lowercase_ : list[int]) -> int: """simple docstring""" _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(lowercase_)): da += math.pow((sample[i] - weights[0][i]) , 2) da += math.pow((sample[i] - weights[1][i]) , 2) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self : Any , lowercase_ : list[list[int | float]] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : float) -> list[list[int | float]]: """simple docstring""" for i in range(len(lowercase_)): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase__ ( ) ->None: '''simple docstring''' _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(a__ ): for j in range(len(a__ ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(a__ , a__ , a__ , a__ ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , a , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = RobertaConfig lowerCamelCase__ = 'roberta' def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Optional[Any] = RobertaEmbeddings(__a) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , a , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = RobertaConfig lowerCamelCase__ = 'roberta' def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Optional[int] = config.num_labels _lowerCAmelCase : Optional[int] = config.num_hidden_layers _lowerCAmelCase : Optional[int] = DeeRobertaModel(__a) _lowerCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob) _lowerCAmelCase : List[str] = nn.Linear(config.hidden_size, self.config.num_labels) @add_start_docstrings_to_model_forward(__a) def snake_case__ ( self, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=-1, __a=False, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_layers try: _lowerCAmelCase : List[Any] = self.roberta( __a, attention_mask=__a, token_type_ids=__a, position_ids=__a, head_mask=__a, inputs_embeds=__a, ) _lowerCAmelCase : List[Any] = outputs[1] _lowerCAmelCase : Dict = self.dropout(__a) _lowerCAmelCase : Dict = self.classifier(__a) _lowerCAmelCase : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase : Tuple = e.message _lowerCAmelCase : Union[str, Any] = e.exit_layer _lowerCAmelCase : List[Any] = outputs[0] if not self.training: _lowerCAmelCase : int = entropy(__a) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase : Optional[Any] = MSELoss() _lowerCAmelCase : int = loss_fct(logits.view(-1), labels.view(-1)) else: _lowerCAmelCase : Optional[Any] = CrossEntropyLoss() _lowerCAmelCase : Optional[Any] = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # work with highway exits _lowerCAmelCase : Optional[int] = [] for highway_exit in outputs[-1]: _lowerCAmelCase : Any = highway_exit[0] if not self.training: highway_logits_all.append(__a) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression _lowerCAmelCase : List[str] = MSELoss() _lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1), labels.view(-1)) else: _lowerCAmelCase : Dict = CrossEntropyLoss() _lowerCAmelCase : Optional[Any] = loss_fct(highway_logits.view(-1, self.num_labels), labels.view(-1)) highway_losses.append(__a) if train_highway: _lowerCAmelCase : int = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: _lowerCAmelCase : Any = (loss,) + outputs if not self.training: _lowerCAmelCase : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
36
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BartphoTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = ["▁This", "▁is", "▁a", "▁t", "est"] _lowerCAmelCase : List[str] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") _lowerCAmelCase : Optional[Any] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "This is a là test" _lowerCAmelCase : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) _lowerCAmelCase : List[Any] = "This is a là test" _lowerCAmelCase : str = "▁This ▁is ▁a ▁l à ▁t est".split() _lowerCAmelCase : str = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), __a)
36
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'roc_bert' def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=True , lowercase=0 , lowercase="absolute" , lowercase=None , lowercase=True , lowercase=True , lowercase=768 , lowercase=910 , lowercase=512 , lowercase=24858 , lowercase=True , **lowercase , ) -> Dict: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = use_cache A__ = enable_pronunciation A__ = enable_shape A__ = pronunciation_embed_dim A__ = pronunciation_vocab_size A__ = shape_embed_dim A__ = shape_vocab_size A__ = concat_input A__ = position_embedding_type A__ = classifier_dropout super().__init__(pad_token_id=lowercase , **lowercase )
68
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ = """\ Text data. Second line of data.""" lowerCAmelCase__ = """file""" @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[int]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") A__ = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> List[str]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , "w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: int ) -> Any: '''simple docstring''' A__ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} A__ = input_paths[compression_format] A__ = tmp_path / "cache" A__ = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: str ) -> Dict: '''simple docstring''' A__ = "custom_cache" A__ = "custom_extracted_dir" A__ = tmp_path / "custom_extracted_path" if default_extracted: A__ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(SCREAMING_SNAKE_CASE_ ) ) A__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A__ = xz_file A__ = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]: '''simple docstring''' A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[str]: '''simple docstring''' A__ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path A__ = "./__missing_file__.txt" with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Union[str, Any]: '''simple docstring''' A__ = get_from_cache(F'tmp://{tmpfs_file}' ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> int: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get("https://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[Any]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get("ftp://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> str: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get("s3://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head("s3://huggingface.co" )
68
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case__ (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""speech"""] def __init__( self : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""speech"""] ) class snake_case__ (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""speech"""] def __init__( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ) ->str: """simple docstring""" requires_backends(self , ["""speech"""] )
369
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list: if len(_SCREAMING_SNAKE_CASE ) <= 1: return [tuple(_SCREAMING_SNAKE_CASE )] snake_case_ = [] def generate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _SCREAMING_SNAKE_CASE ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case_ , snake_case_ = arr[k - 1], arr[i] else: # k is odd snake_case_ , snake_case_ = arr[k - 1], arr[0] generate(k - 1 , _SCREAMING_SNAKE_CASE ) generate(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : str = [int(item) for item in user_input.split(',')] print(heaps(arr))
233
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a_ : List[str] = logging.get_logger(__name__) # General docstring a_ : Tuple = "MobileNetV1Config" # Base docstring a_ : List[Any] = "google/mobilenet_v1_1.0_224" a_ : List[str] = [1, 1_0_2_4, 7, 7] # Image classification docstring a_ : str = "google/mobilenet_v1_1.0_224" a_ : Optional[Any] = "tabby, tabby cat" a_ : Union[str, Any] = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _A (lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any]=None ) -> int: '''simple docstring''' _a = {} if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = model.mobilenet_va else: _a = model _a = 'MobilenetV1/Conv2d_0/' _a = backbone.conv_stem.convolution.weight _a = backbone.conv_stem.normalization.bias _a = backbone.conv_stem.normalization.weight _a = backbone.conv_stem.normalization.running_mean _a = backbone.conv_stem.normalization.running_var for i in range(13 ): _a = i + 1 _a = i * 2 _a = backbone.layer[pt_index] _a = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' _a = pointer.convolution.weight _a = pointer.normalization.bias _a = pointer.normalization.weight _a = pointer.normalization.running_mean _a = pointer.normalization.running_var _a = backbone.layer[pt_index + 1] _a = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' _a = pointer.convolution.weight _a = pointer.normalization.bias _a = pointer.normalization.weight _a = pointer.normalization.running_mean _a = pointer.normalization.running_var if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = 'MobilenetV1/Logits/Conv2d_1c_1x1/' _a = model.classifier.weight _a = model.classifier.bias return tf_to_pt_map def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict ) -> List[str]: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model _a = tf.train.list_variables(lowerCAmelCase__ ) _a = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}' ) _a = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ ) _a = array # Build TF to PyTorch weights loading map _a = _build_tf_to_pytorch_map(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}' ) if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping' ) continue _a = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) _a = np.transpose(lowerCAmelCase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer _a = array.squeeze().transpose() else: _a = np.transpose(lowerCAmelCase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(f'Initialize PyTorch weight {name} {array.shape}' ) _a = torch.from_numpy(lowerCAmelCase__ ) tf_weights.pop(lowerCAmelCase__ , lowerCAmelCase__ ) tf_weights.pop(name + '/RMSProp' , lowerCAmelCase__ ) tf_weights.pop(name + '/RMSProp_1' , lowerCAmelCase__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , lowerCAmelCase__ ) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def _A (lowerCAmelCase__ :torch.Tensor , lowerCAmelCase__ :nn.Convad ) -> torch.Tensor: '''simple docstring''' _a , _a = features.shape[-2:] _a , _a = conv_layer.stride _a , _a = conv_layer.kernel_size if in_height % stride_height == 0: _a = max(kernel_height - stride_height , 0 ) else: _a = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _a = max(kernel_width - stride_width , 0 ) else: _a = max(kernel_width - (in_width % stride_width) , 0 ) _a = pad_along_width // 2 _a = pad_along_width - pad_left _a = pad_along_height // 2 _a = pad_along_height - pad_top _a = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCAmelCase__ , lowerCAmelCase__ , 'constant' , 0.0 ) class a ( nn.Module ): def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 1 , __magic_name__ = 1 , __magic_name__ = False , __magic_name__ = True , __magic_name__ = True , ) -> None: super().__init__() _a = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _a = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _a = nn.Convad( in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=__magic_name__ , stride=__magic_name__ , padding=__magic_name__ , groups=__magic_name__ , bias=__magic_name__ , padding_mode='zeros' , ) if use_normalization: _a = nn.BatchNormad( num_features=__magic_name__ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=__magic_name__ , track_running_stats=__magic_name__ , ) else: _a = None if use_activation: if isinstance(__magic_name__ , __magic_name__ ): _a = ACTaFN[use_activation] elif isinstance(config.hidden_act , __magic_name__ ): _a = ACTaFN[config.hidden_act] else: _a = config.hidden_act else: _a = None def __UpperCAmelCase ( self , __magic_name__ ) -> torch.Tensor: if self.config.tf_padding: _a = apply_tf_padding(__magic_name__ , self.convolution ) _a = self.convolution(__magic_name__ ) if self.normalization is not None: _a = self.normalization(__magic_name__ ) if self.activation is not None: _a = self.activation(__magic_name__ ) return features class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = MobileNetVaConfig _lowerCAmelCase = load_tf_weights_in_mobilenet_va _lowerCAmelCase = """mobilenet_v1""" _lowerCAmelCase = """pixel_values""" _lowerCAmelCase = False def __UpperCAmelCase ( self , __magic_name__ ) -> None: if isinstance(__magic_name__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__magic_name__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a_ : str = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" a_ : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , _SCREAMING_SNAKE_CASE , ) class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , __magic_name__ , __magic_name__ = True ) -> Optional[Any]: super().__init__(__magic_name__ ) _a = config _a = 32 _a = max(int(depth * config.depth_multiplier ) , config.min_depth ) _a = MobileNetVaConvLayer( __magic_name__ , in_channels=config.num_channels , out_channels=__magic_name__ , kernel_size=3 , stride=2 , ) _a = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _a = nn.ModuleList() for i in range(13 ): _a = out_channels if strides[i] == 2 or i == 0: depth *= 2 _a = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=3 , stride=strides[i] , groups=__magic_name__ , ) ) self.layer.append( MobileNetVaConvLayer( __magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=1 , ) ) _a = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: raise NotImplementedError @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCAmelCase ( self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: _a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _a = self.conv_stem(__magic_name__ ) _a = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _a = layer_module(__magic_name__ ) if output_hidden_states: _a = all_hidden_states + (hidden_states,) _a = hidden_states if self.pooler is not None: _a = torch.flatten(self.pooler(__magic_name__ ) , start_dim=1 ) else: _a = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=__magic_name__ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _SCREAMING_SNAKE_CASE , ) class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , __magic_name__ ) -> None: super().__init__(__magic_name__ ) _a = config.num_labels _a = MobileNetVaModel(__magic_name__ ) _a = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _a = nn.Dropout(config.classifier_dropout_prob , inplace=__magic_name__ ) _a = nn.Linear(__magic_name__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCAmelCase ( self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: _a = return_dict if return_dict is not None else self.config.use_return_dict _a = self.mobilenet_va(__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ ) _a = outputs.pooler_output if return_dict else outputs[1] _a = self.classifier(self.dropout(__magic_name__ ) ) _a = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a = 'single_label_classification' else: _a = 'multi_label_classification' if self.config.problem_type == "regression": _a = MSELoss() if self.num_labels == 1: _a = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a = loss_fct(__magic_name__ , __magic_name__ ) elif self.config.problem_type == "single_label_classification": _a = CrossEntropyLoss() _a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a = BCEWithLogitsLoss() _a = loss_fct(__magic_name__ , __magic_name__ ) if not return_dict: _a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states , )
168
'''simple docstring''' import itertools import math def _A (lowerCAmelCase__ :int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _A () -> List[str]: '''simple docstring''' _a = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def _A (lowerCAmelCase__ :int = 1_00_01 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase__ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
168
1
import argparse import json from tqdm import tqdm def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__a , help='where to store parsed gold_data_path file' , ) __UpperCamelCase =parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: __UpperCamelCase =json.load(__a ) for dpr_record in tqdm(__a ): __UpperCamelCase =dpr_record['question'] __UpperCamelCase =[context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(__a ) + '\n' ) if __name__ == "__main__": main()
355
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _A = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
117
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : List[Any] ) -> str: _a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _a = 128 elif "12-12" in model_name: _a = 12 _a = 12 elif "14-14" in model_name: _a = 14 _a = 14 elif "16-16" in model_name: _a = 16 _a = 16 else: raise ValueError("Model not supported" ) _a = "huggingface/label-files" if "speech-commands" in model_name: _a = 35 _a = "speech-commands-v2-id2label.json" else: _a = 527 _a = "audioset-id2label.json" _a = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) _a = {int(lowercase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( lowercase : Dict ) -> Optional[Any]: if "module.v" in name: _a = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: _a = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: _a = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: _a = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: _a = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _a = name.replace("attn" , "attention.self" ) if "norm1" in name: _a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _a = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _a = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: _a = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: _a = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> List[str]: for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(lowercase ) if "qkv" in key: _a = key.split("." ) _a = int(key_split[3] ) _a = config.hidden_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = val return orig_state_dict def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) @torch.no_grad() def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Dict=False ) -> int: _a = get_audio_spectrogram_transformer_config(lowercase ) _a = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict _a = model_name_to_url[model_name] _a = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" ) # remove some keys remove_keys(lowercase ) # rename some keys _a = convert_state_dict(lowercase , lowercase ) # load 🤗 model _a = ASTForAudioClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _a = -4.2_67_73_93 if "speech-commands" not in model_name else -6.84_59_78 _a = 4.5_68_99_74 if "speech-commands" not in model_name else 5.5_65_45_26 _a = 1024 if "speech-commands" not in model_name else 128 _a = ASTFeatureExtractor(mean=lowercase , std=lowercase , max_length=lowercase ) if "speech-commands" in model_name: _a = load_dataset("speech_commands" , "v0.02" , split="validation" ) _a = dataset[0]["audio"]["array"] else: _a = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) _a , _a = torchaudio.load(lowercase ) _a = waveform.squeeze().numpy() _a = feature_extractor(lowercase , sampling_rate=1_6000 , return_tensors="pt" ) # forward pass _a = model(**lowercase ) _a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _a = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _a = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _a = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _a = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _a = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _a = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _a = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": _a = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , lowercase , atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(lowercase ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ : Dict = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
63
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='OwlViTImageProcessor' __a =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] , __a : str=None , __a : List[str]=None , **__a : List[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Union[str, Any] , __a : Any=None , __a : List[str]=None , __a : int=None , __a : Optional[int]="max_length" , __a : List[str]="np" , **__a : Any ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__a , __a ) or (isinstance(__a , __a ) and not isinstance(text[0] , __a )): _a = [self.tokenizer(__a , padding=__a , return_tensors=__a , **__a )] elif isinstance(__a , __a ) and isinstance(text[0] , __a ): _a = [] # Maximum number of queries across batch _a = max([len(__a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__a ) != max_num_queries: _a = t + [" "] * (max_num_queries - len(__a )) _a = self.tokenizer(__a , padding=__a , return_tensors=__a , **__a ) encodings.append(__a ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _a = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _a = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _a = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _a = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _a = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _a = BatchEncoding() _a = input_ids _a = attention_mask if query_images is not None: _a = BatchEncoding() _a = self.image_processor( __a , return_tensors=__a , **__a ).pixel_values _a = query_pixel_values if images is not None: _a = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: _a = image_features.pixel_values return encoding elif query_images is not None and images is not None: _a = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def UpperCamelCase__ ( self : List[str] , *__a : Union[str, Any] , **__a : int ): return self.image_processor.post_process(*__a , **__a ) def UpperCamelCase__ ( self : Optional[int] , *__a : Optional[Any] , **__a : List[str] ): return self.image_processor.post_process_object_detection(*__a , **__a ) def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ): return self.image_processor.post_process_image_guided_detection(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : Tuple , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : List[str] , *__a : List[Any] , **__a : Optional[int] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
63
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ :Union[str, Any] = logging.get_logger(__name__) A_ :Optional[int] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __A ( a ): """simple docstring""" UpperCamelCase__ : List[Any] ="""deformable_detr""" UpperCamelCase__ : List[Any] ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=3 , lowerCamelCase__=300 , lowerCamelCase__=1024 , lowerCamelCase__=6 , lowerCamelCase__=1024 , lowerCamelCase__=8 , lowerCamelCase__=6 , lowerCamelCase__=1024 , lowerCamelCase__=8 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=256 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="sine" , lowerCamelCase__="resnet50" , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=False , lowerCamelCase__=300 , lowerCamelCase__=False , lowerCamelCase__=1 , lowerCamelCase__=5 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=1 , lowerCamelCase__=5 , lowerCamelCase__=2 , lowerCamelCase__=0.1 , lowerCamelCase__=0.25 , lowerCamelCase__=False , **lowerCamelCase__ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase : Tuple =CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : Optional[Any] =backbone_config.get('model_type' ) __UpperCamelCase : Optional[int] =CONFIG_MAPPING[backbone_model_type] __UpperCamelCase : Any =config_class.from_dict(lowerCamelCase__ ) __UpperCamelCase : List[Any] =use_timm_backbone __UpperCamelCase : Optional[int] =backbone_config __UpperCamelCase : Tuple =num_channels __UpperCamelCase : List[str] =num_queries __UpperCamelCase : Union[str, Any] =max_position_embeddings __UpperCamelCase : Tuple =d_model __UpperCamelCase : Tuple =encoder_ffn_dim __UpperCamelCase : int =encoder_layers __UpperCamelCase : Dict =encoder_attention_heads __UpperCamelCase : Union[str, Any] =decoder_ffn_dim __UpperCamelCase : Dict =decoder_layers __UpperCamelCase : Tuple =decoder_attention_heads __UpperCamelCase : str =dropout __UpperCamelCase : Tuple =attention_dropout __UpperCamelCase : Union[str, Any] =activation_dropout __UpperCamelCase : Any =activation_function __UpperCamelCase : Any =init_std __UpperCamelCase : Optional[int] =init_xavier_std __UpperCamelCase : Dict =encoder_layerdrop __UpperCamelCase : Union[str, Any] =auxiliary_loss __UpperCamelCase : int =position_embedding_type __UpperCamelCase : Optional[int] =backbone __UpperCamelCase : Optional[Any] =use_pretrained_backbone __UpperCamelCase : Optional[int] =dilation # deformable attributes __UpperCamelCase : Union[str, Any] =num_feature_levels __UpperCamelCase : Any =encoder_n_points __UpperCamelCase : Dict =decoder_n_points __UpperCamelCase : Union[str, Any] =two_stage __UpperCamelCase : int =two_stage_num_proposals __UpperCamelCase : Dict =with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher __UpperCamelCase : Optional[int] =class_cost __UpperCamelCase : Optional[Any] =bbox_cost __UpperCamelCase : Optional[Any] =giou_cost # Loss coefficients __UpperCamelCase : int =mask_loss_coefficient __UpperCamelCase : Any =dice_loss_coefficient __UpperCamelCase : Any =bbox_loss_coefficient __UpperCamelCase : Union[str, Any] =giou_loss_coefficient __UpperCamelCase : List[Any] =eos_coefficient __UpperCamelCase : List[str] =focal_alpha __UpperCamelCase : Dict =disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def __lowercase ( self ): """simple docstring""" return self.d_model def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __UpperCamelCase : Dict =self.backbone_config.to_dict() __UpperCamelCase : List[Any] =self.__class__.model_type return output
245
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def A ( a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[int]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __UpperCamelCase : Optional[int] =TapasConfig.from_json_file(a_ ) # set absolute/relative position embeddings parameter __UpperCamelCase : str =reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCamelCase : Optional[Any] =TapasForQuestionAnswering(config=a_ ) elif task == "WTQ": # run_task_main.py hparams __UpperCamelCase : Optional[int] =4 __UpperCamelCase : Optional[Any] =True # hparam_utils.py hparams __UpperCamelCase : int =0.664_694 __UpperCamelCase : Any =0.207_951 __UpperCamelCase : Tuple =0.121_194 __UpperCamelCase : List[str] =True __UpperCamelCase : Dict =True __UpperCamelCase : Optional[Any] =False __UpperCamelCase : Optional[int] =0.0_352_513 __UpperCamelCase : Optional[Any] =TapasForQuestionAnswering(config=a_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCamelCase : List[Any] =4 __UpperCamelCase : List[str] =False # hparam_utils.py hparams __UpperCamelCase : List[str] =36.4_519 __UpperCamelCase : Dict =0.903_421 __UpperCamelCase : List[Any] =222.088 __UpperCamelCase : Optional[Any] =True __UpperCamelCase : Optional[int] =True __UpperCamelCase : Dict =True __UpperCamelCase : Dict =0.763_141 __UpperCamelCase : Union[str, Any] =TapasForQuestionAnswering(config=a_ ) elif task == "TABFACT": __UpperCamelCase : List[Any] =TapasForSequenceClassification(config=a_ ) elif task == "MLM": __UpperCamelCase : Optional[Any] =TapasForMaskedLM(config=a_ ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCamelCase : Optional[Any] =TapasModel(config=a_ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(a_ ,a_ ,a_ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(a_ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) __UpperCamelCase : Optional[Any] =TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' ,model_max_length=512 ) tokenizer.save_pretrained(a_ ) print('Used relative position embeddings:' ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": A_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A_ :Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
245
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
1
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase__ : Optional[List[str]] = None UpperCamelCase__ : int = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase__ : int = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = True lowerCamelCase = None # Automatically constructed lowerCamelCase = "PIL.Image.Image" lowerCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCamelCase = field(default='''Image''', init=__A, repr=__A ) def __call__( self ) -> int: return self.pa_type def UpperCAmelCase_ ( self , _lowerCamelCase ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[Any] = np.array(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCamelCase , _lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCamelCase ) elif isinstance(_lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCamelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: A_ : Optional[Any] = {} A_ , A_ : Optional[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(_lowerCamelCase ): A_ : List[Any] = PIL.Image.open(_lowerCamelCase ) else: A_ : List[Any] = path.split("""::""" )[-1] try: A_ : Union[str, Any] = string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL )["""repo_id"""] A_ : str = token_per_repo_id.get(_lowerCamelCase ) except ValueError: A_ : Dict = None with xopen(_lowerCamelCase , """rb""" , use_auth_token=_lowerCamelCase ) as f: A_ : Optional[Any] = BytesIO(f.read() ) A_ : str = PIL.Image.open(bytes_ ) else: A_ : int = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCAmelCase_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> pa.StructArray: if pa.types.is_string(storage.type ): A_ : Tuple = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) A_ : Optional[int] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A_ : Dict = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) A_ : str = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: A_ : Tuple = storage.field("""bytes""" ) else: A_ : Any = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: A_ : List[Any] = storage.field("""path""" ) else: A_ : List[Any] = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) A_ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): A_ : Optional[int] = pa.array( [encode_np_array(np.array(_lowerCamelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) A_ : int = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) A_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase , self.pa_type ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase ): with xopen(_lowerCamelCase , """rb""" ) as f: A_ : Optional[int] = f.read() return bytes_ A_ : Dict = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A_ : List[str] = pa.array( [os.path.basename(_lowerCamelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) A_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase , self.pa_type ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() A_ : str = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase ( a_ ) -> bytes: """simple docstring""" A_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): A_ : List[Any] = image.format else: A_ : Dict = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(a_ , format=a_ ) return buffer.getvalue() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" if hasattr(a_ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(a_ )} def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) A_ : Optional[int] = array.dtype A_ : Optional[int] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER A_ : Union[str, Any] = dtype.kind A_ : Optional[Any] = dtype.itemsize A_ : int = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: A_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: A_ : Any = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: A_ : int = dtype_byteorder + dtype_kind + str(a_ ) A_ : Optional[Any] = np.dtype(a_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) A_ : Any = PIL.Image.fromarray(array.astype(a_ ) ) return {"path": None, "bytes": image_to_bytes(a_ )} def UpperCAmelCase ( a_ ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: A_ , A_ : str = first_non_null_value(a_ ) if isinstance(a_ , a_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(a_ , np.ndarray ): A_ : str = no_op_if_value_is_null(a_ ) return [obj_to_image_dict_func(a_ ) for obj in objs] elif isinstance(a_ , PIL.Image.Image ): A_ : Optional[Any] = no_op_if_value_is_null(a_ ) return [obj_to_image_dict_func(a_ ) for obj in objs] else: return objs else: return objs
164
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=64 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=64 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) -> Union[str, Any]: A_ : Tuple = parent A_ : Optional[Any] = batch_size A_ : Optional[Any] = seq_length A_ : List[str] = is_training A_ : str = use_input_mask A_ : List[str] = use_token_type_ids A_ : Tuple = use_labels A_ : List[str] = vocab_size A_ : Optional[Any] = hidden_size A_ : Any = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Optional[int] = intermediate_size A_ : str = hidden_act A_ : Union[str, Any] = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Dict = type_vocab_size A_ : Any = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : int = num_labels A_ : int = num_choices A_ : Optional[int] = scope def UpperCAmelCase_ ( self ) -> Optional[int]: return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Dict = None if self.use_input_mask: A_ : int = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Tuple = None A_ : Optional[int] = None A_ : Union[str, Any] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> int: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : int = MPNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : str = MPNetForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Tuple = self.num_labels A_ : List[Any] = MPNetForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: A_ : int = self.num_choices A_ : Dict = MPNetForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Optional[int] = self.num_labels A_ : Tuple = MPNetForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : int = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_) , (A_) , (A_)) : Any = config_and_inputs A_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = True def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = MPNetModelTester(self ) A_ : int = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_lowerCamelCase ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : int = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) A_ : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ : Tuple = model(_lowerCamelCase )[0] A_ : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) A_ : Any = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
164
1
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict ): snake_case__ : Optional[int] = """""" snake_case__ : List[Any] = """""" snake_case__ : List[str] = [] snake_case__ : str = 0 snake_case__ : Union[str, Any] = 256 snake_case__ : Union[str, Any] = 0 snake_case__ : Any = 0 snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = 0 def lowerCamelCase ( self : Any , snake_case_ : Union[str, Any] ): snake_case__ : Dict = cva.imread(snake_case_ , 0 ) snake_case__ : str = copy.deepcopy(self.img ) snake_case__ , snake_case__ , snake_case__ : List[str] = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) snake_case__ : str = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): snake_case__ : str = x[i] / self.k self.sk += prk snake_case__ : int = (self.L - 1) * self.sk if self.rem != 0: snake_case__ : List[Any] = int(last % last ) snake_case__ : Tuple = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) snake_case__ : Tuple = int(np.ma.count(self.img ) / self.img[1].size ) snake_case__ : int = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case__ : Tuple = self.img[j][i] if num != self.last_list[num]: snake_case__ : str = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def lowerCamelCase ( self : Optional[int] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowerCamelCase ( self : Optional[int] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": __a = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __a = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
35
import math class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : int=0 ) -> Optional[Any]: # a graph with Node 0,1,...,N-1 """simple docstring""" __lowercase : Any = n __lowercase : Optional[int] = [ [math.inf for j in range(0 , __a )] for i in range(0 , __a ) ] # adjacency matrix for weight __lowercase : Dict = [ [math.inf for j in range(0 , __a )] for i in range(0 , __a ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase ( self : int , __a : Optional[int] , __a : Tuple , __a : Dict ) -> Dict: """simple docstring""" __lowercase : Any = w def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __lowercase : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase ( self : Any , __a : Any , __a : str ) -> int: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": lowerCamelCase : int = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
233
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __a = ['bert-base-uncased', 'bert-base-cased'] __a = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class __a( tf.keras.Model ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() UpperCAmelCase_ : Tuple = tokenizer UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = TFAutoModel.from_config(_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.tokenizer(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = self.bert(**_SCREAMING_SNAKE_CASE ) return out["pooler_output"] @require_tf @require_tensorflow_text class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Any: super().setUp() UpperCAmelCase_ : Optional[Any] = [ BertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCAmelCase_ : Optional[int] = [TFBertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,use_fast_bert_tokenizer=_SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase_ : Optional[int] = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] UpperCAmelCase_ : Optional[int] = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def a__ ( self ) -> Optional[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase_ : Optional[Any] = tokenizer(_SCREAMING_SNAKE_CASE ,return_tensors='''tf''' ,padding='''longest''' ) UpperCAmelCase_ : int = tf_tokenizer(_SCREAMING_SNAKE_CASE ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] ,tf.intaa ) == tf_outputs[key] ) ) @slow def a__ ( self ) -> Any: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase_ : Union[str, Any] = tf_tokenizer(self.paired_sentences ) UpperCAmelCase_ : Any = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] ,text_pair=[sentence[1] for sentence in self.paired_sentences] ,) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] ,tf.intaa ) == separated_outputs[key] ) ) @slow def a__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase_ : List[str] = tf.function(_SCREAMING_SNAKE_CASE ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase_ : Tuple = tf.constant(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = compiled_tokenizer(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = tf_tokenizer(_SCREAMING_SNAKE_CASE ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase_ : Union[str, Any] = ModelToSave(tokenizer=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tf.convert_to_tensor(self.test_sentences ) UpperCAmelCase_ : Tuple = model(_SCREAMING_SNAKE_CASE ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase_ : Any = Path(_SCREAMING_SNAKE_CASE ) / '''saved.model''' model.save(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = loaded_model(_SCREAMING_SNAKE_CASE ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) ,1e-5 )
357
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase__ ( _lowercase , _lowercase=0 ): '''simple docstring''' return sorted(_lowercase , key=lambda _lowercase : x[column] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=float('''inf''' ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): UpperCAmelCase_ : Optional[int] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase_ : Optional[Any] = current_dis return min_dis def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=float('''inf''' ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): UpperCAmelCase_ : List[str] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase_ : Optional[int] = current_dis return min_dis def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion UpperCAmelCase_ : Optional[int] = points_counts // 2 UpperCAmelCase_ : List[Any] = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) UpperCAmelCase_ : Dict = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) UpperCAmelCase_ : str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) UpperCAmelCase_ : Optional[Any] = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = column_based_sort(_lowercase , column=0 ) UpperCAmelCase_ : List[Any] = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __a = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
235
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCamelCase : Dict = 'true' def _SCREAMING_SNAKE_CASE (A , A=82 , A=16 ) -> List[Any]: """simple docstring""" set_seed(42 ) lowercase__ = RegressionModel() lowercase__ = deepcopy(A ) lowercase__ = RegressionDataset(length=A ) lowercase__ = DataLoader(A , batch_size=A ) model.to(accelerator.device ) lowercase__ ,lowercase__ = accelerator.prepare(A , A ) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE (A , A=False ) -> Dict: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) lowercase__ = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(A ): lowercase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs with accelerator.main_process_first(): lowercase__ = dataset.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) lowercase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A ): if use_longest: return tokenizer.pad(A , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(A , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(A , shuffle=A , collate_fn=A , batch_size=16 ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[Any]: """simple docstring""" lowercase__ = Accelerator(dispatch_batches=A , split_batches=A ) lowercase__ = get_dataloader(A , not dispatch_batches ) lowercase__ = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=A ) lowercase__ ,lowercase__ = accelerator.prepare(A , A ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _SCREAMING_SNAKE_CASE (A , A , A ) -> str: """simple docstring""" lowercase__ = [] for batch in dataloader: lowercase__ ,lowercase__ = batch.values() with torch.no_grad(): lowercase__ = model(A ) lowercase__ ,lowercase__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowercase__ ,lowercase__ = [], [] for logit, targ in logits_and_targets: logits.append(A ) targs.append(A ) lowercase__ ,lowercase__ = torch.cat(A ), torch.cat(A ) return logits, targs def _SCREAMING_SNAKE_CASE (A , A=82 , A=False , A=False , A=16 ) -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ ,lowercase__ = get_basic_setup(A , A , A ) lowercase__ ,lowercase__ = generate_predictions(A , A , A ) assert ( len(A ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A )}" def _SCREAMING_SNAKE_CASE (A = False , A = False ) -> List[str]: """simple docstring""" lowercase__ = evaluate.load('''glue''' , '''mrpc''' ) lowercase__ ,lowercase__ = get_mrpc_setup(A , A ) # First do baseline lowercase__ ,lowercase__ ,lowercase__ = setup['''no'''] model.to(A ) model.eval() for batch in dataloader: batch.to(A ) with torch.inference_mode(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A , references=batch['''labels'''] ) lowercase__ = metric.compute() # Then do distributed lowercase__ ,lowercase__ ,lowercase__ = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ = batch['''labels'''] lowercase__ ,lowercase__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A , references=A ) lowercase__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = Accelerator(split_batches=A , dispatch_batches=A ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(A , A ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowercase__ = Accelerator(split_batches=A , dispatch_batches=A ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(A , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) lowercase__ = Accelerator() test_torch_metrics(A , 512 ) accelerator.state._reset_state() def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
2
import numpy as np from PIL import Image def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = np.array(lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __A = 0 __A = 0 __A = 0 __A = 0 # compute the shape of the output matrix __A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __A = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __A = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A = 0 __A = 0 return updated_arr def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = np.array(lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __A = 0 __A = 0 __A = 0 __A = 0 # compute the shape of the output matrix __A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __A = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __A = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A = 0 __A = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
117
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase__ = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) lowerCamelCase__ = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) lowerCamelCase__ = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) lowerCamelCase__ = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) lowerCamelCase__ = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) lowerCamelCase__ = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) lowerCamelCase__ = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def lowercase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase, _UpperCamelCase : Any = randrange(len(lowercase_ ) ), randrange(len(lowercase_ ) ) _UpperCamelCase : str = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] _UpperCamelCase, _UpperCamelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase__ ( lowercase_ = 100 ) -> int: """simple docstring""" return (generate_random_hand() for _ in range(lowercase_ )) @pytest.mark.parametrize("hand, expected" ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" assert PokerHand(lowercase_ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" assert PokerHand(lowercase_ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = PokerHand(lowercase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" assert PokerHand(lowercase_ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" assert PokerHand(lowercase_ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" assert PokerHand(lowercase_ ).compare_with(PokerHand(lowercase_ ) ) == expected @pytest.mark.parametrize("hand, other, expected" ,generate_random_hands() ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" assert PokerHand(lowercase_ ).compare_with(PokerHand(lowercase_ ) ) == expected def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Tuple = [PokerHand(lowercase_ ) for hand in SORTED_HANDS] _UpperCamelCase : Union[str, Any] = poker_hands.copy() shuffle(lowercase_ ) _UpperCamelCase : str = chain(sorted(lowercase_ ) ) for index, hand in enumerate(lowercase_ ): assert hand == poker_hands[index] def lowercase__ ( ) -> Any: """simple docstring""" _UpperCamelCase : Union[str, Any] = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[int] = PokerHand("2C 4S AS 3D 5C" ) _UpperCamelCase : str = True _UpperCamelCase : List[Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase__ ( ) -> Any: """simple docstring""" _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : Tuple = os.path.abspath(os.path.dirname(lowercase_ ) ) _UpperCamelCase : Dict = os.path.join(lowercase_ ,"poker_hands.txt" ) with open(lowercase_ ) as file_hand: for line in file_hand: _UpperCamelCase : Optional[int] = line[:14].strip() _UpperCamelCase : Tuple = line[15:].strip() _UpperCamelCase, _UpperCamelCase : Union[str, Any] = PokerHand(lowercase_ ), PokerHand(lowercase_ ) _UpperCamelCase : Optional[Any] = player.compare_with(lowercase_ ) if output == "Win": answer += 1 assert answer == 376
310
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __lowercase ( _A ) -> Dict: SCREAMING_SNAKE_CASE : Tuple = botoa.client("""iam""" ) SCREAMING_SNAKE_CASE : List[str] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A , AssumeRolePolicyDocument=json.dumps(_A , indent=2 ) ) SCREAMING_SNAKE_CASE : str = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A , PolicyName=F"{role_name}_policy_permission" , PolicyDocument=json.dumps(_A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"role {role_name} already exists. Using existing one" ) def __lowercase ( _A ) -> List[str]: SCREAMING_SNAKE_CASE : int = botoa.client("""iam""" ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def __lowercase ( ) -> str: SCREAMING_SNAKE_CASE : Optional[int] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , _A , ) SCREAMING_SNAKE_CASE : Tuple = None if credentials_configuration == 0: SCREAMING_SNAKE_CASE : Any = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) SCREAMING_SNAKE_CASE : Optional[Any] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) SCREAMING_SNAKE_CASE : Any = _ask_field("""AWS Access Key ID: """ ) SCREAMING_SNAKE_CASE : int = aws_access_key_id SCREAMING_SNAKE_CASE : List[str] = _ask_field("""AWS Secret Access Key: """ ) SCREAMING_SNAKE_CASE : Dict = aws_secret_access_key SCREAMING_SNAKE_CASE : Dict = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) SCREAMING_SNAKE_CASE : Dict = aws_region SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , _A , ) if role_management == 0: SCREAMING_SNAKE_CASE : List[Any] = _ask_field("""Enter your IAM role name: """ ) else: SCREAMING_SNAKE_CASE : Any = """accelerate_sagemaker_execution_role""" print(F"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(_A ) SCREAMING_SNAKE_CASE : str = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) SCREAMING_SNAKE_CASE : Dict = None if is_custom_docker_image: SCREAMING_SNAKE_CASE : List[str] = _ask_field("""Enter your Docker image: """ , lambda _A : str(_A ).lower() ) SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) SCREAMING_SNAKE_CASE : Dict = None if is_sagemaker_inputs_enabled: SCREAMING_SNAKE_CASE : Tuple = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda _A : str(_A ).lower() , ) SCREAMING_SNAKE_CASE : int = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) SCREAMING_SNAKE_CASE : Optional[Any] = None if is_sagemaker_metrics_enabled: SCREAMING_SNAKE_CASE : Optional[int] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda _A : str(_A ).lower() , ) SCREAMING_SNAKE_CASE : List[Any] = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : int = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) if use_dynamo: SCREAMING_SNAKE_CASE : Any = """dynamo_""" SCREAMING_SNAKE_CASE : List[str] = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) SCREAMING_SNAKE_CASE : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) if use_custom_options: SCREAMING_SNAKE_CASE : str = _ask_options( """Which mode do you want to use?""" , _A , lambda _A : TORCH_DYNAMO_MODES[int(_A )] , default="""default""" , ) SCREAMING_SNAKE_CASE : Dict = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) SCREAMING_SNAKE_CASE : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) SCREAMING_SNAKE_CASE : Union[str, Any] = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: SCREAMING_SNAKE_CASE : Any = _ask_options( _A , _A , lambda _A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" SCREAMING_SNAKE_CASE : Dict = _ask_field(_A , lambda _A : str(_A ).lower() , default="""ml.p3.2xlarge""" ) SCREAMING_SNAKE_CASE : Any = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): SCREAMING_SNAKE_CASE : Tuple = _ask_field( """How many machines do you want use? [1]: """ , _A , default=1 , ) SCREAMING_SNAKE_CASE : Optional[int] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=_A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_A , use_cpu=_A , dynamo_config=_A , eca_instance_type=_A , profile=_A , region=_A , iam_role_name=_A , mixed_precision=_A , num_machines=_A , sagemaker_inputs_file=_A , sagemaker_metrics_file=_A , )
245
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : str = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] ="""nllb-moe""" UpperCAmelCase__ : Any =["""past_key_values"""] UpperCAmelCase__ : Dict ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any]=1_2_8_1_1_2 , UpperCAmelCase__ : Tuple=1_0_2_4 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : int=4_0_9_6 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : Union[str, Any]=1_2 , UpperCAmelCase__ : int=4_0_9_6 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=0.05 , UpperCAmelCase__ : Any=0.05 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]="relu" , UpperCAmelCase__ : Dict=1_0_2_4 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="float32" , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Union[str, Any]=1_2_8 , UpperCAmelCase__ : Any=6_4 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Optional[Any]=0.0_01 , UpperCAmelCase__ : Optional[Any]=0.0_01 , UpperCAmelCase__ : Dict="all" , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : List[str]=1.0 , UpperCAmelCase__ : Optional[int]=0.2 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Tuple=False , **UpperCAmelCase__ : Union[str, Any] , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : Optional[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : str = init_std SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = decoder_layerdrop SCREAMING_SNAKE_CASE : List[str] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : Tuple = router_z_loss_coef SCREAMING_SNAKE_CASE : Tuple = router_aux_loss_coef SCREAMING_SNAKE_CASE : List[Any] = decoder_sparse_step SCREAMING_SNAKE_CASE : Any = encoder_sparse_step SCREAMING_SNAKE_CASE : Tuple = num_experts SCREAMING_SNAKE_CASE : Optional[int] = expert_capacity SCREAMING_SNAKE_CASE : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Optional[int] = router_dtype SCREAMING_SNAKE_CASE : Any = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : Any = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[Any] = second_expert_policy SCREAMING_SNAKE_CASE : Any = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Tuple = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : int = moe_token_dropout SCREAMING_SNAKE_CASE : Optional[int] = output_router_logits super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
245
1
"""simple docstring""" UpperCamelCase_ = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCamelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCamelCase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
303
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A ( __UpperCAmelCase ): def __init__( self ) -> Tuple: '''simple docstring''' lowercase__ = [] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' self.events.append("""on_init_end""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' self.events.append("""on_train_begin""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' self.events.append("""on_train_end""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' self.events.append("""on_epoch_begin""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' self.events.append("""on_epoch_end""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' self.events.append("""on_step_begin""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' self.events.append("""on_step_end""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' self.events.append("""on_evaluate""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' self.events.append("""on_predict""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' self.events.append("""on_save""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' self.events.append("""on_log""" ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' self.events.append("""on_prediction_step""" ) @require_torch class A ( unittest.TestCase ): def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = tempfile.mkdtemp() def A__ ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.output_dir ) def A__ ( self , lowerCamelCase__=0 , lowerCamelCase__=0 , lowerCamelCase__=64 , lowerCamelCase__=64 , lowerCamelCase__=None , lowerCamelCase__=False , **lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = RegressionDataset(length=lowerCamelCase__ ) lowercase__ = RegressionDataset(length=lowerCamelCase__ ) lowercase__ = RegressionModelConfig(a=lowerCamelCase__ , b=lowerCamelCase__ ) lowercase__ = RegressionPreTrainedModel(lowerCamelCase__ ) lowercase__ = TrainingArguments(self.output_dir , disable_tqdm=lowerCamelCase__ , report_to=[] , **lowerCamelCase__ ) return Trainer( lowerCamelCase__ , lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , callbacks=lowerCamelCase__ , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) # Order doesn't matter lowercase__ = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : cb.__name__ if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cb.__class__.__name__ ) lowercase__ = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : cb.__name__ if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowerCamelCase__ , lowerCamelCase__ ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ , cba.__class__ ) elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(cba.__class__ , lowerCamelCase__ ) else: self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' lowercase__ = ["""on_init_end""", """on_train_begin"""] lowercase__ = 0 lowercase__ = len(trainer.get_eval_dataloader() ) lowercase__ = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(lowerCamelCase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = self.get_trainer() lowercase__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # Callbacks passed at init are added to the default callbacks lowercase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ = self.get_trainer(disable_tqdm=lowerCamelCase__ ) lowercase__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowerCamelCase__ ) expected_callbacks.remove(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) lowercase__ = self.get_trainer() lowercase__ = trainer.pop_callback(lowerCamelCase__ ) self.assertEqual(cb.__class__ , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) trainer.add_callback(lowerCamelCase__ ) expected_callbacks.insert(0 , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # We can also add, pop, or remove by instance lowercase__ = self.get_trainer() lowercase__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowerCamelCase__ ) expected_callbacks.remove(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) lowercase__ = self.get_trainer() lowercase__ = trainer.callback_handler.callbacks[0] lowercase__ = trainer.pop_callback(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) trainer.add_callback(lowerCamelCase__ ) expected_callbacks.insert(0 , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) def A__ ( self ) -> int: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=lowerCamelCase__ ) lowercase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # Independent log/save/eval lowercase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) lowercase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) lowercase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() lowercase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) lowercase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() lowercase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # A bit of everything lowercase__ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: lowercase__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowerCamelCase__ ) in warn_mock.call_args[0][0]
164
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def _A ( lowercase__ ): lowercase__ = torch.load(lowercase__ , map_location="""cpu""" ) if "model" in sd.keys(): lowercase__ = torch.load(lowercase__ , map_location="""cpu""" )["""model"""] # pop unnecessary weights lowercase__ = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) lowercase__ = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowercase__ = sd.pop(lowercase__ ) lowercase__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowercase__ = sd[key] # We split QKV in separate Q,K,V lowercase__ = key.replace(""".qkv_proj.""" , """.q_proj.""" ) lowercase__ = key.replace(""".qkv_proj.""" , """.k_proj.""" ) lowercase__ = key.replace(""".qkv_proj.""" , """.v_proj.""" ) lowercase__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowercase__ , lowercase__ , lowercase__ = torch.split(lowercase__ , depth // 3 , dim=0 ) lowercase__ = q lowercase__ = k lowercase__ = v del sd[key] return sd @torch.no_grad() def _A ( lowercase__ , lowercase__ , lowercase__=None ): lowercase__ = load_checkpoint(lowercase__ ) if config is not None: lowercase__ = OPTConfig.from_pretrained(lowercase__ ) else: lowercase__ = OPTConfig() lowercase__ = OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __A = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
164
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Optional[Any] = (UniPCMultistepScheduler,) lowercase__ : Union[str, Any] = (('num_inference_steps', 25),) def snake_case__ ( self , **lowerCamelCase__ ): _lowerCamelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**lowerCamelCase__ ) return config def snake_case__ ( self , lowerCamelCase__=0 , **lowerCamelCase__ ): _lowerCamelCase = dict(self.forward_default_kwargs ) _lowerCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase__ ) _lowerCamelCase = self.dummy_sample _lowerCamelCase = 0.1 * sample _lowerCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCamelCase = self.get_scheduler_config(**lowerCamelCase__ ) _lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals _lowerCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) _lowerCamelCase = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals _lowerCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase , _lowerCamelCase = sample, sample for t in range(lowerCamelCase__ , time_step + scheduler.config.solver_order + 1 ): _lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample _lowerCamelCase = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self , lowerCamelCase__=0 , **lowerCamelCase__ ): _lowerCamelCase = dict(self.forward_default_kwargs ) _lowerCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase__ ) _lowerCamelCase = self.dummy_sample _lowerCamelCase = 0.1 * sample _lowerCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) _lowerCamelCase = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample _lowerCamelCase = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self , lowerCamelCase__=None , **lowerCamelCase__ ): if scheduler is None: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config(**lowerCamelCase__ ) _lowerCamelCase = scheduler_class(**lowerCamelCase__ ) _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config(**lowerCamelCase__ ) _lowerCamelCase = scheduler_class(**lowerCamelCase__ ) _lowerCamelCase = 1_0 _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def snake_case__ ( self ): _lowerCamelCase = dict(self.forward_default_kwargs ) _lowerCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**lowerCamelCase__ ) _lowerCamelCase = self.dummy_sample _lowerCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , '''set_timesteps''' ): _lowerCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCamelCase = dummy_past_residuals[: scheduler.config.solver_order] _lowerCamelCase = scheduler.timesteps[5] _lowerCamelCase = scheduler.timesteps[6] _lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample _lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCamelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCamelCase = self.full_loop(scheduler=lowerCamelCase__ ) _lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 _lowerCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCamelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase = self.full_loop(scheduler=lowerCamelCase__ ) _lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def snake_case__ ( self ): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def snake_case__ ( self ): self.check_over_configs(thresholding=lowerCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , ) def snake_case__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def snake_case__ ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , ) _lowerCamelCase = self.full_loop( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , ) assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers" def snake_case__ ( self ): self.check_over_configs(lower_order_final=lowerCamelCase__ ) self.check_over_configs(lower_order_final=lowerCamelCase__ ) def snake_case__ ( self ): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowerCamelCase__ , time_step=0 ) def snake_case__ ( self ): _lowerCamelCase = self.full_loop() _lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def snake_case__ ( self ): _lowerCamelCase = self.full_loop(prediction_type='''v_prediction''' ) _lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def snake_case__ ( self ): _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config(thresholding=lowerCamelCase__ , dynamic_thresholding_ratio=0 ) _lowerCamelCase = scheduler_class(**lowerCamelCase__ ) _lowerCamelCase = 1_0 _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample assert sample.dtype == torch.floataa def snake_case__ ( self , **lowerCamelCase__ ): for scheduler_class in self.scheduler_classes: _lowerCamelCase = self.get_scheduler_config(**lowerCamelCase__ ) _lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
73
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCamelCase_: '''simple docstring''' def __init__( self ): _lowerCamelCase = '''''' _lowerCamelCase = '''''' _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = 2_5_6 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = cva.imread(lowerCamelCase__ , 0 ) _lowerCamelCase = copy.deepcopy(self.img ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label='''x''' ) _lowerCamelCase = np.sum(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): _lowerCamelCase = x[i] / self.k self.sk += prk _lowerCamelCase = (self.L - 1) * self.sk if self.rem != 0: _lowerCamelCase = int(last % last ) _lowerCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase__ ) _lowerCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCamelCase = self.img[j][i] if num != self.last_list[num]: _lowerCamelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def snake_case__ ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def snake_case__ ( self ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __SCREAMING_SNAKE_CASE : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
73
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=False , _a=True , _a=False , _a=False , _a=1_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Union[str, Any]: _a : Optional[Any] = parent _a : Union[str, Any] = batch_size _a : List[Any] = seq_length _a : Dict = is_training _a : int = use_input_mask _a : str = use_token_type_ids _a : Any = use_labels _a : List[Any] = vocab_size _a : Any = hidden_size _a : int = num_hidden_layers _a : str = num_attention_heads _a : Dict = intermediate_size _a : List[str] = hidden_act _a : Optional[Any] = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : int = max_position_embeddings _a : Tuple = type_vocab_size _a : str = type_sequence_label_size _a : Any = initializer_range _a : Union[str, Any] = num_labels _a : Dict = num_choices _a : Union[str, Any] = scope def __lowercase ( self ) -> List[Any]: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict = None if self.use_input_mask: _a : int = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[Any] = None _a : Tuple = None _a : Any = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _a : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self ) -> str: _a : Optional[int] = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_a , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> str: _a : Union[str, Any] = EsmForProteinFolding(config=_a ).float() model.to(_a ) model.eval() _a : str = model(_a , attention_mask=_a ) _a : Union[str, Any] = model(_a ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __lowercase ( self ) -> str: _a : List[str] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[Any] = config_and_inputs _a : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = False UpperCAmelCase__ : Any = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = () UpperCAmelCase__ : int = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def __lowercase ( self ) -> List[Any]: _a : Optional[int] = EsmFoldModelTester(self ) _a : Dict = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def __lowercase ( self ) -> List[str]: self.config_tester.run_common_tests() def __lowercase ( self ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @unittest.skip('''Does not support attention outputs''' ) def __lowercase ( self ) -> int: pass @unittest.skip def __lowercase ( self ) -> List[str]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowercase ( self ) -> int: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def __lowercase ( self ) -> int: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> str: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Any: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold only has one output format.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip('''ESMFold does not support input chunking.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def __lowercase ( self ) -> Union[str, Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass @require_torch class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @slow def __lowercase ( self ) -> Optional[int]: _a : Dict = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() _a : Tuple = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _a : Optional[Any] = model(_a )['''positions'''] _a : Union[str, Any] = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _a , atol=1e-4 ) )
235
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCamelCase : Any = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } __lowerCamelCase : Any = F"{src_lang}-{tgt_lang}" __lowerCamelCase : List[Any] = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __lowerCamelCase : Any = os.path.join(lowerCamelCase__ , 'README.md' ) print(F"Generating {path}" ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project a =Path(__file__).resolve().parent.parent.parent a =repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a , a , a =model_name.split("""-""") a =model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
366
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Tuple = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') __lowerCamelCase : str = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__)['last_hidden_state'] __lowerCamelCase : Dict = tf.TensorShape((1, 1_0, 7_6_8)) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__) # compare the actual values for a slice. __lowerCamelCase : Any = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
113
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """data2vec-vision""" def __init__( self: Union[str, Any],A_: List[Any]=768,A_: List[Any]=12,A_: Union[str, Any]=12,A_: int=3072,A_: Tuple="gelu",A_: List[Any]=0.0,A_: Optional[int]=0.0,A_: Any=0.0_2,A_: Tuple=1E-12,A_: Dict=224,A_: Dict=16,A_: Optional[Any]=3,A_: Tuple=False,A_: Union[str, Any]=False,A_: Tuple=False,A_: Optional[Any]=False,A_: int=0.1,A_: Tuple=0.1,A_: int=True,A_: Tuple=[3, 5, 7, 11],A_: List[str]=[1, 2, 3, 6],A_: Optional[int]=True,A_: List[Any]=0.4,A_: Dict=256,A_: Optional[Any]=1,A_: List[str]=False,A_: Optional[int]=255,**A_: List[str],): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = use_mask_token __UpperCamelCase = use_absolute_position_embeddings __UpperCamelCase = use_relative_position_bias __UpperCamelCase = use_shared_relative_position_bias __UpperCamelCase = layer_scale_init_value __UpperCamelCase = drop_path_rate __UpperCamelCase = use_mean_pooling # decode head attributes (semantic segmentation) __UpperCamelCase = out_indices __UpperCamelCase = pool_scales # auxiliary head attributes (semantic segmentation) __UpperCamelCase = use_auxiliary_head __UpperCamelCase = auxiliary_loss_weight __UpperCamelCase = auxiliary_channels __UpperCamelCase = auxiliary_num_convs __UpperCamelCase = auxiliary_concat_input __UpperCamelCase = semantic_loss_ignore_index class __lowerCamelCase (_a ): _lowercase = version.parse("""1.11""" ) @property def snake_case_ ( self: Any ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return 1E-4
310
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
1
def __UpperCamelCase ( lowercase__ : str ) -> Tuple: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCamelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str , _A : Tuple , _A : str=7 , _A : Optional[Any]=3 , _A : List[str]=30 , _A : Any=400 , _A : List[Any]=True , _A : Optional[int]=None , _A : Tuple=True , _A : int=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Dict=True , _A : Union[str, Any]=1 / 255 , _A : Optional[int]=True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} __SCREAMING_SNAKE_CASE : str = parent __SCREAMING_SNAKE_CASE : int = batch_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : List[str] = min_resolution __SCREAMING_SNAKE_CASE : Any = max_resolution __SCREAMING_SNAKE_CASE : Optional[Any] = do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = size __SCREAMING_SNAKE_CASE : List[Any] = do_normalize __SCREAMING_SNAKE_CASE : List[str] = image_mean __SCREAMING_SNAKE_CASE : Dict = image_std __SCREAMING_SNAKE_CASE : int = do_rescale __SCREAMING_SNAKE_CASE : int = rescale_factor __SCREAMING_SNAKE_CASE : Union[str, Any] = do_pad def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : List[Any] , _A : str , _A : Any=False ): """simple docstring""" if not batched: __SCREAMING_SNAKE_CASE : Dict = image_inputs[0] if isinstance(_A , Image.Image ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = image.size else: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = image.shape[1], image.shape[2] if w < h: __SCREAMING_SNAKE_CASE : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) __SCREAMING_SNAKE_CASE : Optional[int] = self.size['''shortest_edge'''] elif w > h: __SCREAMING_SNAKE_CASE : Optional[Any] = self.size['''shortest_edge'''] __SCREAMING_SNAKE_CASE : List[Any] = int(self.size['''shortest_edge'''] * w / h ) else: __SCREAMING_SNAKE_CASE : str = self.size['''shortest_edge'''] __SCREAMING_SNAKE_CASE : List[Any] = self.size['''shortest_edge'''] else: __SCREAMING_SNAKE_CASE : int = [] for image in image_inputs: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __SCREAMING_SNAKE_CASE : Dict = max(_A , key=lambda _A : item[0] )[0] __SCREAMING_SNAKE_CASE : int = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = DetaImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" pass def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) __SCREAMING_SNAKE_CASE : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __SCREAMING_SNAKE_CASE : str = json.loads(f.read() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''image_id''': 3_9769, '''annotations''': target} # encode them __SCREAMING_SNAKE_CASE : Optional[int] = DetaImageProcessor() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values __SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __SCREAMING_SNAKE_CASE : str = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes __SCREAMING_SNAKE_CASE : Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size __SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __SCREAMING_SNAKE_CASE : str = json.loads(f.read() ) __SCREAMING_SNAKE_CASE : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} __SCREAMING_SNAKE_CASE : Tuple = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __SCREAMING_SNAKE_CASE : List[Any] = DetaImageProcessor(format='''coco_panoptic''' ) __SCREAMING_SNAKE_CASE : List[str] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values __SCREAMING_SNAKE_CASE : int = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes __SCREAMING_SNAKE_CASE : Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id __SCREAMING_SNAKE_CASE : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd __SCREAMING_SNAKE_CASE : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks __SCREAMING_SNAKE_CASE : str = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[int] = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" lowerCAmelCase_ : str = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert("RGB" ) return image def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : Tuple = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = dct.pop(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = val def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase_ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCAmelCase_ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCAmelCase_ : Optional[Any] = torch.cat((q_bias, torch.zeros_like(__UpperCamelCase , requires_grad=__UpperCamelCase ), v_bias) ) lowerCAmelCase_ : Optional[int] = qkv_bias def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase_ : int = 364 if "coco" in model_name else 224 lowerCAmelCase_ : Any = BlipaVisionConfig(image_size=__UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase_ : Any = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=__UpperCamelCase ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase_ : Optional[Any] = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=__UpperCamelCase ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase_ : Optional[int] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase_ : Dict = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() lowerCAmelCase_ : List[str] = BlipaConfig(vision_config=__UpperCamelCase , text_config=__UpperCamelCase ) return config, image_size @torch.no_grad() def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ) -> int: """simple docstring""" lowerCAmelCase_ : Tuple = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) lowerCAmelCase_ : str = tokenizer("\n" , add_special_tokens=__UpperCamelCase ).input_ids[0] lowerCAmelCase_ : Optional[int] = get_blipa_config(__UpperCamelCase , eos_token_id=__UpperCamelCase ) lowerCAmelCase_ : int = BlipaForConditionalGeneration(__UpperCamelCase ).eval() lowerCAmelCase_ : Union[str, Any] = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } lowerCAmelCase_ : Tuple = model_name_to_original[model_name] # load original model print("Loading original model..." ) lowerCAmelCase_ : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" lowerCAmelCase_ : Optional[int] = load_model_and_preprocess( name=__UpperCamelCase , model_type=__UpperCamelCase , is_eval=__UpperCamelCase , device=__UpperCamelCase ) original_model.eval() print("Done!" ) # update state dict keys lowerCAmelCase_ : Optional[int] = original_model.state_dict() lowerCAmelCase_ : int = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase_ : Dict = state_dict.pop(__UpperCamelCase ) if key.startswith("Qformer.bert" ): lowerCAmelCase_ : Optional[int] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: lowerCAmelCase_ : Optional[int] = key.replace("self" , "attention" ) if "opt_proj" in key: lowerCAmelCase_ : Dict = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: lowerCAmelCase_ : List[str] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): lowerCAmelCase_ : List[Any] = key.replace("opt" , "language" ) if key.startswith("t5" ): lowerCAmelCase_ : Dict = key.replace("t5" , "language" ) lowerCAmelCase_ : Optional[Any] = val # read in qv biases read_in_q_v_bias(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Dict = hf_model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert len(__UpperCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase_ : Dict = load_demo_image() lowerCAmelCase_ : str = vis_processors["eval"](__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) lowerCAmelCase_ : List[str] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(__UpperCamelCase ) # create processor lowerCAmelCase_ : Optional[int] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__UpperCamelCase , image_std=__UpperCamelCase ) lowerCAmelCase_ : Any = BlipaProcessor(image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase ) lowerCAmelCase_ : int = processor(images=__UpperCamelCase , return_tensors="pt" ).pixel_values.to(__UpperCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCamelCase , __UpperCamelCase ) original_model.to(__UpperCamelCase ) hf_model.to(__UpperCamelCase ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase_ : Union[str, Any] = original_model({"image": original_pixel_values, "text_input": [""]} ).logits lowerCAmelCase_ : Dict = hf_model(__UpperCamelCase , __UpperCamelCase ).logits else: lowerCAmelCase_ : Any = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits lowerCAmelCase_ : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCAmelCase_ : Any = hf_model(__UpperCamelCase , __UpperCamelCase , labels=__UpperCamelCase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase_ : Any = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=__UpperCamelCase ) assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase_ : Optional[Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=__UpperCamelCase ) else: # cast to same type lowerCAmelCase_ : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(__UpperCamelCase ) , __UpperCamelCase , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : List[str] = tokenizer(__UpperCamelCase , return_tensors="pt" ).input_ids.to(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = original_model.generate({"image": original_pixel_values} ) lowerCAmelCase_ : Any = hf_model.generate( __UpperCamelCase , __UpperCamelCase , do_sample=__UpperCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , __UpperCamelCase ) lowerCAmelCase_ : Tuple = input_ids.shape[1] lowerCAmelCase_ : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__UpperCamelCase ) lowerCAmelCase_ : List[Any] = [text.strip() for text in output_text] print("HF generation:" , __UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() lowercase__ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) lowercase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
351
"""simple docstring""" import argparse import os import re lowercase__ = """src/transformers""" # Pattern that looks at the indentation in a line. lowercase__ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(r"""\[([^\]]+)\]""") def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = _re_indent.search(__UpperCamelCase ) return "" if search is None else search.groups()[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase=None , __UpperCamelCase=None ) -> str: """simple docstring""" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Dict = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__UpperCamelCase ): index += 1 lowerCAmelCase_ : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase_ : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase_ : Optional[Any] = [lines[index]] index += 1 while index < len(__UpperCamelCase ) and (end_prompt is None or not lines[index].startswith(__UpperCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__UpperCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__UpperCamelCase ) ) if index < len(__UpperCamelCase ) - 1: lowerCAmelCase_ : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase_ : Any = [] else: blocks.append("\n".join(__UpperCamelCase ) ) lowerCAmelCase_ : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__UpperCamelCase ) > 0: blocks.append("\n".join(__UpperCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__UpperCamelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" def _inner(__UpperCamelCase ): return key(__UpperCamelCase ).lower().replace("_" , "" ) return _inner def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None ) -> List[str]: """simple docstring""" def noop(__UpperCamelCase ): return x if key is None: lowerCAmelCase_ : Optional[int] = noop # Constants are all uppercase, they go first. lowerCAmelCase_ : str = [obj for obj in objects if key(__UpperCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase_ : str = [obj for obj in objects if key(__UpperCamelCase )[0].isupper() and not key(__UpperCamelCase ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase_ : int = [obj for obj in objects if not key(__UpperCamelCase )[0].isupper()] lowerCAmelCase_ : Dict = ignore_underscore(__UpperCamelCase ) return sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase ) -> List[str]: """simple docstring""" def _replace(__UpperCamelCase ): lowerCAmelCase_ : Tuple = match.groups()[0] if "," not in imports: return f'''[{imports}]''' lowerCAmelCase_ : Optional[int] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ : Optional[int] = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) + "]" lowerCAmelCase_ : Union[str, Any] = import_statement.split("\n" ) if len(__UpperCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase_ : Optional[int] = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase_ : Optional[Any] = [(i, _re_strip_line.search(__UpperCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase_ : List[Any] = sort_objects(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] ) lowerCAmelCase_ : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__UpperCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase_ : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase_ : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ : Any = keys[:-1] lowerCAmelCase_ : Dict = get_indent(lines[1] ) + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) return "\n".join(__UpperCamelCase ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase_ : List[str] = _re_bracket_content.sub(_replace , __UpperCamelCase ) return import_statement def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=True ) -> Optional[int]: """simple docstring""" with open(__UpperCamelCase , encoding="utf-8" ) as f: lowerCAmelCase_ : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase_ : int = split_code_in_indented_blocks( __UpperCamelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__UpperCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase_ : Optional[int] = main_blocks[block_idx] lowerCAmelCase_ : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase_ : str = 0 while line_idx < len(__UpperCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase_ : Optional[int] = len(__UpperCamelCase ) else: line_idx += 1 if line_idx >= len(__UpperCamelCase ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase_ : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase_ : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase_ : Tuple = split_code_in_indented_blocks(__UpperCamelCase , indent_level=__UpperCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase_ : List[Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase_ : Dict = [(pattern.search(__UpperCamelCase ).groups()[0] if pattern.search(__UpperCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase_ : Any = [(i, key) for i, key in enumerate(__UpperCamelCase ) if key is not None] lowerCAmelCase_ : Union[str, Any] = [x[0] for x in sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : str = [] for i in range(len(__UpperCamelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase_ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__UpperCamelCase ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase_ : Any = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__UpperCamelCase ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write("\n".join(__UpperCamelCase ) ) def __lowerCamelCase ( __UpperCamelCase=True ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Any = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: lowerCAmelCase_ : Dict = sort_imports(os.path.join(__UpperCamelCase , "__init__.py" ) , check_only=__UpperCamelCase ) if result: lowerCAmelCase_ : Union[str, Any] = [os.path.join(__UpperCamelCase , "__init__.py" )] if len(__UpperCamelCase ) > 0: raise ValueError(f'''Would overwrite {len(__UpperCamelCase )} files, run `make style`.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
161
0
from typing import Any import numpy as np def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> bool: return np.array_equal(lowerCamelCase__ , matrix.conjugate().T ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: __lowerCamelCase : Any = v.conjugate().T __lowerCamelCase : Optional[int] = v_star.dot(lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , np.ndarray ) return (v_star_dot.dot(lowerCamelCase__ )) / (v_star.dot(lowerCamelCase__ )) def SCREAMING_SNAKE_CASE__ ( ) -> None: __lowerCamelCase : str = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowerCamelCase : Optional[int] = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCamelCase__ ), F"{a} is not hermitian." print(rayleigh_quotient(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Any = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCamelCase__ ), F"{a} is not hermitian." assert rayleigh_quotient(lowerCamelCase__ , lowerCamelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
73
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase : Union[str, Any] = '''Pix2StructImageProcessor''' _UpperCAmelCase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : List[Any] = False super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def __call__( self : str ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False ,SCREAMING_SNAKE_CASE__ : Union[bool, str, TruncationStrategy] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : int = 0 ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None and not self.image_processor.is_vqa: __lowerCamelCase : Tuple = self.tokenizer __lowerCamelCase : Dict = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __lowerCamelCase : List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,max_patches=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) else: # add pixel_values and bbox __lowerCamelCase : List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,max_patches=SCREAMING_SNAKE_CASE__ ,header_text=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is not None and not self.image_processor.is_vqa: __lowerCamelCase : List[Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) if "attention_mask" in text_encoding: __lowerCamelCase : List[Any] = text_encoding.pop('attention_mask') if "input_ids" in text_encoding: __lowerCamelCase : Dict = text_encoding.pop('input_ids') else: __lowerCamelCase : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE__) return encoding_image_processor def lowerCAmelCase ( self : Dict ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : int): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Dict): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
73
1
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: lowercase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __UpperCamelCase () -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
356
from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
269
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase ( _UpperCamelCase : int ) -> Tuple: '''simple docstring''' def wrapper(*_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : List[Any] ): __UpperCAmelCase : List[Any] = timeit.default_timer() __UpperCAmelCase : Dict = func(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Optional[Any] = timeit.default_timer() - starttime return delta __UpperCAmelCase : str = func.__name__ return wrapper def lowerCamelCase ( _UpperCamelCase : dict , _UpperCamelCase : List[Any]=1_0_0 , _UpperCamelCase : Union[str, Any]=None ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[int] = seq_shapes or {} for i in range(SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase : List[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(SCREAMING_SNAKE_CASE_ , _ArrayXD ): __UpperCAmelCase : Union[str, Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(SCREAMING_SNAKE_CASE_ , datasets.Value ): if v.dtype == "string": __UpperCAmelCase : Union[str, Any] = """The small grey turtle was surprisingly fast when challenged.""" else: __UpperCAmelCase : List[str] = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(SCREAMING_SNAKE_CASE_ , datasets.Sequence ): while isinstance(SCREAMING_SNAKE_CASE_ , datasets.Sequence ): __UpperCAmelCase : Tuple = v.feature __UpperCAmelCase : List[Any] = seq_shapes[k] __UpperCAmelCase : int = np.random.rand(*SCREAMING_SNAKE_CASE_ ).astype(v.dtype ) __UpperCAmelCase : Dict = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict=1_0_0 , _UpperCamelCase : Tuple=None ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = generate_examples(SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ , seq_shapes=SCREAMING_SNAKE_CASE_ ) with ArrowWriter(features=SCREAMING_SNAKE_CASE_ , path=SCREAMING_SNAKE_CASE_ ) as writer: for key, record in dummy_data: __UpperCAmelCase : Union[str, Any] = features.encode_example(SCREAMING_SNAKE_CASE_ ) writer.write(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase ,__UpperCAmelCase : Any = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) __UpperCAmelCase : Union[str, Any] = datasets.Dataset.from_file(filename=SCREAMING_SNAKE_CASE_ , info=datasets.DatasetInfo(features=SCREAMING_SNAKE_CASE_ ) ) return dataset
115
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any=False ) -> str: SCREAMING_SNAKE_CASE = OmegaConf.load(SCREAMING_SNAKE_CASE_ ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE_ ) ) ) return config def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Tuple=None ) -> Any: if conf_path is None: SCREAMING_SNAKE_CASE = './model_checkpoints/vqgan_only.yaml' SCREAMING_SNAKE_CASE = load_config(SCREAMING_SNAKE_CASE_ , display=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE = './model_checkpoints/vqgan_only.pt' SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location=SCREAMING_SNAKE_CASE_ ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE = sd['state_dict'] model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) del sd return model def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.encode(SCREAMING_SNAKE_CASE_ ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) SCREAMING_SNAKE_CASE = model.decode(SCREAMING_SNAKE_CASE_ ) return xrec def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any=False ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = string.rsplit('.' , 1 ) if reload: SCREAMING_SNAKE_CASE = importlib.import_module(SCREAMING_SNAKE_CASE_ ) importlib.reload(SCREAMING_SNAKE_CASE_ ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE_ , package=SCREAMING_SNAKE_CASE_ ) , cls ) def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> Dict: if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : int=True ) -> Any: SCREAMING_SNAKE_CASE = instantiate_from_config(SCREAMING_SNAKE_CASE_ ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: # load the specified checkpoint if ckpt: SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) SCREAMING_SNAKE_CASE = pl_sd['global_step'] print(F'loaded model from global step {global_step}.' ) else: SCREAMING_SNAKE_CASE = {'state_dict': None} SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=SCREAMING_SNAKE_CASE_ , eval_mode=SCREAMING_SNAKE_CASE_ )['model'] return model, global_step
113
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case_: @staticmethod def lowerCamelCase__ ( *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Any ): pass @is_pipeline_test @require_vision class snake_case_( unittest.TestCase ): @require_torch def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCAmelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : Optional[int] = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowerCAmelCase : Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[Any] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : int = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowerCAmelCase : int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : Union[str, Any] = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase : Dict = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : int = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger() def lowerCAmelCase_ ( __A, __A, __A, __A, __A = True ) -> str: '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCAmelCase__ = timm.create_model("levit_128s", pretrained=__A ) else: UpperCAmelCase__ = timm.create_model("levit_128", pretrained=__A ) if hidden_sizes == 192: UpperCAmelCase__ = timm.create_model("levit_192", pretrained=__A ) if hidden_sizes == 256: UpperCAmelCase__ = timm.create_model("levit_256", pretrained=__A ) if hidden_sizes == 384: UpperCAmelCase__ = timm.create_model("levit_384", pretrained=__A ) from_model.eval() UpperCAmelCase__ = LevitForImageClassificationWithTeacher(__A ).eval() UpperCAmelCase__ = OrderedDict() UpperCAmelCase__ = from_model.state_dict() UpperCAmelCase__ = list(from_model.state_dict().keys() ) UpperCAmelCase__ = list(our_model.state_dict().keys() ) print(len(__A ), len(__A ) ) for i in range(len(__A ) ): UpperCAmelCase__ = weights[og_keys[i]] our_model.load_state_dict(__A ) UpperCAmelCase__ = torch.randn((2, 3, 224, 224) ) UpperCAmelCase__ = from_model(__A ) UpperCAmelCase__ = our_model(__A ).logits assert torch.allclose(__A, __A ), "The model logits don't match the original one." UpperCAmelCase__ = name print(__A ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCAmelCase__ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def lowerCAmelCase_ ( __A, __A = None, __A = True ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = "imagenet-1k-id2label.json" UpperCAmelCase__ = 1_000 UpperCAmelCase__ = (1, num_labels) UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = num_labels UpperCAmelCase__ = json.load(open(hf_hub_download(__A, __A, repo_type="dataset" ), "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = partial(__A, num_labels=__A, idalabel=__A, labelaid=__A ) UpperCAmelCase__ = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } UpperCAmelCase__ = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768], num_attention_heads=[6, 9, 12], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0.1, ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name], __A, names_to_config[model_name], __A, __A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name], __A, __A, __A, __A ) return config, expected_shape if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
65
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : List[Any]=1_6 , UpperCamelCase__ : List[str]=5 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Optional[int]=3_6 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=5_1_2 , UpperCamelCase__ : Dict=1_6 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=0.0_2 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Union[str, Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def A ( self : int ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.get_config() UpperCamelCase = 3_0_0 return config def A ( self : Tuple ): """simple docstring""" ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = self.prepare_config_and_inputs() UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = MraModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = True UpperCamelCase = MraModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = MraForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = MraForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MraForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MraForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = MraForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = () def A ( self : str ): """simple docstring""" UpperCamelCase = MraModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MraModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='MRA does not output attentions' ) def A ( self : List[str] ): """simple docstring""" return @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = 5_0_2_6_5 UpperCamelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) UpperCamelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = 5_0_2_6_5 UpperCamelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
28
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __lowerCAmelCase : Dict =logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCAmelCase : List[str] ="\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : List[str]=8 ): A__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : List[Any]=5_12 , _lowerCamelCase : Optional[int]=5_12 ): A__ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) A__ = np.array(pil_image.convert("RGB" ) ) A__ = arr.astype(np.floataa ) / 1_2_7.5 - 1 A__ = np.transpose(__lowerCAmelCase , [2, 0, 1] ) A__ = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) return image class UpperCAmelCase ( A__ ): def __init__( self :Tuple , lowercase_ :UNetaDConditionModel , lowercase_ :DDPMScheduler , lowercase_ :VQModel , )-> Union[str, Any]: super().__init__() self.register_modules( unet=__snake_case , scheduler=__snake_case , movq=__snake_case , ) A__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ ( self :Dict , lowercase_ :Union[str, Any] , lowercase_ :List[str] , lowercase_ :Tuple )-> Any: # get the original timestep using init_timestep A__ = min(int(num_inference_steps * strength ) , __snake_case ) A__ = max(num_inference_steps - init_timestep , 0 ) A__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase_ ( self :List[str] , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Optional[Any] , lowercase_ :List[Any] , lowercase_ :str , lowercase_ :Any , lowercase_ :str=None )-> List[Any]: if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}" ) A__ = image.to(device=__snake_case , dtype=__snake_case ) A__ = batch_size * num_images_per_prompt if image.shape[1] == 4: A__ = image else: if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(__snake_case , __snake_case ): A__ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] A__ = torch.cat(__snake_case , dim=0 ) else: A__ = self.movq.encode(__snake_case ).latent_dist.sample(__snake_case ) A__ = self.movq.config.scaling_factor * init_latents A__ = torch.cat([init_latents] , dim=0 ) A__ = init_latents.shape A__ = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents A__ = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) A__ = init_latents return latents def UpperCAmelCase_ ( self :int , lowercase_ :Optional[Any]=0 )-> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) A__ = torch.device(F"cuda:{gpu_id}" ) A__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) def UpperCAmelCase_ ( self :int , lowercase_ :int=0 )-> List[Any]: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) A__ = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A__ = None for cpu_offloaded_model in [self.unet, self.movq]: A__, A__ = cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case ) # We'll offload the last model manually. A__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self :List[Any] )-> List[Any]: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self :int , lowercase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ :Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowercase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ :int = 5_12 , lowercase_ :int = 5_12 , lowercase_ :int = 1_00 , lowercase_ :float = 4.0 , lowercase_ :float = 0.3 , lowercase_ :int = 1 , lowercase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ :Optional[str] = "pil" , lowercase_ :bool = True , )-> Union[str, Any]: A__ = self._execution_device A__ = guidance_scale > 1.0 if isinstance(__snake_case , __snake_case ): A__ = torch.cat(__snake_case , dim=0 ) A__ = image_embeds.shape[0] if isinstance(__snake_case , __snake_case ): A__ = torch.cat(__snake_case , dim=0 ) if do_classifier_free_guidance: A__ = image_embeds.repeat_interleave(__snake_case , dim=0 ) A__ = negative_image_embeds.repeat_interleave(__snake_case , dim=0 ) A__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) if not isinstance(__snake_case , __snake_case ): A__ = [image] if not all(isinstance(__snake_case , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(__snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) A__ = torch.cat([prepare_image(__snake_case , __snake_case , __snake_case ) for i in image] , dim=0 ) A__ = image.to(dtype=image_embeds.dtype , device=__snake_case ) A__ = self.movq.encode(__snake_case )["latents"] A__ = latents.repeat_interleave(__snake_case , dim=0 ) self.scheduler.set_timesteps(__snake_case , device=__snake_case ) A__, A__ = self.get_timesteps(__snake_case , __snake_case , __snake_case ) A__ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) A__, A__ = downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor ) A__ = self.prepare_latents( __snake_case , __snake_case , __snake_case , __snake_case , image_embeds.dtype , __snake_case , __snake_case ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = {"image_embeds": image_embeds} A__ = self.unet( sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0] if do_classifier_free_guidance: A__, A__ = noise_pred.split(latents.shape[1] , dim=1 ) A__, A__ = noise_pred.chunk(2 ) A__, A__ = variance_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A__, A__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step( __snake_case , __snake_case , __snake_case , generator=__snake_case , )[0] # post-processing A__ = self.movq.decode(__snake_case , force_not_quantize=__snake_case )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: A__ = image * 0.5 + 0.5 A__ = image.clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
353
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : str ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) if "model" in sd.keys(): A__ = torch.load(_lowerCamelCase , map_location="cpu" )["model"] # pop unnecessary weights A__ = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) A__ = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A__ = sd.pop(_lowerCamelCase ) A__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A__ = sd[key] # We split QKV in separate Q,K,V A__ = key.replace(".qkv_proj." , ".q_proj." ) A__ = key.replace(".qkv_proj." , ".k_proj." ) A__ = key.replace(".qkv_proj." , ".v_proj." ) A__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A__, A__, A__ = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) A__ = q A__ = k A__ = v del sd[key] return sd @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None ): A__ = load_checkpoint(_lowerCamelCase ) if config is not None: A__ = OPTConfig.from_pretrained(_lowerCamelCase ) else: A__ = OPTConfig() A__ = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __lowerCAmelCase : List[Any] =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
123
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : int=False , __UpperCAmelCase : Any=False , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Tuple=99 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : str=5 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Optional[Any]=512 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : int=2 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Optional[int]="last" , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[int]=0 , ): '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_lengths _A = use_token_type_ids _A = use_labels _A = gelu_activation _A = sinusoidal_embeddings _A = causal _A = asm _A = n_langs _A = vocab_size _A = n_special _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = summary_type _A = use_proj _A = scope _A = bos_token_id def lowerCAmelCase ( self : int ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_input_lengths: _A = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , 2 ).float() _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , ): '''simple docstring''' _A = XLMModel(config=_A ) model.to(_A ) model.eval() _A = model(_A , lengths=_A , langs=_A ) _A = model(_A , langs=_A ) _A = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() _A = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , ): '''simple docstring''' _A = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _A = model(_A ) _A = model(_A , start_positions=_A , end_positions=_A ) _A = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , ): '''simple docstring''' _A = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() _A = model(_A ) _A = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _A = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_A ) , ) = result_with_labels.to_tuple() _A = model(_A , start_positions=_A , end_positions=_A ) ((_A ) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , ): '''simple docstring''' _A = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() _A = model(_A ) _A = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , ): '''simple docstring''' _A = self.num_labels _A = XLMForTokenClassification(_A ) model.to(_A ) model.eval() _A = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , ): '''simple docstring''' _A = self.num_choices _A = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class _UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=False ): '''simple docstring''' _A = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = XLMModelTester(self ) _A = ConfigTester(self , config_class=_A , emb_dim=37 ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Dict=1 ): '''simple docstring''' self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token _A = min_length + idx + 1 _A = min_length + idx + 1 _A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token _A = min_length + idx + 1 _A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def lowerCAmelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : int ): '''simple docstring''' _A = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_A ) _A = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president _A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _A = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
79
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : def __init__( self :List[str] , _A :Tuple , _A :Optional[int]=13 , _A :List[Any]=7 , _A :Tuple=True , _A :Optional[Any]=True , _A :int=True , _A :Union[str, Any]=True , _A :Union[str, Any]=True , _A :Union[str, Any]=False , _A :int=False , _A :Any=False , _A :Tuple=2 , _A :Tuple=99 , _A :Union[str, Any]=0 , _A :Union[str, Any]=32 , _A :str=5 , _A :Optional[Any]=4 , _A :List[str]=0.1 , _A :List[Any]=0.1 , _A :Optional[Any]=512 , _A :Dict=2 , _A :Any=0.02 , _A :int=2 , _A :Dict=4 , _A :Optional[int]="last" , _A :str=True , _A :List[str]=None , _A :Optional[int]=0 , ) -> int: '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_lengths __A = use_token_type_ids __A = use_labels __A = gelu_activation __A = sinusoidal_embeddings __A = causal __A = asm __A = n_langs __A = vocab_size __A = n_special __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = summary_type __A = use_proj __A = scope __A = bos_token_id def lowercase_ ( self :int ) -> Tuple: '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_input_lengths: __A = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , 2 ).float() __A = ids_tensor([self.batch_size] , self.num_choices ) __A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase_ ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase_ ( self :str , _A :Optional[int] , _A :Dict , _A :Union[str, Any] , _A :List[Any] , _A :str , _A :Union[str, Any] , _A :Optional[Any] , _A :List[str] , _A :Dict , ) -> Any: '''simple docstring''' __A = XLMModel(config=_A ) model.to(_A ) model.eval() __A = model(_A , lengths=_A , langs=_A ) __A = model(_A , langs=_A ) __A = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self :int , _A :List[Any] , _A :List[str] , _A :List[Any] , _A :int , _A :Optional[int] , _A :Optional[Any] , _A :Dict , _A :List[Any] , _A :List[Any] , ) -> List[Any]: '''simple docstring''' __A = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() __A = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self :Union[str, Any] , _A :str , _A :List[str] , _A :Union[str, Any] , _A :str , _A :Any , _A :Dict , _A :Any , _A :Union[str, Any] , _A :Optional[Any] , ) -> int: '''simple docstring''' __A = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() __A = model(_A ) __A = model(_A , start_positions=_A , end_positions=_A ) __A = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self :Union[str, Any] , _A :Any , _A :Union[str, Any] , _A :str , _A :Dict , _A :Optional[Any] , _A :Union[str, Any] , _A :List[str] , _A :str , _A :Optional[Any] , ) -> int: '''simple docstring''' __A = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() __A = model(_A ) __A = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) __A = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((__A) , ) = result_with_labels.to_tuple() __A = model(_A , start_positions=_A , end_positions=_A ) ((__A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase_ ( self :Optional[int] , _A :Optional[Any] , _A :Optional[int] , _A :List[Any] , _A :int , _A :Tuple , _A :Union[str, Any] , _A :List[Any] , _A :List[str] , _A :Dict , ) -> str: '''simple docstring''' __A = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() __A = model(_A ) __A = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self :Optional[int] , _A :str , _A :List[str] , _A :Union[str, Any] , _A :Dict , _A :int , _A :Dict , _A :Union[str, Any] , _A :int , _A :Optional[Any] , ) -> List[str]: '''simple docstring''' __A = self.num_labels __A = XLMForTokenClassification(_A ) model.to(_A ) model.eval() __A = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self :List[str] , _A :Optional[Any] , _A :List[str] , _A :List[Any] , _A :Union[str, Any] , _A :Any , _A :List[str] , _A :Optional[Any] , _A :Any , _A :Tuple , ) -> List[Any]: '''simple docstring''' __A = self.num_choices __A = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() __A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self :Union[str, Any] ) -> Dict: '''simple docstring''' __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase__ : Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : List[Any] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ ( self :int , _A :int , _A :Optional[Any] , _A :Dict , _A :List[Any] , _A :str ) -> str: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase_ ( self :int , _A :Optional[Any] , _A :Dict , _A :Optional[int]=False ) -> List[Any]: '''simple docstring''' __A = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) __A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def lowercase_ ( self :Optional[int] ) -> Any: '''simple docstring''' __A = XLMModelTester(self ) __A = ConfigTester(self , config_class=_A , emb_dim=37 ) def lowercase_ ( self :Dict ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self :List[Any] ) -> Any: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def lowercase_ ( self :str ) -> List[Any]: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def lowercase_ ( self :Any ) -> Tuple: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def lowercase_ ( self :str ) -> str: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def lowercase_ ( self :List[Any] ) -> Optional[int]: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def lowercase_ ( self :List[str] ) -> Optional[Any]: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def lowercase_ ( self :Any ) -> Union[str, Any]: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def lowercase_ ( self :Any , _A :str , _A :str , _A :int , _A :Optional[int] , _A :Any , _A :List[Any]=False , _A :Dict=1 ) -> Optional[int]: '''simple docstring''' self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token __A = min_length + idx + 1 __A = min_length + idx + 1 __A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def lowercase_ ( self :Optional[Any] , _A :str , _A :List[Any] , _A :str , _A :str , _A :int , _A :Union[str, Any]=False , _A :Optional[Any]=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token __A = min_length + idx + 1 __A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def lowercase_ ( self :int ) -> Tuple: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class UpperCamelCase__ ( unittest.TestCase): @slow def lowercase_ ( self :int ) -> str: '''simple docstring''' __A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_A ) __A = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president __A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __A = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
161
0
def __lowerCAmelCase ( a__ , a__ ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(1_0_0, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A: Any = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A: int = "main" # Default branch name A: Tuple = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) A: List[str] = "aaaaaaa" # This commit does not exist, so we should 404. A: Any = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes A: Optional[Any] = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def _snake_case ( ): print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def _snake_case ( ): print("""Bonjour!""" ) yield print("""Au revoir!""" ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels"""] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""start_positions""", """end_positions"""] ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels"""] ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels"""] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""start_positions""", """end_positions"""] ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels"""] ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , [] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , [] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , [] ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , [] )
109
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=13 , _SCREAMING_SNAKE_CASE: Tuple=7 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: int=99 , _SCREAMING_SNAKE_CASE: int=32 , _SCREAMING_SNAKE_CASE: List[str]=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: int=64 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=512 , _SCREAMING_SNAKE_CASE: Tuple=16 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: Tuple=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: int=2 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=2 , _SCREAMING_SNAKE_CASE: List[Any]=2 , _SCREAMING_SNAKE_CASE: int=4 , _SCREAMING_SNAKE_CASE: List[str]=1 , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Optional[Any] = batch_size __lowerCAmelCase : Union[str, Any] = seq_length __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : Optional[int] = use_input_mask __lowerCAmelCase : Dict = use_token_type_ids __lowerCAmelCase : Dict = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : Union[str, Any] = type_vocab_size __lowerCAmelCase : Optional[int] = type_sequence_label_size __lowerCAmelCase : Dict = initializer_range __lowerCAmelCase : Tuple = num_labels __lowerCAmelCase : Optional[Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope __lowerCAmelCase : Optional[Any] = q_groups __lowerCAmelCase : Optional[int] = k_groups __lowerCAmelCase : Any = v_groups __lowerCAmelCase : int = post_attention_groups __lowerCAmelCase : List[str] = intermediate_groups __lowerCAmelCase : Optional[Any] = output_groups def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : List[Any] = None __lowerCAmelCase : str = None if self.use_labels: __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = SqueezeBertModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple) -> Dict: """simple docstring""" __lowerCAmelCase : int = SqueezeBertForMaskedLM(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> int: """simple docstring""" __lowerCAmelCase : str = SqueezeBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Union[str, Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Union[str, Any] = SqueezeBertForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Dict = self.num_labels __lowerCAmelCase : Optional[int] = SqueezeBertForTokenClassification(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_choices __lowerCAmelCase : str = SqueezeBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : int = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : str = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self: str) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) : Union[str, Any] = config_and_inputs __lowerCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = SqueezeBertModelTester(self) __lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37) def _SCREAMING_SNAKE_CASE ( self: Any) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[Any] = SqueezeBertModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) @require_sentencepiece @require_tokenizers @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: int) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli") __lowerCAmelCase : List[Any] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]]) __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE)[0] __lowerCAmelCase : Any = torch.Size((1, 3)) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = torch.tensor([[0.6401, -0.0349, -0.6041]]) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-4))
269
0
'''simple docstring''' def a_ ( __snake_case : Tuple ) -> list: """simple docstring""" lowerCamelCase_ =[0] * len(__lowerCAmelCase ) for i in range(1 , len(__lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowerCamelCase_ =prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowerCamelCase_ =prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowerCamelCase_ =j return prefix_result def a_ ( __snake_case : int ) -> int: """simple docstring""" return max(prefix_function(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
0
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def UpperCAmelCase_ ( __lowercase : int ) -> Tuple: '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class A_ ( lowerCAmelCase_ ): @staticmethod def lowercase ( snake_case_ : ArgumentParser ): _UpperCAmelCase = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=snake_case_ , default=snake_case_ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=snake_case_ , help="Name of the model to download" ) download_parser.set_defaults(func=snake_case_ ) def __init__( self : Tuple , snake_case_ : str , snake_case_ : str , snake_case_ : bool , snake_case_ : bool ): _UpperCAmelCase = model _UpperCAmelCase = cache _UpperCAmelCase = force _UpperCAmelCase = trust_remote_code def lowercase ( self : Any ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
22
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
0
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a : str = logging.get_logger(__name__) class __UpperCAmelCase( enum.Enum ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = 1 @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "generated" def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' lowercase__ : List[Any]= {} if truncation is not None: lowercase__ : List[Any]= truncation lowercase__ : Optional[int]= generate_kwargs lowercase__ : Optional[Any]= {} if return_tensors is not None and return_type is None: lowercase__ : Optional[int]= ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase__ : List[Any]= return_type if clean_up_tokenization_spaces is not None: lowercase__ : Dict= clean_up_tokenization_spaces if stop_sequence is not None: lowercase__ : Any= self.tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) if len(snake_case__ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) lowercase__ : List[Any]= stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return True def UpperCAmelCase_ ( self , *snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0] , snake_case__ ): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" ) lowercase__ : str= ([prefix + arg for arg in args[0]],) lowercase__ : Any= True elif isinstance(args[0] , snake_case__ ): lowercase__ : str= (prefix + args[0],) lowercase__ : Union[str, Any]= False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowercase__ : Optional[int]= self.tokenizer(*snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' lowercase__ : Tuple= super().__call__(*snake_case__ , **snake_case__ ) if ( isinstance(args[0] , snake_case__ ) and all(isinstance(snake_case__ , snake_case__ ) for el in args[0] ) and all(len(snake_case__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self , snake_case__ , snake_case__=TruncationStrategy.DO_NOT_TRUNCATE , **snake_case__ ): '''simple docstring''' lowercase__ : Tuple= self._parse_and_tokenize(snake_case__ , truncation=snake_case__ , **snake_case__ ) return inputs def UpperCAmelCase_ ( self , snake_case__ , **snake_case__ ): '''simple docstring''' if self.framework == "pt": lowercase__, lowercase__ : List[str]= model_inputs["input_ids"].shape elif self.framework == "tf": lowercase__, lowercase__ : Tuple= tf.shape(model_inputs["input_ids"] ).numpy() lowercase__ : Optional[Any]= generate_kwargs.get("min_length" , self.model.config.min_length ) lowercase__ : List[Any]= generate_kwargs.get("max_length" , self.model.config.max_length ) self.check_inputs(snake_case__ , generate_kwargs["min_length"] , generate_kwargs["max_length"] ) lowercase__ : str= self.model.generate(**snake_case__ , **snake_case__ ) lowercase__ : Optional[int]= output_ids.shape[0] if self.framework == "pt": lowercase__ : int= output_ids.reshape(snake_case__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase__ : int= tf.reshape(snake_case__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self , snake_case__ , snake_case__=ReturnType.TEXT , snake_case__=False ): '''simple docstring''' lowercase__ : Optional[int]= [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase__ : Tuple= {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowercase__ : int= { F'''{self.return_name}_text''': self.tokenizer.decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ , ) } records.append(snake_case__ ) return records @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "summary" def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return super().__call__(*snake_case__ , **snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' "a summarization task, where outputs shorter than the input are typically wanted, you might " F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "translation" def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' "increasing your max_length manually, e.g. translator('...', max_length=400)" ) return True def UpperCAmelCase_ ( self , *snake_case__ , snake_case__=TruncationStrategy.DO_NOT_TRUNCATE , snake_case__=None , snake_case__=None ): '''simple docstring''' if getattr(self.tokenizer , "_build_translation_inputs" , snake_case__ ): return self.tokenizer._build_translation_inputs( *snake_case__ , return_tensors=self.framework , truncation=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ ) else: return super()._parse_and_tokenize(*snake_case__ , truncation=snake_case__ ) def UpperCAmelCase_ ( self , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' lowercase__, lowercase__, lowercase__ : Tuple= super()._sanitize_parameters(**snake_case__ ) if src_lang is not None: lowercase__ : Any= src_lang if tgt_lang is not None: lowercase__ : Any= tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase__ : int= kwargs.get("task" , self.task ) lowercase__ : Dict= task.split("_" ) if task and len(snake_case__ ) == 4: # translation, XX, to YY lowercase__ : int= items[1] lowercase__ : str= items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return super().__call__(*snake_case__ , **snake_case__ )
150
"""simple docstring""" from __future__ import annotations def lowercase__(A , A ) ->list[str]: """simple docstring""" if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ : List[str]= number_of_bytes // partitions lowercase__ : Dict= [] for i in range(A ): lowercase__ : Union[str, Any]= i * bytes_per_partition + 1 lowercase__ : Any= ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
150
1
def _a ( a :int , a :int ) -> str: return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _snake_case : Optional[Any] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase : Dict , **lowerCamelCase : List[Any] ) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
123
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = filter(lambda _snake_case : p.requires_grad , model.parameters() ) UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params _UpperCamelCase = logging.getLogger(__name__) def _a ( _snake_case , _snake_case ): """simple docstring""" if metric == "rouge2": UpperCAmelCase = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": UpperCAmelCase = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": UpperCAmelCase = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": UpperCAmelCase = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) UpperCAmelCase = ModelCheckpoint( dirpath=_snake_case , filename=_snake_case , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _a ( _snake_case , _snake_case ): """simple docstring""" return EarlyStopping( monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=_snake_case , verbose=_snake_case , ) class lowerCamelCase__ ( pl.Callback ): def _UpperCamelCase ( self ,A ,A ): UpperCAmelCase = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(A ) @rank_zero_only def _UpperCamelCase ( self ,A ,A ,A ,A=True ): logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase = od / """test_results.txt""" UpperCAmelCase = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=A ) generations_file.parent.mkdir(exist_ok=A ) with open(A ,"""a+""" ) as writer: for key in sorted(A ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase = metrics[key] if isinstance(A ,torch.Tensor ): UpperCAmelCase = val.item() UpperCAmelCase = F'''{key}: {val:.6f}\n''' writer.write(A ) if not save_generations: return if "preds" in metrics: UpperCAmelCase = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(A ) @rank_zero_only def _UpperCamelCase ( self ,A ,A ): try: UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase = pl_module.model.num_parameters() UpperCAmelCase = count_trainable_parameters(A ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def _UpperCamelCase ( self ,A ,A ): save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(A ,A ,"""test""" ) @rank_zero_only def _UpperCamelCase ( self ,A ,A ): save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
234
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : @staticmethod def _UpperCamelCase ( *A ,**A ): pass def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = np.array(_snake_case ) UpperCAmelCase = npimg.shape return {"hash": hashimage(_snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = MaskGenerationPipeline(model=A ,image_processor=A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self ,A ,A ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def _UpperCamelCase ( self ): pass @slow @require_torch def _UpperCamelCase ( self ): UpperCAmelCase = pipeline("""mask-generation""" ,model="""facebook/sam-vit-huge""" ) UpperCAmelCase = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A ,decimals=4 ) ,[ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] ,) # fmt: on @require_torch @slow def _UpperCamelCase ( self ): UpperCAmelCase = """facebook/sam-vit-huge""" UpperCAmelCase = pipeline("""mask-generation""" ,model=A ) UpperCAmelCase = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" ,pred_iou_thresh=1 ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A ,decimals=4 ) ,[ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] ,)
234
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : Any = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['''DeiTFeatureExtractor'''] __A : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A : Union[str, Any] = logging.get_logger(__name__) # General docstring __A : Tuple = '''MobileNetV1Config''' # Base docstring __A : Union[str, Any] = '''google/mobilenet_v1_1.0_224''' __A : Union[str, Any] = [1, 1_024, 7, 7] # Image classification docstring __A : Optional[Any] = '''google/mobilenet_v1_1.0_224''' __A : List[Any] = '''tabby, tabby cat''' __A : Union[str, Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowercase ( __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Dict=None ): lowercase_ : str = {} if isinstance(__snake_case , __snake_case ): lowercase_ : Union[str, Any] = model.mobilenet_va else: lowercase_ : Optional[Any] = model lowercase_ : Union[str, Any] = '''MobilenetV1/Conv2d_0/''' lowercase_ : Union[str, Any] = backbone.conv_stem.convolution.weight lowercase_ : Optional[Any] = backbone.conv_stem.normalization.bias lowercase_ : Union[str, Any] = backbone.conv_stem.normalization.weight lowercase_ : Any = backbone.conv_stem.normalization.running_mean lowercase_ : int = backbone.conv_stem.normalization.running_var for i in range(1_3 ): lowercase_ : Optional[int] = i + 1 lowercase_ : Union[str, Any] = i * 2 lowercase_ : Optional[Any] = backbone.layer[pt_index] lowercase_ : Union[str, Any] = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' lowercase_ : str = pointer.convolution.weight lowercase_ : int = pointer.normalization.bias lowercase_ : Any = pointer.normalization.weight lowercase_ : Dict = pointer.normalization.running_mean lowercase_ : Union[str, Any] = pointer.normalization.running_var lowercase_ : Any = backbone.layer[pt_index + 1] lowercase_ : Union[str, Any] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' lowercase_ : int = pointer.convolution.weight lowercase_ : str = pointer.normalization.bias lowercase_ : Tuple = pointer.normalization.weight lowercase_ : Dict = pointer.normalization.running_mean lowercase_ : Any = pointer.normalization.running_var if isinstance(__snake_case , __snake_case ): lowercase_ : Optional[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' lowercase_ : Any = model.classifier.weight lowercase_ : Optional[int] = model.classifier.bias return tf_to_pt_map def lowercase ( __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model lowercase_ : Tuple = tf.train.list_variables(__snake_case ) lowercase_ : int = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) lowercase_ : Optional[Any] = tf.train.load_variable(__snake_case , __snake_case ) lowercase_ : Optional[int] = array # Build TF to PyTorch weights loading map lowercase_ : Any = _build_tf_to_pytorch_map(__snake_case , __snake_case , __snake_case ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue lowercase_ : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) lowercase_ : Any = np.transpose(__snake_case , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer lowercase_ : Optional[int] = array.squeeze().transpose() else: lowercase_ : Optional[int] = np.transpose(__snake_case , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) lowercase_ : str = torch.from_numpy(__snake_case ) tf_weights.pop(__snake_case , __snake_case ) tf_weights.pop(name + '''/RMSProp''' , __snake_case ) tf_weights.pop(name + '''/RMSProp_1''' , __snake_case ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , __snake_case ) logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def lowercase ( __snake_case : torch.Tensor , __snake_case : nn.Convad ): lowercase_ , lowercase_ : Optional[int] = features.shape[-2:] lowercase_ , lowercase_ : str = conv_layer.stride lowercase_ , lowercase_ : Tuple = conv_layer.kernel_size if in_height % stride_height == 0: lowercase_ : Dict = max(kernel_height - stride_height , 0 ) else: lowercase_ : List[Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowercase_ : str = max(kernel_width - stride_width , 0 ) else: lowercase_ : int = max(kernel_width - (in_width % stride_width) , 0 ) lowercase_ : int = pad_along_width // 2 lowercase_ : Union[str, Any] = pad_along_width - pad_left lowercase_ : Tuple = pad_along_height // 2 lowercase_ : List[str] = pad_along_height - pad_top lowercase_ : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__snake_case , __snake_case , '''constant''' , 0.0 ) class _UpperCAmelCase ( nn.Module ): def __init__( self : List[Any] , A : MobileNetVaConfig , A : int , A : int , A : int , A : Optional[int] = 1 , A : Optional[int] = 1 , A : bool = False , A : Optional[bool] = True , A : Optional[bool or str] = True , ) -> None: super().__init__() lowercase_ : int = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) lowercase_ : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowercase_ : int = nn.Convad( in_channels=A , out_channels=A , kernel_size=A , stride=A , padding=A , groups=A , bias=A , padding_mode='''zeros''' , ) if use_normalization: lowercase_ : Optional[Any] = nn.BatchNormad( num_features=A , eps=config.layer_norm_eps , momentum=0.9997 , affine=A , track_running_stats=A , ) else: lowercase_ : Union[str, Any] = None if use_activation: if isinstance(A , A ): lowercase_ : str = ACTaFN[use_activation] elif isinstance(config.hidden_act , A ): lowercase_ : Any = ACTaFN[config.hidden_act] else: lowercase_ : Tuple = config.hidden_act else: lowercase_ : Tuple = None def A ( self : str , A : torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: lowercase_ : List[Any] = apply_tf_padding(A , self.convolution ) lowercase_ : Optional[int] = self.convolution(A ) if self.normalization is not None: lowercase_ : Union[str, Any] = self.normalization(A ) if self.activation is not None: lowercase_ : Optional[int] = self.activation(A ) return features class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Optional[int] = MobileNetVaConfig SCREAMING_SNAKE_CASE_ : int = load_tf_weights_in_mobilenet_va SCREAMING_SNAKE_CASE_ : Optional[Any] = "mobilenet_v1" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "pixel_values" SCREAMING_SNAKE_CASE_ : List[str] = False def A ( self : Any , A : Union[nn.Linear, nn.Convad] ) -> None: if isinstance(A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A : Union[str, Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __A : List[str] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , _A , ) class _UpperCAmelCase ( _A ): def __init__( self : str , A : MobileNetVaConfig , A : bool = True ) -> int: super().__init__(A ) lowercase_ : Union[str, Any] = config lowercase_ : List[str] = 32 lowercase_ : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowercase_ : Union[str, Any] = MobileNetVaConvLayer( A , in_channels=config.num_channels , out_channels=A , kernel_size=3 , stride=2 , ) lowercase_ : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowercase_ : List[Any] = nn.ModuleList() for i in range(13 ): lowercase_ : Dict = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowercase_ : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( A , in_channels=A , out_channels=A , kernel_size=3 , stride=strides[i] , groups=A , ) ) self.layer.append( MobileNetVaConvLayer( A , in_channels=A , out_channels=A , kernel_size=1 , ) ) lowercase_ : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def A ( self : Any , A : Optional[Any] ) -> Optional[int]: raise NotImplementedError @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : List[Any] , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: lowercase_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowercase_ : List[str] = self.conv_stem(A ) lowercase_ : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowercase_ : Optional[int] = layer_module(A ) if output_hidden_states: lowercase_ : str = all_hidden_states + (hidden_states,) lowercase_ : Tuple = hidden_states if self.pooler is not None: lowercase_ : Dict = torch.flatten(self.pooler(A ) , start_dim=1 ) else: lowercase_ : Optional[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A , pooler_output=A , hidden_states=A , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _A , ) class _UpperCAmelCase ( _A ): def __init__( self : List[str] , A : MobileNetVaConfig ) -> None: super().__init__(A ) lowercase_ : int = config.num_labels lowercase_ : List[str] = MobileNetVaModel(A ) lowercase_ : Union[str, Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowercase_ : Tuple = nn.Dropout(config.classifier_dropout_prob , inplace=A ) lowercase_ : int = nn.Linear(A , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Optional[Any] , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: lowercase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : List[Any] = self.mobilenet_va(A , output_hidden_states=A , return_dict=A ) lowercase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowercase_ : Dict = self.classifier(self.dropout(A ) ) lowercase_ : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase_ : List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase_ : Optional[Any] = '''single_label_classification''' else: lowercase_ : Tuple = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase_ : str = MSELoss() if self.num_labels == 1: lowercase_ : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase_ : List[str] = loss_fct(A , A ) elif self.config.problem_type == "single_label_classification": lowercase_ : List[Any] = CrossEntropyLoss() lowercase_ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase_ : str = BCEWithLogitsLoss() lowercase_ : List[Any] = loss_fct(A , A ) if not return_dict: lowercase_ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=A , logits=A , hidden_states=outputs.hidden_states , )
33
1
from __future__ import annotations import math def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def lowerCAmelCase_ ( UpperCamelCase_ ) -> list[int]: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCamelCase_ = [] for num in range(len(UpperCamelCase_ ) ): UpperCamelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCamelCase_ = odd_composites[num] - 2 * i * i if is_prime(UpperCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCamelCase_ ) == n: return list_nums return [] def lowerCAmelCase_ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
359
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
0
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Optional[Any] , lowercase_ :int , lowercase_ :Tuple=13 , lowercase_ :Any=7 , lowercase_ :List[str]=True , lowercase_ :Optional[int]=True , lowercase_ :str=False , lowercase_ :Optional[int]=True , lowercase_ :Union[str, Any]=99 , lowercase_ :Optional[int]=32 , lowercase_ :int=5 , lowercase_ :int=4 , lowercase_ :Optional[int]=64 , lowercase_ :Union[str, Any]="gelu" , lowercase_ :Union[str, Any]=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :Union[str, Any]=5_12 , lowercase_ :Tuple=16 , lowercase_ :Union[str, Any]=2 , lowercase_ :Optional[Any]=0.02 , lowercase_ :Union[str, Any]=3 , lowercase_ :int=4 , lowercase_ :Any=None , lowercase_ :Any=2 , lowercase_ :List[Any]=2 , lowercase_ :Optional[Any]=2 , lowercase_ :Any=2 , lowercase_ :int=4 , lowercase_ :Optional[int]=1 , ) -> int: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = q_groups UpperCAmelCase = k_groups UpperCAmelCase = v_groups UpperCAmelCase = post_attention_groups UpperCAmelCase = intermediate_groups UpperCAmelCase = output_groups def UpperCAmelCase__ ( self :Optional[Any] ) -> Union[str, Any]: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :List[str] , lowercase_ :Optional[Any] , lowercase_ :Tuple , lowercase_ :Any , lowercase_ :Dict , lowercase_ :Tuple ) -> str: UpperCAmelCase = SqueezeBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , lowercase_ ) UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[int] , lowercase_ :str , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :Dict , lowercase_ :Any ) -> int: UpperCAmelCase = SqueezeBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[Any] , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] , lowercase_ :Optional[int] , lowercase_ :Dict , lowercase_ :List[str] ) -> Dict: UpperCAmelCase = SqueezeBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :str , lowercase_ :List[str] , lowercase_ :int , lowercase_ :str , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] ) -> int: UpperCAmelCase = self.num_labels UpperCAmelCase = SqueezeBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :Any , lowercase_ :Dict , lowercase_ :Optional[int] , lowercase_ :Tuple ) -> Any: UpperCAmelCase = self.num_labels UpperCAmelCase = SqueezeBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self :int , lowercase_ :Dict , lowercase_ :Any , lowercase_ :Tuple , lowercase_ :Optional[Any] , lowercase_ :int , lowercase_ :str ) -> int: UpperCAmelCase = self.num_choices UpperCAmelCase = SqueezeBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple: UpperCAmelCase = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCamelCase = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = False def UpperCAmelCase__ ( self :str ) -> Dict: UpperCAmelCase = SqueezeBertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , dim=37 ) def UpperCAmelCase__ ( self :int ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :List[str] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase_ ) def UpperCAmelCase__ ( self :List[Any] ) -> Dict: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase_ ) def UpperCAmelCase__ ( self :str ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase_ ) def UpperCAmelCase__ ( self :List[Any] ) -> Optional[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase_ ) def UpperCAmelCase__ ( self :List[str] ) -> Any: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase_ ) @slow def UpperCAmelCase__ ( self :Dict ) -> List[str]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SqueezeBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_sentencepiece @require_tokenizers @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self :Tuple ) -> int: UpperCAmelCase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) UpperCAmelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) UpperCAmelCase = model(lowercase_ )[0] UpperCAmelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-4 ) )
78
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = None __A = None __A = None __A = None class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase_ : List[str]=1 , lowercase_ : str=0 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=512 , lowercase_ : Optional[int]="cls" , lowercase_ : str=False , lowercase_ : List[str]=True , **lowercase_ : str , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) _UpperCamelCase = project_dim _UpperCamelCase = pooler_fn _UpperCamelCase = learn_encoder _UpperCamelCase = use_attention_mask class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = [R'''pooler''', R'''logit_scale'''] __A = [R'''position_ids''', R'''predictions.decoder.bias'''] __A = '''roberta''' __A = RobertaSeriesConfig def __init__( self : Optional[Any] , lowercase_ : Union[str, Any]) -> Union[str, Any]: """simple docstring""" super().__init__(lowercase_) _UpperCamelCase = XLMRobertaModel(lowercase_) _UpperCamelCase = nn.Linear(config.hidden_size , config.project_dim) _UpperCamelCase = getattr(lowercase_ , "has_pre_transformation" , lowercase_) if self.has_pre_transformation: _UpperCamelCase = nn.Linear(config.hidden_size , config.project_dim) _UpperCamelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps) self.post_init() def __UpperCAmelCase ( self : Dict , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ) -> str: """simple docstring""" _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.base_model( input_ids=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_attentions=lowercase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowercase_ , ) if self.has_pre_transformation: _UpperCamelCase = outputs["hidden_states"][-2] _UpperCamelCase = self.pre_LN(lowercase_) _UpperCamelCase = self.transformation_pre(lowercase_) return TransformationModelOutput( projection_state=lowercase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCamelCase = self.transformation(outputs.last_hidden_state) return TransformationModelOutput( projection_state=lowercase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
63
import math class _UpperCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self : Dict , lowercase_ : list[list[float]] , lowercase_ : list[int]) -> int: """simple docstring""" _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(lowercase_)): da += math.pow((sample[i] - weights[0][i]) , 2) da += math.pow((sample[i] - weights[1][i]) , 2) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self : Any , lowercase_ : list[list[int | float]] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : float) -> list[list[int | float]]: """simple docstring""" for i in range(len(lowercase_)): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase__ ( ) ->None: '''simple docstring''' _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(a__ ): for j in range(len(a__ ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(a__ , a__ , a__ , a__ ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
1
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): """simple docstring""" snake_case ,snake_case = {}, {} if padding is not None: snake_case = padding if truncation is not None: snake_case = truncation if top_k is not None: snake_case = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase , (Image.Image, str) ) and isinstance(lowerCAmelCase , lowerCAmelCase ): snake_case = {'image': image, 'question': question} else: snake_case = image snake_case = super().__call__(lowerCAmelCase , **lowerCAmelCase ) return results def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=False ): """simple docstring""" snake_case = load_image(inputs['image'] ) snake_case = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowerCAmelCase , truncation=lowerCAmelCase ) snake_case = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) return model_inputs def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.model(**lowerCAmelCase ) return model_outputs def snake_case ( self , lowerCAmelCase , lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: snake_case = self.model.config.num_labels if self.framework == "pt": snake_case = model_outputs.logits.sigmoid()[0] snake_case ,snake_case = probs.topk(lowerCAmelCase ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) snake_case = scores.tolist() snake_case = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase , lowerCAmelCase )]
150
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE__ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE__ = { "allenai/led-base-16384": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase__ ( ) -> int: """simple docstring""" snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) snake_case = bs[:] snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" snake_case = set() snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case = char return pairs class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , **lowerCAmelCase , ): """simple docstring""" snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token super().__init__( errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: snake_case = json.load(lowerCAmelCase ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = errors # how to handle errors in decoding snake_case = bytes_to_unicode() snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase , encoding='utf-8' ) as merges_handle: snake_case = merges_handle.read().split('\n' )[1:-1] snake_case = [tuple(merge.split() ) for merge in bpe_merges] snake_case = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) snake_case = {} snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def snake_case ( self ): """simple docstring""" return len(self.encoder ) def snake_case ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] snake_case = tuple(lowerCAmelCase ) snake_case = get_pairs(lowerCAmelCase ) if not pairs: return token while True: snake_case = min(lowerCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case ,snake_case = bigram snake_case = [] snake_case = 0 while i < len(lowerCAmelCase ): try: snake_case = word.index(lowerCAmelCase , lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case = j if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case = tuple(lowerCAmelCase ) snake_case = new_word if len(lowerCAmelCase ) == 1: break else: snake_case = get_pairs(lowerCAmelCase ) snake_case = ' '.join(lowerCAmelCase ) snake_case = word return word def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for token in re.findall(self.pat , lowerCAmelCase ): snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase ).split(' ' ) ) return bpe_tokens def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = ''.join(lowerCAmelCase ) snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) snake_case = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) snake_case = token_index writer.write(' '.join(lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case = [self.cls_token_id] snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False , **lowerCAmelCase ): """simple docstring""" snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase ) > 0 and not text[0].isspace()): snake_case = ' ' + text return (text, kwargs) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" snake_case = super()._pad( encoded_inputs=lowerCAmelCase , max_length=lowerCAmelCase , padding_strategy=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowerCAmelCase ) if needs_to_be_padded: snake_case = len(lowerCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
150
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __magic_name__ : Union[str, Any] = threading.Lock() __magic_name__ : Optional[logging.Handler] = None __magic_name__ : Tuple = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __magic_name__ : Any = logging.WARNING __magic_name__ : Any = True def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = os.getenv('TRANSFORMERS_VERBOSITY' , UpperCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def __lowerCamelCase ( ): '''simple docstring''' return __name__.split('.' )[0] def __lowerCamelCase ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def __lowerCamelCase ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return snake_case_ = logging.StreamHandler() # Set sys.stderr as stream. snake_case_ = sys.stderr.flush # Apply our default configuration to the library root logger. snake_case_ = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) snake_case_ = False def __lowerCamelCase ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return snake_case_ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) snake_case_ = None def __lowerCamelCase ( ): '''simple docstring''' return log_levels def __lowerCamelCase ( UpperCamelCase__ = None ): '''simple docstring''' if name is None: snake_case_ = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' return set_verbosity(UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' return set_verbosity(UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' return set_verbosity(UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' return set_verbosity(UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowerCamelCase ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' _configure_library_root_logger() snake_case_ = False def __lowerCamelCase ( ): '''simple docstring''' _configure_library_root_logger() snake_case_ = True def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = _get_library_root_logger().handlers for handler in handlers: snake_case_ = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCamelCase__ ) def __lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' snake_case_ = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , UpperCamelCase__ ) if no_advisory_warnings: return self.warning(*UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ : Tuple = warning_advice @functools.lru_cache(UpperCamelCase__ ) def __lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' self.warning(*UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ : List[Any] = warning_once class lowercase : def __init__( self , *snake_case , **snake_case ): # pylint: disable=unused-argument snake_case_ = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , snake_case ): def empty_fn(*snake_case , **snake_case ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , snake_case , snake_case , snake_case ): return class lowercase : def __call__( self , *snake_case , **snake_case ): if _tqdm_active: return tqdm_lib.tqdm(*snake_case , **snake_case ) else: return EmptyTqdm(*snake_case , **snake_case ) def a ( self , *snake_case , **snake_case ): snake_case_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case , **snake_case ) def a ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __magic_name__ : List[str] = _tqdm_cls() def __lowerCamelCase ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def __lowerCamelCase ( ): '''simple docstring''' global _tqdm_active snake_case_ = True hf_hub_utils.enable_progress_bars() def __lowerCamelCase ( ): '''simple docstring''' global _tqdm_active snake_case_ = False hf_hub_utils.disable_progress_bars()
367
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=2 , snake_case=99 , snake_case=0 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=2 , snake_case=4 , snake_case="last" , snake_case=True , snake_case=None , snake_case=0 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_lengths snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = gelu_activation snake_case_ = sinusoidal_embeddings snake_case_ = causal snake_case_ = asm snake_case_ = n_langs snake_case_ = vocab_size snake_case_ = n_special snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = summary_type snake_case_ = use_proj snake_case_ = scope snake_case_ = bos_token_id def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_input_lengths: snake_case_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , 2 ).float() snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , lengths=snake_case , langs=snake_case ) snake_case_ = model(snake_case , langs=snake_case ) snake_case_ = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMWithLMHeadModel(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForQuestionAnsweringSimple(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model(snake_case , start_positions=snake_case , end_positions=snake_case ) snake_case_ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , p_mask=snake_case , ) snake_case_ = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , ) ((snake_case_) , ) = result_with_labels.to_tuple() snake_case_ = model(snake_case , start_positions=snake_case , end_positions=snake_case ) ((snake_case_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = self.num_labels snake_case_ = XLMForTokenClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = self.num_choices snake_case_ = XLMForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Tuple = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __SCREAMING_SNAKE_CASE : int = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a ( self , snake_case , snake_case , snake_case=False ): snake_case_ = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def a ( self ): snake_case_ = XLMModelTester(self ) snake_case_ = ConfigTester(self , config_class=snake_case , emb_dim=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_attentions in attentions] , [True] * len(snake_case ) ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case ): # adds PAD dummy token snake_case_ = min_length + idx + 1 snake_case_ = min_length + idx + 1 snake_case_ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case ) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_hidden_states in hidden_states] , [True] * len(snake_case ) , ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case ): # adds PAD dummy token snake_case_ = min_length + idx + 1 snake_case_ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case ) , ) pass @slow def a ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = XLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(snake_case ) snake_case_ = torch.tensor([[14, 447]] , dtype=torch.long , device=snake_case ) # the president snake_case_ = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case_ = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case )
200
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase : ClassVar[Features] = Features({"text": Value("string" )} ) lowerCAmelCase : ClassVar[Features] = Features({} ) lowerCAmelCase : str = "text" @property def lowerCAmelCase__ ( self : Tuple ) ->Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
234
'''simple docstring''' def __lowerCAmelCase (): return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCAmelCase (__lowerCAmelCase ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCAmelCase : Union[str, Any] = (left + right) // 2 _UpperCAmelCase : List[str] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCAmelCase : Tuple = mid + 1 else: _UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : Dict = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def __lowerCAmelCase (__lowerCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def __lowerCAmelCase (): from timeit import timeit print("Running benchmarks" ) _UpperCAmelCase : Tuple = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCAmelCase : str = timeit(F"""{func}(grid=grid)""" , setup=__lowerCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
234
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) __A = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) __A = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) __A = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) __A = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) __A = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) __A = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def lowerCAmelCase_ ( ) -> int: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: List[str] =randrange(len(__snake_case ) ), randrange(len(__snake_case ) ) lowerCamelCase__: Optional[Any] =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] lowerCamelCase__ , lowerCamelCase__: List[str] =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCAmelCase_ ( __a = 100 ) -> List[Any]: """simple docstring""" return (generate_random_hand() for _ in range(__snake_case )) @pytest.mark.parametrize("hand, expected" , __snake_case ) def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" assert PokerHand(__snake_case )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , __snake_case ) def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert PokerHand(__snake_case )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , __snake_case ) def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: str =PokerHand(__snake_case ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , __snake_case ) def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" assert PokerHand(__snake_case )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , __snake_case ) def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert PokerHand(__snake_case )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , __snake_case ) def lowerCAmelCase_ ( __a , __a , __a ) -> Union[str, Any]: """simple docstring""" assert PokerHand(__snake_case ).compare_with(PokerHand(__snake_case ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" assert PokerHand(__snake_case ).compare_with(PokerHand(__snake_case ) ) == expected def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" lowerCamelCase__: Union[str, Any] =[PokerHand(__snake_case ) for hand in SORTED_HANDS] lowerCamelCase__: Tuple =poker_hands.copy() shuffle(__snake_case ) lowerCamelCase__: Tuple =chain(sorted(__snake_case ) ) for index, hand in enumerate(__snake_case ): assert hand == poker_hands[index] def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=__snake_case ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Any =PokerHand("2C 4S AS 3D 5C" ) lowerCamelCase__: Tuple =True lowerCamelCase__: Tuple =[5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCamelCase__: Dict =0 lowerCamelCase__: Optional[int] =os.path.abspath(os.path.dirname(__snake_case ) ) lowerCamelCase__: Union[str, Any] =os.path.join(__snake_case , "poker_hands.txt" ) with open(__snake_case ) as file_hand: for line in file_hand: lowerCamelCase__: List[Any] =line[:14].strip() lowerCamelCase__: Optional[int] =line[15:].strip() lowerCamelCase__ , lowerCamelCase__: Tuple =PokerHand(__snake_case ), PokerHand(__snake_case ) lowerCamelCase__: Optional[int] =player.compare_with(__snake_case ) if output == "Win": answer += 1 assert answer == 376
362
from math import pow def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCamelCase__: Optional[Any] =int(pow(__a , __a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCamelCase__ , lowerCamelCase__: int =backtrack( __a , __a , current_number + 1 , __a , __a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCamelCase__ , lowerCamelCase__: Dict =backtrack( __a , __a , current_number + 1 , __a , __a ) return current_sum, solutions_count def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(__a , __a , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
273
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["MobileViTFeatureExtractor"] lowerCamelCase_ = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A_ : def __init__(self :int , _UpperCamelCase :str , _UpperCamelCase :Union[str, Any]=13 , _UpperCamelCase :Any=10 , _UpperCamelCase :Dict=3 , _UpperCamelCase :Optional[int]=2 , _UpperCamelCase :int=2 , _UpperCamelCase :Any=2 , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :Optional[int]=True , _UpperCamelCase :Dict=32 , _UpperCamelCase :List[Any]=5 , _UpperCamelCase :str=4 , _UpperCamelCase :Tuple=37 , _UpperCamelCase :Dict="gelu" , _UpperCamelCase :str=0.1 , _UpperCamelCase :Dict=0.1 , _UpperCamelCase :Tuple=10 , _UpperCamelCase :Optional[int]=0.0_2 , _UpperCamelCase :int=0.9 , _UpperCamelCase :List[Any]=None , )-> List[str]: __A = parent __A = batch_size __A = image_size __A = num_channels __A = patch_size __A = tubelet_size __A = num_frames __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = mask_ratio __A = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __A = (image_size // patch_size) ** 2 __A = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __A = int(mask_ratio * self.seq_length ) def _lowerCAmelCase (self :Any )-> Tuple: __A = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def _lowerCAmelCase (self :List[Any] )-> int: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[str] )-> Union[str, Any]: __A = VideoMAEModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __A = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase (self :Any , _UpperCamelCase :str , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :int )-> int: __A = VideoMAEForPreTraining(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __A = torch.ones((self.num_masks,) ) __A = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __A = mask.expand(self.batch_size , -1 ).bool() __A = model(_UpperCamelCase , _UpperCamelCase ) # model only returns predictions for masked patches __A = mask.sum().item() __A = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _lowerCAmelCase (self :Union[str, Any] )-> int: __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowerCAmelCase (self :List[Any] )-> List[str]: __A = VideoMAEModelTester(self ) __A = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :int , _UpperCamelCase :int , _UpperCamelCase :List[str]=False )-> List[Any]: __A = copy.deepcopy(_UpperCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __A = torch.ones((self.model_tester.num_masks,) ) __A = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __A = mask.expand(self.model_tester.batch_size , -1 ).bool() __A = bool_masked_pos.to(_UpperCamelCase ) if return_labels: if model_class in [ *get_values(_UpperCamelCase ), ]: __A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) return inputs_dict def _lowerCAmelCase (self :Dict )-> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def _lowerCAmelCase (self :Any )-> Optional[int]: pass def _lowerCAmelCase (self :Tuple )-> int: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def _lowerCAmelCase (self :Optional[int] )-> Union[str, Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_UpperCamelCase ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def _lowerCAmelCase (self :List[str] )-> Optional[int]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCAmelCase (self :str )-> Any: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCamelCase ) @slow def _lowerCAmelCase (self :Any )-> Optional[Any]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = VideoMAEModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _lowerCAmelCase (self :Dict )-> List[Any]: if not self.has_attentions: pass else: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True for model_class in self.all_model_classes: __A = self.model_tester.seq_length - self.model_tester.num_masks __A = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __A = True __A = False __A = True __A = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) __A = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A = True __A = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) __A = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A = len(_UpperCamelCase ) # Check attention is always last and order is fine __A = True __A = True __A = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCamelCase ) ) __A = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCAmelCase (self :int )-> Optional[Any]: def check_hidden_states_output(_UpperCamelCase :str , _UpperCamelCase :Any , _UpperCamelCase :List[Any] ): __A = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) __A = outputs.hidden_states __A = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) __A = self.model_tester.seq_length - self.model_tester.num_masks __A = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase (self :List[Any] )-> str: pass def _a ( ) -> List[str]: '''simple docstring''' __A = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __A = np.load(lowerCamelCase ) return list(lowerCamelCase ) @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowerCAmelCase (self :str )-> str: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCAmelCase (self :Any )-> Dict: __A = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( _UpperCamelCase ) __A = self.default_image_processor __A = prepare_video() __A = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): __A = model(**_UpperCamelCase ) # verify the logits __A = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) __A = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def _lowerCAmelCase (self :List[str] )-> int: __A = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(_UpperCamelCase ) __A = self.default_image_processor __A = prepare_video() __A = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # add boolean mask, indicating which patches to mask __A = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) __A = torch.load(_UpperCamelCase ) # forward pass with torch.no_grad(): __A = model(**_UpperCamelCase ) # verify the logits __A = torch.Size([1, 1408, 1536] ) __A = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=_UpperCamelCase ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __A = torch.tensor([0.5_1_4_2] , device=_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , _UpperCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __A = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=_UpperCamelCase ).to( _UpperCamelCase ) with torch.no_grad(): __A = model(**_UpperCamelCase ) __A = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , _UpperCamelCase , atol=1e-4 ) )
360
from __future__ import annotations from math import pi, sqrt def _a ( lowerCamelCase: float , lowerCamelCase: float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
250
0
'''simple docstring''' def _lowerCamelCase ( lowercase : List[str] ) -> List[str]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _lowerCamelCase ( lowercase : dict[int, list[int]] ) -> list[tuple[int, int]]: _a = 0 _a = len(lowercase ) # No of vertices in graph _a = [0] * n _a = [False] * n def dfs(lowercase : Optional[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : Optional[Any] ): _a = True _a = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowercase , lowercase , lowercase , id_ ) _a = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _a = min(low[at] , low[to] ) _a = [] for i in range(lowercase ): if not visited[i]: dfs(lowercase , -1 , lowercase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
63
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='OwlViTImageProcessor' __a =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] , __a : str=None , __a : List[str]=None , **__a : List[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Union[str, Any] , __a : Any=None , __a : List[str]=None , __a : int=None , __a : Optional[int]="max_length" , __a : List[str]="np" , **__a : Any ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__a , __a ) or (isinstance(__a , __a ) and not isinstance(text[0] , __a )): _a = [self.tokenizer(__a , padding=__a , return_tensors=__a , **__a )] elif isinstance(__a , __a ) and isinstance(text[0] , __a ): _a = [] # Maximum number of queries across batch _a = max([len(__a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__a ) != max_num_queries: _a = t + [" "] * (max_num_queries - len(__a )) _a = self.tokenizer(__a , padding=__a , return_tensors=__a , **__a ) encodings.append(__a ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _a = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _a = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _a = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _a = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _a = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _a = BatchEncoding() _a = input_ids _a = attention_mask if query_images is not None: _a = BatchEncoding() _a = self.image_processor( __a , return_tensors=__a , **__a ).pixel_values _a = query_pixel_values if images is not None: _a = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: _a = image_features.pixel_values return encoding elif query_images is not None and images is not None: _a = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def UpperCamelCase__ ( self : List[str] , *__a : Union[str, Any] , **__a : int ): return self.image_processor.post_process(*__a , **__a ) def UpperCamelCase__ ( self : Optional[int] , *__a : Optional[Any] , **__a : List[str] ): return self.image_processor.post_process_object_detection(*__a , **__a ) def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ): return self.image_processor.post_process_image_guided_detection(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : Tuple , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : List[str] , *__a : List[Any] , **__a : Optional[int] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
63
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : int , UpperCAmelCase_ : WhisperForConditionalGeneration , UpperCAmelCase_ : WhisperProcessor , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=UpperCAmelCase_ , speech_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , ) def lowerCamelCase_ ( self : int , UpperCAmelCase_ : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": __UpperCAmelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.enable_attention_slicing(UpperCAmelCase_ ) @torch.no_grad() def __call__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]=16_000 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" __UpperCAmelCase : int = self.speech_processor.feature_extractor( UpperCAmelCase_ , return_tensors="pt" , sampling_rate=UpperCAmelCase_ ).input_features.to(self.device ) __UpperCAmelCase : List[Any] = self.speech_model.generate(UpperCAmelCase_ , max_length=480_000 ) __UpperCAmelCase : Any = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , normalize=UpperCAmelCase_ )[ 0 ] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = 1 elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(UpperCAmelCase_ )}." ) # get prompt text embeddings __UpperCAmelCase : Dict = self.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __UpperCAmelCase : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __UpperCAmelCase : Any = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCAmelCase : Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = text_embeddings.shape __UpperCAmelCase : Optional[Any] = text_embeddings.repeat(1 , UpperCAmelCase_ , 1 ) __UpperCAmelCase : int = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCAmelCase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCAmelCase : List[str] if negative_prompt is None: __UpperCAmelCase : Dict = [""] * batch_size elif type(UpperCAmelCase_ ) is not type(UpperCAmelCase_ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase_ )} !=" f" {type(UpperCAmelCase_ )}." ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : str = [negative_prompt] elif batch_size != len(UpperCAmelCase_ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase_ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: __UpperCAmelCase : Optional[int] = negative_prompt __UpperCAmelCase : Dict = text_input_ids.shape[-1] __UpperCAmelCase : List[str] = self.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" , ) __UpperCAmelCase : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase : Any = uncond_embeddings.shape[1] __UpperCAmelCase : List[str] = uncond_embeddings.repeat(1 , UpperCAmelCase_ , 1 ) __UpperCAmelCase : str = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCAmelCase : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCAmelCase : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCAmelCase : Union[str, Any] = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device="cpu" , dtype=UpperCAmelCase_ ).to( self.device ) else: __UpperCAmelCase : Optional[Any] = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __UpperCAmelCase : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCAmelCase : Optional[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase : Tuple = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase : List[Any] = {} if accepts_eta: __UpperCAmelCase : str = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase : Any = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual __UpperCAmelCase : Optional[int] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ).sample # perform guidance if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : str = noise_pred.chunk(2 ) __UpperCAmelCase : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Optional[Any] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : List[str] = 1 / 0.18215 * latents __UpperCAmelCase : List[str] = self.vae.decode(UpperCAmelCase_ ).sample __UpperCAmelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase : Dict = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCAmelCase_ , nsfw_content_detected=UpperCAmelCase_ )
37
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int = 65_536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ): """simple docstring""" super().__init__() __UpperCAmelCase : str = sample_size # time if time_embedding_type == "fourier": __UpperCAmelCase : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ ) __UpperCAmelCase : str = 2 * block_out_channels[0] elif time_embedding_type == "positional": __UpperCAmelCase : str = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ ) __UpperCAmelCase : Dict = block_out_channels[0] if use_timestep_embedding: __UpperCAmelCase : Union[str, Any] = block_out_channels[0] * 4 __UpperCAmelCase : str = TimestepEmbedding( in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , ) __UpperCAmelCase : Tuple = nn.ModuleList([] ) __UpperCAmelCase : int = None __UpperCAmelCase : Optional[Any] = nn.ModuleList([] ) __UpperCAmelCase : Dict = None # down __UpperCAmelCase : str = in_channels for i, down_block_type in enumerate(UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = output_channel __UpperCAmelCase : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __UpperCAmelCase : Tuple = i == len(UpperCAmelCase_ ) - 1 __UpperCAmelCase : List[str] = get_down_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase_ ) # mid __UpperCAmelCase : Optional[Any] = get_mid_block( UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , ) # up __UpperCAmelCase : Tuple = list(reversed(UpperCAmelCase_ ) ) __UpperCAmelCase : Any = reversed_block_out_channels[0] if out_block_type is None: __UpperCAmelCase : Union[str, Any] = out_channels else: __UpperCAmelCase : Dict = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): __UpperCAmelCase : int = output_channel __UpperCAmelCase : str = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels ) __UpperCAmelCase : Tuple = i == len(UpperCAmelCase_ ) - 1 __UpperCAmelCase : Dict = get_up_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = output_channel # out __UpperCAmelCase : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) __UpperCAmelCase : List[Any] = get_out_block( out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ): """simple docstring""" __UpperCAmelCase : Dict = timestep if not torch.is_tensor(UpperCAmelCase_ ): __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(sample.device ) __UpperCAmelCase : List[str] = self.time_proj(UpperCAmelCase_ ) if self.config.use_timestep_embedding: __UpperCAmelCase : Any = self.time_mlp(UpperCAmelCase_ ) else: __UpperCAmelCase : Any = timestep_embed[..., None] __UpperCAmelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __UpperCAmelCase : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __UpperCAmelCase : int = () for downsample_block in self.down_blocks: __UpperCAmelCase , __UpperCAmelCase : int = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __UpperCAmelCase : List[str] = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __UpperCAmelCase : Any = down_block_res_samples[-1:] __UpperCAmelCase : List[Any] = down_block_res_samples[:-1] __UpperCAmelCase : str = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ ) # 5. post-process if self.out_block: __UpperCAmelCase : Tuple = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_ )
37
1
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : def __init__( self , A = 0 ) -> Dict: UpperCAmelCase : List[str] = key def _lowercase( self , A , A ) -> List[str]: assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__snake_case ) ^ key ) for ch in content] def _lowercase( self , A , A ) -> int: assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__snake_case ) ^ key ) for ch in content] def _lowercase( self , A , A = 0 ) -> str: assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase : Union[str, Any] = """""" for ch in content: ans += chr(ord(__snake_case ) ^ key ) return ans def _lowercase( self , A , A = 0 ) -> Any: assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) UpperCAmelCase : Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase : Union[str, Any] = """""" for ch in content: ans += chr(ord(__snake_case ) ^ key ) return ans def _lowercase( self , A , A = 0 ) -> Tuple: assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) try: with open(__snake_case ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__snake_case , __snake_case ) ) except OSError: return False return True def _lowercase( self , A , A ) -> Optional[Any]: assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) try: with open(__snake_case ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__snake_case , __snake_case ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
265
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as flax_state_f: _SCREAMING_SNAKE_CASE : Dict = from_bytes(SCREAMING_SNAKE_CASE__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _SCREAMING_SNAKE_CASE : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE__ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values() if any(SCREAMING_SNAKE_CASE__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _SCREAMING_SNAKE_CASE : Dict = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = """""" _SCREAMING_SNAKE_CASE : str = flatten_dict(SCREAMING_SNAKE_CASE__ , sep=""".""" ) _SCREAMING_SNAKE_CASE : str = pt_model.state_dict() # keep track of unexpected & missing keys _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _SCREAMING_SNAKE_CASE : Any = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _SCREAMING_SNAKE_CASE : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] _SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _SCREAMING_SNAKE_CASE : Union[str, Any] = flax_key_tuple_array[:-1] + ["""weight"""] _SCREAMING_SNAKE_CASE : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _SCREAMING_SNAKE_CASE : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Optional[int] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _SCREAMING_SNAKE_CASE : Tuple = """.""".join(SCREAMING_SNAKE_CASE__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor _SCREAMING_SNAKE_CASE : int = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE__ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # re-transform missing_keys to list _SCREAMING_SNAKE_CASE : Optional[Any] = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
200
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = (PNDMScheduler,) A__ = (('''num_inference_steps''', 50),) def A_ ( self : Any , **__a : Any ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**__a ) return config def A_ ( self : List[str] , __a : Dict=0 , **__a : str ) -> List[str]: '''simple docstring''' __snake_case : Dict = dict(self.forward_default_kwargs ) __snake_case : List[Any] = kwargs.pop('num_inference_steps' , __a ) __snake_case : Dict = self.dummy_sample __snake_case : Any = 0.1 * sample __snake_case : str = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __snake_case : str = self.get_scheduler_config(**__a ) __snake_case : List[str] = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals __snake_case : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __snake_case : Optional[int] = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals __snake_case : Optional[int] = dummy_past_residuals[:] __snake_case : Optional[int] = scheduler.step_prk(__a , __a , __a , **__a ).prev_sample __snake_case : Optional[Any] = new_scheduler.step_prk(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __snake_case : Dict = scheduler.step_plms(__a , __a , __a , **__a ).prev_sample __snake_case : Dict = new_scheduler.step_plms(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' pass def A_ ( self : Any , __a : int=0 , **__a : List[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Any = dict(self.forward_default_kwargs ) __snake_case : Any = kwargs.pop('num_inference_steps' , __a ) __snake_case : Union[str, Any] = self.dummy_sample __snake_case : Union[str, Any] = 0.1 * sample __snake_case : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __snake_case : Optional[Any] = self.get_scheduler_config() __snake_case : int = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) __snake_case : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __snake_case : int = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) __snake_case : str = dummy_past_residuals[:] __snake_case : Dict = scheduler.step_prk(__a , __a , __a , **__a ).prev_sample __snake_case : List[str] = new_scheduler.step_prk(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __snake_case : List[Any] = scheduler.step_plms(__a , __a , __a , **__a ).prev_sample __snake_case : List[str] = new_scheduler.step_plms(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : Tuple , **__a : int ) -> Dict: '''simple docstring''' __snake_case : List[Any] = self.scheduler_classes[0] __snake_case : Tuple = self.get_scheduler_config(**__a ) __snake_case : Any = scheduler_class(**__a ) __snake_case : int = 10 __snake_case : List[str] = self.dummy_model() __snake_case : Any = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.prk_timesteps ): __snake_case : List[str] = model(__a , __a ) __snake_case : Optional[Any] = scheduler.step_prk(__a , __a , __a ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __snake_case : Dict = model(__a , __a ) __snake_case : List[Any] = scheduler.step_plms(__a , __a , __a ).prev_sample return sample def A_ ( self : int ) -> str: '''simple docstring''' __snake_case : int = dict(self.forward_default_kwargs ) __snake_case : Any = kwargs.pop('num_inference_steps' , __a ) for scheduler_class in self.scheduler_classes: __snake_case : List[Any] = self.get_scheduler_config() __snake_case : Tuple = scheduler_class(**__a ) __snake_case : List[Any] = self.dummy_sample __snake_case : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__a , 'set_timesteps' ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , 'set_timesteps' ): __snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __snake_case : str = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __snake_case : Optional[Any] = dummy_past_residuals[:] __snake_case : Optional[int] = scheduler.step_prk(__a , 0 , __a , **__a ).prev_sample __snake_case : Union[str, Any] = scheduler.step_prk(__a , 1 , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __snake_case : List[Any] = scheduler.step_plms(__a , 0 , __a , **__a ).prev_sample __snake_case : List[str] = scheduler.step_plms(__a , 1 , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : str ) -> Optional[Any]: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) __snake_case : str = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config(steps_offset=1 ) __snake_case : int = scheduler_class(**__a ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A_ ( self : int ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def A_ ( self : Dict ) -> Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def A_ ( self : Optional[int] ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def A_ ( self : Tuple ) -> int: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=__a ) def A_ ( self : List[str] ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__a ) def A_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __snake_case : Dict = 27 for scheduler_class in self.scheduler_classes: __snake_case : int = self.dummy_sample __snake_case : str = 0.1 * sample __snake_case : Optional[Any] = self.get_scheduler_config() __snake_case : Union[str, Any] = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __snake_case : int = scheduler.step_prk(__a , __a , __a ).prev_sample def A_ ( self : Tuple ) -> str: '''simple docstring''' with self.assertRaises(__a ): __snake_case : int = self.scheduler_classes[0] __snake_case : int = self.get_scheduler_config() __snake_case : List[Any] = scheduler_class(**__a ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A_ ( self : Dict ) -> int: '''simple docstring''' __snake_case : Tuple = self.full_loop() __snake_case : int = torch.sum(torch.abs(__a ) ) __snake_case : List[str] = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def A_ ( self : List[str] ) -> int: '''simple docstring''' __snake_case : List[str] = self.full_loop(prediction_type='v_prediction' ) __snake_case : int = torch.sum(torch.abs(__a ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def A_ ( self : Dict ) -> str: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __snake_case : Any = self.full_loop(set_alpha_to_one=__a , beta_start=0.0_1 ) __snake_case : int = torch.sum(torch.abs(__a ) ) __snake_case : Optional[Any] = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def A_ ( self : int ) -> Tuple: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __snake_case : str = self.full_loop(set_alpha_to_one=__a , beta_start=0.0_1 ) __snake_case : List[Any] = torch.sum(torch.abs(__a ) ) __snake_case : Any = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = KandinskyVaaPriorPipeline A__ = ['''prompt'''] A__ = ['''prompt''', '''negative_prompt'''] A__ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] A__ = False @property def A_ ( self : Dict ) -> List[str]: '''simple docstring''' return 32 @property def A_ ( self : Any ) -> str: '''simple docstring''' return 32 @property def A_ ( self : str ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def A_ ( self : str ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return 100 @property def A_ ( self : Tuple ) -> List[str]: '''simple docstring''' __snake_case : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } __snake_case : List[Any] = PriorTransformer(**__a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __snake_case : Any = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __snake_case : Optional[Any] = CLIPVisionModelWithProjection(__a ) return model @property def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = self.dummy_prior __snake_case : List[str] = self.dummy_image_encoder __snake_case : str = self.dummy_text_encoder __snake_case : List[str] = self.dummy_tokenizer __snake_case : List[str] = self.dummy_image_processor __snake_case : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__a , clip_sample_range=1_0.0 , ) __snake_case : str = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def A_ ( self : List[Any] , __a : Optional[Any] , __a : Tuple=0 ) -> Any: '''simple docstring''' if str(__a ).startswith('mps' ): __snake_case : List[str] = torch.manual_seed(__a ) else: __snake_case : List[str] = torch.Generator(device=__a ).manual_seed(__a ) __snake_case : List[Any] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A_ ( self : str ) -> Dict: '''simple docstring''' __snake_case : str = 'cpu' __snake_case : List[str] = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**__a ) __snake_case : Optional[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[int] = pipe(**self.get_dummy_inputs(__a ) ) __snake_case : List[str] = output.image_embeds __snake_case : str = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] __snake_case : Union[str, Any] = image[0, -10:] __snake_case : Any = image_from_tuple[0, -10:] assert image.shape == (1, 32) __snake_case : List[Any] = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = torch_device == 'cpu' __snake_case : Dict = True __snake_case : Union[str, Any] = False self._test_inference_batch_single_identical( test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , ) @skip_mps def A_ ( self : str ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = torch_device == 'cpu' __snake_case : Optional[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=__a , test_mean_pixel_difference=__a , )
0
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" lowercase_ : Optional[Any] = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = flatten_dict(__SCREAMING_SNAKE_CASE ) return flax_params def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : List[Any] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowercase_ : str = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase_ : Dict = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase_ : List[str] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase_ : int = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase_ : List[str] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase_ : Any = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : str = flax_dict[key] lowercase_ : List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase_ : Tuple = torch.from_numpy(converted_dict[key].T ) else: lowercase_ : Dict = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): """simple docstring""" lowercase_ : Tuple = get_flax_param(__SCREAMING_SNAKE_CASE ) if not use_large: lowercase_ : Any = PixaStructVisionConfig() lowercase_ : Optional[Any] = PixaStructTextConfig() else: lowercase_ : Tuple = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase_ : int = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowercase_ : Any = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = PixaStructForConditionalGeneration(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = rename_and_convert_flax_params(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase_ : str = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowercase_ : List[str] = PixaStructImageProcessor() lowercase_ : Tuple = PixaStructProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) if use_large: lowercase_ : str = 4096 lowercase_ : Dict = True # mkdir if needed os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) print('''Model saved in {}'''.format(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _lowercase : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
93
import cva import numpy as np class A_ : def __init__( self , _A , _A ): '''simple docstring''' if k in (0.04, 0.06): UpperCAmelCase = k UpperCAmelCase = window_size else: raise ValueError('''invalid k value''' ) def __str__( self ): '''simple docstring''' return str(self.k ) def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = cva.imread(_A , 0 ) UpperCAmelCase , UpperCAmelCase = img.shape UpperCAmelCase = [] UpperCAmelCase = img.copy() UpperCAmelCase = cva.cvtColor(_A , cva.COLOR_GRAY2RGB ) UpperCAmelCase , UpperCAmelCase = np.gradient(_A ) UpperCAmelCase = dx**2 UpperCAmelCase = dy**2 UpperCAmelCase = dx * dy UpperCAmelCase = 0.04 UpperCAmelCase = self.window_size // 2 for y in range(_A , h - offset ): for x in range(_A , w - offset ): UpperCAmelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase = (wxx * wyy) - (wxy**2) UpperCAmelCase = wxx + wyy UpperCAmelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_5_5 ) return color_img, corner_list if __name__ == "__main__": __A : Tuple = HarrisCorner(0.04, 3) __A , __A : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
273
0
def __UpperCamelCase ( _A : list , _A : list , _A : int ) ->list: """simple docstring""" lowerCamelCase_ =len(_A ) lowerCamelCase_ =[[0] * n for i in range(_A )] for i in range(_A ): lowerCamelCase_ =y_points[i] for i in range(2 , _A ): for j in range(_A , _A ): lowerCamelCase_ =( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
49
import math def __UpperCamelCase ( _A : int = 100 ) ->int: """simple docstring""" lowerCamelCase_ =sum(i * i for i in range(1 , n + 1 ) ) lowerCamelCase_ =int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
49
1
def a__ ( UpperCAmelCase : str , UpperCAmelCase : Tuple ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(1_0_0, 0.2_5) = }""") print(f"""{price_plus_tax(1_2_5.5_0, 0.0_5) = }""")
336
'''simple docstring''' def _A ( snake_case , snake_case ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
250
0
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase : Dict = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase : int = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase : List[str] = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , ): if label_map is not None: for old_id, new_id in label_map.items(): SCREAMING_SNAKE_CASE_: Dict = new_id # turn into Numpy arrays SCREAMING_SNAKE_CASE_: Optional[Any] = np.array(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = np.array(_UpperCAmelCase ) if reduce_labels: SCREAMING_SNAKE_CASE_: Any = 2_55 SCREAMING_SNAKE_CASE_: Optional[Any] = label - 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 2_55 SCREAMING_SNAKE_CASE_: Tuple = label != ignore_index SCREAMING_SNAKE_CASE_: List[str] = np.not_equal(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = pred_label[mask] SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array(_UpperCAmelCase )[mask] SCREAMING_SNAKE_CASE_: str = pred_label[pred_label == label] SCREAMING_SNAKE_CASE_: Tuple = np.histogram(_UpperCAmelCase , bins=_UpperCAmelCase , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE_: Optional[int] = np.histogram(_UpperCAmelCase , bins=_UpperCAmelCase , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE_: Any = np.histogram(_UpperCAmelCase , bins=_UpperCAmelCase , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE_: Optional[int] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , ): SCREAMING_SNAKE_CASE_: Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_: Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_: str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = intersect_and_union( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ): SCREAMING_SNAKE_CASE_: List[Any] = total_intersect_and_union( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # compute metrics SCREAMING_SNAKE_CASE_: Optional[Any] = {} SCREAMING_SNAKE_CASE_: Optional[Any] = total_area_intersect.sum() / total_area_label.sum() SCREAMING_SNAKE_CASE_: int = total_area_intersect / total_area_union SCREAMING_SNAKE_CASE_: List[Any] = total_area_intersect / total_area_label SCREAMING_SNAKE_CASE_: Any = np.nanmean(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = np.nanmean(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = all_acc SCREAMING_SNAKE_CASE_: Union[str, Any] = iou SCREAMING_SNAKE_CASE_: str = acc if nan_to_num is not None: SCREAMING_SNAKE_CASE_: Dict = {metric: np.nan_to_num(_UpperCAmelCase , nan=_UpperCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), }) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : bool , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Dict[int, int]] = None , lowerCAmelCase__ : bool = False , ): SCREAMING_SNAKE_CASE_: List[Any] = mean_iou( results=lowerCAmelCase__ , gt_seg_maps=lowerCAmelCase__ , num_labels=lowerCAmelCase__ , ignore_index=lowerCAmelCase__ , nan_to_num=lowerCAmelCase__ , label_map=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ , ) return iou_result
362
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase : Tuple = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": lowerCAmelCase : Optional[int] = """hopper-medium-v2""" lowerCAmelCase : Optional[int] = gym.make(env_name) lowerCAmelCase : Optional[int] = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) lowerCAmelCase : Optional[Any] = env.reset() lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Optional[int] = 1000 lowerCAmelCase : Dict = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase : Union[str, Any] = pipeline(obs, planning_horizon=32) # execute action in environment lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = env.step(denorm_actions) lowerCAmelCase : Tuple = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase : Tuple = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
127
0
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Tuple = set(UpperCamelCase ), [start] while stack: lowerCAmelCase__ : Any = stack.pop() explored.add(UpperCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCamelCase ) return explored _lowerCAmelCase = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
37
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = '''focalnet''' def __init__( self ,__UpperCAmelCase=224 ,__UpperCAmelCase=4 ,__UpperCAmelCase=3 ,__UpperCAmelCase=96 ,__UpperCAmelCase=False ,__UpperCAmelCase=[192, 384, 768, 768] ,__UpperCAmelCase=[2, 2, 6, 2] ,__UpperCAmelCase=[2, 2, 2, 2] ,__UpperCAmelCase=[3, 3, 3, 3] ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=4.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=False ,__UpperCAmelCase=1E-4 ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-5 ,__UpperCAmelCase=32 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Dict = image_size lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : List[str] = use_conv_embed lowerCAmelCase__ : List[Any] = hidden_sizes lowerCAmelCase__ : Dict = depths lowerCAmelCase__ : List[str] = focal_levels lowerCAmelCase__ : List[str] = focal_windows lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Dict = mlp_ratio lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = use_layerscale lowerCAmelCase__ : Optional[Any] = layerscale_value lowerCAmelCase__ : str = use_post_layernorm lowerCAmelCase__ : Union[str, Any] = use_post_layernorm_in_modulation lowerCAmelCase__ : int = normalize_modulator lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : List[Any] = encoder_stride lowerCAmelCase__ : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Any = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase ,out_indices=__UpperCAmelCase ,stage_names=self.stage_names )
37
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Union[str, Any] = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
315
import qiskit def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCamelCase : Any = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCamelCase : Any = qiskit.execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : int = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
315
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = (PNDMScheduler,) __snake_case = (('''num_inference_steps''', 50),) def __lowerCAmelCase ( self : int , **__UpperCAmelCase : Optional[int] ) ->int: """simple docstring""" a = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**__UpperCAmelCase ) return config def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str]=0 , **__UpperCAmelCase : Tuple ) ->Tuple: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config(**__UpperCAmelCase ) a = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase ) a = scheduler_class.from_pretrained(__UpperCAmelCase ) new_scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals a = dummy_past_residuals[:] a = scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample a = new_scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" a = scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample a = new_scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" pass def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str]=0 , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase ) a = scheduler_class.from_pretrained(__UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) a = dummy_past_residuals[:] a = scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample a = new_scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" a = scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample a = new_scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : int , **__UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config(**__UpperCAmelCase ) a = scheduler_class(**__UpperCAmelCase ) a = 10 a = self.dummy_model() a = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): a = model(__UpperCAmelCase , __UpperCAmelCase ) a = scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): a = model(__UpperCAmelCase , __UpperCAmelCase ) a = scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample return sample def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = dict(self.forward_default_kwargs ) a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase ) for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__UpperCAmelCase ) a = self.dummy_sample a = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(__UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , '''set_timesteps''' ): a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a = dummy_past_residuals[:] a = scheduler.step_prk(__UpperCAmelCase , 0 , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample a = scheduler.step_prk(__UpperCAmelCase , 1 , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) a = scheduler.step_plms(__UpperCAmelCase , 0 , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample a = scheduler.step_plms(__UpperCAmelCase , 1 , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__UpperCAmelCase ) a = self.scheduler_classes[0] a = self.get_scheduler_config(steps_offset=1 ) a = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=__UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = 27 for scheduler_class in self.scheduler_classes: a = self.dummy_sample a = 0.1 * sample a = self.get_scheduler_config() a = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): a = scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" with self.assertRaises(__UpperCAmelCase ): a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" a = self.full_loop() a = torch.sum(torch.abs(__UpperCAmelCase ) ) a = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = self.full_loop(prediction_type='''v_prediction''' ) a = torch.sum(torch.abs(__UpperCAmelCase ) ) a = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = self.full_loop(set_alpha_to_one=__UpperCAmelCase , beta_start=0.01 ) a = torch.sum(torch.abs(__UpperCAmelCase ) ) a = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = self.full_loop(set_alpha_to_one=__UpperCAmelCase , beta_start=0.01 ) a = torch.sum(torch.abs(__UpperCAmelCase ) ) a = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = KandinskyVaaPriorPipeline __snake_case = ['''prompt'''] __snake_case = ['''prompt''', '''negative_prompt'''] __snake_case = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" return 100 @property def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" torch.manual_seed(0 ) a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } a = PriorTransformer(**__UpperCAmelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a = CLIPVisionModelWithProjection(__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" a = CLIPImageProcessor( crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = self.dummy_prior a = self.dummy_image_encoder a = self.dummy_text_encoder a = self.dummy_tokenizer a = self.dummy_image_processor a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , ) a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int: """simple docstring""" if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.image_embeds a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] a = image[0, -10:] a = image_from_tuple[0, -10:] assert image.shape == (1, 32) a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = torch_device == '''cpu''' a = True a = False self._test_inference_batch_single_identical( test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , ) @skip_mps def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = torch_device == '''cpu''' a = False self._test_attention_slicing_forward_pass( test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
0
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} lowercase_ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } lowercase_ = { "abeja/gpt-neox-japanese-2.7b": 2_0_4_8, } def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: __a = json.loads(f.read() ) __a = collections.OrderedDict() __a = collections.OrderedDict() __a = collections.OrderedDict() with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.readlines() __a = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(lowerCAmelCase__ ): __a = b __a = idx for wd in b: __a = idx return vocab, raw_vocab, ids_to_tokens, emoji class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['input_ids', 'attention_mask'] def __init__( self , _a , _a , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|startoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ): super().__init__( unk_token=_a , pad_token=_a , bos_token=_a , eos_token=_a , do_clean_text=_a , **_a , ) if not os.path.isfile(_a ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_a ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) __a = do_clean_text __a , __a , __a , __a = load_vocab_and_emoji(_a , _a ) __a = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __UpperCAmelCase ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __UpperCAmelCase ( self ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def __UpperCAmelCase ( self , _a ): return self.subword_tokenizer.tokenize(_a , clean=self.do_clean_text ) def __UpperCAmelCase ( self , _a ): return self.vocab.get(_a , self.vocab.get(self.unk_token ) ) def __UpperCAmelCase ( self , _a ): return self.subword_tokenizer.convert_id_to_token(_a ) def __UpperCAmelCase ( self , _a ): __a = ''''''.join(_a ).strip() return out_string def __UpperCAmelCase ( self , _a ): __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids def __UpperCAmelCase ( self , _a , _a = None ): __a = 0 if os.path.isdir(_a ): __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: __a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) __a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_a , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) __a = token_index writer.write(''','''.join(_a ) + '''\n''' ) index += 1 with open(_a , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _a ) return vocab_file, emoji_file class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a ): __a = vocab # same as swe __a = ids_to_tokens # same as bpe __a = emoji __a = np.max([len(_a ) for w in self.vocab.keys()] ) __a = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) __a = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) __a = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) __a = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) __a = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) __a = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) __a = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' __a = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' __a = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def __UpperCAmelCase ( self , _a ): __a = self.content_repattera.sub('''<URL>''' , _a ) __a = self.content_repattera.sub('''<EMAIL>''' , _a ) __a = self.content_repattera.sub('''<TEL>''' , _a ) __a = self.content_repattera.sub('''<DATE>''' , _a ) __a = self.content_repattera.sub('''<DATE>''' , _a ) __a = self.content_repattera.sub('''<PRICE>''' , _a ) __a = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __a = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def __UpperCAmelCase ( self , _a , _a=False ): __a = text.replace(''' ''' , '''<SP>''' ) __a = text.replace(''' ''' , '''<SP>''' ) __a = text.replace('''\r\n''' , '''<BR>''' ) __a = text.replace('''\n''' , '''<BR>''' ) __a = text.replace('''\r''' , '''<BR>''' ) __a = text.replace('''\t''' , '''<TAB>''' ) __a = text.replace('''—''' , '''ー''' ) __a = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: __a = text.replace(_a , _a ) if clean: __a = self.clean_text(_a ) def check_simbol(_a ): __a = x.encode() if len(_a ) == 1 and len(_a ) == 2: __a = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(_a ): __a = x.encode() if len(_a ) == 1 and len(_a ) == 3: __a = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False __a = 0 __a = [] while pos < len(_a ): __a = min(len(_a ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 __a = [] # (token_id, token, pos) for e in range(_a , _a , -1 ): __a = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_a ) > 2: __a = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_a ) > 0: # the smallest token_id is adopted __a , __a , __a = sorted(_a , key=lambda _a : x[0] )[0] result.append(_a ) __a = e else: __a = pos + 1 __a = text[pos:end] if check_simbol(_a ): result.append('''<KIGOU>''' ) elif checkuae(_a ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) __a = end return result def __UpperCAmelCase ( self , _a , _a="\n" ): __a = [] __a = [] __a = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_a ) > 0: words.append(bytearray(_a ).decode('''utf-8''' , errors='''replace''' ) ) __a = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_a ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_a ) if len(_a ) > 0: words.append(bytearray(_a ).decode('''utf-8''' , errors='''replace''' ) ) __a = ''''''.join(_a ) return text
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __snake_case :Optional[Any] = pd.read_csv('''sample_data.csv''', header=None) __snake_case :Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column __snake_case :Optional[Any] = df.iloc[:, 1:2] __snake_case :int = actual_data.values.reshape(len_data, 1) __snake_case :Optional[Any] = MinMaxScaler().fit_transform(actual_data) __snake_case :int = 10 __snake_case :Tuple = 5 __snake_case :Optional[Any] = 20 __snake_case :Optional[int] = len_data - periods * look_back __snake_case :int = actual_data[:division] __snake_case :List[str] = actual_data[division - look_back :] __snake_case ,__snake_case :Dict = [], [] __snake_case ,__snake_case :Any = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __snake_case :int = np.array(train_x) __snake_case :Optional[Any] = np.array(test_x) __snake_case :List[Any] = np.array([list(i.ravel()) for i in train_y]) __snake_case :Optional[int] = np.array([list(i.ravel()) for i in test_y]) __snake_case :int = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __snake_case :int = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __snake_case :Union[str, Any] = model.predict(x_test)
49
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __snake_case ( _UpperCAmelCase = "isbn/0140328726" ): __a = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __a = f'{olid} is not a valid Open Library olid' raise ValueError(_UpperCAmelCase ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def __snake_case ( _UpperCAmelCase ): __a = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __a = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __a = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __a = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = ''', '''.join(_UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __snake_case :List[Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(f'\nSearching Open Library for ISBN: {isbn}...\n') try: __snake_case :Optional[Any] = summarize_book(get_openlibrary_data(f'isbn/{isbn}')) print('''\n'''.join(f'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'Sorry, there are no results for ISBN: {isbn}.')
49
1
def snake_case (UpperCAmelCase__ = 1_0_0_0 ) -> int: """simple docstring""" UpperCamelCase_: Tuple = 2**power UpperCamelCase_: List[str] = str(_UpperCAmelCase ) UpperCamelCase_: Union[str, Any] = list(_UpperCAmelCase ) UpperCamelCase_: Optional[Any] = 0 for i in list_num: sum_of_num += int(_UpperCAmelCase ) return sum_of_num if __name__ == "__main__": A_ : List[Any] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) A_ : Dict = solution(power) print('Sum of the digits is: ', result)
350
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def snake_case (UpperCAmelCase__ ) -> tuple: return (data["data"], data["target"]) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> np.ndarray: UpperCamelCase_: Dict = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(UpperCAmelCase__ , UpperCAmelCase__ ) # Predict target for test data UpperCamelCase_: int = xgb.predict(UpperCAmelCase__ ) UpperCamelCase_: Any = predictions.reshape(len(UpperCAmelCase__ ) , 1 ) return predictions def snake_case () -> None: UpperCamelCase_: Union[str, Any] = fetch_california_housing() UpperCamelCase_ ,UpperCamelCase_: Tuple = data_handling(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = train_test_split( UpperCAmelCase__ , UpperCAmelCase__ , test_size=0.25 , random_state=1 ) UpperCamelCase_: Union[str, Any] = xgboost(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
292
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES a_ = logging.get_logger(__name__) a_ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) a_ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) a_ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) a_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) a_ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) a_ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) a_ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) a_ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) a_ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) a_ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) a_ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) a_ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) a_ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) a_ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_MAPPING a_ = auto_class_update(FlaxAutoModel) class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_PRETRAINING_MAPPING a_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING a_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_MASKED_LM_MAPPING a_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING a_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING a_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING a_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING a_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): UpperCamelCase =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING a_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
249
from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = int(UpperCamelCase_ ) assert noofclusters < len(UpperCamelCase_ ) # Find out the dimensionality snake_case = len(vectors[0] ) # Will help select random centroids from among the available vectors snake_case = list(range(len(UpperCamelCase_ ) ) ) shuffle(UpperCamelCase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. snake_case = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION snake_case = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points snake_case = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCamelCase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values snake_case = tf.placeholder('''float64''' ,[dim] ) snake_case = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCamelCase_ ,UpperCamelCase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) snake_case = [tf.Variable(0 ) for i in range(len(UpperCamelCase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value snake_case = tf.placeholder('''int32''' ) snake_case = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCamelCase_ ,UpperCamelCase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input snake_case = tf.placeholder('''float''' ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors snake_case = tf.reduce_mean(UpperCamelCase_ ,0 ) ##Node for computing Euclidean distances # Placeholders for input snake_case = tf.placeholder('''float''' ,[dim] ) snake_case = tf.placeholder('''float''' ,[dim] ) snake_case = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCamelCase_ ,UpperCamelCase_ ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input snake_case = tf.placeholder('''float''' ,[noofclusters] ) snake_case = tf.argmin(UpperCamelCase_ ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. snake_case = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCamelCase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. snake_case = 1_00 for _ in range(UpperCamelCase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCamelCase_ ) ): snake_case = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. snake_case = [ sess.run(UpperCamelCase_ ,feed_dict={va: vect, va: sess.run(UpperCamelCase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input snake_case = sess.run( UpperCamelCase_ ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCamelCase_ ): # Collect all the vectors assigned to this cluster snake_case = [ vectors[i] for i in range(len(UpperCamelCase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location snake_case = sess.run( UpperCamelCase_ ,feed_dict={mean_input: array(UpperCamelCase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments snake_case = sess.run(UpperCamelCase_ ) snake_case = sess.run(UpperCamelCase_ ) return centroids, assignments
127
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params a = getLogger(__name__) a = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _snake_case ( _snake_case : List[str] , _snake_case : str , _snake_case : str , _snake_case : int = 8 , _snake_case : str = DEFAULT_DEVICE , _snake_case : int=False , _snake_case : List[str]="summarization" , _snake_case : List[str]=None , **_snake_case : str , ) -> Dict: '''simple docstring''' _A = Path(_snake_case ).open('w' , encoding='utf-8' ) _A = str(_snake_case ) _A = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).to(_snake_case ) if fpaa: _A = model.half() _A = AutoTokenizer.from_pretrained(_snake_case ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. _A = time.time() # update config with task specific params use_task_specific_params(_snake_case , _snake_case ) if prefix is None: _A = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_snake_case , _snake_case ) ) ): _A = [prefix + text for text in examples_chunk] _A = tokenizer(_snake_case , return_tensors='pt' , truncation=_snake_case , padding='longest' ).to(_snake_case ) _A = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_snake_case , ) _A = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _A = int(time.time() - start_time ) # seconds _A = len(_snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _snake_case ( ) -> List[Any]: '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def _snake_case ( _snake_case : List[Any]=True ) -> str: '''simple docstring''' _A = argparse.ArgumentParser() parser.add_argument('model_name' , type=_snake_case , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_snake_case , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_snake_case , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_snake_case , required=_snake_case , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_snake_case , required=_snake_case , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_snake_case , required=_snake_case , default=_snake_case , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_snake_case , required=_snake_case , default=_snake_case , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_snake_case , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_snake_case , default=8 , required=_snake_case , help='batch size' ) parser.add_argument( '--n_obs' , type=_snake_case , default=-1 , required=_snake_case , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_snake_case , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A = parser.parse_known_args() _A = parse_numeric_n_bool_cl_kwargs(_snake_case ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) _A = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _A = generate_summaries_or_translations( _snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_snake_case , ) if args.reference_path is None: return {} # Compute scores _A = calculate_bleu if 'translation' in args.task else calculate_rouge _A = [x.rstrip() for x in open(args.save_path ).readlines()] _A = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_snake_case )] _A = score_fn(_snake_case , _snake_case ) scores.update(_snake_case ) if args.dump_args: scores.update(_snake_case ) if args.info: _A = args.info if verbose: print(_snake_case ) if args.score_path is not None: json.dump(_snake_case , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
315
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
1
"""simple docstring""" from __future__ import annotations from statistics import mean def a__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Optional[int] = [0] * no_of_processes lowerCAmelCase : Union[str, Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = burst_time[i] lowerCAmelCase : list[int] = [] lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Dict = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[Any] = -1 for i in range(SCREAMING_SNAKE_CASE ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Optional[Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase : List[str] = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : str = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' lowerCAmelCase : int = [0] * no_of_processes for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') lowerCAmelCase__ = 4 lowerCAmelCase__ = [2, 5, 3, 7] lowerCAmelCase__ = [0, 0, 0, 0] lowerCAmelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCAmelCase__ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
133
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
133
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} lowerCAmelCase__ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } lowerCAmelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 20_48, } def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): with open(UpperCamelCase__ , "r" , encoding="utf-8" ) as f: _A : Tuple = json.loads(f.read() ) _A : str = collections.OrderedDict() _A : Union[str, Any] = collections.OrderedDict() _A : Union[str, Any] = collections.OrderedDict() with open(UpperCamelCase__ , "r" , encoding="utf-8" ) as f: _A : Any = f.readlines() _A : List[Any] = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(UpperCamelCase__ ): _A : Optional[Any] = b _A : List[str] = idx for wd in b: _A : Union[str, Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase="<|startoftext|>" , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase=False , **__lowerCamelCase , ) -> str: super().__init__( unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , do_clean_text=__lowerCamelCase , **__lowerCamelCase , ) if not os.path.isfile(__lowerCamelCase): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(__lowerCamelCase): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") _A : Optional[int] = do_clean_text _A , _A , _A , _A : Any = load_vocab_and_emoji(__lowerCamelCase , __lowerCamelCase) _A : Union[str, Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCamelCase ( self) -> Union[str, Any]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab) def _lowerCamelCase ( self) -> Union[str, Any]: return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: return self.subword_tokenizer.tokenize(__lowerCamelCase , clean=self.do_clean_text) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: return self.subword_tokenizer.convert_id_to_token(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: _A : List[str] = "".join(__lowerCamelCase).strip() return out_string def _lowerCamelCase ( self , __lowerCamelCase) -> List[int]: _A : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase) + [self.eos_token_id]) if len(__lowerCamelCase) > self.model_max_length: _A : List[Any] = input_ids[-self.model_max_length :] return input_ids def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: _A : Optional[Any] = 0 if os.path.isdir(__lowerCamelCase): _A : Optional[int] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : List[str] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: _A : Union[str, Any] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) _A : Dict = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!") _A : List[Any] = token_index writer.write(",".join(__lowerCamelCase) + "\n") index += 1 with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: json.dump(self.emoji , __lowerCamelCase) return vocab_file, emoji_file class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: _A : Optional[int] = vocab # same as swe _A : Optional[Any] = ids_to_tokens # same as bpe _A : Tuple = emoji _A : Dict = np.max([len(__lowerCamelCase) for w in self.vocab.keys()]) _A : int = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") _A : int = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") _A : str = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") _A : Any = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") _A : List[Any] = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") _A : Optional[Any] = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") _A : Tuple = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" _A : Dict = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" _A : str = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self) -> str: return len(self.ids_to_tokens) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Optional[Any] = self.content_repattera.sub("<URL>" , __lowerCamelCase) _A : Dict = self.content_repattera.sub("<EMAIL>" , __lowerCamelCase) _A : Optional[Any] = self.content_repattera.sub("<TEL>" , __lowerCamelCase) _A : Optional[int] = self.content_repattera.sub("<DATE>" , __lowerCamelCase) _A : List[str] = self.content_repattera.sub("<DATE>" , __lowerCamelCase) _A : List[str] = self.content_repattera.sub("<PRICE>" , __lowerCamelCase) _A : int = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: _A : List[Any] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=False) -> List[str]: _A : Tuple = text.replace(" " , "<SP>") _A : Tuple = text.replace(" " , "<SP>") _A : List[Any] = text.replace("\r\n" , "<BR>") _A : Any = text.replace("\n" , "<BR>") _A : Optional[Any] = text.replace("\r" , "<BR>") _A : str = text.replace("\t" , "<TAB>") _A : List[Any] = text.replace("—" , "ー") _A : List[Any] = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: _A : Tuple = text.replace(__lowerCamelCase , __lowerCamelCase) if clean: _A : Union[str, Any] = self.clean_text(__lowerCamelCase) def check_simbol(__lowerCamelCase): _A : Optional[int] = x.encode() if len(__lowerCamelCase) == 1 and len(__lowerCamelCase) == 2: _A : int = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(__lowerCamelCase): _A : Optional[Any] = x.encode() if len(__lowerCamelCase) == 1 and len(__lowerCamelCase) == 3: _A : Any = (int(e[0]) << 1_6) + (int(e[1]) << 8) + int(e[2]) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False _A : Tuple = 0 _A : str = [] while pos < len(__lowerCamelCase): _A : List[str] = min(len(__lowerCamelCase) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 _A : Tuple = [] # (token_id, token, pos) for e in range(__lowerCamelCase , __lowerCamelCase , -1): _A : Tuple = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__lowerCamelCase) > 2: _A : str = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(__lowerCamelCase) > 0: # the smallest token_id is adopted _A , _A , _A : Tuple = sorted(__lowerCamelCase , key=lambda __lowerCamelCase: x[0])[0] result.append(__lowerCamelCase) _A : Any = e else: _A : Union[str, Any] = pos + 1 _A : Any = text[pos:end] if check_simbol(__lowerCamelCase): result.append("<KIGOU>") elif checkuae(__lowerCamelCase): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) _A : Tuple = end return result def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase="\n") -> List[str]: _A : Union[str, Any] = [] _A : int = [] _A : List[str] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(__lowerCamelCase) > 0: words.append(bytearray(__lowerCamelCase).decode("utf-8" , errors="replace")) _A : str = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(__lowerCamelCase) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(__lowerCamelCase) if len(__lowerCamelCase) > 0: words.append(bytearray(__lowerCamelCase).decode("utf-8" , errors="replace")) _A : Optional[Any] = "".join(__lowerCamelCase) return text
11
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = parent lowerCAmelCase__ :Optional[int] = batch_size lowerCAmelCase__ :Optional[int] = seq_length lowerCAmelCase__ :Any = is_training lowerCAmelCase__ :Dict = use_input_mask lowerCAmelCase__ :Union[str, Any] = use_token_type_ids lowerCAmelCase__ :Optional[int] = use_labels lowerCAmelCase__ :List[str] = vocab_size lowerCAmelCase__ :List[str] = hidden_size lowerCAmelCase__ :Optional[Any] = num_hidden_layers lowerCAmelCase__ :Union[str, Any] = num_attention_heads lowerCAmelCase__ :List[Any] = intermediate_size lowerCAmelCase__ :int = hidden_act lowerCAmelCase__ :str = hidden_dropout_prob lowerCAmelCase__ :Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ :int = max_position_embeddings lowerCAmelCase__ :int = type_vocab_size lowerCAmelCase__ :int = type_sequence_label_size lowerCAmelCase__ :Tuple = initializer_range lowerCAmelCase__ :int = num_labels lowerCAmelCase__ :Optional[Any] = num_choices lowerCAmelCase__ :List[str] = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Any = None if self.use_input_mask: lowerCAmelCase__ :Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ :str = None if self.use_token_type_ids: lowerCAmelCase__ :Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ :int = None lowerCAmelCase__ :Any = None lowerCAmelCase__ :Any = None if self.use_labels: lowerCAmelCase__ :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ :Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ :int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=__UpperCAmelCase , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = OpenLlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[str] = True lowerCAmelCase__ :Tuple = OpenLlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Any = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) lowerCAmelCase__ :Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) lowerCAmelCase__ :Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[Any] = OpenLlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Dict = True lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :Optional[Any] = OpenLlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass lowerCAmelCase__ :List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) lowerCAmelCase__ :Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ :str = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ :Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ :List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ :List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['hidden_states'][0] lowerCAmelCase__ :Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['hidden_states'][0] # select random slice lowerCAmelCase__ :Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ :int = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ :Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :str = config_and_inputs lowerCAmelCase__ :str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __magic_name__ :Optional[int] = (OpenLlamaForCausalLM,) if is_torch_available() else () __magic_name__ :Optional[int] = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ :Optional[Any] = False __magic_name__ :Union[str, Any] = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = OpenLlamaModelTester(self ) lowerCAmelCase__ :Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ :List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :List[str] = 3 lowerCAmelCase__ :Dict = input_dict['input_ids'] lowerCAmelCase__ :Union[str, Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ :Optional[int] = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Optional[Any] = 3 lowerCAmelCase__ :int = 'single_label_classification' lowerCAmelCase__ :Union[str, Any] = input_dict['input_ids'] lowerCAmelCase__ :List[str] = input_ids.ne(1 ).to(__UpperCAmelCase ) lowerCAmelCase__ :int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ :Optional[Any] = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Tuple = 3 lowerCAmelCase__ :Any = 'multi_label_classification' lowerCAmelCase__ :Optional[Any] = input_dict['input_ids'] lowerCAmelCase__ :str = input_ids.ne(1 ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ :int = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def snake_case ( self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Union[str, Any] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase__ :List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ :Optional[Any] = OpenLlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() lowerCAmelCase__ :Optional[int] = original_model(__UpperCAmelCase ).last_hidden_state lowerCAmelCase__ :Optional[int] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ :Union[str, Any] = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase__ :int = OpenLlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() lowerCAmelCase__ :Union[str, Any] = scaled_model(__UpperCAmelCase ).last_hidden_state lowerCAmelCase__ :Tuple = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
254
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=3_2 , __UpperCAmelCase=3 , __UpperCAmelCase=1_0 , __UpperCAmelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = parent lowerCAmelCase__ :Dict = batch_size lowerCAmelCase__ :Optional[int] = image_size lowerCAmelCase__ :Any = num_channels lowerCAmelCase__ :Union[str, Any] = embeddings_size lowerCAmelCase__ :Optional[int] = hidden_sizes lowerCAmelCase__ :Optional[int] = depths lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :str = hidden_act lowerCAmelCase__ :List[Any] = num_labels lowerCAmelCase__ :Union[str, Any] = scope lowerCAmelCase__ :Any = len(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :Any = self.get_config() return config, pixel_values def snake_case ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = FlaxRegNetModel(config=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = model(__UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.num_labels lowerCAmelCase__ :int = FlaxRegNetForImageClassification(config=__UpperCAmelCase ) lowerCAmelCase__ :Any = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = config_and_inputs lowerCAmelCase__ :Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ :Any = False __magic_name__ :int = False __magic_name__ :Any = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = FlaxRegNetModelTester(self ) lowerCAmelCase__ :Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): '''simple docstring''' return def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :str = [*signature.parameters.keys()] lowerCAmelCase__ :Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Dict = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ :Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :str = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :Optional[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ :Tuple = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase , **__UpperCAmelCase ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest('JIT Enabled' ): lowerCAmelCase__ :Dict = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase__ :Union[str, Any] = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __A () ->Optional[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCAmelCase__ :Any = self.default_image_processor lowerCAmelCase__ :Dict = prepare_img() lowerCAmelCase__ :Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors='np' ) lowerCAmelCase__ :List[str] = model(**__UpperCAmelCase ) # verify the logits lowerCAmelCase__ :Union[str, Any] = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :Any = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
254
1
"""simple docstring""" from math import factorial def A__ ( UpperCamelCase = 100 ): return sum(int(UpperCamelCase ) for x in str(factorial(UpperCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
292
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( lowercase_ ): def __init__( self :int , __UpperCamelCase :Distribution , __UpperCamelCase :Dict=None , __UpperCamelCase :Optional[int]=None , __UpperCamelCase :List[str]=0 ): A = 1.0 if scale is None else scale A = 0.0 if loc is None else loc super().__init__(__UpperCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__UpperCamelCase )] ) @property def lowerCamelCase ( self :Any ): return self.base_dist.mean * self.scale + self.loc @property def lowerCamelCase ( self :Optional[int] ): return self.base_dist.variance * self.scale**2 @property def lowerCamelCase ( self :Dict ): return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): def __init__( self :Dict , __UpperCamelCase :int , __UpperCamelCase :Dict[str, int] , __UpperCamelCase :Callable[..., Tuple[torch.Tensor]] , **__UpperCamelCase :str ): super().__init__(**__UpperCamelCase ) A = args_dim A = nn.ModuleList([nn.Linear(__UpperCamelCase , __UpperCamelCase ) for dim in args_dim.values()] ) A = domain_map def lowerCamelCase ( self :int , __UpperCamelCase :torch.Tensor ): A = [proj(__UpperCamelCase ) for proj in self.proj] return self.domain_map(*__UpperCamelCase ) class _UpperCAmelCase ( nn.Module ): def __init__( self :Dict , __UpperCamelCase :int ): super().__init__() A = function def lowerCamelCase ( self :List[str] , __UpperCamelCase :Any , *__UpperCamelCase :Any ): return self.function(__UpperCamelCase , *__UpperCamelCase ) class _UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :Any , __UpperCamelCase :int = 1 ): A = dim A = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Dict ): if self.dim == 1: return self.distribution_class(*__UpperCamelCase ) else: return Independent(self.distribution_class(*__UpperCamelCase ) , 1 ) def lowerCamelCase ( self :int , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[torch.Tensor] = None , __UpperCamelCase :Optional[torch.Tensor] = None , ): A = self._base_distribution(__UpperCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(__UpperCamelCase , loc=__UpperCamelCase , scale=__UpperCamelCase , event_dim=self.event_dim ) @property def lowerCamelCase ( self :List[Any] ): return () if self.dim == 1 else (self.dim,) @property def lowerCamelCase ( self :Tuple ): return len(self.event_shape ) @property def lowerCamelCase ( self :int ): return 0.0 def lowerCamelCase ( self :str , __UpperCamelCase :int ): return ParameterProjection( in_features=__UpperCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowerCamelCase ( self :List[Any] , *__UpperCamelCase :torch.Tensor ): raise NotImplementedError() @staticmethod def lowerCamelCase ( __UpperCamelCase :torch.Tensor ): return (x + torch.sqrt(torch.square(__UpperCamelCase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"df": 1, "loc": 1, "scale": 1} UpperCamelCase = StudentT @classmethod def lowerCamelCase ( cls :List[str] , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) A = 2.0 + cls.squareplus(__UpperCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"loc": 1, "scale": 1} UpperCamelCase = Normal @classmethod def lowerCamelCase ( cls :List[Any] , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"total_count": 1, "logits": 1} UpperCamelCase = NegativeBinomial @classmethod def lowerCamelCase ( cls :str , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCamelCase ( self :Tuple , __UpperCamelCase :List[str] ): A, A = distr_args if self.dim == 1: return self.distribution_class(total_count=__UpperCamelCase , logits=__UpperCamelCase ) else: return Independent(self.distribution_class(total_count=__UpperCamelCase , logits=__UpperCamelCase ) , 1 ) def lowerCamelCase ( self :List[str] , __UpperCamelCase :str , __UpperCamelCase :Optional[torch.Tensor] = None , __UpperCamelCase :Optional[torch.Tensor] = None ): A, A = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
292
1
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __UpperCAmelCase = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowerCAmelCase_ : def __init__( self ) -> List[str]: UpperCamelCase : List[str] = WATERMARK_BITS UpperCamelCase : Union[str, Any] = WatermarkEncoder() self.encoder.set_watermark('bits', self.watermark ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images UpperCamelCase : Optional[Any] = (255 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1 ).float().numpy() UpperCamelCase : Tuple = [self.encoder.encode(SCREAMING_SNAKE_CASE_, 'dwtDct' ) for image in images] UpperCamelCase : Any = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).permute(0, 3, 1, 2 ) UpperCamelCase : List[str] = torch.clamp(2 * (images / 255 - 0.5), min=-1.0, max=1.0 ) return images
103
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=19, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCamelCase : Any = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : List[str] = use_input_mask UpperCamelCase : Optional[int] = use_token_type_ids UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : int = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : str = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : List[Any] = num_labels UpperCamelCase : Any = num_choices UpperCamelCase : Tuple = scope def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Optional[Any] = None if self.use_input_mask: UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None if self.use_labels: UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=SCREAMING_SNAKE_CASE_, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Union[str, Any] = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE_ ).float() model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : int = () UpperCAmelCase__ : List[str] = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = EsmFoldModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> int: self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Does not support attention outputs' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('ESMFold only has one output format.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support input chunking.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Optional[Any]: pass @require_torch class lowerCAmelCase_ ( a__ ): @slow def snake_case_ ( self ) -> str: UpperCamelCase : Union[str, Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCamelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )['positions'] UpperCamelCase : int = torch.tensor([2.58_28, 0.79_93, -10.93_34], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
103
1