code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=2 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): """simple docstring""" A_ : List[str] = parent A_ : Optional[int] = 1_3 A_ : List[str] = 7 A_ : List[Any] = True A_ : Optional[int] = True A_ : Dict = True A_ : List[str] = True A_ : Dict = 9_9 A_ : Optional[Any] = 3_8_4 A_ : str = 2 A_ : Union[str, Any] = 4 A_ : List[str] = 3_7 A_ : str = 'gelu' A_ : Optional[int] = 0.1 A_ : int = 0.1 A_ : List[str] = 5_1_2 A_ : Dict = 1_6 A_ : Union[str, Any] = 2 A_ : Tuple = 0.02 A_ : Any = 3 A_ : List[Any] = 4 A_ : str = 1_2_8 A_ : List[str] = 2 A_ : List[str] = 9 A_ : Union[str, Any] = 1 A_ : Dict = None def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[str] = None if self.use_input_mask: A_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Tuple = None if self.use_token_type_ids: A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : int = None A_ : Any = None A_ : int = None if self.use_labels: A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : Any = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Tuple = TFConvBertModel(config=snake_case_ ) A_ : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A_ : int = [input_ids, input_mask] A_ : str = model(snake_case_ ) A_ : Any = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Tuple = TFConvBertForMaskedLM(config=snake_case_ ) A_ : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A_ : str = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = self.num_labels A_ : int = TFConvBertForSequenceClassification(config=snake_case_ ) A_ : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A_ : Any = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : int = self.num_choices A_ : Union[str, Any] = TFConvBertForMultipleChoice(config=snake_case_ ) A_ : str = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A_ : str = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A_ : Optional[int] = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A_ : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } A_ : Any = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : str = self.num_labels A_ : Union[str, Any] = TFConvBertForTokenClassification(config=snake_case_ ) A_ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A_ : Tuple = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = TFConvBertForQuestionAnswering(config=snake_case_ ) A_ : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A_ : List[str] = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Tuple = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : List[Any] = config_and_inputs A_ : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowercase_ : List[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowercase_ : Optional[Any] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : Optional[int] = False def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = TFConvBertModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() A_ : Union[str, Any] = True A_ : str = True if hasattr(snake_case_ , 'use_cache' ): A_ : Optional[int] = True A_ : Optional[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) A_ : Tuple = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: A_ : Union[str, Any] = self._prepare_for_class(snake_case_ , snake_case_ ) A_ : Tuple = model_class(snake_case_ ) A_ : Union[str, Any] = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) A_ : Any = os.path.join(snake_case_ , 'saved_model' , '1' ) A_ : Tuple = tf.keras.models.load_model(snake_case_ ) A_ : Optional[int] = model(snake_case_ ) if self.is_encoder_decoder: A_ : str = outputs['encoder_hidden_states'] A_ : Tuple = outputs['encoder_attentions'] else: A_ : int = outputs['hidden_states'] A_ : Any = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) A_ : List[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = True A_ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) A_ : Union[str, Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) A_ : Union[str, Any] = getattr(self.model_tester , 'key_length' , snake_case_ ) A_ : str = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): A_ : str = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) A_ : Optional[Any] = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): A_ : Tuple = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ : List[str] = True A_ : Any = False A_ : Dict = model_class(snake_case_ ) A_ : int = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) A_ : List[Any] = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: A_ : Any = model_class(snake_case_ ) A_ : Optional[Any] = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ : List[Any] = True A_ : Optional[Any] = model_class(snake_case_ ) A_ : Optional[int] = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine A_ : Union[str, Any] = True A_ : Dict = True A_ : List[str] = model_class(snake_case_ ) A_ : Any = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) A_ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ : List[Any] = model(snake_case_ )[0] A_ : int = [1, 6, 7_6_8] self.assertEqual(output.shape , snake_case_ ) A_ : List[Any] = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
286
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Any = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Tuple = """xmod""" def __init__( self , snake_case_=3_0_5_2_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=True , snake_case_=None , snake_case_=False , snake_case_=2 , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_=("en_XX",) , snake_case_=None , **snake_case_ , ): """simple docstring""" super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) A_ : Union[str, Any] = vocab_size A_ : Any = hidden_size A_ : List[str] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : int = hidden_act A_ : Any = intermediate_size A_ : Any = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : List[str] = initializer_range A_ : Any = layer_norm_eps A_ : Optional[Any] = position_embedding_type A_ : int = use_cache A_ : Dict = classifier_dropout A_ : int = pre_norm A_ : Optional[Any] = adapter_reduction_factor A_ : List[Any] = adapter_layer_norm A_ : int = adapter_reuse_layer_norm A_ : Dict = ln_before_adapter A_ : List[str] = list(snake_case_ ) A_ : Union[str, Any] = default_language class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": A_ : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
286
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_a ) class UpperCamelCase__ ( _a ): """simple docstring""" UpperCAmelCase_ =field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase_ =Features({"question": Value("string" ), "context": Value("string" )} ) UpperCAmelCase_ =Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) UpperCAmelCase_ ="question" UpperCAmelCase_ ="context" UpperCAmelCase_ ="answers" @property def _UpperCamelCase ( self ) -> str: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
371
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __UpperCAmelCase = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" __UpperCAmelCase = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" __UpperCAmelCase = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCamelCase ( self , _A , _A , _A=4 , _A=False ) -> List[str]: SCREAMING_SNAKE_CASE_ = compute_bleu( reference_corpus=_A , translation_corpus=_A , max_order=_A , smooth=_A ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
257
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any]=3 ,lowerCamelCase__ : str=32 ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : Dict=10 ,lowerCamelCase__ : Optional[Any]=[10, 20, 30, 40] ,lowerCamelCase__ : Dict=[1, 1, 2, 1] ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[str]="relu" ,lowerCamelCase__ : str=3 ,lowerCamelCase__ : Union[str, Any]=None ,) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embeddings_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = len(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetModel(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Optional[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __snake_case : int = False __snake_case : Optional[Any] = False __snake_case : List[str] = False def SCREAMING_SNAKE_CASE__ ( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict ): SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Dict ): return model(pixel_values=lowerCamelCase__ ,**lowerCamelCase__ ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase__ ,return_tensors="""np""" ) SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = (1, 1000) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
296
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = "efficientformer" def __init__( self : Optional[int] ,lowerCamelCase__ : List[int] = [3, 2, 6, 4] ,lowerCamelCase__ : List[int] = [48, 96, 224, 448] ,lowerCamelCase__ : List[bool] = [True, True, True, True] ,lowerCamelCase__ : int = 448 ,lowerCamelCase__ : int = 32 ,lowerCamelCase__ : int = 4 ,lowerCamelCase__ : int = 7 ,lowerCamelCase__ : int = 5 ,lowerCamelCase__ : int = 8 ,lowerCamelCase__ : int = 4 ,lowerCamelCase__ : float = 0.0 ,lowerCamelCase__ : int = 16 ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 2 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : float = 0.0 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : float = 1e-5 ,lowerCamelCase__ : str = "gelu" ,lowerCamelCase__ : float = 0.02 ,lowerCamelCase__ : float = 1e-1_2 ,lowerCamelCase__ : int = 224 ,lowerCamelCase__ : float = 1e-0_5 ,**lowerCamelCase__ : str ,) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_expansion_ratio SCREAMING_SNAKE_CASE = downsamples SCREAMING_SNAKE_CASE = dim SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = resolution SCREAMING_SNAKE_CASE = pool_size SCREAMING_SNAKE_CASE = downsample_patch_size SCREAMING_SNAKE_CASE = downsample_stride SCREAMING_SNAKE_CASE = downsample_pad SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = num_metaad_blocks SCREAMING_SNAKE_CASE = distillation SCREAMING_SNAKE_CASE = use_layer_scale SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = batch_norm_eps
296
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Any ) -> Optional[Any]: UpperCamelCase : Any = nn.functional.normalize(snake_case__ ) UpperCamelCase : Optional[Any] = nn.functional.normalize(snake_case__ ) return torch.mm(snake_case__ , normalized_text_embeds.t() ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Tuple = CLIPConfig UpperCAmelCase__ : Optional[Any] = ["CLIPEncoderLayer"] def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: super().__init__(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = CLIPVisionModel(config.vision_config ) UpperCamelCase : Any = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = nn.Parameter(torch.ones(17, config.projection_dim ), requires_grad=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = nn.Parameter(torch.ones(3, config.projection_dim ), requires_grad=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = nn.Parameter(torch.ones(17 ), requires_grad=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = nn.Parameter(torch.ones(3 ), requires_grad=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : Optional[int] = self.vision_model(SCREAMING_SNAKE_CASE_ )[1] # pooled_output UpperCamelCase : int = self.visual_projection(SCREAMING_SNAKE_CASE_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Union[str, Any] = cosine_distance(SCREAMING_SNAKE_CASE_, self.special_care_embeds ).cpu().float().numpy() UpperCamelCase : List[str] = cosine_distance(SCREAMING_SNAKE_CASE_, self.concept_embeds ).cpu().float().numpy() UpperCamelCase : str = [] UpperCamelCase : Dict = image_embeds.shape[0] for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase : Optional[Any] = special_cos_dist[i][concept_idx] UpperCamelCase : int = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase : str = round(concept_cos - concept_threshold + adjustment, 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) UpperCamelCase : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase : int = cos_dist[i][concept_idx] UpperCamelCase : Optional[Any] = self.concept_embeds_weights[concept_idx].item() UpperCamelCase : Optional[int] = round(concept_cos - concept_threshold + adjustment, 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(SCREAMING_SNAKE_CASE_ ) result.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Union[str, Any] = self.vision_model(SCREAMING_SNAKE_CASE_ )[1] # pooled_output UpperCamelCase : str = self.visual_projection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = cosine_distance(SCREAMING_SNAKE_CASE_, self.special_care_embeds ) UpperCamelCase : Union[str, Any] = cosine_distance(SCREAMING_SNAKE_CASE_, self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Dict = 0.0 UpperCamelCase : Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase : List[str] = torch.any(special_scores > 0, dim=1 ) UpperCamelCase : List[Any] = special_care * 0.01 UpperCamelCase : Union[str, Any] = special_adjustment.unsqueeze(1 ).expand(-1, cos_dist.shape[1] ) UpperCamelCase : List[str] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase : Union[str, Any] = torch.any(concept_scores > 0, dim=1 ) return images, has_nsfw_concepts
103
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], ) -> List[str]: UpperCamelCase : Optional[int] = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase : List[Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : int = num_channels UpperCamelCase : int = image_size UpperCamelCase : List[Any] = min_resolution UpperCamelCase : int = max_resolution UpperCamelCase : Any = do_resize UpperCamelCase : Optional[int] = size UpperCamelCase : List[str] = do_normalize UpperCamelCase : Optional[Any] = image_mean UpperCamelCase : Tuple = image_std def snake_case_ ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = ViTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def snake_case_ ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> int: # Initialize image_processor UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : List[str] = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, Image.Image ) # Test not batched input UpperCamelCase : str = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : Optional[Any] = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) def snake_case_ ( self ) -> str: # Initialize image_processor UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_, numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, np.ndarray ) # Test not batched input UpperCamelCase : Dict = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) def snake_case_ ( self ) -> Tuple: # Initialize image_processor UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : int = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_, torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) # Test not batched input UpperCamelCase : Optional[int] = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : int = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), )
103
1
import argparse import json from tqdm import tqdm def lowerCamelCase__ ( ) -> Tuple: __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=snake_case_ , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=snake_case_ , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=snake_case_ , help='''where to store parsed gold_data_path file''' , ) __snake_case = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: __snake_case = json.load(snake_case_ ) for dpr_record in tqdm(snake_case_ ): __snake_case = dpr_record['''question'''] __snake_case = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(snake_case_ ) + '''\n''' ) if __name__ == "__main__": main()
24
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCamelCase__ : Optional[Any] = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a , a , a = _str_to_version_tuple(self.version_str ) def __repr__( self : Any ): '''simple docstring''' return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return self.major, self.minor, self.patch def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' if isinstance(__lowerCamelCase ,__lowerCamelCase ): return Version(__lowerCamelCase ) elif isinstance(__lowerCamelCase ,__lowerCamelCase ): return other raise TypeError(F"""{other} (type {type(__lowerCamelCase )}) cannot be compared to version.""" ) def __eq__( self : Union[str, Any] ,__lowerCamelCase : int ): '''simple docstring''' try: a = self._validate_operand(__lowerCamelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = self._validate_operand(__lowerCamelCase ) return self.tuple < other.tuple def __hash__( self : str ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return self.version_str def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" a = _VERSION_REG.match(snake_case_ ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(snake_case_ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return ".".join(str(snake_case_ ) for v in version_tuple )
357
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): a = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = '''a''' * 1_0_0_0 + '''.lock''' a = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 a = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
330
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase_( lowerCamelCase_ ) -> Any: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Dict = TFVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Dict = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Optional[int] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : Dict = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Tuple: """simple docstring""" _lowercase , _lowercase : Optional[int] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Any = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Union[str, Any] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : Union[str, Any] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Optional[int] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : str = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : List[Any] = after_output[0].numpy() _lowercase : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Dict: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : int = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : Dict = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Optional[int] = to_atuple(vision_model.config.patch_size) _lowercase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : Any = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[Any] = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @slow def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Optional[int] = after_outputs[0].numpy() _lowercase : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-random-bert') _lowercase : Union[str, Any] = 13 _lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : str = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : int = TFViTModel(lowerCamelCase, name='vision_model') _lowercase : Union[str, Any] = TFBertModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = TFViTModelTester(self) _lowercase : List[Any] = TFBertModelTester(self) _lowercase : Any = vit_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : str = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf', 'hf-internal-testing/tiny-random-roberta') _lowercase : Dict = 13 _lowercase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : int = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : Tuple = random_attention_mask([batch_size, 4]) _lowercase : Optional[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase , _lowercase : Dict = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : List[Any] = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : List[Any] = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowercase : Dict = to_atuple(vision_model.config.image_size) _lowercase : List[str] = to_atuple(vision_model.config.patch_size) _lowercase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Any = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = TFDeiTModel(lowerCamelCase, name='vision_model') _lowercase : str = TFRobertaModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = TFDeiTModelTester(self) _lowercase : Tuple = TFRobertaModelTester(self) _lowercase : Any = vit_model_tester.prepare_config_and_inputs() _lowercase : List[Any] = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Optional[Any] = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf', 'hf-internal-testing/tiny-random-bert') _lowercase : List[Any] = 13 _lowercase : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : List[str] = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : List[Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : str = TFCLIPVisionModel(lowerCamelCase, name='vision_model') _lowercase : List[str] = TFBertModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Any = TFCLIPVisionModelTester(self) _lowercase : Tuple = TFBertModelTester(self) _lowercase : Optional[Any] = clip_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Any = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian', logit_scale_init_value=1.0, from_pt=lowerCamelCase) _lowercase : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : int = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : Union[str, Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Any = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy(), lowerCamelCase, atol=1E-3))
21
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) # Initialize Result __SCREAMING_SNAKE_CASE : Tuple = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase__ : int = [] UpperCamelCase__ : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): UpperCamelCase__ : Tuple = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f"Denomination {i}: ").strip())) UpperCamelCase__ : str = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase__ : List[Any] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase__ : str = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f"Following is minimal change for {value}: ") UpperCamelCase__ : int = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
112
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) __lowercase = '''''' while len(A__ ) % 3 != 0: __lowercase = '''0''' + bin_string __lowercase = [ bin_string[index : index + 3] for index in range(len(A__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowercase = 0 for index, val in enumerate(A__ ): oct_val += int(2 ** (2 - index) * int(A__ ) ) oct_string += str(A__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
52
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = RobertaConfig SCREAMING_SNAKE_CASE : Optional[Any] = 'roberta' def __init__( self : List[Any] ,lowercase__ : Optional[Any] ): super().__init__(lowercase__ ) __lowercase = RobertaEmbeddings(lowercase__ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = RobertaConfig SCREAMING_SNAKE_CASE : Any = 'roberta' def __init__( self : Union[str, Any] ,lowercase__ : int ): super().__init__(lowercase__ ) __lowercase = config.num_labels __lowercase = config.num_hidden_layers __lowercase = DeeRobertaModel(lowercase__ ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[int]=None ,lowercase__ : int=None ,lowercase__ : Dict=None ,lowercase__ : List[Any]=None ,lowercase__ : str=None ,lowercase__ : List[Any]=-1 ,lowercase__ : Tuple=False ,): __lowercase = self.num_layers try: __lowercase = self.roberta( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,position_ids=lowercase__ ,head_mask=lowercase__ ,inputs_embeds=lowercase__ ,) __lowercase = outputs[1] __lowercase = self.dropout(lowercase__ ) __lowercase = self.classifier(lowercase__ ) __lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowercase = e.message __lowercase = e.exit_layer __lowercase = outputs[0] if not self.training: __lowercase = entropy(lowercase__ ) __lowercase = [] __lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits __lowercase = [] for highway_exit in outputs[-1]: __lowercase = highway_exit[0] if not self.training: highway_logits_all.append(lowercase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(lowercase__ ) if train_highway: __lowercase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowercase = (loss,) + outputs if not self.training: __lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
52
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = ["image_processor", "tokenizer"] __lowerCAmelCase = "AutoImageProcessor" __lowerCAmelCase = "AutoTokenizer" def __init__( self , __A , __A ) -> List[str]: super().__init__(__A , __A ) a =self.image_processor def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: a =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: a =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> str: return self.tokenizer.batch_decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> str: return self.tokenizer.decode(*__A , **__A ) @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return ["input_ids", "attention_mask", "pixel_values"]
81
from heapq import heappop, heappush import numpy as np def __lowercase ( a__ , a__ , a__ , a__ , ) -> tuple[float | int, list[tuple[int, int]]]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = grid.shape __SCREAMING_SNAKE_CASE = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [(0, source)], set() __SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=a__ ) __SCREAMING_SNAKE_CASE = None while queue: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heappop(a__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = predecessors[x, y] path.append(a__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a__ ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a__ , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE = dist + 1 __SCREAMING_SNAKE_CASE = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
257
0
import numpy class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __SCREAMING_SNAKE_CASE = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __SCREAMING_SNAKE_CASE = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __SCREAMING_SNAKE_CASE = numpy.random.rand(3 , 1 ) # Real output values provided. __SCREAMING_SNAKE_CASE = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __SCREAMING_SNAKE_CASE = numpy.zeros(output_array.shape ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __SCREAMING_SNAKE_CASE = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __SCREAMING_SNAKE_CASE = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _A ( self , _A , _A , _A ): '''simple docstring''' for iteration in range(1 , iterations + 1 ): __SCREAMING_SNAKE_CASE = self.feedforward() self.back_propagation() if give_loss: __SCREAMING_SNAKE_CASE = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = input_arr __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __lowercase ( a__ ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def __lowercase ( a__ ) -> numpy.ndarray: return (value) * (1 - (value)) def __lowercase ( ) -> int: __SCREAMING_SNAKE_CASE = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __SCREAMING_SNAKE_CASE = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __SCREAMING_SNAKE_CASE = TwoHiddenLayerNeuralNetwork( input_array=a__ , output_array=a__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a__ , iterations=10 , give_loss=a__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
118
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : List[str] ={ '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =[ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
1
def UpperCamelCase( __UpperCamelCase : int = 1000 ): return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
103
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCamelCase( __UpperCamelCase : List[str] ): lowerCAmelCase_ : List[str] = SwinvaConfig() lowerCAmelCase_ : List[str] = swinva_name.split('''_''' ) lowerCAmelCase_ : str = name_split[1] if "to" in name_split[3]: lowerCAmelCase_ : List[Any] = int(name_split[3][-3:] ) else: lowerCAmelCase_ : List[Any] = int(name_split[3] ) if "to" in name_split[2]: lowerCAmelCase_ : List[str] = int(name_split[2][-2:] ) else: lowerCAmelCase_ : int = int(name_split[2][6:] ) if model_size == "tiny": lowerCAmelCase_ : Any = 96 lowerCAmelCase_ : List[str] = (2, 2, 6, 2) lowerCAmelCase_ : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase_ : List[str] = 96 lowerCAmelCase_ : Any = (2, 2, 18, 2) lowerCAmelCase_ : Dict = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase_ : Union[str, Any] = 128 lowerCAmelCase_ : List[Any] = (2, 2, 18, 2) lowerCAmelCase_ : Tuple = (4, 8, 16, 32) else: lowerCAmelCase_ : Optional[Any] = 192 lowerCAmelCase_ : List[Any] = (2, 2, 18, 2) lowerCAmelCase_ : List[Any] = (6, 12, 24, 48) if "to" in swinva_name: lowerCAmelCase_ : Union[str, Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): lowerCAmelCase_ : Optional[int] = 21841 lowerCAmelCase_ : Any = '''huggingface/label-files''' lowerCAmelCase_ : Tuple = '''imagenet-22k-id2label.json''' lowerCAmelCase_ : Any = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCAmelCase_ : Optional[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ : str = idalabel lowerCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} else: lowerCAmelCase_ : Optional[int] = 1000 lowerCAmelCase_ : Tuple = '''huggingface/label-files''' lowerCAmelCase_ : Union[str, Any] = '''imagenet-1k-id2label.json''' lowerCAmelCase_ : Dict = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCAmelCase_ : int = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = idalabel lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = img_size lowerCAmelCase_ : Dict = num_classes lowerCAmelCase_ : Dict = embed_dim lowerCAmelCase_ : Optional[Any] = depths lowerCAmelCase_ : Optional[int] = num_heads lowerCAmelCase_ : Dict = window_size return config def UpperCamelCase( __UpperCamelCase : List[str] ): if "patch_embed.proj" in name: lowerCAmelCase_ : Dict = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ : List[Any] = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCAmelCase_ : int = '''encoder.''' + name if "attn.proj" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: lowerCAmelCase_ : Tuple = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase_ : Tuple = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "q_bias" in name: lowerCAmelCase_ : Tuple = name.replace('''q_bias''' ,'''query.bias''' ) if "k_bias" in name: lowerCAmelCase_ : Tuple = name.replace('''k_bias''' ,'''key.bias''' ) if "v_bias" in name: lowerCAmelCase_ : int = name.replace('''v_bias''' ,'''value.bias''' ) if "cpb_mlp" in name: lowerCAmelCase_ : Any = name.replace('''cpb_mlp''' ,'''continuous_position_bias_mlp''' ) if name == "norm.weight": lowerCAmelCase_ : Dict = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ : Any = '''layernorm.bias''' if "head" in name: lowerCAmelCase_ : int = name.replace('''head''' ,'''classifier''' ) else: lowerCAmelCase_ : Union[str, Any] = '''swinv2.''' + name return name def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ : Optional[int] = orig_state_dict.pop(__UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase_ : Dict = key.split('''.''' ) lowerCAmelCase_ : Any = int(key_split[1] ) lowerCAmelCase_ : Optional[int] = int(key_split[3] ) lowerCAmelCase_ : Dict = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase_ : Optional[Any] = val[:dim, :] lowerCAmelCase_ : Any = val[dim : dim * 2, :] lowerCAmelCase_ : List[Any] = val[-dim:, :] else: lowerCAmelCase_ : Dict = val[:dim] lowerCAmelCase_ : Union[str, Any] = val[ dim : dim * 2 ] lowerCAmelCase_ : Dict = val[-dim:] else: lowerCAmelCase_ : Optional[Any] = val return orig_state_dict def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : Dict ): lowerCAmelCase_ : Optional[Any] = timm.create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() lowerCAmelCase_ : List[str] = get_swinva_config(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = SwinvaForImageClassification(__UpperCamelCase ) model.eval() lowerCAmelCase_ : str = convert_state_dict(timm_model.state_dict() ,__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) lowerCAmelCase_ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' ,'''-''' ) ) ) lowerCAmelCase_ : Union[str, Any] = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) lowerCAmelCase_ : Optional[Any] = image_processor(images=__UpperCamelCase ,return_tensors='''pt''' ) lowerCAmelCase_ : List[str] = timm_model(inputs['''pixel_values'''] ) lowerCAmelCase_ : Union[str, Any] = model(**__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase ,__UpperCamelCase ) ,organization='''nandwalritik''' ,commit_message='''Add model''' ,) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : Optional[Any] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
103
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase_ ( a , a , a): lowerCamelCase__ = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self, __a, __a, __a = None, __a = 5_0257, __a = 1024, __a = 768, __a = 12, __a = 12, __a = None, __a = "gelu_new", __a = 0.1, __a = 0.1, __a = 0.1, __a = 1E-5, __a = 0.02, __a = True, __a = True, __a = False, __a = False, ): '''simple docstring''' super().__init__() _lowerCAmelCase : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal.") _lowerCAmelCase : Union[str, Any] = prefix_inner_dim _lowerCAmelCase : List[str] = prefix_hidden_dim _lowerCAmelCase : Optional[Any] = ( nn.Linear(self.prefix_inner_dim, self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCAmelCase : str = ( nn.Linear(self.prefix_hidden_dim, __a) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCAmelCase : List[str] = GPTaConfig( vocab_size=__a, n_positions=__a, n_embd=__a, n_layer=__a, n_head=__a, n_inner=__a, activation_function=__a, resid_pdrop=__a, embd_pdrop=__a, attn_pdrop=__a, layer_norm_epsilon=__a, initializer_range=__a, scale_attn_weights=__a, use_cache=__a, scale_attn_by_inverse_layer_idx=__a, reorder_and_upcast_attn=__a, ) _lowerCAmelCase : Optional[Any] = GPTaLMHeadModel(__a) def snake_case__ ( self, __a, __a, __a = None, __a = None, ): '''simple docstring''' _lowerCAmelCase : Tuple = self.transformer.transformer.wte(__a) _lowerCAmelCase : Tuple = self.encode_prefix(__a) _lowerCAmelCase : Any = self.decode_prefix(__a) _lowerCAmelCase : int = torch.cat((prefix_embeds, embedding_text), dim=1) if labels is not None: _lowerCAmelCase : Union[str, Any] = self.get_dummy_token(input_ids.shape[0], input_ids.device) _lowerCAmelCase : Union[str, Any] = torch.cat((dummy_token, input_ids), dim=1) _lowerCAmelCase : int = self.transformer(inputs_embeds=__a, labels=__a, attention_mask=__a) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.zeros(__a, self.prefix_length, dtype=torch.intaa, device=__a) def snake_case__ ( self, __a): '''simple docstring''' return self.encode_prefix(__a) @torch.no_grad() def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = torch.split(__a, 1, dim=0) _lowerCAmelCase : int = [] _lowerCAmelCase : List[Any] = [] for feature in features: _lowerCAmelCase : Any = self.decode_prefix(feature.to(__a)) # back to the clip feature # Only support beam search for now _lowerCAmelCase , _lowerCAmelCase : Dict = self.generate_beam( input_embeds=__a, device=__a, eos_token_id=__a) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) _lowerCAmelCase : int = torch.stack(__a) _lowerCAmelCase : List[str] = torch.stack(__a) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self, __a=None, __a=None, __a=None, __a = 5, __a = 67, __a = 1.0, __a = None, ): '''simple docstring''' _lowerCAmelCase : str = eos_token_id _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Optional[Any] = torch.ones(__a, device=__a, dtype=torch.int) _lowerCAmelCase : Dict = torch.zeros(__a, device=__a, dtype=torch.bool) if input_embeds is not None: _lowerCAmelCase : Dict = input_embeds else: _lowerCAmelCase : Any = self.transformer.transformer.wte(__a) for i in range(__a): _lowerCAmelCase : Tuple = self.transformer(inputs_embeds=__a) _lowerCAmelCase : Dict = outputs.logits _lowerCAmelCase : Optional[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowerCAmelCase : Any = logits.softmax(-1).log() if scores is None: _lowerCAmelCase , _lowerCAmelCase : Dict = logits.topk(__a, -1) _lowerCAmelCase : Tuple = generated.expand(__a, *generated.shape[1:]) _lowerCAmelCase , _lowerCAmelCase : Dict = next_tokens.permute(1, 0), scores.squeeze(0) if tokens is None: _lowerCAmelCase : Dict = next_tokens else: _lowerCAmelCase : Tuple = tokens.expand(__a, *tokens.shape[1:]) _lowerCAmelCase : str = torch.cat((tokens, next_tokens), dim=1) else: _lowerCAmelCase : Union[str, Any] = -float(np.inf) _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : List[Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowerCAmelCase : List[Any] = scores_sum / seq_lengths[:, None] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = scores_sum_average.view(-1).topk(__a, -1) _lowerCAmelCase : List[Any] = next_tokens // scores_sum.shape[1] _lowerCAmelCase : List[Any] = seq_lengths[next_tokens_source] _lowerCAmelCase : Dict = next_tokens % scores_sum.shape[1] _lowerCAmelCase : Tuple = next_tokens.unsqueeze(1) _lowerCAmelCase : List[str] = tokens[next_tokens_source] _lowerCAmelCase : str = torch.cat((tokens, next_tokens), dim=1) _lowerCAmelCase : Optional[int] = generated[next_tokens_source] _lowerCAmelCase : str = scores_sum_average * seq_lengths _lowerCAmelCase : Tuple = is_stopped[next_tokens_source] _lowerCAmelCase : Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) _lowerCAmelCase : Union[str, Any] = torch.cat((generated, next_token_embed), dim=1) _lowerCAmelCase : Optional[Any] = is_stopped + next_tokens.eq(__a).squeeze() if is_stopped.all(): break _lowerCAmelCase : Dict = scores / seq_lengths _lowerCAmelCase : List[Any] = scores.argsort(descending=__a) # tokens tensors are already padded to max_seq_length _lowerCAmelCase : Optional[int] = [tokens[i] for i in order] _lowerCAmelCase : int = torch.stack(__a, dim=0) _lowerCAmelCase : int = torch.tensor([seq_lengths[i] for i in order], dtype=seq_lengths.dtype) return output_texts, seq_lengths
300
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> Optional[Any]: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCamelCase )] ) lowercase__ = np.array(_UpperCamelCase ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCamelCase ) ) , x.transpose() ) , _UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> Tuple: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( _UpperCamelCase , exog=_UpperCamelCase , order=_UpperCamelCase , seasonal_order=_UpperCamelCase ) lowercase__ = model.fit(disp=_UpperCamelCase , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(_UpperCamelCase ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> Any: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCamelCase , _UpperCamelCase ) lowercase__ = regressor.predict(_UpperCamelCase ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> str: """simple docstring""" train_user.sort() lowercase__ = np.percentile(_UpperCamelCase , 25 ) lowercase__ = np.percentile(_UpperCamelCase , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> Any: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(_UpperCamelCase ) - abs(_UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : int = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : Any = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Optional[Any] = Normalizer().fit_transform(data_input_df.values) # split data A : int = normalize_df[:, 2].tolist() A : Dict = normalize_df[:, 0].tolist() A : Tuple = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : List[Any] = normalize_df[:, [1, 2]].tolist() A : int = x[: len(x) - 1] A : int = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : str = total_user[: len(total_user) - 1] A : List[Any] = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : str = total_user[len(total_user) - 1 :] A : Optional[int] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Tuple = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : List[str] = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _a ( a_ ): A = 42 class _a ( a_ , a_ ): @register_to_config def __init__(self, SCREAMING_SNAKE_CASE_ = 16, SCREAMING_SNAKE_CASE_ = 88, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = 32, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "geglu", SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, ) -> Tuple: super().__init__() UpperCAmelCase_: Optional[Any] = num_attention_heads UpperCAmelCase_: Optional[int] = attention_head_dim UpperCAmelCase_: Optional[Any] = num_attention_heads * attention_head_dim UpperCAmelCase_: Union[str, Any] = in_channels UpperCAmelCase_: Optional[int] = torch.nn.GroupNorm(num_groups=lowercase_, num_channels=lowercase_, eps=1E-6, affine=lowercase_ ) UpperCAmelCase_: List[str] = nn.Linear(lowercase_, lowercase_ ) # 3. Define transformers blocks UpperCAmelCase_: Any = nn.ModuleList( [ BasicTransformerBlock( lowercase_, lowercase_, lowercase_, dropout=lowercase_, cross_attention_dim=lowercase_, activation_fn=lowercase_, attention_bias=lowercase_, double_self_attention=lowercase_, norm_elementwise_affine=lowercase_, ) for d in range(lowercase_ ) ] ) UpperCAmelCase_: Union[str, Any] = nn.Linear(lowercase_, lowercase_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = True, ) -> str: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: str = hidden_states.shape UpperCAmelCase_: Union[str, Any] = batch_frames // num_frames UpperCAmelCase_: Optional[int] = hidden_states UpperCAmelCase_: Optional[Any] = hidden_states[None, :].reshape(lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) UpperCAmelCase_: int = hidden_states.permute(0, 2, 1, 3, 4 ) UpperCAmelCase_: Optional[int] = self.norm(lowercase_ ) UpperCAmelCase_: Union[str, Any] = hidden_states.permute(0, 3, 4, 2, 1 ).reshape(batch_size * height * width, lowercase_, lowercase_ ) UpperCAmelCase_: Any = self.proj_in(lowercase_ ) # 2. Blocks for block in self.transformer_blocks: UpperCAmelCase_: List[Any] = block( lowercase_, encoder_hidden_states=lowercase_, timestep=lowercase_, cross_attention_kwargs=lowercase_, class_labels=lowercase_, ) # 3. Output UpperCAmelCase_: List[Any] = self.proj_out(lowercase_ ) UpperCAmelCase_: Tuple = ( hidden_states[None, None, :] .reshape(lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) .permute(0, 3, 4, 1, 2 ) .contiguous() ) UpperCAmelCase_: Any = hidden_states.reshape(lowercase_, lowercase_, lowercase_, lowercase_ ) UpperCAmelCase_: Optional[int] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowercase_ )
364
from typing import TYPE_CHECKING from ....utils import _LazyModule a : Tuple = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
82
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A__ ( __snake_case ): _UpperCAmelCase :int = 'gpt_neo' _UpperCAmelCase :int = ['past_key_values'] _UpperCAmelCase :int = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , A_=5_0257 , A_=2048 , A_=2048 , A_=24 , A_=[[["global", "local"], 12]] , A_=16 , A_=None , A_=256 , A_="gelu_new" , A_=0.0 , A_=0.0 , A_=0.0 , A_=0.1 , A_=1e-5 , A_=0.02 , A_=True , A_=5_0256 , A_=5_0256 , **A_ , ): '''simple docstring''' UpperCamelCase : List[Any] = vocab_size UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : List[Any] = hidden_size UpperCamelCase : str = num_layers UpperCamelCase : Any = num_heads UpperCamelCase : Optional[int] = intermediate_size UpperCamelCase : int = window_size UpperCamelCase : Any = activation_function UpperCamelCase : List[Any] = resid_dropout UpperCamelCase : List[str] = embed_dropout UpperCamelCase : str = attention_dropout UpperCamelCase : Optional[Any] = classifier_dropout UpperCamelCase : List[Any] = layer_norm_epsilon UpperCamelCase : Any = initializer_range UpperCamelCase : Union[str, Any] = use_cache UpperCamelCase : Optional[Any] = bos_token_id UpperCamelCase : List[Any] = eos_token_id UpperCamelCase : Optional[int] = attention_types UpperCamelCase : Any = self.expand_attention_types_params(A_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) @staticmethod def __UpperCamelCase( A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: import torch UpperCamelCase : List[str] = input.size() UpperCamelCase : Any = len(_lowerCAmelCase ) UpperCamelCase : Dict = shape[dimension] UpperCamelCase : Optional[Any] = torch.arange(0 , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : str = torch.div(sizedim - size , _lowerCAmelCase , rounding_mode="floor" ) + 1 UpperCamelCase : Union[str, Any] = torch.arange(_lowerCAmelCase ) + low_indices[:min_length][:, None] UpperCamelCase : Dict = [slice(_lowerCAmelCase )] * rank UpperCamelCase : Dict = indices UpperCamelCase : str = input[s] UpperCamelCase : Any = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_lowerCAmelCase ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: import torch UpperCamelCase : Optional[int] = torch.arange(1 , _lowerCAmelCase ) UpperCamelCase : str = torch.remainder(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Optional[int] = remainders == 0 UpperCamelCase : Tuple = candidates[divisor_indices] UpperCamelCase : int = torch.max(_lowerCAmelCase ) return largest_divisor, torch.div(_lowerCAmelCase , _lowerCAmelCase , rounding_mode="floor" ) class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction="inputs" ) UpperCamelCase : Optional[int] = {0: "batch", 1: "past_sequence + sequence"} else: UpperCamelCase : str = {0: "batch", 1: "sequence"} return common_inputs @property def __UpperCamelCase( self ): '''simple docstring''' return self._config.num_heads def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : List[str] = super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : int = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Optional[int] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase : Optional[Any] = seqlen + 2 UpperCamelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase : Any = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] UpperCamelCase : Any = common_inputs["attention_mask"] if self.use_past: UpperCamelCase : Any = ordered_inputs["attention_mask"].dtype UpperCamelCase : List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def __UpperCamelCase( self ): '''simple docstring''' return 13
52
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : str = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class A__ ( __snake_case , __snake_case ): _UpperCAmelCase :Optional[int] = 'convnextv2' def __init__( self , A_=3 , A_=4 , A_=4 , A_=None , A_=None , A_="gelu" , A_=0.02 , A_=1e-12 , A_=0.0 , A_=224 , A_=None , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Dict = num_channels UpperCamelCase : Union[str, Any] = patch_size UpperCamelCase : Union[str, Any] = num_stages UpperCamelCase : List[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCamelCase : List[str] = [3, 3, 9, 3] if depths is None else depths UpperCamelCase : Dict = hidden_act UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : Tuple = layer_norm_eps UpperCamelCase : str = drop_path_rate UpperCamelCase : List[str] = image_size UpperCamelCase : List[str] = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase , UpperCamelCase : str = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
52
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version SCREAMING_SNAKE_CASE : str = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize SCREAMING_SNAKE_CASE : Optional[Any] = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" SCREAMING_SNAKE_CASE : List[str] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" SCREAMING_SNAKE_CASE : str = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def UpperCamelCase ( self , UpperCamelCase_ ): import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=0.9 , UpperCamelCase_=3 , UpperCamelCase_=0.5 ): if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase_ :int = [ meteor_score.single_meteor_score( word_tokenize(__UpperCAmelCase ) , word_tokenize(__UpperCAmelCase ) , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , gamma=__UpperCAmelCase ) for ref, pred in zip(__UpperCAmelCase , __UpperCAmelCase ) ] else: lowercase_ :Dict = [ meteor_score.single_meteor_score(__UpperCAmelCase , __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , gamma=__UpperCAmelCase ) for ref, pred in zip(__UpperCAmelCase , __UpperCAmelCase ) ] return {"meteor": np.mean(__UpperCAmelCase )}
366
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): lowercase_ :int = logging.get_logger() # the current default level is logging.WARNING lowercase_ :List[str] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Tuple = logging.get_verbosity() lowercase_ :str = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Tuple = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def UpperCamelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowercase_ :Any = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Optional[Any] = os.getenv('''TRANSFORMERS_VERBOSITY''' , UpperCamelCase_ ) lowercase_ :Any = logging.log_levels[env_level_str] lowercase_ :Optional[int] = logging.get_verbosity() self.assertEqual( UpperCamelCase_ , UpperCamelCase_ , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level lowercase_ :str = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def UpperCamelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() lowercase_ :Any = logging.logging.getLogger() with CaptureLogger(UpperCamelCase_ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def UpperCamelCase ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() lowercase_ :Optional[int] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Any = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
252
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) def a__ ( __UpperCamelCase , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE_ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_ = "" else: SCREAMING_SNAKE_CASE_ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-config.hidden_size :] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val def a__ ( ): SCREAMING_SNAKE_CASE_ = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE_ = 1_0_0_0 SCREAMING_SNAKE_CASE_ = "huggingface/label-files" SCREAMING_SNAKE_CASE_ = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): SCREAMING_SNAKE_CASE_ = 1_9_2 SCREAMING_SNAKE_CASE_ = 7_6_8 SCREAMING_SNAKE_CASE_ = 1_2 SCREAMING_SNAKE_CASE_ = 3 elif deit_name[9:].startswith("small" ): SCREAMING_SNAKE_CASE_ = 3_8_4 SCREAMING_SNAKE_CASE_ = 1_5_3_6 SCREAMING_SNAKE_CASE_ = 1_2 SCREAMING_SNAKE_CASE_ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): SCREAMING_SNAKE_CASE_ = 1_0_2_4 SCREAMING_SNAKE_CASE_ = 4_0_9_6 SCREAMING_SNAKE_CASE_ = 2_4 SCREAMING_SNAKE_CASE_ = 1_6 # load original model from timm SCREAMING_SNAKE_CASE_ = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_ = timm_model.state_dict() SCREAMING_SNAKE_CASE_ = create_rename_keys(__UpperCamelCase , __UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE_ = DeiTForImageClassificationWithTeacher(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE_ = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE_ = DeiTImageProcessor(size=__UpperCamelCase , crop_size=config.image_size ) SCREAMING_SNAKE_CASE_ = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE_ = encoding["pixel_values"] SCREAMING_SNAKE_CASE_ = model(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1E-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A : Dict = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
118
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = "utf-8" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 1_0 << 2_0 # 10MB lowerCamelCase__ = None class lowerCamelCase (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase__ = JsonConfig def __A ( self : Optional[int] ) -> Optional[int]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self : List[str] , __magic_name__ : str ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"files": files} ) ) return splits def __A ( self : str , __magic_name__ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(__magic_name__ ).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def __A ( self : List[str] , __magic_name__ : List[str] ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("utf-8" ) try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
118
1
from jiwer import compute_measures import datasets _snake_case = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _snake_case = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" _snake_case = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a__ ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def a__ ( self , _a=None , _a=None , _a=False ) -> Tuple: if concatenate_texts: return compute_measures(_a , _a )["wer"] else: _A : Tuple = 0 _A : int = 0 for prediction, reference in zip(_a , _a ): _A : List[str] = compute_measures(_a , _a ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
343
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :List[Any]=0 ): '''simple docstring''' A_ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case ) ) A_ : str = np.random.RandomState(snake_case ) A_ : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case ) A_ : str = self.get_dummy_inputs() A_ : int = pipe(**snake_case ).images A_ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A_ : Optional[Any] = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A_ : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A_ : str = self.get_dummy_inputs() A_ : Tuple = pipe(**snake_case ).images A_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : Optional[int] = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A_ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) # warmup pass to apply optimizations A_ : Dict = pipe(**self.get_dummy_inputs() ) A_ : Any = self.get_dummy_inputs() A_ : List[str] = pipe(**snake_case ).images A_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : List[str] = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A_ : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) A_ : Tuple = self.get_dummy_inputs() A_ : str = pipe(**snake_case ).images A_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : int = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A_ : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) A_ : str = self.get_dummy_inputs() A_ : Optional[Any] = pipe(**snake_case ).images A_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : Union[str, Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) A_ : List[Any] = self.get_dummy_inputs() A_ : Union[str, Any] = pipe(**snake_case ).images A_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : Any = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : int = ort.SessionOptions() A_ : int = False return options def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A_ : Union[str, Any] = init_image.resize((768, 512) ) # using the PNDM scheduler by default A_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=snake_case , feature_extractor=snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case ) A_ : Optional[int] = "A fantasy landscape, trending on artstation" A_ : Any = np.random.RandomState(0 ) A_ : Any = pipe( prompt=snake_case , image=snake_case , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case , output_type="np" , ) A_ : Tuple = output.images A_ : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A_ : List[str] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A_ : Optional[int] = init_image.resize((768, 512) ) A_ : Tuple = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) A_ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case ) A_ : Any = "A fantasy landscape, trending on artstation" A_ : Tuple = np.random.RandomState(0 ) A_ : Union[str, Any] = pipe( prompt=snake_case , image=snake_case , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case , output_type="np" , ) A_ : Dict = output.images A_ : Union[str, Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A_ : Tuple = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
300
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
1
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCAmelCase_ : Dict = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowerCAmelCase_ : Tuple = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowerCAmelCase_ : Dict = 'zero2' lowerCAmelCase_ : Optional[Any] = 'zero3' lowerCAmelCase_ : Optional[Any] = [ZEROa, ZEROa] def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : List[Any] ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _a = parameterized.to_safe_name("_".join(str(lowercase ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test lowerCAmelCase_ : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @parameterized.expand(__a , name_func=__a ) def UpperCamelCase__ ( self : Dict , __a : Union[str, Any] , __a : Any ): self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] ): self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @parameterized.expand(__a , name_func=__a ) def UpperCamelCase__ ( self : List[str] , __a : List[Any] , __a : Tuple ): self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def UpperCamelCase__ ( self : Optional[int] , __a : int , __a : str ): self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) def UpperCamelCase__ ( self : str , __a : Union[str, Any] ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCamelCase__ ( self : Optional[Any] , __a : str , __a : str , __a : int = 10 , __a : bool = True , __a : bool = True , __a : bool = True , ): _a = models[model] _a = self.run_trainer( stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , ) self.do_checks(__a ) return output_dir def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : str , __a : int = 10 , __a : int = 1 , __a : bool = True , __a : bool = True , ): _a = self.get_auto_remove_tmp_dir("./xxx" , after=__a ) _a = f'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(__a )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _a = f'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() _a = [f'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] _a = self.get_launcher(__a ) _a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__a , env=self.get_env() ) return output_dir def UpperCamelCase__ ( self : int , __a : Union[str, Any]=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _a = min(2 , get_gpu_count() ) if distributed else 1 return f'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
346
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : str = '▁' lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =BertGenerationTokenizer __a =False __a =True def UpperCamelCase__ ( self : Optional[Any] ): super().setUp() _a = BertGenerationTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Tuple ): _a = "<s>" _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ ( self : List[str] ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(__a ) , 10_02 ) def UpperCamelCase__ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def UpperCamelCase__ ( self : Tuple ): _a = BertGenerationTokenizer(__a , keep_accents=__a ) _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , ) _a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _a = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase__ ( self : Any ): return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def UpperCamelCase__ ( self : List[str] ): _a = "Hello World!" _a = [1_85_36, 22_60, 1_01] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ ( self : Optional[int] ): _a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _a = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def UpperCamelCase__ ( self : Tuple ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _a = list(self.big_tokenizer.get_vocab().keys() )[:10] _a = " ".join(__a ) _a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a ) _a = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a ) _a = BertGenerationConfig() _a = BertGenerationEncoder(__a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def UpperCamelCase__ ( self : Optional[int] ): # fmt: off _a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
346
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCamelCase__: UpperCAmelCase__ : List[Any] = 'dummy_data' UpperCAmelCase__ : str = 'datasets' UpperCAmelCase__ : Tuple = False def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ): __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(UpperCamelCase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def lowerCAmelCase__ ( self: List[Any] ): if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self: str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self: Tuple ): if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self: str ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return path def lowerCAmelCase__ ( self: Dict ): return {} def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: __lowerCamelCase = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self: Optional[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): def _iter_archive_members(UpperCamelCase_: Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) __lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
12
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 1 for i in range(1 , num + 1 ): fact *= i return fact def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 0 while number > 0: _lowerCAmelCase = number % 10 sum_of_digits += last_digit _lowerCAmelCase = number // 10 # Removing the last_digit from the given number return sum_of_digits def _UpperCAmelCase ( snake_case = 1_00 ): """simple docstring""" _lowerCAmelCase = factorial(snake_case ) _lowerCAmelCase = split_and_add(snake_case ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
82
0
import numpy # List of input, output pairs UpperCAmelCase__ : str =( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase__ : int =(((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCAmelCase__ : Optional[Any] =[2, 4, 1, 5] UpperCAmelCase__ : Optional[Any] =len(train_data) UpperCAmelCase__ : Optional[Any] =0.009 def lowerCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase="train" ) -> int: return calculate_hypothesis_value(_UpperCAmelCase , _UpperCAmelCase ) - output( _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ ( _UpperCAmelCase ) -> str: lowerCamelCase =0 for i in range(len(_UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> int: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase=m ) -> Dict: lowerCamelCase =0 for i in range(_UpperCAmelCase ): if index == -1: summation_value += _error(_UpperCAmelCase ) else: summation_value += _error(_UpperCAmelCase ) * train_data[i][0][index] return summation_value def lowerCamelCase__ ( _UpperCAmelCase ) -> Tuple: lowerCamelCase =summation_of_cost_derivative(_UpperCAmelCase , _UpperCAmelCase ) / m return cost_derivative_value def lowerCamelCase__ ( ) -> Optional[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase =0.0_0_0_0_0_2 lowerCamelCase =0 lowerCamelCase =0 while True: j += 1 lowerCamelCase =[0, 0, 0, 0] for i in range(0 , len(_UpperCAmelCase ) ): lowerCamelCase =get_cost_derivative(i - 1 ) lowerCamelCase =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCAmelCase , _UpperCAmelCase , atol=_UpperCAmelCase , rtol=_UpperCAmelCase , ): break lowerCamelCase =temp_parameter_vector print(("""Number of iterations:""", j) ) def lowerCamelCase__ ( ) -> Union[str, Any]: for i in range(len(_UpperCAmelCase ) ): print(("""Actual output value:""", output(_UpperCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(_UpperCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
370
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase__ : Union[str, Any] =subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') UpperCAmelCase__ : List[str] =( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode('''utf-8''').split() ) UpperCAmelCase__ : Tuple ='''|'''.join(sys.argv[1:]) UpperCAmelCase__ : List[str] =re.compile(rF"^({joined_dirs}).*?\.py$") UpperCAmelCase__ : Any =[x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
262
0
import math def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if not isinstance(__a , __a ): lowerCamelCase__: str =F"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 1: lowerCamelCase__: List[str] =F"""Input value of [number={number}] must be > 0""" raise ValueError(__a ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCamelCase__: Optional[int] =int(math.log(number // 3 , 2 ) ) + 2 lowerCamelCase__: int =[3, 5] lowerCamelCase__: int =2 lowerCamelCase__: Tuple =3 for block in range(1 , __a ): for _ in range(__a ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __A = 0 try: __A = proth(number) except ValueError: print(f'ValueError: there is no {number}th Proth number') continue print(f'The {number}th Proth number: {value}')
10
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=30 , A=4_00 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=True , A=1 / 2_55 , A=True , ) -> str: '''simple docstring''' lowerCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize lowerCamelCase = size lowerCamelCase = do_normalize lowerCamelCase = image_mean lowerCamelCase = image_std lowerCamelCase = do_rescale lowerCamelCase = rescale_factor lowerCamelCase = do_pad def __A ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self , A , A=False ) -> List[Any]: '''simple docstring''' if not batched: lowerCamelCase = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase , lowerCamelCase = image.size else: lowerCamelCase , lowerCamelCase = image.shape[1], image.shape[2] if w < h: lowerCamelCase = int(self.size["""shortest_edge"""] * h / w ) lowerCamelCase = self.size["""shortest_edge"""] elif w > h: lowerCamelCase = self.size["""shortest_edge"""] lowerCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: lowerCamelCase = self.size["""shortest_edge"""] lowerCamelCase = self.size["""shortest_edge"""] else: lowerCamelCase = [] for image in image_inputs: lowerCamelCase , lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase = max(A , key=lambda A : item[0] )[0] lowerCamelCase = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Union[str, Any] = YolosImageProcessor if is_vision_available() else None def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = YolosImageProcessingTester(self ) @property def __A ( self ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , A ) lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A , batched=A ) lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) lowerCamelCase = self.image_processing_class(do_resize=A , do_normalize=A , do_rescale=A ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowerCamelCase = image_processing_a.pad(A , return_tensors="""pt""" ) lowerCamelCase = image_processing_a(A , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCamelCase = json.loads(f.read() ) lowerCamelCase = {"""image_id""": 3_97_69, """annotations""": target} # encode them lowerCamelCase = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) lowerCamelCase = image_processing(images=A , annotations=A , return_tensors="""pt""" ) # verify pixel values lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A ) lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) ) # verify boxes lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A ) lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) ) # verify image_id lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) ) # verify is_crowd lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) ) # verify class_labels lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) ) # verify orig_size lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) ) # verify size lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCamelCase = json.loads(f.read() ) lowerCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} lowerCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCamelCase = YolosImageProcessor(format="""coco_panoptic""" ) lowerCamelCase = image_processing(images=A , annotations=A , masks_path=A , return_tensors="""pt""" ) # verify pixel values lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A ) lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) ) # verify boxes lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A ) lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) ) # verify image_id lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) ) # verify is_crowd lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) ) # verify class_labels lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) ) # verify masks lowerCamelCase = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A ) # verify orig_size lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) ) # verify size lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) )
252
0
def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(_A ) * abs(_A ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
198
def UpperCamelCase ( _A : int , _A : int )-> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase ( )-> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
198
1
from jiwer import compute_measures import datasets _SCREAMING_SNAKE_CASE = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ _SCREAMING_SNAKE_CASE = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ _SCREAMING_SNAKE_CASE = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Optional[int]=False ): """simple docstring""" if concatenate_texts: return compute_measures(lowerCamelCase_ , lowerCamelCase_ )["wer"] else: UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = compute_measures(lowerCamelCase_ , lowerCamelCase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
343
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=[10, 20, 30, 40] , lowerCamelCase_ : Tuple=[1, 1, 2, 1] , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple="relu" , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowerCAmelCase = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = TFResNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ): UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # forward pass UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
343
1
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if not (isinstance(a__ , a__ ) and isinstance(a__ , a__ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) _UpperCamelCase : Optional[int] = len(a__ ) _UpperCamelCase : Optional[int] = len(a__ ) _UpperCamelCase : List[Any] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _UpperCamelCase : List[str] = 0 _UpperCamelCase : Any = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _UpperCamelCase : Union[str, Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _UpperCamelCase : Union[str, Any] = i _UpperCamelCase : List[str] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Tuple=7 ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : Any=18 ,lowerCamelCase__ : Tuple=30 ,lowerCamelCase__ : Tuple=400 ,lowerCamelCase__ : int=True ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=True ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Any=True ,): '''simple docstring''' _UpperCamelCase : Any = size if size is not None else {'shortest_edge': 20} _UpperCamelCase : int = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCamelCase : List[str] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : int = num_channels _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : List[Any] = min_resolution _UpperCamelCase : List[str] = max_resolution _UpperCamelCase : int = do_resize _UpperCamelCase : Optional[int] = size _UpperCamelCase : str = do_center_crop _UpperCamelCase : List[Any] = crop_size _UpperCamelCase : Optional[Any] = do_flip_channel_order def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = MobileViTImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_flip_channel_order' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) _UpperCamelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # Initialize image_processing _UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input _UpperCamelCase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : int = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' # Initialize image_processing _UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input _UpperCamelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : List[str] = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' # Initialize image_processing _UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input _UpperCamelCase : str = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : Optional[int] = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
236
0
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCAmelCase_ = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) UpperCAmelCase_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} UpperCAmelCase_ = 'zero2' UpperCAmelCase_ = 'zero3' UpperCAmelCase_ = [ZEROa, ZEROa] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = parameterized.to_safe_name("""_""".join(str(SCREAMING_SNAKE_CASE__ ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test UpperCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : str ): """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : int ): """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ): """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = models[model] UpperCAmelCase__ = self.run_trainer( stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) self.do_checks(_UpperCAmelCase ) return output_dir def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = self.get_auto_remove_tmp_dir("""./xxx""" , after=_UpperCAmelCase ) UpperCAmelCase__ = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCAmelCase__ = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() UpperCAmelCase__ = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] UpperCAmelCase__ = self.get_launcher(_UpperCAmelCase ) UpperCAmelCase__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[str]=False ): """simple docstring""" UpperCAmelCase__ = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
346
'''simple docstring''' from timeit import timeit UpperCAmelCase_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 500000 UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
346
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _snake_case : str = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : str=None ): '''simple docstring''' if rng is None: _a = random.Random() _a = 1 for dim in shape: total_dims *= dim _a = [] for _ in range(UpperCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _a = np.array(UpperCamelCase , dtype=jnp.intaa ).reshape(UpperCamelCase ) return output def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _a = ids_tensor(UpperCamelCase , vocab_size=2 , rng=UpperCamelCase ) # make sure that at least one token is attended to for each batch _a = 1 return attn_mask @require_flax class A : lowercase_ = None lowercase_ = () def __lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _a = 2 _a = inputs['''input_ids'''].shape[-1] // 2 _a = inputs['''input_ids'''][:max_batch_size, :sequence_length] _a = jnp.ones_like(lowerCAmelCase_ ) _a = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _a = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _a = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() _a = False _a = max_length _a = 0 for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model_class.__name__[4:] # Skip the "Flax" at the beginning _a = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _a = pt_model_class(lowerCAmelCase_ ).eval() _a = load_flax_weights_in_pytorch_model(lowerCAmelCase_ , flax_model.params ) _a = flax_model.generate(lowerCAmelCase_ ).sequences _a = pt_model.generate(torch.tensor(lowerCAmelCase_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _a = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() _a = False _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() _a = True _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() _a = False _a = max_length _a = 2 for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() _a = False _a = max_length _a = 2 _a = 2 for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() _a = True _a = max_length _a = 0.8 _a = 10 _a = 0.3 _a = 1 _a = 8 _a = 9 for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() _a = max_length _a = 1 _a = 8 _a = 9 for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() _a = max_length _a = 2 _a = 1 _a = 8 _a = 9 for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() # pad attention mask on the left _a = attention_mask.at[(0, 0)].set(0 ) _a = False _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() # pad attention mask on the left _a = attention_mask.at[(0, 0)].set(0 ) _a = True _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _a , _a , _a , _a = self._get_input_ids_and_config() # pad attention mask on the left _a = attention_mask.at[(0, 0)].set(0 ) _a = 2 _a = max_length for model_class in self.all_generative_model_classes: _a = model_class(lowerCAmelCase_ ) _a = model.generate(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase_ ) _a = jit(model.generate ) _a = jit_generate(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class A ( unittest.TestCase ): def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) _a = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _a = '''Hello world''' _a = tokenizer(lowerCAmelCase_ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase_ , '''do_samples''' ): model.generate(lowerCAmelCase_ , do_samples=lowerCAmelCase_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase_ , '''foo''' ): _a = {'''foo''': '''bar'''} model.generate(lowerCAmelCase_ , **lowerCAmelCase_ )
351
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case : Dict = logging.get_logger(__name__) _snake_case : Optional[Any] = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class A ( _a ,_a ): lowercase_ = 'nat' lowercase_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : List[Any]=64 , lowerCAmelCase_ : Dict=[3, 4, 6, 5] , lowerCAmelCase_ : Dict=[2, 4, 8, 16] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Dict=3.0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[str]=0.0_2 , lowerCAmelCase_ : str=1e-5 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : List[Any] , ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(lowerCAmelCase_ ) _a = num_heads _a = kernel_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = layer_norm_eps _a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) ) _a = layer_scale_init_value _a = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
179
0
"""simple docstring""" from __future__ import annotations import math def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> float: lowercase__ : Dict = u for i in range(1 , lowerCAmelCase_ ): lowercase__ : Union[str, Any] = temp * (u - i) return temp def __UpperCAmelCase ( ) -> None: lowercase__ : Tuple = int(input('''enter the numbers of values: ''' ) ) lowercase__ : list[list[float]] = [] for _ in range(lowerCAmelCase_ ): y.append([] ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): y[i].append(lowerCAmelCase_ ) lowercase__ : Tuple = 0 print('''enter the values of parameters in a list: ''' ) lowercase__ : List[str] = list(map(lowerCAmelCase_ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(lowerCAmelCase_ ): lowercase__ : int = float(input() ) lowercase__ : Dict = int(input('''enter the value to interpolate: ''' ) ) lowercase__ : str = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase_ ): for j in range(n - i ): lowercase__ : Tuple = y[j + 1][i - 1] - y[j][i - 1] lowercase__ : Optional[Any] = y[0][0] for i in range(1 , lowerCAmelCase_ ): summ += (ucal(lowerCAmelCase_ , lowerCAmelCase_ ) * y[0][i]) / math.factorial(lowerCAmelCase_ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
16
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCAmelCase : Union[str, Any] ="""pt""" elif is_tf_available(): _UpperCAmelCase : List[Any] ="""tf""" else: _UpperCAmelCase : Optional[int] ="""jax""" class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = PerceiverTokenizer SCREAMING_SNAKE_CASE__ : Optional[Any] = False def lowercase_ ( self ) -> Optional[int]: super().setUp() lowerCAmelCase_ : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ) -> Any: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def lowercase_ ( self , **__lowercase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def lowercase_ ( self , __lowercase , __lowercase=False , __lowercase=2_0 , __lowercase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCAmelCase_ : Optional[Any] = [] for i in range(len(__lowercase ) ): try: lowerCAmelCase_ : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase_ : List[str] = list(filter(lambda __lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowercase ) ) lowerCAmelCase_ : Optional[int] = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: lowerCAmelCase_ : Union[str, Any] = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: lowerCAmelCase_ : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase_ : List[str] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase_ : int = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: lowerCAmelCase_ : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: lowerCAmelCase_ : Any = ''' ''' + output_txt lowerCAmelCase_ : List[str] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : List[str] = self.perceiver_tokenizer lowerCAmelCase_ : Any = '''Unicode €.''' lowerCAmelCase_ : Dict = tokenizer(__lowercase ) lowerCAmelCase_ : Any = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding lowerCAmelCase_ : str = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]Unicode €.[SEP]''' ) lowerCAmelCase_ : Optional[int] = tokenizer('''e è é ê ë''' ) lowerCAmelCase_ : str = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding lowerCAmelCase_ : int = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : Any = self.perceiver_tokenizer lowerCAmelCase_ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCAmelCase_ : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCAmelCase_ : Optional[int] = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) if FRAMEWORK != "jax": lowerCAmelCase_ : str = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase_ : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : int = self.perceiver_tokenizer lowerCAmelCase_ : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase_ : List[Any] = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertNotIn('''decoder_input_ids''' , __lowercase ) self.assertNotIn('''decoder_attention_mask''' , __lowercase ) def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Optional[Any] = self.perceiver_tokenizer lowerCAmelCase_ : int = [ '''Summary of the text.''', '''Another summary.''', ] lowerCAmelCase_ : List[str] = tokenizer( text_target=__lowercase , max_length=3_2 , padding='''max_length''' , truncation=__lowercase , return_tensors=__lowercase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def lowercase_ ( self ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works lowerCAmelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test lowerCAmelCase_ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase_ : str = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase_ : Optional[int] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : Any = tokenizer.__class__.from_pretrained(__lowercase ) lowerCAmelCase_ : Tuple = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) lowerCAmelCase_ : Optional[int] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCAmelCase_ : Any = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCAmelCase_ : str = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(__lowercase ) lowerCAmelCase_ : Optional[Any] = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(__lowercase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__lowercase ) def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase_ : Tuple = json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase_ : Any = json.load(__lowercase ) lowerCAmelCase_ : Optional[int] = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] lowerCAmelCase_ : Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCAmelCase_ : Any = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase_ : int = tokenizer_class.from_pretrained( __lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase_ : Tuple = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowercase )] lowerCAmelCase_ : Dict = tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Any = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> Any: pass def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> List[str]: pass def lowercase_ ( self ) -> Dict: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowerCAmelCase_ : Tuple = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase_ : List[str] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] lowerCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(__lowercase , __lowercase )
262
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : Dict = [[1, 2, 4], [1, 2, 3, 4]] snake_case_ : str = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = [[1, 2, 3], [1, 2, 4]] snake_case_ : int = DisjunctiveConstraint(_A ) snake_case_ : List[Any] = dc.update(1 ) snake_case_ : int = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case_ : Tuple = dc.update(2 ) snake_case_ : int = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case_ : Optional[Any] = dc.update(3 ) snake_case_ : List[Any] = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: """simple docstring""" snake_case_ : str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] snake_case_ : List[Any] = DisjunctiveConstraint(_A ) snake_case_ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case_ : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case_ : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) snake_case_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() snake_case_ : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) snake_case_ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case_ : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
369
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = None if token is not None: snake_case_ : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Union[str, Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case_ : Optional[int] = requests.get(__a , headers=__a ).json() snake_case_ : List[str] = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) snake_case_ : Dict = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__a ): snake_case_ : Optional[Any] = requests.get(url + f"""&page={i + 2}""" , headers=__a ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Union[str, Any] = None if token is not None: snake_case_ : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Optional[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" snake_case_ : Union[str, Any] = requests.get(__a , headers=__a ).json() snake_case_ : Any = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) snake_case_ : str = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__a ): snake_case_ : int = requests.get(url + f"""&page={i + 2}""" , headers=__a ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Dict = None if token is not None: snake_case_ : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Optional[int] = requests.get(__a , headers=__a , allow_redirects=__a ) snake_case_ : str = result.headers['Location'] snake_case_ : List[str] = requests.get(__a , allow_redirects=__a ) snake_case_ : Optional[Any] = os.path.join(__a , f"""{artifact_name}.zip""" ) with open(__a , 'wb' ) as fp: fp.write(response.content ) def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Any = [] snake_case_ : Any = [] snake_case_ : Tuple = None with zipfile.ZipFile(__a ) as z: for filename in z.namelist(): if not os.path.isdir(__a ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__a ) as f: for line in f: snake_case_ : Tuple = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case_ : Tuple = line[: line.index(': ' )] snake_case_ : Union[str, Any] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed snake_case_ : Any = line[len('FAILED ' ) :] failed_tests.append(__a ) elif filename == "job_name.txt": snake_case_ : Union[str, Any] = line if len(__a ) != len(__a ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__a )} for `errors` """ f"""and {len(__a )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ' problem.' ) snake_case_ : List[str] = None if job_name and job_links: snake_case_ : Union[str, Any] = job_links.get(__a , __a ) # A list with elements of the form (line of error, error, failed test) snake_case_ : Optional[Any] = [x + [y] + [job_link] for x, y in zip(__a , __a )] return result def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Any = [] snake_case_ : Any = [os.path.join(__a , __a ) for p in os.listdir(__a ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__a , job_links=__a ) ) return errors def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = Counter() counter.update([x[1] for x in logs] ) snake_case_ : str = counter.most_common() snake_case_ : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case_ : int = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} snake_case_ : int = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__a ) ) return r def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Tuple = test.split('::' )[0] if test.startswith('tests/models/' ): snake_case_ : List[str] = test.split('/' )[2] else: snake_case_ : Union[str, Any] = None return test def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case_ : str = [x for x in logs if x[2] is not None] snake_case_ : int = {x[2] for x in logs} snake_case_ : Dict = {} for test in tests: snake_case_ : List[str] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case_ : Any = counter.most_common() snake_case_ : str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case_ : Tuple = sum(error_counts.values() ) if n_errors > 0: snake_case_ : List[Any] = {'count': n_errors, 'errors': error_counts} snake_case_ : int = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__a ) ) return r def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = '| no. | error | status |' snake_case_ : str = '|-:|:-|:-|' snake_case_ : Tuple = [header, sep] for error in reduced_by_error: snake_case_ : Dict = reduced_by_error[error]['count'] snake_case_ : List[str] = f"""| {count} | {error[:1_00]} | |""" lines.append(__a ) return "\n".join(__a ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = '| model | no. of errors | major error | count |' snake_case_ : Union[str, Any] = '|-:|-:|-:|-:|' snake_case_ : Optional[int] = [header, sep] for model in reduced_by_model: snake_case_ : Any = reduced_by_model[model]['count'] snake_case_ ,snake_case_ : Dict = list(reduced_by_model[model]['errors'].items() )[0] snake_case_ : Any = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__a ) return "\n".join(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(""" / """) _SCREAMING_SNAKE_CASE = k[index + len(""" / """) :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
88
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE = "FlavaImageProcessor" SCREAMING_SNAKE_CASE = ("BertTokenizer", "BertTokenizerFast") def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Optional[Any]: lowercase__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) lowercase__ : str = kwargs.pop('''feature_extractor''' ) lowercase__ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : str = self.image_processor def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> List[str]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : Dict = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if images is not None: lowercase__ : Optional[int] = self.image_processor( __lowerCAmelCase , return_image_mask=__lowerCAmelCase , return_codebook_pixels=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if text is not None and images is not None: encoding.update(__lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[int]: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[Any] = self.tokenizer.model_input_names lowercase__ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase( self ) -> int: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class @property def _lowerCAmelCase( self ) -> int: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCAmelCase , ) return self.image_processor
198
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[Any] = 0 while number > 0: lowercase__ : str = number % 10 sum_of_digits += last_digit lowercase__ : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __UpperCamelCase ( UpperCAmelCase = 100 ): lowercase__ : Optional[int] = factorial(UpperCAmelCase ) lowercase__ : Dict = split_and_add(UpperCAmelCase ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
198
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : List[str] = ViTImageProcessor if is_vision_available() else None @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : int ) -> Dict: __magic_name__ : str = (3, 32, 128) __magic_name__ : Tuple = tempfile.mkdtemp() # fmt: off __magic_name__ : Dict = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __magic_name__ : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) __magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) __magic_name__ : Tuple = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } __magic_name__ : List[str] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def __lowerCAmelCase ( self : Any , **_A : List[str] ) -> Tuple: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : List[Any] , **_A : Optional[int] ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Dict = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __magic_name__ : Union[str, Any] = Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) return image_input def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[int] = self.get_tokenizer() __magic_name__ : Dict = self.get_image_processor() __magic_name__ : Optional[int] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : List[Any] = self.get_image_processor() __magic_name__ : Dict = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __magic_name__ : Optional[int] = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __magic_name__ : List[str] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : Optional[int] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : Dict = self.prepare_image_inputs() __magic_name__ : List[str] = image_processor(_A , return_tensors='np' ) __magic_name__ : Dict = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : Union[str, Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : Optional[Any] = 'test' __magic_name__ : str = processor(text=_A ) __magic_name__ : List[Any] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : Tuple ) -> Dict: __magic_name__ : Dict = self.get_image_processor() __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : Union[str, Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : str = 'test' __magic_name__ : int = self.prepare_image_inputs() __magic_name__ : int = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : Tuple = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : Optional[int] = processor.char_decode(_A ) __magic_name__ : Tuple = tokenizer.batch_decode(_A ) __magic_name__ : List[str] = [seq.replace(' ' , '' ) for seq in decoded_tok] self.assertListEqual(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: __magic_name__ : int = self.get_image_processor() __magic_name__ : str = self.get_tokenizer() __magic_name__ : Tuple = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : Tuple = None __magic_name__ : Any = self.prepare_image_inputs() __magic_name__ : Optional[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : str = self.get_tokenizer() __magic_name__ : List[str] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : List[str] = torch.randn(1 , 27 , 38 ) __magic_name__ : Optional[Any] = torch.randn(1 , 27 , 50257 ) __magic_name__ : Dict = torch.randn(1 , 27 , 30522 ) __magic_name__ : Any = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
356
'''simple docstring''' lowerCAmelCase :Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase :Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
275
0
'''simple docstring''' import numpy as np import qiskit def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 8 , _SCREAMING_SNAKE_CASE : int | None = None ): __a : int = np.random.default_rng(seed=_SCREAMING_SNAKE_CASE ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __a : Dict = 6 * key_len # Measurement basis for Alice's qubits. __a : str = rng.integers(2 , size=_SCREAMING_SNAKE_CASE ) # The set of states Alice will prepare. __a : Dict = rng.integers(2 , size=_SCREAMING_SNAKE_CASE ) # Measurement basis for Bob's qubits. __a : List[str] = rng.integers(2 , size=_SCREAMING_SNAKE_CASE ) # Quantum Circuit to simulate BB84 __a : Union[str, Any] = qiskit.QuantumCircuit(_SCREAMING_SNAKE_CASE , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_SCREAMING_SNAKE_CASE ): if alice_state[index] == 1: bbaa_circ.x(_SCREAMING_SNAKE_CASE ) if alice_basis[index] == 1: bbaa_circ.h(_SCREAMING_SNAKE_CASE ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_SCREAMING_SNAKE_CASE ): if bob_basis[index] == 1: bbaa_circ.h(_SCREAMING_SNAKE_CASE ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __a : str = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __a : List[Any] = qiskit.execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1 , seed_simulator=_SCREAMING_SNAKE_CASE ) # Returns the result of measurement. __a : Tuple = job.result().get_counts(_SCREAMING_SNAKE_CASE ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __a : int = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __a : Any = gen_key[:key_len] if len(_SCREAMING_SNAKE_CASE ) >= key_len else gen_key.ljust(_SCREAMING_SNAKE_CASE , '0' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
27
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = "▁" _UpperCAmelCase : int = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } _UpperCAmelCase : List[Any] = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } _UpperCAmelCase : str = { "facebook/s2t-small-librispeech-asr": 1024, } _UpperCAmelCase : List[str] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] _UpperCAmelCase : Tuple = {"mustc": MUSTC_LANGS} class __lowerCAmelCase ( lowerCAmelCase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = MAX_MODEL_INPUT_SIZES _a = ['''input_ids''', '''attention_mask'''] _a = [] def __init__( self: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any]="<s>" , _lowerCAmelCase: List[str]="</s>" , _lowerCAmelCase: Optional[int]="<pad>" , _lowerCAmelCase: List[str]="<unk>" , _lowerCAmelCase: Dict=False , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[Dict[str, Any]] = None , **_lowerCAmelCase: Tuple , ): lowercase :str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , do_upper_case=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , lang_codes=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase :List[str] = do_upper_case lowercase :List[str] = do_lower_case lowercase :str = load_json(_lowerCAmelCase ) lowercase :List[Any] = {v: k for k, v in self.encoder.items()} lowercase :str = spm_file lowercase :Any = load_spm(_lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: lowercase :List[str] = lang_codes lowercase :Tuple = LANGUAGES[lang_codes] lowercase :Any = [F"<lang:{lang}>" for lang in self.langs] lowercase :Any = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} lowercase :Optional[Any] = self.lang_tokens lowercase :List[str] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowercase :Tuple = {} @property def SCREAMING_SNAKE_CASE ( self: Tuple ): return len(self.encoder ) @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._tgt_lang @tgt_lang.setter def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Optional[Any] ): lowercase :Any = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: str ): lowercase :Any = self.lang_code_to_id[tgt_lang] lowercase :List[Any] = [lang_code_id] def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: str ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Tuple ): return self.encoder.get(_lowerCAmelCase , self.encoder[self.unk_token] ) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: int ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] ): lowercase :int = [] lowercase :Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowercase :Dict = self.sp_model.decode(_lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowercase :Any = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase :Dict = self.sp_model.decode(_lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase :int = [1] * len(self.prefix_tokens ) lowercase :List[str] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :int = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[Any] ): lowercase :Union[str, Any] = self.__dict__.copy() lowercase :Dict = None return state def __setstate__( self: Union[str, Any] , _lowerCAmelCase: Dict ): lowercase :List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase :List[Any] = {} lowercase :Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): lowercase :List[str] = Path(_lowerCAmelCase ) assert save_dir.is_dir(), F"{save_directory} should be a directory" lowercase :List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase :Any = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCAmelCase , "wb" ) as fi: lowercase :int = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (str(_lowerCAmelCase ), str(_lowerCAmelCase )) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase ) spm.Load(str(lowerCamelCase ) ) return spm def UpperCAmelCase__ ( lowerCamelCase ): with open(lowerCamelCase, "r" ) as f: return json.load(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): with open(lowerCamelCase, "w" ) as f: json.dump(lowerCamelCase, lowerCamelCase, indent=2 )
236
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__a ) , '''Tatoeba directory does not exist.''' ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.resolver.convert_models(["""heb-eng"""] ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Tuple = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__a ) assert mmeta["long_pair"] == "heb-eng"
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Union[str, Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ) -> None: warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
107
"""simple docstring""" def __lowercase ( snake_case_ : int ,snake_case_ : list ) ->Any: '''simple docstring''' _enforce_args(snake_case_ ,snake_case_ ) if n == 0: return 0 __A : int = float('''-inf''' ) for i in range(1 ,n + 1 ): __A : Union[str, Any] = max( snake_case_ ,prices[i - 1] + naive_cut_rod_recursive(n - i ,snake_case_ ) ) return max_revue def __lowercase ( snake_case_ : int ,snake_case_ : list ) ->int: '''simple docstring''' _enforce_args(snake_case_ ,snake_case_ ) __A : Dict = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case_ ,snake_case_ ,snake_case_ ) def __lowercase ( snake_case_ : int ,snake_case_ : list ,snake_case_ : list ) ->Any: '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __A : Any = float('''-inf''' ) for i in range(1 ,n + 1 ): __A : Union[str, Any] = max( snake_case_ ,prices[i - 1] + _top_down_cut_rod_recursive(n - i ,snake_case_ ,snake_case_ ) ,) __A : Any = max_revenue return max_rev[n] def __lowercase ( snake_case_ : int ,snake_case_ : list ) ->Any: '''simple docstring''' _enforce_args(snake_case_ ,snake_case_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __A : Union[str, Any] = [float('''-inf''' ) for _ in range(n + 1 )] __A : List[Any] = 0 for i in range(1 ,n + 1 ): __A : Union[str, Any] = max_rev[i] for j in range(1 ,i + 1 ): __A : str = max(snake_case_ ,prices[j - 1] + max_rev[i - j] ) __A : List[str] = max_revenue_i return max_rev[n] def __lowercase ( snake_case_ : int ,snake_case_ : list ) ->Union[str, Any]: '''simple docstring''' if n < 0: __A : Union[str, Any] = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(snake_case_ ) if n > len(snake_case_ ): __A : List[Any] = ( '''Each integral piece of rod must have a corresponding price. ''' F"""Got n = {n} but length of prices = {len(snake_case_ )}""" ) raise ValueError(snake_case_ ) def __lowercase ( ) ->str: '''simple docstring''' __A : Any = [6, 10, 12, 15, 20, 23] __A : Union[str, Any] = len(snake_case_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __A : str = 36 __A : Any = top_down_cut_rod(snake_case_ ,snake_case_ ) __A : Any = bottom_up_cut_rod(snake_case_ ,snake_case_ ) __A : Optional[Any] = naive_cut_rod_recursive(snake_case_ ,snake_case_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
179
0
from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=UpperCamelCase ): """simple docstring""" snake_case = ["torch", "scipy"] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' requires_backends(cls , ['''torch''', '''scipy'''] )
65
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" snake_case = StableDiffusionLDMaDPipeline snake_case = TEXT_TO_IMAGE_PARAMS snake_case = TEXT_TO_IMAGE_BATCH_PARAMS snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self )->str: '''simple docstring''' torch.manual_seed(0 ) A_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A_ : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) A_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : str = CLIPTextModel(_SCREAMING_SNAKE_CASE ) A_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Dict: '''simple docstring''' if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Tuple = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->int: '''simple docstring''' A_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : List[Any] = self.get_dummy_components() A_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) A_ : Dict = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : Tuple = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[Any] = output.rgb, output.depth A_ : List[Any] = rgb[0, -3:, -3:, -1] A_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A_ : Tuple = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) A_ : Union[str, Any] = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[Any] = self.get_dummy_components() A_ : Any = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) A_ : List[str] = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = 3 * [inputs['''prompt''']] # forward A_ : Optional[Any] = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[int] = output.rgb, output.depth A_ : Tuple = rgb_slice_a[0, -3:, -3:, -1] A_ : Optional[Any] = depth_slice_a[0, -3:, -1] A_ : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : Dict = 3 * [inputs.pop('''prompt''' )] A_ : Tuple = ldmad_pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) A_ : Dict = text_inputs['''input_ids'''].to(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = ldmad_pipe.text_encoder(_SCREAMING_SNAKE_CASE )[0] A_ : Optional[int] = prompt_embeds # forward A_ : Optional[int] = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Any = output.rgb, output.depth A_ : Any = rgb_slice_a[0, -3:, -3:, -1] A_ : str = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : List[str] = self.get_dummy_components() A_ : int = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) A_ : int = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) A_ : str = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = '''french fries''' A_ : Optional[Any] = ldmad_pipe(**_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[int] = output.rgb, output.depth A_ : Optional[Any] = rgb[0, -3:, -3:, -1] A_ : int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A_ : int = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) A_ : Any = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="cpu" , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 )->Optional[int]: '''simple docstring''' A_ : Union[str, Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : str = np.random.RandomState(_SCREAMING_SNAKE_CASE ).standard_normal((1, 4, 64, 64) ) A_ : int = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) A_ : int = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->str: '''simple docstring''' A_ : List[str] = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) A_ : Optional[Any] = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : int = self.get_inputs(_SCREAMING_SNAKE_CASE ) A_ : Dict = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Union[str, Any] = output.rgb, output.depth A_ : int = rgb[0, -3:, -3:, -1].flatten() A_ : Union[str, Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) A_ : Tuple = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) A_ : Tuple = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="cpu" , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 )->int: '''simple docstring''' A_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Any = np.random.RandomState(_SCREAMING_SNAKE_CASE ).standard_normal((1, 4, 64, 64) ) A_ : str = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->int: '''simple docstring''' A_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.get_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : List[Any] = output.rgb, output.depth A_ : int = 0.4_9_5_5_8_6 A_ : Union[str, Any] = 0.3_3_7_9_5_5_1_5 A_ : Optional[int] = 1_1_2.4_8_5_1_8 A_ : Optional[Any] = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Any = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.get_inputs(_SCREAMING_SNAKE_CASE ) A_ : Tuple = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[Any] = output.rgb, output.depth A_ : Tuple = 0.4_1_9_4_1_2_7 A_ : Union[str, Any] = 0.3_5_3_7_5_5_8_6 A_ : Union[str, Any] = 0.5_6_3_8_5_0_2 A_ : List[Any] = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
65
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A : List[str] ={ 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =[ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _A : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCAmelCase : int = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __lowerCAmelCase : Any = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) __lowerCAmelCase : str = '|'.join(sys.argv[1:]) __lowerCAmelCase : Tuple = re.compile(RF'''^({joined_dirs}).*?\.py$''') __lowerCAmelCase : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
88
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _A = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ _A = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ _A = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Any: return float((preds == labels).mean() ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="binary" ) -> Union[str, Any]: UpperCAmelCase__ : Optional[int] = simple_accuracy(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Dict = float(fa_score(y_true=lowerCAmelCase , y_pred=lowerCAmelCase , average=lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def a__ ( lowerCAmelCase , lowerCAmelCase ) -> List[str]: UpperCAmelCase__ : List[str] = {} for id_pred, label in zip(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" UpperCAmelCase__ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCAmelCase__ : Optional[int] = [(pred, label)] UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [] for question, preds_labels in question_map.items(): UpperCAmelCase__ , UpperCAmelCase__ : Dict = zip(*lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = fa_score(y_true=lowerCAmelCase , y_pred=lowerCAmelCase , average="""macro""" ) fas.append(lowerCAmelCase ) UpperCAmelCase__ : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCAmelCase ) ) ems.append(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = float(sum(lowerCAmelCase ) / len(lowerCAmelCase ) ) UpperCAmelCase__ : Any = sum(lowerCAmelCase ) / len(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = float(fa_score(y_true=lowerCAmelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _a (self ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _a (self ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase , _lowerCamelCase )} elif self.config_name == "cb": return acc_and_fa(_lowerCamelCase , _lowerCamelCase , fa_avg="""macro""" ) elif self.config_name == "record": UpperCAmelCase__ : Tuple = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] UpperCAmelCase__ : Any = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowerCamelCase , _lowerCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowerCamelCase , _lowerCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
166
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def _a (self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_lowerCamelCase , ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCamelCase ) class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def _a (self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_lowerCamelCase , ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCamelCase ) def a__ ( ) -> Tuple: return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def a__ ( ) -> List[str]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @require_beam def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Dict = DummyBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a (self ): """simple docstring""" import apache_beam as beam UpperCAmelCase__ : Optional[int] = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Any = DummyBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: UpperCAmelCase__ : int = partial(_lowerCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase__ : Union[str, Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=_lowerCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = NestedBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) UpperCAmelCase__ : str = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
166
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = random.Random() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1.0 , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=400 , lowercase=2_000 , lowercase=10 , lowercase=160 , lowercase=8 , lowercase=0.0 , lowercase=4_000 , lowercase=False , lowercase=True , ) -> List[str]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize lowerCAmelCase = feature_size lowerCAmelCase = chunk_length lowerCAmelCase = hop_length def _snake_case ( self ) -> Optional[Any]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _snake_case ( self , lowercase=False , lowercase=False ) -> Optional[Any]: def _flatten(lowercase ): return list(itertools.chain(*A_ ) ) if equal_length: lowerCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = WhisperFeatureExtractor if is_speech_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = WhisperFeatureExtractionTester(self ) def _snake_case ( self ) -> int: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) lowerCAmelCase = self.feature_extraction_class.from_pretrained(A_ ) lowerCAmelCase = feat_extract_first.to_dict() lowerCAmelCase = feat_extract_second.to_dict() lowerCAmelCase = feat_extract_first.mel_filters lowerCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _snake_case ( self ) -> str: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = os.path.join(A_ , """feat_extract.json""" ) feat_extract_first.to_json_file(A_ ) lowerCAmelCase = self.feature_extraction_class.from_json_file(A_ ) lowerCAmelCase = feat_extract_first.to_dict() lowerCAmelCase = feat_extract_second.to_dict() lowerCAmelCase = feat_extract_first.mel_filters lowerCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase = feature_extractor(A_ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched lowerCAmelCase = feature_extractor(A_ , return_tensors="""np""" ).input_features lowerCAmelCase = feature_extractor(A_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase = np.asarray(A_ ) lowerCAmelCase = feature_extractor(A_ , return_tensors="""np""" ).input_features lowerCAmelCase = feature_extractor(A_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test truncation required lowerCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowerCAmelCase = [np.asarray(A_ ) for speech_input in speech_inputs] lowerCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCAmelCase = [np.asarray(A_ ) for speech_input in speech_inputs_truncated] lowerCAmelCase = feature_extractor(A_ , return_tensors="""np""" ).input_features lowerCAmelCase = feature_extractor(A_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def _snake_case ( self ) -> Dict: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _snake_case ( self , lowercase ) -> str: lowerCAmelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCAmelCase = ds.sort("""id""" ).select(range(A_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _snake_case ( self ) -> int: lowerCAmelCase = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = WhisperFeatureExtractor() lowerCAmelCase = feature_extractor(A_ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1e-4 ) ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = self._load_datasamples(1 )[0] lowerCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue lowerCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1e-3 ) )
46
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): _UpperCamelCase = ViTImageProcessor if is_vision_available() else None @property def UpperCamelCase__ ( self ) ->str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = (3, 32, 128) __lowerCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off __lowerCAmelCase : List[str] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowerCAmelCase : Optional[int] = dict(zip(A_ , range(len(A_ ) ) ) ) __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) __lowerCAmelCase : Union[str, Any] = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A_ , A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowerCAmelCase : str = Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) return image_input def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.get_tokenizer() __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : Union[str, Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : Union[str, Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase : int = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __lowerCAmelCase : int = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Any = self.get_image_processor() __lowerCAmelCase : Optional[Any] = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Optional[int] = self.prepare_image_inputs() __lowerCAmelCase : Optional[Any] = image_processor(A_ , return_tensors='''np''' ) __lowerCAmelCase : Tuple = processor(images=A_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Union[str, Any] = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Any = '''test''' __lowerCAmelCase : Dict = processor(text=A_ ) __lowerCAmelCase : str = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Dict = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : str = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = '''test''' __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : int = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase : Optional[int] = processor.char_decode(A_ ) __lowerCAmelCase : Tuple = tokenizer.batch_decode(A_ ) __lowerCAmelCase : Any = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() __lowerCAmelCase : List[Any] = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = self.get_image_processor() __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = torch.randn(1 , 27 , 38 ) __lowerCAmelCase : Optional[int] = torch.randn(1 , 27 , 5_0257 ) __lowerCAmelCase : Optional[Any] = torch.randn(1 , 27 , 3_0522 ) __lowerCAmelCase : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
275
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
228
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __UpperCAmelCase = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } __UpperCAmelCase = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( a__ ): '''simple docstring''' lowercase__ : int = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Tuple = RoFormerTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Tuple: super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , lowerCamelCase_ ) != do_lower_case or pre_tok_state.get('''strip_accents''' , lowerCamelCase_ ) != strip_accents ): lowerCAmelCase__ = getattr(lowerCamelCase_ , pre_tok_state.pop('''type''' ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = pre_tok_class(**lowerCamelCase_ ) lowerCAmelCase__ = do_lower_case def __getstate__( self ) -> Any: lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = BertPreTokenizer() return state def __setstate__( self , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = d lowerCAmelCase__ = self.__dict__['''_tokenizer'''].get_vocab() lowerCAmelCase__ = PreTokenizer.custom(JiebaPreTokenizer(lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Union[str, Any]: lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: lowerCAmelCase__ = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Union[str, Any]: lowerCAmelCase__ = BertPreTokenizer() return super().save_pretrained(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
228
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase , unittest.TestCase ): __magic_name__: Optional[int] = BlenderbotSmallTokenizer __magic_name__: List[Any] = False def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" super().setUp() snake_case_ : str = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] snake_case_ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) snake_case_ : str = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] snake_case_ : List[str] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} snake_case_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) def UpperCAmelCase_ ( self : str , **_A : Any ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase_ ( self : List[Any] , _A : Union[str, Any] ) -> int: """simple docstring""" snake_case_ : Any = 'adapt act apte' snake_case_ : Any = 'adapt act apte' return input_text, output_text def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Dict = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ : Dict = 'adapt act apte' snake_case_ : List[Any] = ['adapt', 'act', 'ap@@', 'te'] snake_case_ : List[str] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ : Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] snake_case_ : Tuple = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case_ : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] snake_case_ : Tuple = 'I am a small frog.' snake_case_ : List[Any] = tok([src_text] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )['input_ids'] snake_case_ : Optional[int] = tok.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) snake_case_ : List[str] = 'I am a small frog .' snake_case_ : Dict = '.' snake_case_ : Tuple = tok(UpperCAmelCase_ )['input_ids'] snake_case_ : List[Any] = tok(UpperCAmelCase_ )['input_ids'] assert encoded[-1] == encoded_dot[0]
327
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') UpperCamelCase = logging.getLogger(__name__) @dataclass class __UpperCAmelCase : __snake_case : Optional[str] = field( default="tab_fact" ,metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __snake_case : Optional[str] = field( default="tab_fact" ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ,) __snake_case : int = field( default=1024 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A csv or a json file containing the training data."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A csv or a json file containing the validation data."} ) __snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "A csv or a json file containing the test data."} ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: _SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __UpperCAmelCase : __snake_case : str = field( default=_UpperCAmelCase ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) __snake_case : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) _SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(snake_case__ ) datasets.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] _SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files _SCREAMING_SNAKE_CASE = load_dataset("""csv""" ,data_files=snake_case__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _SCREAMING_SNAKE_CASE = load_dataset("""json""" ,data_files=snake_case__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names _SCREAMING_SNAKE_CASE = len(snake_case__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer _SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=snake_case__ ,) _SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: _SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. _SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} _SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _SCREAMING_SNAKE_CASE = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(snake_case__ ): # Tokenize the texts def _convert_table_text_to_pandas(snake_case__ ): _SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] _SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd _SCREAMING_SNAKE_CASE = examples["""statement"""] _SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas ,examples["""table_text"""] ) ) _SCREAMING_SNAKE_CASE = tokenizer(snake_case__ ,snake_case__ ,padding=snake_case__ ,max_length=snake_case__ ,truncation=snake_case__ ) _SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): _SCREAMING_SNAKE_CASE = raw_datasets.map( snake_case__ ,batched=snake_case__ ,load_from_cache_file=not data_args.overwrite_cache ,desc="""Running tokenizer on dataset""" ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) _SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) _SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) _SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: _SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(snake_case__ ) ) ,3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case__ ): _SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions ,snake_case__ ) else p.predictions _SCREAMING_SNAKE_CASE = np.argmax(snake_case__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: _SCREAMING_SNAKE_CASE = DataCollatorWithPadding(snake_case__ ,pad_to_multiple_of=8 ) else: _SCREAMING_SNAKE_CASE = None # Initialize our Trainer _SCREAMING_SNAKE_CASE = Trainer( model=snake_case__ ,args=snake_case__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=snake_case__ ,tokenizer=snake_case__ ,data_collator=snake_case__ ,) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=snake_case__ ) _SCREAMING_SNAKE_CASE = train_result.metrics _SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ ) ) _SCREAMING_SNAKE_CASE = min(snake_case__ ,len(snake_case__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" ,snake_case__ ) trainer.save_metrics("""train""" ,snake_case__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=snake_case__ ) _SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case__ ) _SCREAMING_SNAKE_CASE = min(snake_case__ ,len(snake_case__ ) ) trainer.log_metrics("""eval""" ,snake_case__ ) trainer.save_metrics("""eval""" ,snake_case__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) _SCREAMING_SNAKE_CASE = trainer.predict(snake_case__ ,metric_key_prefix="""predict""" ).predictions _SCREAMING_SNAKE_CASE = np.argmax(snake_case__ ,axis=1 ) _SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir ,"""predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(snake_case__ ,"""w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = label_list[item] writer.write(F'{index}\t{item}\n' ) _SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
365
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _SCREAMING_SNAKE_CASE = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) _SCREAMING_SNAKE_CASE = in_proj_weight[ : encoder_config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if "handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ViTConfig(image_size=3_84 ,qkv_bias=snake_case__ ) _SCREAMING_SNAKE_CASE = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _SCREAMING_SNAKE_CASE = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 10_24 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = """relu""" _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False # load HuggingFace model _SCREAMING_SNAKE_CASE = ViTModel(snake_case__ ,add_pooling_layer=snake_case__ ) _SCREAMING_SNAKE_CASE = TrOCRForCausalLM(snake_case__ ) _SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel(encoder=snake_case__ ,decoder=snake_case__ ) model.eval() # load state_dict of original model, rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(snake_case__ ,map_location="""cpu""" ,check_hash=snake_case__ )["""model"""] _SCREAMING_SNAKE_CASE = create_rename_keys(snake_case__ ,snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ ,snake_case__ ,snake_case__ ) read_in_q_k_v(snake_case__ ,snake_case__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: _SCREAMING_SNAKE_CASE = val else: _SCREAMING_SNAKE_CASE = val # load state dict model.load_state_dict(snake_case__ ) # Check outputs on an image _SCREAMING_SNAKE_CASE = ViTImageProcessor(size=encoder_config.image_size ) _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("""roberta-large""" ) _SCREAMING_SNAKE_CASE = TrOCRProcessor(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = processor(images=prepare_img(snake_case__ ) ,return_tensors="""pt""" ).pixel_values # verify logits _SCREAMING_SNAKE_CASE = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _SCREAMING_SNAKE_CASE = model(pixel_values=snake_case__ ,decoder_input_ids=snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits _SCREAMING_SNAKE_CASE = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] ,snake_case__ ,atol=1e-3 ), "First elements of logits not as expected" Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
125
0
import logging import os from .state import PartialState class A ( logging.LoggerAdapter ): @staticmethod def lowercase_ (__UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) UpperCAmelCase__ = kwargs.pop("main_process_only" , __UpperCAmelCase ) UpperCAmelCase__ = kwargs.pop("in_order" , __UpperCAmelCase ) if self.isEnabledFor(__UpperCAmelCase ): if self._should_log(__UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ = self.process(__UpperCAmelCase , __UpperCAmelCase ) self.logger.log(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) elif in_order: UpperCAmelCase__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase__ , UpperCAmelCase__ = self.process(__UpperCAmelCase , __UpperCAmelCase ) self.logger.log(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) state.wait_for_everyone() def lowerCAmelCase_ ( __A, __A = None ) -> Dict: '''simple docstring''' if log_level is None: UpperCAmelCase__ = os.environ.get("ACCELERATE_LOG_LEVEL", __A ) UpperCAmelCase__ = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A, {} )
65
from __future__ import annotations from collections import deque class A : def __init__(self : Dict , __UpperCAmelCase : list[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__UpperCAmelCase ) self.set_fail_transitions() def lowercase_ (self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase_ (self : Dict , __UpperCAmelCase : str ) -> None: """simple docstring""" UpperCAmelCase__ = 0 for character in keyword: UpperCAmelCase__ = self.find_next_state(__UpperCAmelCase , __UpperCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase__ = len(self.adlist ) - 1 else: UpperCAmelCase__ = next_state self.adlist[current_state]["output"].append(__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase__ = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCAmelCase ) UpperCAmelCase__ = 0 while q: UpperCAmelCase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCAmelCase ) UpperCAmelCase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(__UpperCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase__ = self.adlist[state]["fail_state"] UpperCAmelCase__ = self.find_next_state( __UpperCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase__ = 0 UpperCAmelCase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> dict[str, list[int]]: """simple docstring""" UpperCAmelCase__ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase__ = 0 for i in range(len(__UpperCAmelCase ) ): while ( self.find_next_state(__UpperCAmelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase__ = self.adlist[current_state]["fail_state"] UpperCAmelCase__ = self.find_next_state(__UpperCAmelCase , string[i] ) if next_state is None: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase__ = [] result[key].append(i - len(__UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
65
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCamelCase_ = True except (ImportError, AttributeError): UpperCamelCase_ = object def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Dict: """simple docstring""" pass UpperCamelCase_ = False UpperCamelCase_ = logging.get_logger('transformers-cli/serving') def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(UpperCAmelCase , args.host , args.port , args.workers ) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : dict class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] a_ : Optional[List[int]] class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Any class snake_case ( SCREAMING_SNAKE_CASE_ ): @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase) ->int: a_ = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints.") serve_parser.add_argument( "--task" , type=__UpperCAmelCase , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=__UpperCAmelCase , default="localhost" , help="Interface the server will listen on.") serve_parser.add_argument("--port" , type=__UpperCAmelCase , default=88_88 , help="Port the serving will listen to.") serve_parser.add_argument("--workers" , type=__UpperCAmelCase , default=1 , help="Number of http workers") serve_parser.add_argument("--model" , type=__UpperCAmelCase , help="Model's name or path to stored model.") serve_parser.add_argument("--config" , type=__UpperCAmelCase , help="Model's config name or path to stored model.") serve_parser.add_argument("--tokenizer" , type=__UpperCAmelCase , help="Tokenizer name to use.") serve_parser.add_argument( "--device" , type=__UpperCAmelCase , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=__UpperCAmelCase) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = pipeline a_ = host a_ = port a_ = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately.") else: logger.info(F'''Serving model over {host}:{port}''') a_ = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=["POST"] , ), ] , timeout=6_00 , ) def UpperCAmelCase__ ( self) ->Optional[Any]: run(self._app , host=self.host , port=self.port , workers=self.workers) def UpperCAmelCase__ ( self) ->Tuple: return ServeModelInfoResult(infos=vars(self._pipeline.model.config)) def UpperCAmelCase__ ( self , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase) , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase)) ->str: try: a_ = self._pipeline.tokenizer.tokenize(__UpperCAmelCase) if return_ids: a_ = self._pipeline.tokenizer.convert_tokens_to_ids(__UpperCAmelCase) return ServeTokenizeResult(tokens=__UpperCAmelCase , tokens_ids=__UpperCAmelCase) else: return ServeTokenizeResult(tokens=__UpperCAmelCase) except Exception as e: raise HTTPException(status_code=5_00 , detail={"model": "", "error": str(__UpperCAmelCase)}) def UpperCAmelCase__ ( self , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase) , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase) , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase) , ) ->List[str]: try: a_ = self._pipeline.tokenizer.decode(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) return ServeDeTokenizeResult(model="" , text=__UpperCAmelCase) except Exception as e: raise HTTPException(status_code=5_00 , detail={"model": "", "error": str(__UpperCAmelCase)}) async def UpperCAmelCase__ ( self , __UpperCAmelCase=Body(__UpperCAmelCase , embed=__UpperCAmelCase)) ->int: # Check we don't have empty string if len(__UpperCAmelCase) == 0: return ServeForwardResult(output=[] , attention=[]) try: # Forward through the model a_ = self._pipeline(__UpperCAmelCase) return ServeForwardResult(output=__UpperCAmelCase) except Exception as e: raise HTTPException(5_00 , {"error": str(__UpperCAmelCase)})
303
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
1
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : str , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[str]): '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase) __lowercase =eval_examples __lowercase =post_process_function def __lowerCamelCase ( self : int , _lowerCAmelCase : Optional[Dataset] = None , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[List[str]] = None , _lowerCAmelCase : str = "eval" , **_lowerCAmelCase : Any , ): '''simple docstring''' __lowercase =gen_kwargs.copy() __lowercase =( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __lowercase =( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __lowercase =gen_kwargs __lowercase =self.eval_dataset if eval_dataset is None else eval_dataset __lowercase =self.get_eval_dataloader(_lowerCAmelCase) __lowercase =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase =self.compute_metrics __lowercase =None __lowercase =time.time() __lowercase =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase =eval_loop( _lowerCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: __lowercase =compute_metrics __lowercase =self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase =self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) __lowercase =self.compute_metrics(_lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"""{metric_key_prefix}_"""): __lowercase =metrics.pop(_lowerCAmelCase) metrics.update(output.metrics) else: __lowercase =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCAmelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __lowercase =self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase) return metrics def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : str = "test" , **_lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =gen_kwargs.copy() __lowercase =self.get_test_dataloader(_lowerCAmelCase) # Temporarily disable metric computation, we will do it in the loop here. __lowercase =self.compute_metrics __lowercase =None __lowercase =time.time() __lowercase =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase =eval_loop( _lowerCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: __lowercase =compute_metrics __lowercase =self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase =self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 'predict') __lowercase =self.compute_metrics(_lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"""{metric_key_prefix}_"""): __lowercase =metrics.pop(_lowerCAmelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase)
166
'''simple docstring''' from __future__ import annotations def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[True] * limit __lowercase =False __lowercase =False __lowercase =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowercase =i * 2 while index < limit: __lowercase =False __lowercase =index + i __lowercase =[2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def _A ( _lowerCAmelCase = 1_000_000 ): """simple docstring""" __lowercase =prime_sieve(_lowerCAmelCase ) __lowercase =0 __lowercase =0 for i in range(len(_lowerCAmelCase ) ): for j in range(i + length , len(_lowerCAmelCase ) ): __lowercase =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowercase =j - i __lowercase =sol return largest if __name__ == "__main__": print(f"{solution() = }")
166
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A : Optional[int] = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
def _a ( UpperCAmelCase ) -> bool: """simple docstring""" return str(UpperCAmelCase ) == str(UpperCAmelCase )[::-1] def _a ( UpperCAmelCase ) -> int: """simple docstring""" return int(UpperCAmelCase ) + int(str(UpperCAmelCase )[::-1] ) def _a ( UpperCAmelCase = 10000 ) -> int: """simple docstring""" lowerCamelCase__ : Tuple = [] for num in range(1 , UpperCAmelCase ): lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Union[str, Any] = num while iterations < 50: lowerCamelCase__ : Dict = sum_reverse(UpperCAmelCase ) iterations += 1 if is_palindrome(UpperCAmelCase ): break else: lychrel_nums.append(UpperCAmelCase ) return len(UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
265
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> int: if attention_mask is None: a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: a = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__lowerCamelCase ) if decoder_head_mask is None: a = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowerCamelCase ) if cross_attn_head_mask is None: a = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __lowerCAmelCase : def __init__( self :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :int=13 , __magic_name__ :Optional[int]=7 , __magic_name__ :Tuple=True , __magic_name__ :Optional[int]=False , __magic_name__ :List[Any]=99 , __magic_name__ :List[str]=16 , __magic_name__ :Dict=2 , __magic_name__ :List[Any]=4 , __magic_name__ :Dict=4 , __magic_name__ :Optional[Any]="relu" , __magic_name__ :int=0.1 , __magic_name__ :str=0.1 , __magic_name__ :Any=0.0 , __magic_name__ :Optional[int]=0.0 , __magic_name__ :Any=20 , __magic_name__ :Dict=2 , __magic_name__ :Dict=1 , __magic_name__ :Any=0 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = encoder_layerdrop a = decoder_layerdrop a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.eos_token_id # Eos Token a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input a = input_ids.clamp(self.pad_token_id + 1 ) a = decoder_input_ids.clamp(self.pad_token_id + 1 ) a = self.get_config() a = prepare_mam_aaa_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a , a = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self :Tuple , __magic_name__ :List[Any] , __magic_name__ :Any ): '''simple docstring''' a = MaMaaaModel(config=__magic_name__ ).get_decoder().to(__magic_name__ ).eval() a = inputs_dict["""input_ids"""] a = inputs_dict["""attention_mask"""] a = inputs_dict["""head_mask"""] # first forward pass a = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ ) a , a = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] , dim=-1 ) a = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) a = model(__magic_name__ , attention_mask=__magic_name__ )["""last_hidden_state"""] a = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[ """last_hidden_state""" ] # select random slice a = ids_tensor((1,) , output_from_past.shape[-1] ).item() a = output_from_no_past[:, -3:, random_slice_idx].detach() a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) ) def lowerCamelCase__ ( self :Dict , __magic_name__ :str , __magic_name__ :int ): '''simple docstring''' a = MaMaaaModel(config=__magic_name__ ).to(__magic_name__ ).eval() a = model(**__magic_name__ ) a = outputs.encoder_last_hidden_state a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: a = model.get_encoder() encoder.save_pretrained(__magic_name__ ) a = MaMaaaEncoder.from_pretrained(__magic_name__ ).to(__magic_name__ ) a = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: a = model.get_decoder() decoder.save_pretrained(__magic_name__ ) a = MaMaaaDecoder.from_pretrained(__magic_name__ ).to(__magic_name__ ) a = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=__magic_name__ , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) UpperCamelCase__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () UpperCamelCase__ = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False def lowerCamelCase__ ( self :List[str] , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :str ): '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = MaMaaaModelTester(self ) a = ConfigTester(self , config_class=__magic_name__ ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self :str ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: a = model_class(__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) a , a = model_class.from_pretrained(__magic_name__ , output_loading_info=__magic_name__ ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCamelCase__ ( self :str ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__magic_name__ ) def lowerCamelCase__ ( self :str ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__magic_name__ ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() a = copy.deepcopy(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) if not self.is_encoder_decoder: a = inputs["""input_ids"""] del inputs["input_ids"] else: a = inputs["""input_ids"""] a = inputs.get("""decoder_input_ids""" , __magic_name__ ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , __magic_name__ ) a = model.get_input_embeddings() if not self.is_encoder_decoder: a = wte(__magic_name__ ) else: a = wte(__magic_name__ ) a = wte(__magic_name__ ) with torch.no_grad(): model(**__magic_name__ )[0] def lowerCamelCase__ ( self :Any ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs() a = input_dict["""input_ids"""] a = input_ids.ne(1 ).to(__magic_name__ ) a = MaMaaaForConditionalGeneration(__magic_name__ ).eval().to(__magic_name__ ) if torch_device == "cuda": model.half() model.generate(__magic_name__ , attention_mask=__magic_name__ ) model.generate(num_beams=4 , do_sample=__magic_name__ , early_stopping=__magic_name__ , num_return_sequences=3 ) def __A ( __lowerCamelCase ) -> List[Any]: return torch.tensor(__lowerCamelCase , dtype=torch.long , device=__lowerCamelCase ) __UpperCamelCase : Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def lowerCamelCase__ ( self :int ): '''simple docstring''' a = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(__magic_name__ ) a = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) a = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) a = prepare_mam_aaa_inputs_dict(model.config , __magic_name__ , __magic_name__ ) with torch.no_grad(): a = model(**__magic_name__ )[0] a = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __magic_name__ ) # change to expected output here a = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__magic_name__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__magic_name__ ) # change to intended input a = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) a = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) a = prepare_mam_aaa_inputs_dict(model.config , __magic_name__ , __magic_name__ ) with torch.no_grad(): a = model(**__magic_name__ )[0] a = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __magic_name__ ) # change to expected output here a = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__magic_name__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__magic_name__ ) a = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) a = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) a = model.generate( input_ids=dct["""input_ids"""].to(__magic_name__ ) , attention_mask=dct["""attention_mask"""].to(__magic_name__ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) a = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] a = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__magic_name__ , skip_special_tokens=__magic_name__ ) assert generated == expected_en
228
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCamelCase : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __A ( __lowerCamelCase ) -> List[str]: a = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): a = line.strip() if line: a = line.split() a = line_number a = words[0] a = value return result def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: for attribute in key.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): a = PARAM_MAPPING[full_name.split(""".""" )[-1]] a = """param""" if weight_type is not None and weight_type != "param": a = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": a = hf_pointer for attribute in hf_param_name.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = shape_pointer.shape # let's reduce dimension a = value[0] else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = value else: a = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): a = PARAM_MAPPING[full_name.split(""".""" )[-1]] a = """param""" if weight_type is not None and weight_type != "param": a = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a = """.""".join([key, hf_param_name] ) else: a = key a = value if """lm_head""" in full_key else value[0] __UpperCamelCase : List[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> Optional[Any]: a = False for key, mapped_key in MAPPING.items(): a = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: a = True if "*" in mapped_key: a = name.split(__lowerCamelCase )[0].split(""".""" )[-2] a = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: a = """weight_g""" elif "weight_v" in name: a = """weight_v""" elif "bias" in name: a = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a = """weight""" else: a = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: a = [] a = fairseq_model.state_dict() a = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) a = True else: a = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: a = full_name.split("""conv_layers.""" )[-1] a = name.split(""".""" ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False ) -> List[Any]: if config_path is not None: a = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: a = WavaVecaConfig() if is_seq_class: a = read_txt_into_dict(__lowerCamelCase ) a = idalabel a = WavaVecaForSequenceClassification(__lowerCamelCase ) a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: a = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a = target_dict.pad_index a = target_dict.bos_index a = target_dict.eos_index a = len(target_dict.symbols ) a = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) a = target_dict.indices # fairseq has the <pad> and <s> switched a = 0 a = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) a = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) a = True if config.feat_extract_norm == """layer""" else False a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) a = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) a = WavaVecaForCTC(__lowerCamelCase ) else: a = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: a = argparse.Namespace(task="""audio_pretraining""" ) a = fairseq.tasks.setup_task(__lowerCamelCase ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) a = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCamelCase : Union[str, Any] = parser.parse_args() __UpperCamelCase : Any = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
228
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict =DebertaVaTokenizer lowerCamelCase : Optional[Any] =DebertaVaTokenizerFast lowerCamelCase : List[str] =True lowerCamelCase : Any =True def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : List[Any] = DebertaVaTokenizer(lowerCAmelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[Any] = """this is a test""" __lowerCAmelCase : Tuple = """this is a test""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = """<pad>""" __lowerCAmelCase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(lowerCAmelCase ) , 3_00_01 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase : Tuple = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase : Optional[Any] = DebertaVaTokenizer(lowerCAmelCase , do_lower_case=lowerCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = DebertaVaTokenizerFast(lowerCAmelCase , do_lower_case=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : int = """I was born in 92000, and this is falsé.""" __lowerCAmelCase : int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: """simple docstring""" __lowerCAmelCase : Any = """I was born in 92000, and this is falsé.""" __lowerCAmelCase : Optional[int] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase , do_lower_case=lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = DebertaVaTokenizerFast(lowerCAmelCase , do_lower_case=lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Any = """I was born in 92000, and this is falsé.""" __lowerCAmelCase : Union[str, Any] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase : Optional[Any] = DebertaVaTokenizer(lowerCAmelCase , do_lower_case=lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Optional[int] = DebertaVaTokenizerFast(lowerCAmelCase , do_lower_case=lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = """I was born in 92000, and this is falsé.""" __lowerCAmelCase : int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase , do_lower_case=lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = DebertaVaTokenizerFast(lowerCAmelCase , do_lower_case=lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase : Any = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase : Tuple = DebertaVaTokenizer(lowerCAmelCase , do_lower_case=lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = DebertaVaTokenizerFast(lowerCAmelCase , do_lower_case=lowerCAmelCase , split_by_punct=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Tuple = self.get_rust_tokenizer() __lowerCAmelCase : int = """I was born in 92000, and this is falsé.""" __lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) __lowerCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : int = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = self.get_rust_tokenizer() __lowerCAmelCase : Any = tokenizer.encode(lowerCAmelCase ) __lowerCAmelCase : str = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: """simple docstring""" __lowerCAmelCase : int = """This is a test""" __lowerCAmelCase : List[Any] = [13, 1, 43_98, 25, 21, 12_89] __lowerCAmelCase : Dict = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase : Dict = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase : Dict = DebertaVaTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) __lowerCAmelCase : Any = DebertaVaTokenizerFast(lowerCAmelCase , keep_accents=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # fmt: off __lowerCAmelCase : List[Any] = """I was born in 92000, and this is falsé.""" __lowerCAmelCase : List[Any] = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] __lowerCAmelCase : Union[str, Any] = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase : str = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase : Any = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = DebertaVaTokenizer(lowerCAmelCase ) __lowerCAmelCase : Tuple = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase : int = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase , ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = {"""input_ids""": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
370
def snake_case_ () -> List[Any]: for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def snake_case_ (__A : Dict ) -> Tuple: __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : Optional[int] = 2 while i * i <= n: __lowerCAmelCase : Optional[int] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def snake_case_ () -> Dict: return next(i for i in triangle_number_generator() if count_divisors(__A ) > 5_0_0 ) if __name__ == "__main__": print(solution())
139
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> int: """simple docstring""" UpperCamelCase :Any = prime_factors(SCREAMING_SNAKE_CASE__ ) if is_square_free(SCREAMING_SNAKE_CASE__ ): return -1 if len(SCREAMING_SNAKE_CASE__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
38
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : CLIPSegForImageSegmentation , __magic_name__ : CLIPSegProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> str: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Optional[int] = dict(scheduler.config ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = FrozenDict(__magic_name__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Dict = dict(scheduler.config ) UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = FrozenDict(__magic_name__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__magic_name__ , segmentation_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ : Tuple = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : str , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase_ : int = self.segmentation_model(**__magic_name__ ) UpperCAmelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , )
125
0
from collections.abc import Iterable from typing import Generic, TypeVar a : Dict = TypeVar('_T') class _a ( Generic[_T] ): def __init__(self, SCREAMING_SNAKE_CASE_ = None ) -> None: UpperCAmelCase_: list[_T] = list(iterable or [] ) UpperCAmelCase_: list[_T] = [] def __len__(self ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__(self ) -> str: return f'Queue({tuple(self._stacka[::-1] + self._stacka )})' def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: self._stacka.append(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> _T: UpperCAmelCase_: Optional[int] = self._stacka.pop UpperCAmelCase_: List[Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
82
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a : Optional[Any] = logging.get_logger(__name__) a : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : Dict = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a : str = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } a : Optional[int] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = SqueezeBertTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="[UNK]", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[PAD]", SCREAMING_SNAKE_CASE_="[CLS]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, tokenize_chinese_chars=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""", SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCAmelCase_: Optional[Any] = getattr(SCREAMING_SNAKE_CASE_, normalizer_state.pop("""type""" ) ) UpperCAmelCase_: Optional[Any] = do_lower_case UpperCAmelCase_: int = strip_accents UpperCAmelCase_: int = tokenize_chinese_chars UpperCAmelCase_: List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = do_lower_case def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: List[Any] = [self.sep_token_id] UpperCAmelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
82
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _A : List[Any] , _A : List[Any]=2 , _A : Any=3 , _A : Union[str, Any]=4 , _A : int=2 , _A : Dict=7 , _A : Dict=True , _A : int=True , _A : List[str]=True , _A : Tuple=True , _A : Tuple=99 , _A : Any=36 , _A : List[Any]=3 , _A : Optional[int]=4 , _A : Any=37 , _A : int="gelu" , _A : int=0.1 , _A : Tuple=0.1 , _A : Dict=512 , _A : Dict=16 , _A : Optional[Any]=2 , _A : List[str]=0.02 , _A : Any=6 , _A : Any=6 , _A : Optional[Any]=3 , _A : str=4 , _A : Optional[Any]=None , _A : List[str]=1000 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : Tuple = num_channels __SCREAMING_SNAKE_CASE : List[str] = image_size __SCREAMING_SNAKE_CASE : Any = patch_size __SCREAMING_SNAKE_CASE : Dict = text_seq_length __SCREAMING_SNAKE_CASE : Optional[int] = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE : str = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Tuple = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : str = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = coordinate_size __SCREAMING_SNAKE_CASE : Any = shape_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels __SCREAMING_SNAKE_CASE : str = num_choices __SCREAMING_SNAKE_CASE : Tuple = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __SCREAMING_SNAKE_CASE : Dict = text_seq_length __SCREAMING_SNAKE_CASE : str = (image_size // patch_size) ** 2 + 1 __SCREAMING_SNAKE_CASE : List[Any] = self.text_seq_length + self.image_seq_length def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 3] __SCREAMING_SNAKE_CASE : Tuple = bbox[i, j, 1] __SCREAMING_SNAKE_CASE : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE : Union[str, Any] = bbox[i, j, 2] __SCREAMING_SNAKE_CASE : Tuple = bbox[i, j, 0] __SCREAMING_SNAKE_CASE : str = t __SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Optional[int] , _A : List[Any] , _A : Union[str, Any] , _A : Optional[Any] , _A : Tuple , _A : List[str] , _A : str , _A : Union[str, Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = LayoutLMvaModel(config=_A ) model.to(_A ) model.eval() # text + image __SCREAMING_SNAKE_CASE : Dict = model(_A , pixel_values=_A ) __SCREAMING_SNAKE_CASE : Dict = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A ) __SCREAMING_SNAKE_CASE : Tuple = model(_A , bbox=_A , pixel_values=_A , token_type_ids=_A ) __SCREAMING_SNAKE_CASE : int = model(_A , bbox=_A , pixel_values=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __SCREAMING_SNAKE_CASE : List[str] = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : str , _A : str , _A : str , _A : Union[str, Any] , _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaForSequenceClassification(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : Tuple , _A : Optional[int] , _A : Tuple , _A : Optional[int] , _A : Optional[int] , _A : int , _A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.num_labels __SCREAMING_SNAKE_CASE : Any = LayoutLMvaForTokenClassification(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : int , _A : List[Any] , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = LayoutLMvaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : str = config_and_inputs __SCREAMING_SNAKE_CASE : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase__ ( self : Dict , _A : Tuple , _A : List[str] , _A : List[str] , _A : Optional[int] , _A : int ): """simple docstring""" return True def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase__ ( self : Any , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(_A ) if model_class in get_values(_A ): __SCREAMING_SNAKE_CASE : List[Any] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): __SCREAMING_SNAKE_CASE : Dict = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in get_values(_A ): __SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in [ *get_values(_A ), ]: __SCREAMING_SNAKE_CASE : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in [ *get_values(_A ), ]: __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_A , ) return inputs_dict def UpperCAmelCase__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE : Dict = type self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = LayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_A ) __SCREAMING_SNAKE_CASE : Any = self.default_image_processor __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=_A , return_tensors='''pt''' ).pixel_values.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 2]] ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __SCREAMING_SNAKE_CASE : Any = model( input_ids=input_ids.to(_A ) , bbox=bbox.to(_A ) , pixel_values=pixel_values.to(_A ) , ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(_A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
303
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowercase_ = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowercase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __UpperCamelCase : """simple docstring""" def __init__( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = WATERMARK_BITS __SCREAMING_SNAKE_CASE : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCAmelCase__ ( self : List[Any] , _A : torch.FloatTensor ): """simple docstring""" if images.shape[-1] < 256: return images __SCREAMING_SNAKE_CASE : Union[str, Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE : Dict = [self.encoder.encode(_A , '''dwtDct''' ) for image in images] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
303
1
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ort.SessionOptions() _lowerCAmelCase = False return options def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _lowerCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = """A red cat sitting on a park bench""" _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type="""np""" , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) _lowerCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = """A red cat sitting on a park bench""" _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type="""np""" , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
229
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = 13 _lowerCAmelCase = 7 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = 99 _lowerCAmelCase = 384 _lowerCAmelCase = 2 _lowerCAmelCase = 4 _lowerCAmelCase = 37 _lowerCAmelCase = """gelu""" _lowerCAmelCase = 0.1 _lowerCAmelCase = 0.1 _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 2 _lowerCAmelCase = 0.02 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = 2 _lowerCAmelCase = 9 _lowerCAmelCase = 1 _lowerCAmelCase = None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertModel(config=_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForMaskedLM(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForSequenceClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFConvBertForMultipleChoice(config=_lowercase ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForTokenClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase : Optional[Any] = False _lowercase : Dict = False _lowercase : Any = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = True if hasattr(_lowercase , """use_cache""" ): _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) for model_class in self.all_model_classes: _lowerCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) _lowerCAmelCase = os.path.join(_lowercase , """saved_model""" , """1""" ) _lowerCAmelCase = tf.keras.models.load_model(_lowercase ) _lowerCAmelCase = model(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = outputs["""encoder_hidden_states"""] _lowerCAmelCase = outputs["""encoder_attentions"""] else: _lowerCAmelCase = outputs["""hidden_states"""] _lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(_lowercase ) , _lowercase ) _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) def check_decoder_attentions_output(_lowercase ): _lowerCAmelCase = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) _lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowercase ): _lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowercase )[0] _lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
229
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a : List[str] = 2_5_0_0_0_4 a : List[str] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = MBartTokenizer lowercase = MBartTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : str = MBartTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[Any] = MBartTokenizer(A , keep_accents=A ) UpperCAmelCase : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _lowercase( self ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : str = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : Dict = tokenizer_r.save_pretrained(A ) UpperCAmelCase : int = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase : int = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : Any = tokenizer_r.save_pretrained(A , legacy_format=A ) UpperCAmelCase : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(A , legacy_format=A ) UpperCAmelCase : List[str] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : str = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): lowercase = 'facebook/mbart-large-en-ro' lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _lowercase( cls ) -> Tuple: UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) UpperCAmelCase : int = 1 return cls def _lowercase( self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def _lowercase( self ) -> List[str]: self.assertIn(A , self.tokenizer.all_special_ids ) UpperCAmelCase : str = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase : int = self.tokenizer.decode(A , skip_special_tokens=A ) UpperCAmelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , A ) UpperCAmelCase : int = 10 UpperCAmelCase : List[Any] = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A ) self.assertEqual(len(A ) , A ) def _lowercase( self ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250026, 250001] ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = tempfile.mkdtemp() UpperCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) UpperCAmelCase : Tuple = MBartTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def _lowercase( self ) -> List[str]: UpperCAmelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors="""pt""" ) UpperCAmelCase : Union[str, Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCAmelCase : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors="""pt""" ) UpperCAmelCase : Dict = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors="""pt""" ) UpperCAmelCase : Dict = targets["""input_ids"""] UpperCAmelCase : Union[str, Any] = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(A ) , { # A, test, EOS, en_XX """input_ids""": [[62, 3034, 2, 250004]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
265
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a_ ( __lowercase ): '''simple docstring''' def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_a , 'width_multiplier')) class a_ : '''simple docstring''' def __init__( self : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=13 , lowercase__ : Optional[int]=64 , lowercase__ : Dict=2 , lowercase__ : str=3 , lowercase__ : Any="swish" , lowercase__ : Dict=3 , lowercase__ : Optional[int]=32 , lowercase__ : int=0.1 , lowercase__ : List[str]=0.02 , lowercase__ : Union[str, Any]=True , lowercase__ : str=True , lowercase__ : Dict=10 , lowercase__ : List[str]=None , lowercase__ : Optional[Any]=0.25 , lowercase__ : Optional[int]=0.0 , lowercase__ : List[str]=0.0 , ): '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = make_divisible(512 * width_multiplier , divisor=8) lowerCAmelCase__ = hidden_act lowerCAmelCase__ = conv_kernel_size lowerCAmelCase__ = output_stride lowerCAmelCase__ = classifier_dropout_prob lowerCAmelCase__ = use_labels lowerCAmelCase__ = is_training lowerCAmelCase__ = num_labels lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = width_multiplier lowerCAmelCase__ = ffn_dropout lowerCAmelCase__ = attn_dropout def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels) lowerCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case ( self : Any): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __snake_case ( self : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Dict , lowercase__ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = MobileViTVaModel(config=_a) model.to(_a) model.eval() lowerCAmelCase__ = model(_a) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self : int , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MobileViTVaForImageClassification(_a) model.to(_a) model.eval() lowerCAmelCase__ = model(_a , labels=_a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : str , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : int): '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MobileViTVaForSemanticSegmentation(_a) model.to(_a) model.eval() lowerCAmelCase__ = model(_a) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase__ = model(_a , labels=_a) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase_ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = MobileViTVaModelTester(self) lowerCAmelCase__ = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a) def __snake_case ( self : Tuple): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def __snake_case ( self : Tuple): '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def __snake_case ( self : List[str]): '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not output attentions') def __snake_case ( self : Union[str, Any]): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def __snake_case ( self : List[str]): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __snake_case ( self : Any): '''simple docstring''' pass def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(_a) lowerCAmelCase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a) def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a) def __snake_case ( self : Dict): '''simple docstring''' def check_hidden_states_output(lowercase__ : Tuple , lowercase__ : str , lowercase__ : List[Any]): lowerCAmelCase__ = model_class(_a) model.to(_a) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(_a , _a)) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = 5 self.assertEqual(len(_a) , _a) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase__ = 2 for i in range(len(_a)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(_a , _a , _a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(_a , _a , _a) def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a) @slow def __snake_case ( self : str): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = MobileViTVaModel.from_pretrained(_a) self.assertIsNotNone(_a) def __lowerCamelCase ( ): lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Optional[Any]): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( _a) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=_a , return_tensors='pt').to(_a) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**_a) # verify the logits lowerCAmelCase__ = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , _a) lowerCAmelCase__ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01]).to(_a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4)) @slow def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') lowerCAmelCase__ = model.to(_a) lowerCAmelCase__ = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=_a , return_tensors='pt').to(_a) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**_a) lowerCAmelCase__ = outputs.logits # verify the logits lowerCAmelCase__ = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , _a) lowerCAmelCase__ = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4)) @slow def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') lowerCAmelCase__ = model.to(_a) lowerCAmelCase__ = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=_a , return_tensors='pt').to(_a) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**_a) lowerCAmelCase__ = outputs.logits.detach().cpu() lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)]) lowerCAmelCase__ = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , _a) lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=_a) lowerCAmelCase__ = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , _a)
365
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 1_6 ): lowerCAmelCase__ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowerCAmelCase__ , padding='longest' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowerCAmelCase__ = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCAmelCase__ ) == "1": lowerCAmelCase__ = 2 # Initialize accelerator lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config['lr'] lowerCAmelCase__ = int(config['num_epochs'] ) lowerCAmelCase__ = int(config['seed'] ) lowerCAmelCase__ = int(config['batch_size'] ) lowerCAmelCase__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase__ = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
119
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( _a ): lowerCAmelCase_ : List[Any] = ['''pixel_values'''] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : str , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 224} lowerCAmelCase : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ , param_name='crop_size' ) lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : Tuple = resample lowerCAmelCase : List[str] = do_center_crop lowerCAmelCase : Optional[Any] = crop_size lowerCAmelCase : List[Any] = do_rescale lowerCAmelCase : Any = rescale_factor lowerCAmelCase : List[str] = do_normalize lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase : int = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase : List[Any] = do_convert_rgb def lowercase__ ( self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): lowerCAmelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCAmelCase : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : str , ): lowerCAmelCase : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : str , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Tuple , ): return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ): lowerCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Tuple = size if size is not None else self.size lowerCAmelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='size' , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = resample if resample is not None else self.resample lowerCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : int = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : int = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std lowerCAmelCase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : Any = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : Optional[int] = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : int = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: lowerCAmelCase : int = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: lowerCAmelCase : Optional[int] = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: lowerCAmelCase : str = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: lowerCAmelCase : Any = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase : List[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase : Optional[int] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
138
'''simple docstring''' def A_ ( snake_case ): if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) SCREAMING_SNAKE_CASE:Optional[int] = sorted(string.lower() ) return len(snake_case ) == len(set(snake_case ) ) if __name__ == "__main__": A_ = input("Enter a string ").strip() A_ = is_isogram(input_str) print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
139
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : Optional[NestedDataStructureLike[PathLike]] = None , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[int] = None , **_A : Union[str, Any] , ) -> Union[str, Any]: __magic_name__ : str = path_or_paths __magic_name__ : Any = split if split or isinstance(_A , _A ) else 'train' __magic_name__ : Dict = features __magic_name__ : List[Any] = cache_dir __magic_name__ : List[str] = keep_in_memory __magic_name__ : Optional[Any] = streaming __magic_name__ : int = num_proc __magic_name__ : Optional[Any] = kwargs @abstractmethod def __lowerCAmelCase ( self : Optional[int] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Tuple , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[int] = None , **_A : str , ) -> str: __magic_name__ : int = features __magic_name__ : List[str] = cache_dir __magic_name__ : List[Any] = keep_in_memory __magic_name__ : str = streaming __magic_name__ : Optional[Any] = num_proc __magic_name__ : Dict = kwargs @abstractmethod def __lowerCAmelCase ( self : int ) -> Union[Dataset, IterableDataset]: pass
275
'''simple docstring''' import math def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return math.pow(lowerCAmelCase , 2 ) - a def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" return 2 * x def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" __magic_name__ : List[Any] = 2.0 while start <= a: __magic_name__ : List[str] = math.pow(lowerCAmelCase , 2 ) return start def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int = 9999 , lowerCAmelCase : float = 0.00_0000_0000_0001 ): """simple docstring""" if a < 0: raise ValueError('math domain error' ) __magic_name__ : Any = get_initial_point(lowerCAmelCase ) for _ in range(lowerCAmelCase ): __magic_name__ : List[str] = value __magic_name__ : Optional[int] = value - fx(lowerCAmelCase , lowerCAmelCase ) / fx_derivative(lowerCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
275
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging A__ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): def __init__( self , _snake_case ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.ModuleList(_snake_case ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(_snake_case , _snake_case , self.nets ) ): _lowerCAmelCase , _lowerCAmelCase = controlnet( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) # merge samples if i == 0: _lowerCAmelCase , _lowerCAmelCase = down_samples, mid_sample else: _lowerCAmelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_snake_case , _snake_case ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def snake_case ( self , _snake_case , _snake_case = True , _snake_case = None , _snake_case = False , _snake_case = None , ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( _snake_case , is_main_process=_snake_case , save_function=_snake_case , safe_serialization=_snake_case , variant=_snake_case , ) idx += 1 _lowerCAmelCase = model_path_to_save + F'_{idx}' @classmethod def snake_case ( cls , _snake_case , **_snake_case ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCAmelCase = pretrained_model_path while os.path.isdir(_snake_case ): _lowerCAmelCase = ControlNetModel.from_pretrained(_snake_case , **_snake_case ) controlnets.append(_snake_case ) idx += 1 _lowerCAmelCase = pretrained_model_path + F'_{idx}' logger.info(F'{len(_snake_case )} controlnets loaded from {pretrained_model_path}.' ) if len(_snake_case ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(_snake_case )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(_snake_case )
82
from __future__ import annotations def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = str(snake_case ) return n == n[::-1] def _UpperCAmelCase ( snake_case = 1_00_00_00 ): """simple docstring""" _lowerCAmelCase = 0 for i in range(1 , snake_case ): if is_palindrome(snake_case ) and is_palindrome(bin(snake_case ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
82
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 600851475143 ) -> int: '''simple docstring''' try: A__ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"""{solution() = }""")
352
from jiwer import compute_measures import datasets lowercase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowercase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowercase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Any )-> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/jitsi/jiwer/'],reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ],) def snake_case__ ( self : int,lowercase_ : Any=None,lowercase_ : List[str]=None,lowercase_ : Dict=False )-> Optional[int]: '''simple docstring''' if concatenate_texts: return compute_measures(lowercase_,lowercase_ )["wer"] else: A__ = 0 A__ = 0 for prediction, reference in zip(lowercase_,lowercase_ ): A__ = compute_measures(lowercase_,lowercase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
282
0
'''simple docstring''' import logging from transformers import PretrainedConfig _A : List[Any] = logging.getLogger(__name__) _A : List[Any] = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = """bertabs""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[Any]=6 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_12 , SCREAMING_SNAKE_CASE__ : str=8 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : List[str]=0.2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : str=8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.2 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> List[Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = max_pos __lowerCAmelCase = enc_layers __lowerCAmelCase = enc_hidden_size __lowerCAmelCase = enc_heads __lowerCAmelCase = enc_ff_size __lowerCAmelCase = enc_dropout __lowerCAmelCase = dec_layers __lowerCAmelCase = dec_hidden_size __lowerCAmelCase = dec_heads __lowerCAmelCase = dec_ff_size __lowerCAmelCase = dec_dropout
229
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _A : Optional[Any] = logging.get_logger(__name__) # General docstring _A : Optional[Any] = '''ResNetConfig''' # Base docstring _A : Tuple = '''microsoft/resnet-50''' _A : List[str] = [1, 2048, 7, 7] # Image classification docstring _A : str = '''microsoft/resnet-50''' _A : Dict = '''tiger cat''' _A : List[Any] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" ) -> Any: super().__init__() __lowerCAmelCase = nn.Convad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=kernel_size // 2 , bias=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = self.convolution(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.normalization(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig ) -> List[str]: super().__init__() __lowerCAmelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __lowerCAmelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __lowerCAmelCase = config.num_channels def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.pooler(SCREAMING_SNAKE_CASE__ ) return embedding class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 ) -> Dict: super().__init__() __lowerCAmelCase = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = self.convolution(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.normalization(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" ) -> Dict: super().__init__() __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , activation=SCREAMING_SNAKE_CASE__ ) , ) __lowerCAmelCase = ACTaFN[activation] def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: __lowerCAmelCase = hidden_state __lowerCAmelCase = self.layer(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 4 ) -> int: super().__init__() __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = out_channels // reduction __lowerCAmelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE__ ) , ) __lowerCAmelCase = ACTaFN[activation] def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: __lowerCAmelCase = hidden_state __lowerCAmelCase = self.layer(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , ) -> int: super().__init__() __lowerCAmelCase = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer __lowerCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) , *[layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = input for layer in self.layers: __lowerCAmelCase = layer(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig ) -> Optional[int]: super().__init__() __lowerCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( SCREAMING_SNAKE_CASE__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE__ , config.depths[1:] ): self.stages.append(ResNetStage(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , depth=SCREAMING_SNAKE_CASE__ ) ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ) -> BaseModelOutputWithNoAttention: __lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) __lowerCAmelCase = stage_module(SCREAMING_SNAKE_CASE__ ) if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = ResNetConfig _SCREAMING_SNAKE_CASE : Union[str, Any] = """resnet""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """pixel_values""" _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> int: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = value _A : Dict = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _A : Optional[int] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = config __lowerCAmelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ResNetEncoder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , pooler_output=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = ResNetModel(SCREAMING_SNAKE_CASE__ ) # classification head __lowerCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.resnet(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCAmelCase = self.classifier(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase = """single_label_classification""" else: __lowerCAmelCase = """multi_label_classification""" if self.config.problem_type == "regression": __lowerCAmelCase = MSELoss() if self.num_labels == 1: __lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCAmelCase = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase = BCEWithLogitsLoss() __lowerCAmelCase = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: __lowerCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: super().__init__(SCREAMING_SNAKE_CASE__ ) super()._init_backbone(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = [config.embedding_size] + config.hidden_sizes __lowerCAmelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ResNetEncoder(SCREAMING_SNAKE_CASE__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BackboneOutput: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.encoder(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=SCREAMING_SNAKE_CASE__ , )
229
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] _snake_case = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
201
from __future__ import annotations def _A ( __magic_name__ , __magic_name__ ): lowercase__ = [] create_all_state(1 , __magic_name__ , __magic_name__ , [] , __magic_name__ ) return result def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): if level == 0: total_list.append(current_list[:] ) return for i in range(__magic_name__ , total_number - level + 2 ): current_list.append(__magic_name__ ) create_all_state(i + 1 , __magic_name__ , level - 1 , __magic_name__ , __magic_name__ ) current_list.pop() def _A ( __magic_name__ ): for i in total_list: print(*__magic_name__ ) if __name__ == "__main__": _snake_case = 4 _snake_case = 2 _snake_case = generate_all_combinations(n, k) print_all_state(total_list)
201
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class lowerCamelCase__: UpperCAmelCase__ : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The column name of the images in the files.'}) UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the training data.'}) UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the validation data.'}) UpperCAmelCase__ : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'}) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = {} if self.train_dir is not None: __lowerCamelCase = self.train_dir if self.validation_dir is not None: __lowerCamelCase = self.validation_dir __lowerCamelCase = data_files if data_files else None @dataclass class lowerCamelCase__: UpperCAmelCase__ : str = field( default=__lowerCamelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'}) UpperCAmelCase__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) UpperCAmelCase__ : str = field(default=__lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) UpperCAmelCase__ : float = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'}) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'}) @dataclass class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : float = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'}) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' __lowerCamelCase = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , A__ , A__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase = training_args.get_process_log_level() logger.setLevel(A__ ) transformers.utils.logging.set_verbosity(A__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. __lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowerCamelCase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A__ ) and data_args.train_val_split > 0.0: __lowerCamelCase = ds["""train"""].train_test_split(data_args.train_val_split ) __lowerCamelCase = split["""train"""] __lowerCamelCase = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **A__ ) elif model_args.model_name_or_path: __lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **A__ ) else: __lowerCamelCase = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **A__ ) elif model_args.model_name_or_path: __lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **A__ ) else: __lowerCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: __lowerCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __lowerCamelCase = ViTMAEForPreTraining(A__ ) if training_args.do_train: __lowerCamelCase = ds["""train"""].column_names else: __lowerCamelCase = ds["""validation"""].column_names if data_args.image_column_name is not None: __lowerCamelCase = data_args.image_column_name elif "image" in column_names: __lowerCamelCase = """image""" elif "img" in column_names: __lowerCamelCase = """img""" else: __lowerCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __lowerCamelCase = image_processor.size["""shortest_edge"""] else: __lowerCamelCase = (image_processor.size["""height"""], image_processor.size["""width"""]) __lowerCamelCase = Compose( [ Lambda(lambda A__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(A__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(A__ : Optional[int] ): __lowerCamelCase = [transforms(A__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __lowerCamelCase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(A__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __lowerCamelCase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(A__ ) # Compute absolute learning rate __lowerCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __lowerCamelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __lowerCamelCase = Trainer( model=A__ , args=A__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=A__ , data_collator=A__ , ) # Training if training_args.do_train: __lowerCamelCase = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase = last_checkpoint __lowerCamelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , A__ ) trainer.save_metrics("""eval""" , A__ ) # Write model card and (optionally) push to hub __lowerCamelCase = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**A__ ) else: trainer.create_model_card(**A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
12
from __future__ import annotations __UpperCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Union[str, Any] = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase : dict[str, str | None] = {} UpperCamelCase : Union[str, Any] = source_vertex def snake_case_ ( self ) -> None: UpperCamelCase : str = {self.source_vertex} UpperCamelCase : str = None UpperCamelCase : int = [self.source_vertex] # first in first out queue while queue: UpperCamelCase : Dict = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = vertex queue.append(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase : Optional[Any] = self.parent.get(SCREAMING_SNAKE_CASE_ ) if target_vertex_parent is None: UpperCamelCase : Union[str, Any] = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) return self.shortest_path(SCREAMING_SNAKE_CASE_ ) + F"""->{target_vertex}""" if __name__ == "__main__": __UpperCAmelCase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
119
0
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP a_ : List[Any] = False try: a_ : Dict = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class a : def __init__( self , __magic_name__ = None , __magic_name__ = [] ) -> Any: _a = 0 _a = choices _a = prompt if sys.platform == "win32": _a = '*' else: _a = '➔ ' def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = "" ) -> List[str]: if sys.platform != "win32": writeColor(self.choices[index] , 32 , __magic_name__ ) else: forceWrite(self.choices[index] , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Any: if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(__magic_name__ ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = 1 ) -> Optional[Any]: _a = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__magic_name__ ) move_cursor(__magic_name__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def __UpperCAmelCase ( self ) -> Any: self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def __UpperCAmelCase ( self ) -> Any: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def __UpperCAmelCase ( self ) -> Tuple: move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def __UpperCAmelCase ( self ) -> int: move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__magic_name__ )] for number in range(10 )] ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = int(chr(self.current_selection ) ) _a = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __magic_name__ ) else: return else: return def __UpperCAmelCase ( self , __magic_name__ = 0 ) -> Union[str, Any]: if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) _a = default_choice for i in range(len(self.choices ) ): self.print_choice(__magic_name__ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: _a = int(builtins.input() ) except ValueError: _a = default_choice else: _a = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(__magic_name__ , '\n' ) return choice
104
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_12 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.0_2 , __magic_name__=False , __magic_name__=True , __magic_name__="None" , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ) -> Any: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = relative_attention _a = position_biased_input _a = pos_att_type _a = scope def __UpperCAmelCase ( self ) -> List[str]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ) -> Union[str, Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.get_config() _a = 3_00 return config def __UpperCAmelCase ( self , __magic_name__ ) -> Dict: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: _a = DebertaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )[0] _a = model(__magic_name__ , token_type_ids=__magic_name__ )[0] _a = model(__magic_name__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: _a = DebertaForMaskedLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = self.num_labels _a = DebertaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: _a = self.num_labels _a = DebertaForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = DebertaForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ) -> Any: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> List[str]: _a = DebertaModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def __UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__magic_name__ ) def __UpperCAmelCase ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__magic_name__ ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DebertaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __UpperCAmelCase ( self ) -> Dict: pass @slow def __UpperCAmelCase ( self ) -> int: _a = DebertaModel.from_pretrained('microsoft/deberta-base' ) _a = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a = model(__magic_name__ , attention_mask=__magic_name__ )[0] # compare the actual values for a slice. _a = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
104
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"vocab_file": "spiece.model"} _UpperCamelCase = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _UpperCamelCase = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_=False , A_=False , A_=False , A_=None , A_=None , A_=None , A_=None , A_ = None , **A_ , ) ->None: '''simple docstring''' __lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase : int = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __lowerCAmelCase : Union[str, Any] = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __lowerCAmelCase : str = '''<|endoftext|>''' if eos_token is None else eos_token __lowerCAmelCase : Any = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __lowerCAmelCase : Dict = unk_token if pad_token is None else pad_token __lowerCAmelCase : int = eos_token if bos_token is None else bos_token else: __lowerCAmelCase : Optional[int] = '''<pad>''' if pad_token is None else pad_token __lowerCAmelCase : List[str] = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) __lowerCAmelCase : Union[str, Any] = do_lower_case __lowerCAmelCase : Union[str, Any] = remove_space __lowerCAmelCase : int = keep_accents __lowerCAmelCase : Union[str, Any] = vocab_file __lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # Used for whitespace normalization in input texts # fmt : off __lowerCAmelCase : List[Any] = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __lowerCAmelCase : int = re.compile( f"""[{"".join(map(A_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.__dict__.copy() __lowerCAmelCase : List[Any] = None return state def __setstate__( self , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase : List[Any] = {} __lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return len(self.sp_model ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : int = self.non_printing_characters_re.sub('''''' , A_ ) # Normalize whitespaces __lowerCAmelCase : List[str] = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __lowerCAmelCase : Tuple = unicodedata.normalize('''NFC''' , A_ ) return text def UpperCamelCase__ ( self , A_ , **A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = self.preprocess_text(A_ ) return self.sp_model.encode(A_ , out_type=A_ ) def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' return self.sp_model.PieceToId(A_ ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' return self.sp_model.IdToPiece(A_ ) @staticmethod def UpperCamelCase__ ( A_ ) ->str: '''simple docstring''' return out_string def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : str = [] __lowerCAmelCase : Tuple = '''''' __lowerCAmelCase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Optional[int] = [] else: current_sub_tokens.append(A_ ) __lowerCAmelCase : str = False out_string += self.sp_model.decode(A_ ) return out_string def UpperCamelCase__ ( self ) ->Dict[str, int]: '''simple docstring''' __lowerCAmelCase : str = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , A_ , A_ = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase : Any = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , '''wb''' ) as fi: __lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def UpperCamelCase__ ( self , A_ , A_ = False ) ->Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(A_ , A_ ): __lowerCAmelCase : Optional[Any] = self.preprocess_text(A_ ) __lowerCAmelCase : Dict = self.sp_model.encode(A_ ) else: __lowerCAmelCase : Dict = [self.preprocess_text(A_ ) for t in text] __lowerCAmelCase : Optional[int] = self.sp_model.encode(A_ ) if return_tensors is True or return_tensors == "pt": __lowerCAmelCase : Tuple = torch.tensor(A_ ) return token_ids def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' return self.sp_model.decode(A_ ) def UpperCamelCase__ ( self , A_ ) ->List[int]: '''simple docstring''' __lowerCAmelCase : int = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __lowerCAmelCase : Any = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(A_ ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=A_ )
275
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase = 16 _lowerCamelCase = 32 def a__ ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase_ : Optional[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_SCREAMING_SNAKE_CASE : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ : Optional[Any] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_SCREAMING_SNAKE_CASE : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ : Union[str, Any] = 8 else: UpperCAmelCase_ : List[str] = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding="longest" , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase_ : Union[str, Any] = DataLoader( tokenized_datasets["train"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase = mocked_dataloaders # noqa: F811 def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _SCREAMING_SNAKE_CASE ) == "1": UpperCAmelCase_ : Tuple = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase_ : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase_ : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : Optional[Any] = config["lr"] UpperCAmelCase_ : Union[str, Any] = int(config["num_epochs"] ) UpperCAmelCase_ : str = int(config["seed"] ) UpperCAmelCase_ : Tuple = int(config["batch_size"] ) set_seed(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ : Tuple = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ : Tuple = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : Tuple = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ : int = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler UpperCAmelCase_ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase_ : List[str] = os.path.split(_SCREAMING_SNAKE_CASE )[-1].split("." )[0] accelerator.init_trackers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase_ : Dict = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase_ : List[str] = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _SCREAMING_SNAKE_CASE ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_SCREAMING_SNAKE_CASE ), "epoch": epoch, } , step=_SCREAMING_SNAKE_CASE , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def a__ ( ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_SCREAMING_SNAKE_CASE , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
67
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _lowerCamelCase = datasets.utils.logging.get_logger(__name__) class _snake_case (folder_based_builder.FolderBasedBuilderConfig): __A : bool =None __A : bool =None class _snake_case (folder_based_builder.FolderBasedBuilder): __A : Union[str, Any] =datasets.Audio() __A : Optional[int] ="audio" __A : Any =AudioFolderConfig __A : List[str] # definition at the bottom of the script __A : Optional[int] =AudioClassification(audio_column="audio" , label_column="label") _lowerCamelCase = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] _lowerCamelCase = AUDIO_EXTENSIONS
67
1
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Dict = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[int] ="""data2vec-audio""" def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="gelu" , lowerCAmelCase__=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=16 , lowerCAmelCase__=19 , lowerCAmelCase__=5 , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=0 , lowerCAmelCase__="sum" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=256 , lowerCAmelCase__=(512, 512, 512, 512, 1500) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=512 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) a : List[str] = hidden_size a : Union[str, Any] = feat_extract_activation a : Any = list(lowerCAmelCase__ ) a : int = list(lowerCAmelCase__ ) a : str = list(lowerCAmelCase__ ) a : str = conv_bias a : Union[str, Any] = num_conv_pos_embeddings a : int = num_conv_pos_embedding_groups a : Union[str, Any] = conv_pos_kernel_size a : Any = len(self.conv_dim ) a : List[str] = num_hidden_layers a : str = intermediate_size a : Tuple = hidden_act a : List[str] = num_attention_heads a : str = hidden_dropout a : int = attention_dropout a : Union[str, Any] = activation_dropout a : Optional[Any] = feat_proj_dropout a : str = final_dropout a : Optional[Any] = layerdrop a : List[str] = layer_norm_eps a : int = initializer_range a : Union[str, Any] = vocab_size a : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : str = mask_time_prob a : Optional[Any] = mask_time_length a : Optional[Any] = mask_time_min_masks a : List[Any] = mask_feature_prob a : List[Any] = mask_feature_length a : Optional[int] = mask_feature_min_masks # ctc loss a : Optional[int] = ctc_loss_reduction a : int = ctc_zero_infinity # adapter a : str = add_adapter a : Any = adapter_kernel_size a : Any = adapter_stride a : str = num_adapter_layers a : str = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : Optional[int] = list(lowerCAmelCase__ ) a : List[Any] = list(lowerCAmelCase__ ) a : Dict = list(lowerCAmelCase__ ) a : Tuple = xvector_output_dim @property def __a ( self ) -> Union[str, Any]: return math.prod(self.conv_stride )
105
_lowerCamelCase : int = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCamelCase : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCamelCase : List[str] = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def a_ ( __lowercase : int , __lowercase : int , __lowercase : int ) -> str: assert len(str(__lowercase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case = year // 100 _snake_case = (5 * (century % 4) + 2) % 7 _snake_case = year % 100 _snake_case = centurian % 12 _snake_case = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
282
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] __magic_name__ = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] __magic_name__ = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): __magic_name__ = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PegasusTokenizer __SCREAMING_SNAKE_CASE = PegasusTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = PegasusTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case_ ( self ) -> Dict: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def snake_case_ ( self , **_snake_case ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def snake_case_ ( self , _snake_case ) -> Any: """simple docstring""" return ("This is a test", "This is a test") def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''</s>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(_snake_case ) , 1103 ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' UpperCAmelCase = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase = '''To ensure a smooth flow of bank resolutions.''' UpperCAmelCase = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = ['''This is going to be way too long.''' * 150, '''short example'''] UpperCAmelCase = ['''not super long but more than 5 tokens''', '''tiny'''] UpperCAmelCase = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors='''pt''' ) UpperCAmelCase = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. @slow def snake_case_ ( self ) -> List[str]: """simple docstring""" # fmt: off UpperCAmelCase = {'''input_ids''': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class lowercase ( A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PegasusTokenizer __SCREAMING_SNAKE_CASE = PegasusTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def snake_case_ ( self ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = PegasusTokenizer(_snake_case , offset=0 , mask_token_sent=_snake_case , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case_ ( self ) -> Dict: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def snake_case_ ( self , **_snake_case ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def snake_case_ ( self , _snake_case ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) @require_torch def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = ['''This is going to be way too long.''' * 1000, '''short example'''] UpperCAmelCase = ['''not super long but more than 5 tokens''', '''tiny'''] UpperCAmelCase = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors='''pt''' ) UpperCAmelCase = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) UpperCAmelCase = self._large_tokenizer(_snake_case ).input_ids self.assertListEqual( _snake_case , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
152
0
def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: return abs(__UpperCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCamelCase__ ,UpperCamelCase__ : Any = y, x % y return abs(__UpperCAmelCase ) def lowerCAmelCase_ ( ) -> int: try: UpperCamelCase__ : Any = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCamelCase__ : Optional[Any] = int(nums[0] ) UpperCamelCase__ : int = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(__UpperCAmelCase , __UpperCAmelCase )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__UpperCAmelCase , __UpperCAmelCase )}" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
201
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: PreTrainedTokenizer , __UpperCAmelCase: int , __UpperCAmelCase: Optional[int] = None , ) -> List[Any]: UpperCamelCase__ : Dict = {} if train_file is not None: UpperCamelCase__ : str = [train_file] if eval_file is not None: UpperCamelCase__ : Union[str, Any] = [eval_file] if test_file is not None: UpperCamelCase__ : Tuple = [test_file] UpperCamelCase__ : Optional[Any] = datasets.load_dataset('''csv''' , data_files=__UpperCAmelCase ) UpperCamelCase__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) UpperCamelCase__ : str = features_name.pop(__UpperCAmelCase ) UpperCamelCase__ : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCamelCase__ : Optional[Any] = {label: i for i, label in enumerate(__UpperCAmelCase )} UpperCamelCase__ : Union[str, Any] = tokenizer.model_input_names UpperCamelCase__ : str = {} if len(__UpperCAmelCase ) == 1: for k in files.keys(): UpperCamelCase__ : Optional[int] = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) , batched=__UpperCAmelCase , ) elif len(__UpperCAmelCase ) == 2: for k in files.keys(): UpperCamelCase__ : Dict = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , ) , batched=__UpperCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCamelCase__ : Any = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCamelCase__ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCamelCase__ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : int = labelaid[ex[label_name]] yield (d, label) UpperCamelCase__ : Tuple = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCamelCase__ : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCamelCase__ : int = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCamelCase__ : Dict = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCamelCase__ : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCamelCase__ : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class lowercase__ : '''simple docstring''' a : int = field(metadata={"help": "Which column contains the label"} ) a : str = field(default=__lowerCamelCase , metadata={"help": "The path of the training file"} ) a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The path of the development file"} ) a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The path of the test file"} ) a : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a : bool = field( default=__lowerCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowercase__ : '''simple docstring''' a : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : bool = field(default=__lowerCamelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowerCAmelCase_ ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCamelCase__ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCAmelCase ) , labelaid=__UpperCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCamelCase__ : str = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCAmelCase: EvalPrediction ) -> Dict: UpperCamelCase__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCamelCase__ : Union[str, Any] = TFTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ : List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase__ : Tuple = trainer.evaluate() UpperCamelCase__ : Optional[int] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(__UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(__UpperCAmelCase ) return results if __name__ == "__main__": main()
201
1
'''simple docstring''' import argparse import os import re import packaging.version UpperCAmelCase_ = 'examples/' UpperCAmelCase_ = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase_ = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase_ = 'README.md' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ = f.read() UpperCAmelCase__ , UpperCAmelCase__ = REPLACE_PATTERNS[pattern] UpperCAmelCase__ = replace.replace("""VERSION""" , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = re_pattern.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , pattern="""examples""" ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """🤗 Transformers currently provides the following architectures""" UpperCAmelCase__ = """1. Want to contribute a new model?""" with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ = f.readlines() # Find the start of the list. UpperCAmelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCAmelCase__ = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCAmelCase__ = f.read() UpperCAmelCase__ = REPLACE_PATTERNS["""init"""][0].search(SCREAMING_SNAKE_CASE__ ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str=False ): '''simple docstring''' UpperCAmelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCAmelCase__ = default_version.base_version elif patch: UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. UpperCAmelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: UpperCAmelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(SCREAMING_SNAKE_CASE__ , patch=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = get_version() UpperCAmelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' UpperCAmelCase__ = current_version.base_version # Check with the user we got that right. UpperCAmelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: UpperCAmelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(SCREAMING_SNAKE_CASE__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
61
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = """pix2struct_text_model""" lowerCAmelCase_ : str = ["""past_key_values"""] lowerCAmelCase_ : Dict = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , _UpperCAmelCase : Dict=5_02_44 , _UpperCAmelCase : Tuple=7_68 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Dict=20_48 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Any=1_28 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=1E-6 , _UpperCAmelCase : List[str]=1.0 , _UpperCAmelCase : str="gelu_new" , _UpperCAmelCase : str=0 , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : str , ): """simple docstring""" UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = d_kv UpperCAmelCase__ = d_ff UpperCAmelCase__ = num_layers UpperCAmelCase__ = num_heads UpperCAmelCase__ = relative_attention_num_buckets UpperCAmelCase__ = relative_attention_max_distance UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = use_cache UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = decoder_start_token_id # for backwards compatibility UpperCAmelCase__ = dense_act_fn super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , is_decoder=_UpperCAmelCase , **_UpperCAmelCase , ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : int ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """pix2struct_vision_model""" def __init__( self : Any , _UpperCAmelCase : List[Any]=7_68 , _UpperCAmelCase : Optional[int]=7_68 , _UpperCAmelCase : Dict=20_48 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Dict="gelu_new" , _UpperCAmelCase : List[Any]=1E-6 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Union[str, Any]=1E-10 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[int]=40_96 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Dict=1_28 , **_UpperCAmelCase : int , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = patch_embed_hidden_size UpperCAmelCase__ = d_ff UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = initializer_range UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = dense_act_fn UpperCAmelCase__ = seq_len UpperCAmelCase__ = relative_attention_num_buckets UpperCAmelCase__ = relative_attention_max_distance UpperCAmelCase__ = d_kv @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = """pix2struct""" lowerCAmelCase_ : Union[str, Any] = True def __init__( self : int , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : Optional[int] , ): """simple docstring""" super().__init__(tie_word_embeddings=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) if text_config is None: UpperCAmelCase__ = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase__ = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) UpperCAmelCase__ = PixaStructTextConfig(**_UpperCAmelCase ) UpperCAmelCase__ = PixaStructVisionConfig(**_UpperCAmelCase ) UpperCAmelCase__ = self.text_config.decoder_start_token_id UpperCAmelCase__ = self.text_config.pad_token_id UpperCAmelCase__ = self.text_config.eos_token_id UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = initializer_range UpperCAmelCase__ = self.initializer_range UpperCAmelCase__ = self.initializer_range UpperCAmelCase__ = is_vqa @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , _UpperCAmelCase : PixaStructTextConfig , _UpperCAmelCase : PixaStructVisionConfig , **_UpperCAmelCase : Any ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.text_config.to_dict() UpperCAmelCase__ = self.vision_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
61
1
'''simple docstring''' from PIL import Image def _A ( A__ , A__ ): """simple docstring""" __lowercase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(A__ ) -> int: return int(128 + factor * (c - 128) ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 lowerCAmelCase__ = change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
104
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" if isinstance(A__ , A__ ): __lowercase = np.full((len(A__ ), sequence_length, 2) , A__ ) else: __lowercase = np.full((len(A__ ), sequence_length) , A__ ) for i, tensor in enumerate(A__ ): if padding_side == "right": if isinstance(A__ , A__ ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] else: if isinstance(A__ , A__ ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] return out_tensor.tolist() def _A ( A__ ): """simple docstring""" __lowercase = ord(A__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __lowercase = unicodedata.category(A__ ) if cat.startswith('''P''' ): return True return False @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = -1_0_0 SCREAMING_SNAKE_CASE : str = "pt" def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ): import torch __lowercase = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowercase = self.tokenizer.pad( lowercase__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='''pt''' if labels is None else None ,) if labels is None: return batch __lowercase = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowercase = self.tokenizer.padding_side if padding_side == "right": __lowercase = [ list(lowercase__ ) + [self.label_pad_token_id] * (sequence_length - len(lowercase__ )) for label in labels ] else: __lowercase = [ [self.label_pad_token_id] * (sequence_length - len(lowercase__ )) + list(lowercase__ ) for label in labels ] __lowercase = [feature['''ner_tags'''] for feature in features] __lowercase = padding_tensor(lowercase__ ,-1 ,lowercase__ ,lowercase__ ) __lowercase = [feature['''original_entity_spans'''] for feature in features] __lowercase = padding_tensor(lowercase__ ,(-1, -1) ,lowercase__ ,lowercase__ ) __lowercase = {k: torch.tensor(lowercase__ ,dtype=torch.intaa ) for k, v in batch.items()} return batch
104
1
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case ( lowercase__ , lowercase__=0.9_9_9 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCamelCase : List[str] = [] for i in range(__snake_case ): _lowerCamelCase : Tuple = i / num_diffusion_timesteps _lowerCamelCase : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase__ = 2 @register_to_config def __init__( self , lowercase = 1000 , lowercase = 0.0_00_85 , lowercase = 0.0_12 , lowercase = "linear" , lowercase = None , lowercase = "epsilon" , lowercase = "linspace" , lowercase = 0 , ): if trained_betas is not None: _lowerCamelCase : Any = torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCamelCase : Optional[Any] = torch.linspace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCamelCase : Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _SCREAMING_SNAKE_CASE , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCamelCase : Optional[Any] = betas_for_alpha_bar(_SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCamelCase : Union[str, Any] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase , lowercase=None ): if schedule_timesteps is None: _lowerCamelCase : List[Any] = self.timesteps _lowerCamelCase : Any = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCamelCase : int = 1 if len(_SCREAMING_SNAKE_CASE ) > 1 else 0 else: _lowerCamelCase : str = timestep.cpu().item() if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else timestep _lowerCamelCase : Optional[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def A_ ( self ): if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def A_ ( self , lowercase , lowercase , ): _lowerCamelCase : Optional[int] = self.index_for_timestep(_SCREAMING_SNAKE_CASE ) if self.state_in_first_order: _lowerCamelCase : Union[str, Any] = self.sigmas[step_index] else: _lowerCamelCase : str = self.sigmas_interpol[step_index] _lowerCamelCase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def A_ ( self , lowercase , lowercase = None , lowercase = None , ): _lowerCamelCase : int = num_inference_steps _lowerCamelCase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCamelCase : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCamelCase : Optional[int] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCamelCase : Optional[int] = (np.arange(0 , _SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(_SCREAMING_SNAKE_CASE ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCamelCase : List[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCamelCase : Tuple = (np.arange(_SCREAMING_SNAKE_CASE , 0 , -step_ratio )).round().copy().astype(_SCREAMING_SNAKE_CASE ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _lowerCamelCase : Any = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.log(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = np.interp(_SCREAMING_SNAKE_CASE , np.arange(0 , len(_SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCamelCase : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) # interpolate sigmas _lowerCamelCase : Optional[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _lowerCamelCase : str = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCamelCase : List[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): # mps does not support float64 _lowerCamelCase : Any = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) else: _lowerCamelCase : Optional[int] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) # interpolate timesteps _lowerCamelCase : List[str] = self.sigma_to_t(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE , dtype=timesteps.dtype ) _lowerCamelCase : Tuple = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _lowerCamelCase : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowerCamelCase : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCamelCase : List[str] = defaultdict(_SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase ): _lowerCamelCase : str = sigma.log() # get distribution _lowerCamelCase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowerCamelCase : List[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowerCamelCase : List[str] = low_idx + 1 _lowerCamelCase : str = self.log_sigmas[low_idx] _lowerCamelCase : str = self.log_sigmas[high_idx] # interpolate sigmas _lowerCamelCase : Dict = (low - log_sigma) / (low - high) _lowerCamelCase : Union[str, Any] = w.clamp(0 , 1 ) # transform interpolation to time range _lowerCamelCase : List[Any] = (1 - w) * low_idx + w * high_idx _lowerCamelCase : Union[str, Any] = t.view(sigma.shape ) return t @property def A_ ( self ): return self.sample is None def A_ ( self , lowercase , lowercase , lowercase , lowercase = True , ): _lowerCamelCase : Tuple = self.index_for_timestep(_SCREAMING_SNAKE_CASE ) # advance index counter by 1 _lowerCamelCase : Dict = timestep.cpu().item() if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCamelCase : List[str] = self.sigmas[step_index] _lowerCamelCase : Optional[int] = self.sigmas_interpol[step_index + 1] _lowerCamelCase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowerCamelCase : List[Any] = self.sigmas[step_index - 1] _lowerCamelCase : Optional[int] = self.sigmas_interpol[step_index] _lowerCamelCase : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCamelCase : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCamelCase : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCamelCase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCamelCase : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCamelCase : str = sigma_interpol - sigma_hat # store for 2nd order step _lowerCamelCase : Dict = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowerCamelCase : Any = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowerCamelCase : List[str] = sigma_next - sigma_hat _lowerCamelCase : str = self.sample _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Union[str, Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase , lowercase , lowercase , ): _lowerCamelCase : str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_SCREAMING_SNAKE_CASE ): # mps does not support float64 _lowerCamelCase : List[str] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCamelCase : Tuple = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCamelCase : Tuple = self.timesteps.to(original_samples.device ) _lowerCamelCase : Optional[int] = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = [self.index_for_timestep(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for t in timesteps] _lowerCamelCase : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sigma.unsqueeze(-1 ) _lowerCamelCase : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
363
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[int] =XLMTokenizer lowerCamelCase : List[Any] =False def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCamelCase = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(a ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Any ): """simple docstring""" __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = XLMTokenizer(self.vocab_file , self.merges_file ) __lowerCamelCase = '''lower''' __lowerCamelCase = ['''low''', '''er</w>'''] __lowerCamelCase = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase = tokens + ['''<unk>'''] __lowerCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
67
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __UpperCAmelCase =logging.get_logger(__name__) def __lowerCAmelCase ( UpperCamelCase__=None , UpperCamelCase__=None ) -> int: return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class a__ : lowerCamelCase : List[str] =list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) lowerCamelCase : List[int] =list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) lowerCamelCase : List[int] =list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) lowerCamelCase : str =field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) lowerCamelCase : str =field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) lowerCamelCase : str =field( default=F'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) lowerCamelCase : str =field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) lowerCamelCase : str =field( default=F'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) lowerCamelCase : str =field( default=F'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) lowerCamelCase : int =field(default=3 , metadata={"help": "Times an experiment will be run."} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , a , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
67
1
from collections import defaultdict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = first_str.lower().strip() lowercase__ = second_str.lower().strip() # Remove whitespace lowercase__ = first_str.replace(''' ''' , '''''' ) lowercase__ = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): return False # Default values for count should be 0 lowercase__ = defaultdict(SCREAMING_SNAKE_CASE ) # For each character in input strings, # increment count in the corresponding for i in range(len(SCREAMING_SNAKE_CASE ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase = input('Enter the first string ').strip() lowerCAmelCase = input('Enter the second string ').strip() lowerCAmelCase = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
93
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : List[Any] = '''lxmert''' _lowercase : Any = {} def __init__( self: Any , UpperCamelCase_: List[Any]=30_522 , UpperCamelCase_: int=768 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: Dict=9_500 , UpperCamelCase_: List[Any]=1_600 , UpperCamelCase_: List[Any]=400 , UpperCamelCase_: List[str]=3_072 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: int=0.1 , UpperCamelCase_: List[str]=512 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: Dict=1E-1_2 , UpperCamelCase_: List[Any]=9 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: Optional[Any]=5 , UpperCamelCase_: str=2_048 , UpperCamelCase_: Dict=4 , UpperCamelCase_: Any=6.67 , UpperCamelCase_: Dict=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Any=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=True , **UpperCamelCase_: Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = num_qa_labels lowercase__ = num_object_labels lowercase__ = num_attr_labels lowercase__ = l_layers lowercase__ = x_layers lowercase__ = r_layers lowercase__ = visual_feat_dim lowercase__ = visual_pos_dim lowercase__ = visual_loss_normalizer lowercase__ = task_matched lowercase__ = task_mask_lm lowercase__ = task_obj_predict lowercase__ = task_qa lowercase__ = visual_obj_loss lowercase__ = visual_attr_loss lowercase__ = visual_feat_loss lowercase__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCamelCase_ )
93
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase ( __lowerCamelCase : str ) ->Optional[int]: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator def lowerCamelCase ( *__lowerCamelCase : List[str] ) ->Dict: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator class a_ ( snake_case_ ): '''simple docstring''' def __new__( cls , A , A , A ) -> int: _SCREAMING_SNAKE_CASE = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE = getattr(A , """handle_key""" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE = value return new_cls @staticmethod def snake_case_( cls ) -> str: _SCREAMING_SNAKE_CASE = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE = ord(A ) _SCREAMING_SNAKE_CASE = cls.key_handler.get(A ) if handler: _SCREAMING_SNAKE_CASE = char return handler(cls ) else: return None def lowerCamelCase ( cls : Any ) ->Dict: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
58
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right a_ = 5_0_0_0_3 a_ = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = PLBartTokenizer snake_case_ = None snake_case_ = False def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : List[Any] =PLBartTokenizer(__lowercase , language_codes='''base''' , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =PLBartTokenizer(__lowercase , language_codes='''base''' , keep_accents=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE__ : str =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Dict =[tokenizer.convert_ids_to_tokens(__lowercase ) for x in range(end - 4 , __lowercase )] self.assertListEqual(__lowercase , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) SCREAMING_SNAKE_CASE__ : str ='''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer(__lowercase ).input_ids self.assertEqual( tokenizer.decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase ) , __lowercase , ) def __magic_name__ ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : int =PLBartTokenizer(__lowercase , language_codes='''multi''' , keep_accents=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : List[str] =[tokenizer.convert_ids_to_tokens(__lowercase ) for x in range(end - 7 , __lowercase )] self.assertListEqual( __lowercase , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) SCREAMING_SNAKE_CASE__ : Any ='''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' SCREAMING_SNAKE_CASE__ : Tuple =tokenizer(__lowercase ).input_ids self.assertEqual( tokenizer.decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase ) , __lowercase , ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = """uclanlp/plbart-python-en_XX""" snake_case_ = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] snake_case_ = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] snake_case_ = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def __magic_name__ ( cls : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) SCREAMING_SNAKE_CASE__ : int =1 return cls def __magic_name__ ( self : int ) -> Tuple: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 5_00_03 ) def __magic_name__ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) def __magic_name__ ( self : List[str] ) -> Tuple: self.assertIn(__lowercase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE__ : int =self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertNotIn(self.tokenizer.eos_token , __lowercase ) def __magic_name__ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple =['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , __lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =10 SCREAMING_SNAKE_CASE__ : Tuple =self.tokenizer(__lowercase , max_length=__lowercase , truncation=__lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowercase ) self.assertEqual(len(__lowercase ) , __lowercase ) def __magic_name__ ( self : Any ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [5_00_04, 5_00_01] ) def __magic_name__ ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Optional[Any] =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =PLBartTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowercase ) @require_torch def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowercase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : str =shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __lowercase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __magic_name__ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ : Dict =shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ : Optional[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __magic_name__ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.tokenizer(self.src_text , padding=__lowercase , truncation=__lowercase , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.tokenizer( text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : Dict =targets['''input_ids'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] =shift_tokens_right(__lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ : str =self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(__lowercase ) , { # A, test, EOS, en_XX '''input_ids''': [[1_50, 2_42, 2, 5_00_03]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 5_00_01, } , )
152
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0 ) -> int: '''simple docstring''' lowercase = 2**power lowercase = str(lowerCAmelCase__ ) lowercase = list(lowerCAmelCase__ ) lowercase = 0 for i in list_num: sum_of_num += int(lowerCAmelCase__ ) return sum_of_num if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) __lowerCAmelCase : Dict =solution(power) print("""Sum of the digits is: """, result)
32
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for attribute in key.split("." ): UpperCAmelCase_ : List[str] = getattr(__lowerCamelCase, __lowerCamelCase ) if weight_type is not None: UpperCAmelCase_ : List[str] = getattr(__lowerCamelCase, __lowerCamelCase ).shape else: UpperCAmelCase_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ : List[str] = value elif weight_type == "weight_g": UpperCAmelCase_ : List[str] = value elif weight_type == "weight_v": UpperCAmelCase_ : int = value elif weight_type == "bias": UpperCAmelCase_ : int = value else: UpperCAmelCase_ : Optional[int] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = fairseq_model.state_dict() UpperCAmelCase_ : int = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ : int = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase_ : int = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ : List[str] = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): UpperCAmelCase_ : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase_ : Tuple = name.split(__lowerCamelCase )[0].split("." )[-2] UpperCAmelCase_ : List[Any] = mapped_key.replace("*", __lowerCamelCase ) if "weight_g" in name: UpperCAmelCase_ : Optional[Any] = "weight_g" elif "weight_v" in name: UpperCAmelCase_ : int = "weight_v" elif "weight" in name: UpperCAmelCase_ : List[Any] = "weight" elif "bias" in name: UpperCAmelCase_ : Union[str, Any] = "bias" else: UpperCAmelCase_ : Optional[int] = None set_recursively(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = full_name.split("conv_layers." )[-1] UpperCAmelCase_ : Tuple = name.split("." ) UpperCAmelCase_ : int = int(items[0] ) UpperCAmelCase_ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ : Optional[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=True ): if config_path is not None: UpperCAmelCase_ : Any = HubertConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase_ : Dict = HubertConfig() if is_finetuned: if dict_path: UpperCAmelCase_ : str = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ : str = target_dict.pad_index UpperCAmelCase_ : int = target_dict.bos_index UpperCAmelCase_ : List[str] = target_dict.eos_index UpperCAmelCase_ : Optional[Any] = len(target_dict.symbols ) UpperCAmelCase_ : int = os.path.join(__lowerCamelCase, "vocab.json" ) if not os.path.isdir(__lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) with open(__lowerCamelCase, "w", encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = WavaVecaCTCTokenizer( __lowerCamelCase, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=__lowerCamelCase, ) UpperCAmelCase_ : int = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ : Dict = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=__lowerCamelCase, return_attention_mask=__lowerCamelCase, ) UpperCAmelCase_ : Tuple = WavaVecaProcessor(feature_extractor=__lowerCamelCase, tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = HubertForCTC(__lowerCamelCase ) else: UpperCAmelCase_ : str = HubertModel(__lowerCamelCase ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase_ : int = model[0].eval() recursively_load_weights(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _a = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
61
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a ( ): UpperCAmelCase_ : List[Any] = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } UpperCAmelCase_ : Optional[int] = Dataset.from_dict(__lowerCamelCase ) return dataset class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_dataset() UpperCAmelCase_ : Any = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = get_dataset() UpperCAmelCase_ , UpperCAmelCase_ : List[str] = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowercase_ )
61
1
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __A : Union[str, Any] = TypeVar('T') class __UpperCamelCase ( Generic[T] ): lowercase : deque[T] # Cache store of keys lowercase : set[T] # References of the keys in cache lowercase : int = 1_0 # Maximum capacity of cache def __init__( self :int ,_UpperCamelCase :int ): snake_case_ : List[str] = deque() snake_case_ : Union[str, Any] = set() if not n: snake_case_ : List[str] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: snake_case_ : Tuple = n def a__ ( self :int ,_UpperCamelCase :T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case_ : Union[str, Any] = self.dq_store.pop() self.key_reference.remove(_UpperCamelCase ) else: self.dq_store.remove(_UpperCamelCase ) self.dq_store.appendleft(_UpperCamelCase ) self.key_reference.add(_UpperCamelCase ) def a__ ( self :Optional[int] ): for k in self.dq_store: print(_UpperCamelCase ) def __repr__( self :Any ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() __A : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
8
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [] for current_row_idx in range(lowerCamelCase_ ): snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ , snake_case_ : Optional[Any] = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ): '''simple docstring''' snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCamelCase_ ): snake_case_ : Optional[Any] = [0] + result[-1] + [0] snake_case_ : Dict = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) ) snake_case_ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ : str = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None: snake_case_ : Dict = F'''{func.__name__}({value})''' snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
8
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCamelCase ( __lowerCamelCase : int ) ->Optional[Any]: return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCamelCase ( ) ->Tuple: _SCREAMING_SNAKE_CASE = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowerCamelCase ) EnvironmentCommand.register_subcommand(__lowerCamelCase ) TestCommand.register_subcommand(__lowerCamelCase ) RunBeamCommand.register_subcommand(__lowerCamelCase ) DummyDataCommand.register_subcommand(__lowerCamelCase ) # Parse args _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_known_args() if not hasattr(__lowerCamelCase , """func""" ): parser.print_help() exit(1 ) _SCREAMING_SNAKE_CASE = parse_unknown_args(__lowerCamelCase ) # Run _SCREAMING_SNAKE_CASE = args.func(__lowerCamelCase , **__lowerCamelCase ) service.run() if __name__ == "__main__": main()
58
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained(A__ ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' model.eval() __lowerCamelCase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase, __lowerCamelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = args.model_name_or_path set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(A__ ) + 1 __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = f'epoch_{epoch}' __lowerCamelCase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]["""lr"""] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(f'epoch {epoch}:' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(A__ , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
12
0
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowercase ( a_ , a_ , a_ ): """simple docstring""" lowercase__ = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple = None , UpperCamelCase__ : Union[str, Any] = 50257 , UpperCamelCase__ : Optional[int] = 1024 , UpperCamelCase__ : Union[str, Any] = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : Tuple = 12 , UpperCamelCase__ : Tuple = None , UpperCamelCase__ : Dict = "gelu_new" , UpperCamelCase__ : Any = 0.1 , UpperCamelCase__ : Union[str, Any] = 0.1 , UpperCamelCase__ : Union[str, Any] = 0.1 , UpperCamelCase__ : Tuple = 1E-5 , UpperCamelCase__ : Union[str, Any] = 0.02 , UpperCamelCase__ : Any = True , UpperCamelCase__ : Optional[int] = True , UpperCamelCase__ : str = False , UpperCamelCase__ : Optional[Any] = False , ) -> int: '''simple docstring''' super().__init__() __UpperCamelCase =prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) __UpperCamelCase =prefix_inner_dim __UpperCamelCase =prefix_hidden_dim __UpperCamelCase =( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __UpperCamelCase =( nn.Linear(self.prefix_hidden_dim , UpperCamelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) __UpperCamelCase =GPTaConfig( vocab_size=UpperCamelCase__ , n_positions=UpperCamelCase__ , n_embd=UpperCamelCase__ , n_layer=UpperCamelCase__ , n_head=UpperCamelCase__ , n_inner=UpperCamelCase__ , activation_function=UpperCamelCase__ , resid_pdrop=UpperCamelCase__ , embd_pdrop=UpperCamelCase__ , attn_pdrop=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , initializer_range=UpperCamelCase__ , scale_attn_weights=UpperCamelCase__ , use_cache=UpperCamelCase__ , scale_attn_by_inverse_layer_idx=UpperCamelCase__ , reorder_and_upcast_attn=UpperCamelCase__ , ) __UpperCamelCase =GPTaLMHeadModel(UpperCamelCase__ ) def UpperCAmelCase_ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] = None , UpperCamelCase__ : List[str] = None , ) -> Any: '''simple docstring''' __UpperCamelCase =self.transformer.transformer.wte(UpperCamelCase__ ) __UpperCamelCase =self.encode_prefix(UpperCamelCase__ ) __UpperCamelCase =self.decode_prefix(UpperCamelCase__ ) __UpperCamelCase =torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __UpperCamelCase =self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __UpperCamelCase =torch.cat((dummy_token, input_ids) , dim=1 ) __UpperCamelCase =self.transformer(inputs_embeds=UpperCamelCase__ , labels=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any ) -> torch.Tensor: '''simple docstring''' return torch.zeros(UpperCamelCase__ , self.prefix_length , dtype=torch.intaa , device=UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Union[str, Any] ) -> int: '''simple docstring''' return self.encode_prefix(UpperCamelCase__ ) @torch.no_grad() def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =torch.split(UpperCamelCase__ , 1 , dim=0 ) __UpperCamelCase =[] __UpperCamelCase =[] for feature in features: __UpperCamelCase =self.decode_prefix(feature.to(UpperCamelCase__ ) ) # back to the clip feature # Only support beam search for now __UpperCamelCase , __UpperCamelCase =self.generate_beam( input_embeds=UpperCamelCase__ , device=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __UpperCamelCase =torch.stack(UpperCamelCase__ ) __UpperCamelCase =torch.stack(UpperCamelCase__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Union[str, Any] = 5 , UpperCamelCase__ : List[str] = 67 , UpperCamelCase__ : str = 1.0 , UpperCamelCase__ : List[str] = None , ) -> Any: '''simple docstring''' __UpperCamelCase =eos_token_id __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =torch.ones(UpperCamelCase__ , device=UpperCamelCase__ , dtype=torch.int ) __UpperCamelCase =torch.zeros(UpperCamelCase__ , device=UpperCamelCase__ , dtype=torch.bool ) if input_embeds is not None: __UpperCamelCase =input_embeds else: __UpperCamelCase =self.transformer.transformer.wte(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): __UpperCamelCase =self.transformer(inputs_embeds=UpperCamelCase__ ) __UpperCamelCase =outputs.logits __UpperCamelCase =logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __UpperCamelCase =logits.softmax(-1 ).log() if scores is None: __UpperCamelCase , __UpperCamelCase =logits.topk(UpperCamelCase__ , -1 ) __UpperCamelCase =generated.expand(UpperCamelCase__ , *generated.shape[1:] ) __UpperCamelCase , __UpperCamelCase =next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __UpperCamelCase =next_tokens else: __UpperCamelCase =tokens.expand(UpperCamelCase__ , *tokens.shape[1:] ) __UpperCamelCase =torch.cat((tokens, next_tokens) , dim=1 ) else: __UpperCamelCase =-float(np.inf ) __UpperCamelCase =0 __UpperCamelCase =scores[:, None] + logits seq_lengths[~is_stopped] += 1 __UpperCamelCase =scores_sum / seq_lengths[:, None] __UpperCamelCase , __UpperCamelCase =scores_sum_average.view(-1 ).topk(UpperCamelCase__ , -1 ) __UpperCamelCase =next_tokens // scores_sum.shape[1] __UpperCamelCase =seq_lengths[next_tokens_source] __UpperCamelCase =next_tokens % scores_sum.shape[1] __UpperCamelCase =next_tokens.unsqueeze(1 ) __UpperCamelCase =tokens[next_tokens_source] __UpperCamelCase =torch.cat((tokens, next_tokens) , dim=1 ) __UpperCamelCase =generated[next_tokens_source] __UpperCamelCase =scores_sum_average * seq_lengths __UpperCamelCase =is_stopped[next_tokens_source] __UpperCamelCase =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __UpperCamelCase =torch.cat((generated, next_token_embed) , dim=1 ) __UpperCamelCase =is_stopped + next_tokens.eq(UpperCamelCase__ ).squeeze() if is_stopped.all(): break __UpperCamelCase =scores / seq_lengths __UpperCamelCase =scores.argsort(descending=UpperCamelCase__ ) # tokens tensors are already padded to max_seq_length __UpperCamelCase =[tokens[i] for i in order] __UpperCamelCase =torch.stack(UpperCamelCase__ , dim=0 ) __UpperCamelCase =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
350
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _lowercase ( __a ): """simple docstring""" lowercase__ = '''facebook/bart-large-mnli''' lowercase__ = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) lowercase__ = '''text_classifier''' lowercase__ = AutoTokenizer lowercase__ = AutoModelForSequenceClassification lowercase__ = ['''text''', ['''text''']] lowercase__ = ['''text'''] def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' super().setup() __UpperCamelCase =self.model.config __UpperCamelCase =-1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __UpperCamelCase =int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ) -> Any: '''simple docstring''' __UpperCamelCase =labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =outputs.logits __UpperCamelCase =torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
85
0
'''simple docstring''' from math import ceil def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 1001 ): """simple docstring""" lowercase_ : Tuple = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowercase_ : Optional[Any] = 2 * i + 1 lowercase_ : Any = 2 * i lowercase_ : List[str] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowercase : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
93
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowercase : Any = (7_2_0, 1_2_8_0) # Height, Width _lowercase : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowercase : str = 1 / 1_0_0 _lowercase : Any = "" _lowercase : Union[str, Any] = "" _lowercase : Optional[int] = "" _lowercase : List[Any] = 2_5_0 def snake_case_ ( ): """simple docstring""" lowercase_ , lowercase_ : Any = get_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for index in range(__SCREAMING_SNAKE_CASE ): lowercase_ : str = random.sample(range(len(__SCREAMING_SNAKE_CASE ) ) , 4 ) lowercase_ , lowercase_ , lowercase_ : Any = update_image_and_anno( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , filter_scale=__SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase_ : int = random_chars(32 ) lowercase_ : str = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] lowercase_ : int = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , __SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase_ : List[Any] = [] for anno in new_annos: lowercase_ : List[Any] = anno[3] - anno[1] lowercase_ : List[str] = anno[4] - anno[2] lowercase_ : Dict = anno[1] + width / 2 lowercase_ : Dict = anno[2] + height / 2 lowercase_ : int = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__SCREAMING_SNAKE_CASE ) with open(F'''{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Optional[Any] = [] lowercase_ : Optional[Any] = [] for label_file in glob.glob(os.path.join(__SCREAMING_SNAKE_CASE , '''*.txt''' ) ): lowercase_ : int = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__SCREAMING_SNAKE_CASE ) as in_file: lowercase_ : List[str] = in_file.readlines() lowercase_ : Optional[Any] = os.path.join(__SCREAMING_SNAKE_CASE , F'''{label_name}.jpg''' ) lowercase_ : Optional[int] = [] for obj_list in obj_lists: lowercase_ : List[str] = obj_list.rstrip('''\n''' ).split(''' ''' ) lowercase_ : Optional[int] = float(obj[1] ) - float(obj[3] ) / 2 lowercase_ : Any = float(obj[2] ) - float(obj[4] ) / 2 lowercase_ : str = float(obj[1] ) + float(obj[3] ) / 2 lowercase_ : List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__SCREAMING_SNAKE_CASE ) labels.append(__SCREAMING_SNAKE_CASE ) return img_paths, labels def snake_case_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : tuple[int, int] , __SCREAMING_SNAKE_CASE : tuple[float, float] , __SCREAMING_SNAKE_CASE : float = 0.0 , ): """simple docstring""" lowercase_ : List[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase_ : Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ : Optional[int] = int(scale_x * output_size[1] ) lowercase_ : Dict = int(scale_y * output_size[0] ) lowercase_ : Union[str, Any] = [] lowercase_ : List[Any] = [] for i, index in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = all_img_list[index] path_list.append(__SCREAMING_SNAKE_CASE ) lowercase_ : int = all_annos[index] lowercase_ : Dict = cva.imread(__SCREAMING_SNAKE_CASE ) if i == 0: # top-left lowercase_ : Optional[Any] = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) lowercase_ : Tuple = img for bbox in img_annos: lowercase_ : Optional[int] = bbox[1] * scale_x lowercase_ : Optional[Any] = bbox[2] * scale_y lowercase_ : str = bbox[3] * scale_x lowercase_ : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase_ : Dict = cva.resize(__SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) lowercase_ : Dict = img for bbox in img_annos: lowercase_ : int = scale_x + bbox[1] * (1 - scale_x) lowercase_ : Dict = bbox[2] * scale_y lowercase_ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) lowercase_ : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase_ : List[Any] = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) lowercase_ : List[str] = img for bbox in img_annos: lowercase_ : Any = bbox[1] * scale_x lowercase_ : Optional[int] = scale_y + bbox[2] * (1 - scale_y) lowercase_ : str = bbox[3] * scale_x lowercase_ : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase_ : int = cva.resize( __SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase_ : List[str] = img for bbox in img_annos: lowercase_ : int = scale_x + bbox[1] * (1 - scale_x) lowercase_ : Any = scale_y + bbox[2] * (1 - scale_y) lowercase_ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) lowercase_ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase_ : Optional[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" lowercase_ : Any = ascii_lowercase + digits return "".join(random.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print("DONE ✅")
93
1
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _snake_case = logging.getLogger(__name__) _snake_case = 'Hello world! cécé herlolip' _snake_case = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = BertAbsConfig( temp_dir=""".""" , finetune_bert=UpperCamelCase__ , large=UpperCamelCase__ , share_emb=UpperCamelCase__ , use_bert_emb=UpperCamelCase__ , encoder="""bert""" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) _a : List[Any] = torch.load(UpperCamelCase__ , lambda UpperCamelCase__ , UpperCamelCase__ : storage ) _a : str = AbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) , UpperCamelCase__ ) original.eval() _a : Any = BertAbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) _a : str = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs _a : Optional[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCamelCase__ )) ) _a : str = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) _a : Optional[int] = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCamelCase__ )) ) _a : Optional[Any] = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _a : Any = encoder_input_ids _a : Dict = decoder_input_ids _a : Dict = None _a : int = None _a : List[Any] = None _a : List[str] = None _a : Optional[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _a : List[str] = original(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0] _a : Optional[int] = original.generator(UpperCamelCase__ ) _a : int = new_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0] _a : List[str] = new_model.generator(UpperCamelCase__ ) _a : Dict = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) ) _a : List[str] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) ) _a : Optional[Any] = torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _snake_case = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
324
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCAmelCase_ : List[str] = logging.getLogger(__name__) @dataclass(frozen=lowercase__ ) class SCREAMING_SNAKE_CASE__ : snake_case__ : str snake_case__ : str snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None @dataclass(frozen=lowercase__ ) class SCREAMING_SNAKE_CASE__ : snake_case__ : List[int] snake_case__ : Optional[List[int]] = None snake_case__ : Optional[List[int]] = None snake_case__ : Optional[Union[int, float]] = None snake_case__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[InputFeatures] def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[Any]: a_ : Dict = hans_processors[task]() a_ : str = os.path.join( SCREAMING_SNAKE_CASE__ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , ) , ) a_ : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) a_ , a_ : Optional[Any] = label_list[2], label_list[1] a_ : Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a_ : Dict = cached_features_file + '.lock' with FileLock(SCREAMING_SNAKE_CASE__ ): if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) a_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__ ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) a_ : Optional[Any] = ( processor.get_dev_examples(SCREAMING_SNAKE_CASE__ ) if evaluate else processor.get_train_examples(SCREAMING_SNAKE_CASE__ ) ) logger.info('Training examples: %s' , len(SCREAMING_SNAKE_CASE__ ) ) a_ : Union[str, Any] = hans_convert_examples_to_features(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info('Saving features into cached file %s' , SCREAMING_SNAKE_CASE__ ) torch.save(self.features , SCREAMING_SNAKE_CASE__ ) def __len__( self : List[Any] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> InputFeatures: return self.features[i] def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : snake_case__ : List[InputFeatures] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] = 1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> str: a_ : Any = hans_processors[task]() a_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) a_ , a_ : List[Any] = label_list[2], label_list[1] a_ : Union[str, Any] = label_list a_ : Tuple = processor.get_dev_examples(SCREAMING_SNAKE_CASE__ ) if evaluate else processor.get_train_examples(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = hans_convert_examples_to_features(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d of %d' % (ex_index, len(SCREAMING_SNAKE_CASE__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) a_ : Tuple = tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE__ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: return self.dataset def __len__( self : Dict ) -> Tuple: return len(self.features ) def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> InputFeatures: return self.features[i] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: return self.label_list class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: return self._create_examples(self._read_tsv(os.path.join(SCREAMING_SNAKE_CASE__ , 'heuristics_train_set.txt' ) ) , 'train' ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(SCREAMING_SNAKE_CASE__ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: a_ : List[Any] = [] for i, line in enumerate(SCREAMING_SNAKE_CASE__ ): if i == 0: continue a_ : List[Any] = '%s-%s' % (set_type, line[0]) a_ : Tuple = line[5] a_ : Optional[int] = line[6] a_ : List[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] a_ : Union[str, Any] = line[0] examples.append(InputExample(guid=SCREAMING_SNAKE_CASE__ , text_a=SCREAMING_SNAKE_CASE__ , text_b=SCREAMING_SNAKE_CASE__ , label=SCREAMING_SNAKE_CASE__ , pairID=SCREAMING_SNAKE_CASE__ ) ) return examples def SCREAMING_SNAKE_CASE_ ( __A : List[InputExample] , __A : List[str] , __A : int , __A : PreTrainedTokenizer , ) -> Union[str, Any]: """simple docstring""" a_ : Tuple = {label: i for i, label in enumerate(__A )} a_ : List[str] = [] for ex_index, example in tqdm.tqdm(enumerate(__A ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) a_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=__A , max_length=__A , padding='max_length' , truncation=__A , return_overflowing_tokens=__A , ) a_ : Union[str, Any] = label_map[example.label] if example.label in label_map else 0 a_ : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**__A , label=__A , pairID=__A ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features UpperCAmelCase_ : List[str] = { 'hans': 3, } UpperCAmelCase_ : Tuple = { 'hans': HansProcessor, }
32
UpperCAmelCase_ : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ : str = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int , __A : int ) -> str: """simple docstring""" assert len(str(__A ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a_ : List[str] = year // 1_00 a_ : Optional[int] = (5 * (century % 4) + 2) % 7 a_ : List[str] = year % 1_00 a_ : str = centurian % 12 a_ : List[str] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a_ : Any = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) a_ : Any = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
32
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = [] def a__ ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(SCREAMING_SNAKE_CASE , -1 , -1 ) , range(SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(SCREAMING_SNAKE_CASE , -1 , -1 ) , range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def a__ ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if row >= len(SCREAMING_SNAKE_CASE ): solution.append(SCREAMING_SNAKE_CASE ) printboard(SCREAMING_SNAKE_CASE ) print() return True for i in range(len(SCREAMING_SNAKE_CASE ) ): if is_safe(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = 1 solve(SCREAMING_SNAKE_CASE , row + 1 ) lowerCAmelCase : List[Any] = 0 return False def a__ ( SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(len(SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) lowerCAmelCase__ = 8 lowerCAmelCase__ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
133
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
133
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('''T''') class snake_case_ ( Generic[T] ): '''simple docstring''' SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : Dict , _UpperCamelCase : int ) ->None: snake_case_ = deque() snake_case_ = set() if not n: snake_case_ = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: snake_case_ = n def snake_case__( self : Dict , _UpperCamelCase : T ) ->None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case_ = self.dq_store.pop() self.key_reference.remove(_UpperCamelCase ) else: self.dq_store.remove(_UpperCamelCase ) self.dq_store.appendleft(_UpperCamelCase ) self.key_reference.add(_UpperCamelCase ) def snake_case__( self : List[Any] ) ->None: for k in self.dq_store: print(_UpperCamelCase ) def __repr__( self : Optional[Any] ) ->str: return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
8
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import struct import unittest class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = data # Initialize hash values UpperCAmelCase_ : List[str] = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants UpperCAmelCase_ : Tuple = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] UpperCAmelCase_ : Dict = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCamelCase ( snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Tuple = b'\x80' + (b'\x00' * (6_3 - (len(snake_case_ ) + 8) % 6_4)) UpperCAmelCase_ : Any = struct.pack('>Q' , (len(snake_case_ ) * 8) ) return data + padding + big_endian_integer def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCAmelCase_ : Union[str, Any] = list(struct.unpack('>16L' , snake_case_ ) ) # add 48 0-ed integers words += [0] * 4_8 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array UpperCAmelCase_ : str = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) UpperCAmelCase_ : List[str] = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) UpperCAmelCase_ : Tuple = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression UpperCAmelCase_ : List[str] = self.ror(snake_case_ , 6 ) ^ self.ror(snake_case_ , 1_1 ) ^ self.ror(snake_case_ , 2_5 ) UpperCAmelCase_ : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) UpperCAmelCase_ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 UpperCAmelCase_ : List[Any] = self.ror(snake_case_ , 2 ) ^ self.ror(snake_case_ , 1_3 ) ^ self.ror(snake_case_ , 2_2 ) UpperCAmelCase_ : Union[str, Any] = (a & b) ^ (a & c) ^ (b & c) UpperCAmelCase_ : Tuple = (sa + maj) % 0x1_0000_0000 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) UpperCAmelCase_ : Any = [a, b, c, d, e, f, g, h] # Modify final values UpperCAmelCase_ : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] UpperCAmelCase_ : Union[str, Any] = ''.join([hex(snake_case_ )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' return 0xFFFF_FFFF & (value << (3_2 - rotations)) | (value >> rotations) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' import hashlib UpperCAmelCase_ : int = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(snake_case_ ).hash , hashlib.shaaaa(snake_case_ ).hexdigest() ) def _lowerCamelCase ( ): """simple docstring""" import doctest doctest.testmod() UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : List[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: UpperCAmelCase_ : Optional[Any] = f.read() else: UpperCAmelCase_ : Optional[Any] = bytes(lowerCamelCase_ , 'utf-8' ) print(SHAaaa(lowerCamelCase_ ).hash ) if __name__ == "__main__": main()
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str = " " ): """simple docstring""" UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[Any] = 0 for index, char in enumerate(lowerCamelCase_ ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase_ : Optional[Any] = index + 1 elif index + 1 == len(lowerCamelCase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
274
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[str] ): '''simple docstring''' super().__init__() _snake_case : Optional[Any] = nn.Linear(3, 4 ) _snake_case : List[Any] = nn.BatchNormad(4 ) _snake_case : Any = nn.Linear(4, 5 ) def UpperCamelCase_ ( self: str, a_: Optional[Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(a_, model.state_dict() ) _snake_case : Dict = os.path.join(a_, """index.json""" ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: _snake_case : Tuple = os.path.join(a_, f"{key}.dat" ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: _snake_case : List[Any] = torch.randn(2, 3, dtype=a_ ) with TemporaryDirectory() as tmp_dir: _snake_case : Optional[int] = offload_weight(a_, """weight""", a_, {} ) _snake_case : Optional[int] = os.path.join(a_, """weight.dat""" ) self.assertTrue(os.path.isfile(a_ ) ) self.assertDictEqual(a_, {"""weight""": {"""shape""": [2, 3], """dtype""": str(a_ ).split(""".""" )[1]}} ) _snake_case : int = load_offloaded_weight(a_, index["""weight"""] ) self.assertTrue(torch.equal(a_, a_ ) ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : int = ModelForTest() _snake_case : int = model.state_dict() _snake_case : Any = {k: v for k, v in state_dict.items() if """linear2""" not in k} _snake_case : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_, a_ ) _snake_case : Optional[int] = OffloadedWeightsLoader(state_dict=a_, save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_, weight_map[key] ) ) _snake_case : Tuple = {k: v for k, v in state_dict.items() if """weight""" in k} _snake_case : List[str] = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_, a_ ) _snake_case : Dict = OffloadedWeightsLoader(state_dict=a_, save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_, weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(a_, a_ ) # Duplicates are removed _snake_case : int = OffloadedWeightsLoader(state_dict=a_, save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_, weight_map[key] ) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : int = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} _snake_case : Tuple = extract_submodules_state_dict(a_, ["""a.1""", """a.2"""] ) self.assertDictEqual(a_, {"""a.1""": 0, """a.2""": 2} ) _snake_case : Optional[int] = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} _snake_case : Tuple = extract_submodules_state_dict(a_, ["""a.1""", """a.2"""] ) self.assertDictEqual(a_, {"""a.1.a""": 0, """a.2.a""": 2} )
64
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase_( snake_case : Optional[int] ): '''simple docstring''' return EnvironmentCommand() class _snake_case ( lowercase_ ): @staticmethod def lowerCAmelCase__ ( a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = parser.add_parser("env" ) download_parser.set_defaults(func=a__ ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = huggingface_hub.__version__ snake_case_ = "not installed" snake_case_ = "NA" if is_torch_available(): import torch snake_case_ = torch.__version__ snake_case_ = torch.cuda.is_available() snake_case_ = "not installed" if is_transformers_available(): import transformers snake_case_ = transformers.__version__ snake_case_ = "not installed" if is_accelerate_available(): import accelerate snake_case_ = accelerate.__version__ snake_case_ = "not installed" if is_xformers_available(): import xformers snake_case_ = xformers.__version__ snake_case_ = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a__ ) ) return info @staticmethod def lowerCAmelCase__ ( a__ ) -> str: '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
85
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = MgpstrTokenizer __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : List[Any] = False def a ( self ): super().setUp() # fmt: off snake_case_ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on snake_case_ = dict(zip(snake_case , range(len(snake_case ) ) ) ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) def a ( self , **snake_case ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def a ( self , snake_case ): snake_case_ = 'tester' snake_case_ = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def a ( self ): pass def a ( self ): snake_case_ = self.get_tokenizers(do_lower_case=snake_case ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) snake_case_ = tokenizer.encode([special_token] , add_special_tokens=snake_case ) self.assertEqual(len(snake_case ) , 1 ) snake_case_ = tokenizer.decode(snake_case , skip_special_tokens=snake_case ) self.assertTrue(special_token not in decoded ) def a ( self ): snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ , snake_case_ = self.get_input_output_texts(snake_case ) snake_case_ = tokenizer.tokenize(snake_case ) snake_case_ = tokenizer.convert_tokens_to_ids(snake_case ) snake_case_ = tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) snake_case_ = tokenizer.convert_ids_to_tokens(snake_case ) self.assertNotEqual(len(snake_case ) , 0 ) snake_case_ = tokenizer.decode(snake_case ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(text_a.replace(' ' , '' ) , snake_case ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def a ( self ): pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def a ( self ): pass
200
import os import sys import unittest _UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _UpperCAmelCase : List[Any] = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _UpperCAmelCase : Dict = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = get_test_to_tester_mapping(snake_case ) snake_case_ = get_test_to_tester_mapping(snake_case ) snake_case_ = {'BertModelTest': 'BertModelTester'} snake_case_ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) def a ( self ): snake_case_ = get_model_to_test_mapping(snake_case ) snake_case_ = get_model_to_test_mapping(snake_case ) snake_case_ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } snake_case_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) def a ( self ): snake_case_ = get_model_to_tester_mapping(snake_case ) snake_case_ = get_model_to_tester_mapping(snake_case ) snake_case_ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } snake_case_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(snake_case ) , snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) , snake_case )
200
1
'''simple docstring''' import operator as op def a__ ( lowercase : List[str] ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = lambda lowercase, lowercase : int(x / y ) # noqa: E731 integer division operation _UpperCamelCase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ), '''Action'''.center(12 ), '''Stack''', sep=''' | ''' ) print('''-''' * (30 + len(lowercase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase ) # append x to stack # output in tabular format print(x.rjust(8 ), ('''push(''' + x + ''')''').ljust(12 ), ''','''.join(lowercase ), sep=''' | ''' ) else: _UpperCamelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ), ('''pop(''' + b + ''')''').ljust(12 ), ''','''.join(lowercase ), sep=''' | ''' ) _UpperCamelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ), ('''pop(''' + a + ''')''').ljust(12 ), ''','''.join(lowercase ), sep=''' | ''' ) stack.append( str(opr[x](int(lowercase ), int(lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ('''push(''' + a + x + b + ''')''').ljust(12 ), ''','''.join(lowercase ), sep=''' | ''', ) return int(stack[0] ) if __name__ == "__main__": lowercase__ : Dict = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
324
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _UpperCamelCase = iter(lowercase ) while True: _UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) ) if not chunk: return yield chunk def a__ ( lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCamelCase = '''''' if len(lowercase ) < 2: return dirty for i in range(len(lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase ) & 1: clean += "X" return clean def a__ ( lowercase : str ) -> list[str]: """simple docstring""" _UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCamelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase ) return table def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = prepare_input(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
324
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Dict , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : bool = True , **UpperCamelCase__ : Optional[int] , ): """simple docstring""" super().__init__(**UpperCamelCase__ ) UpperCamelCase = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} UpperCamelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase = do_convert_rgb def A ( self : Any , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): """simple docstring""" UpperCamelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCamelCase = (size['height'], size['width']) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Union[str, Any] , ): """simple docstring""" return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , ): """simple docstring""" return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) UpperCamelCase = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] UpperCamelCase = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] UpperCamelCase = BatchFeature(data={'pixel_values': images} , tensor_type=UpperCamelCase__ ) return encoded_outputs
364
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) UpperCamelCase = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( UpperCamelCase__ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ] , ) UpperCamelCase = text_generator.model.config.eos_token_id UpperCamelCase = '<pad>' UpperCamelCase = text_generator( ['This is a test', 'This is a second test'] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ], [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ], ] , ) @require_tf def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) UpperCamelCase = text_generator(['This is a test', 'This is a second test'] , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def A ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = TextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return text_generator, ["This is a test", "Another test"] def A ( self : int ): """simple docstring""" UpperCamelCase = 'Hello I believe in' UpperCamelCase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) UpperCamelCase = text_generator(UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) UpperCamelCase = text_generator(UpperCamelCase__ , stop_sequence=' fe' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': 'Hello I believe in fe'}] ) def A ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = text_generator.model UpperCamelCase = text_generator.tokenizer UpperCamelCase = text_generator('This is a test' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) UpperCamelCase = text_generator('This is a test' , return_full_text=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) UpperCamelCase = pipeline(task='text-generation' , model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , return_full_text=UpperCamelCase__ ) UpperCamelCase = text_generator('This is a test' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) UpperCamelCase = text_generator('This is a test' , return_full_text=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) UpperCamelCase = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_full_text=UpperCamelCase__ , return_text=UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_full_text=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_text=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase = text_generator('' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 5_0_0 , max_new_tokens=2_0 ) UpperCamelCase = text_generator('This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(UpperCamelCase__ ): text_generator( 'This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def A ( self : int ): """simple docstring""" import torch # Classic `model_kwargs` UpperCamelCase = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def A ( self : int ): """simple docstring""" import torch UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def A ( self : Any ): """simple docstring""" import torch UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=UpperCamelCase__ , top_p=0.5 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = 'Hello world' UpperCamelCase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": UpperCamelCase = logging.get_logger('transformers.generation.tf_utils' ) else: UpperCamelCase = logging.get_logger('transformers.generation.utils' ) UpperCamelCase = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(UpperCamelCase__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_new_tokens=1 ) self.assertNotIn(UpperCamelCase__ , cl.out ) with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_length=1_0 ) self.assertNotIn(UpperCamelCase__ , cl.out )
249
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ : Any = 'src/diffusers' lowercase_ : Dict = '.' # This is to make sure the diffusers module imported is the one in the repo. lowercase_ : int = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase_ : Dict = spec.loader.load_module() def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return line.startswith(snake_case_ ) or len(snake_case_ ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , snake_case_ ) is not None def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = object_name.split("." ) _UpperCAmelCase = 0 # First let's find the module where our object lives. _UpperCAmelCase = parts[i] while i < len(snake_case_ ) and not os.path.isfile(os.path.join(snake_case_ , f"""{module}.py""" ) ): i += 1 if i < len(snake_case_ ): _UpperCAmelCase = os.path.join(snake_case_ , parts[i] ) if i >= len(snake_case_ ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(snake_case_ , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase = f.readlines() # Now let's find the class / func in the code! _UpperCAmelCase = "" _UpperCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case_ ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case_ ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _UpperCAmelCase = line_index while line_index < len(snake_case_ ) and _should_continue(lines[line_index] , snake_case_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCAmelCase = lines[start_index:line_index] return "".join(snake_case_ ) lowercase_ : Tuple = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') lowercase_ : List[Any] = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') lowercase_ : List[str] = re.compile(r'<FILL\s+[^>]*>') def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = code.split("\n" ) _UpperCAmelCase = 0 while idx < len(snake_case_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(snake_case_ ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = len(get_indent(snake_case_ ) ) > 0 if has_indent: _UpperCAmelCase = f"""class Bla:\n{code}""" _UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=snake_case_ ) _UpperCAmelCase = black.format_str(snake_case_ , mode=snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = style_docstrings_in_code(snake_case_ ) return result[len("class Bla:\n" ) :] if has_indent else result def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_=False ): '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] _UpperCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case_ ): _UpperCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = search.groups() _UpperCAmelCase = find_code_in_diffusers(snake_case_ ) _UpperCAmelCase = get_indent(snake_case_ ) _UpperCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _UpperCAmelCase = theoretical_indent _UpperCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _UpperCAmelCase = True while line_index < len(snake_case_ ) and should_continue: line_index += 1 if line_index >= len(snake_case_ ): break _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _should_continue(snake_case_ , snake_case_ ) and re.search(f"""^{indent}# End copy""" , snake_case_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCAmelCase = lines[start_index:line_index] _UpperCAmelCase = "".join(snake_case_ ) # Remove any nested `Copied from` comments to avoid circular copies _UpperCAmelCase = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(snake_case_ ) is None] _UpperCAmelCase = "\n".join(snake_case_ ) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case_ ) > 0: _UpperCAmelCase = replace_pattern.replace("with" , "" ).split("," ) _UpperCAmelCase = [_re_replace_pattern.search(snake_case_ ) for p in patterns] for pattern in patterns: if pattern is None: continue _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = pattern.groups() _UpperCAmelCase = re.sub(snake_case_ , snake_case_ , snake_case_ ) if option.strip() == "all-casing": _UpperCAmelCase = re.sub(obja.lower() , obja.lower() , snake_case_ ) _UpperCAmelCase = re.sub(obja.upper() , obja.upper() , snake_case_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _UpperCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) _UpperCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _UpperCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _UpperCAmelCase = start_index + 1 if overwrite and len(snake_case_ ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(snake_case_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(snake_case_ ) return diffs def __SCREAMING_SNAKE_CASE ( snake_case_ = False ): '''simple docstring''' _UpperCAmelCase = glob.glob(os.path.join(snake_case_ , "**/*.py" ) , recursive=snake_case_ ) _UpperCAmelCase = [] for filename in all_files: _UpperCAmelCase = is_copy_consistent(snake_case_ , snake_case_ ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(snake_case_ ) > 0: _UpperCAmelCase = "\n".join(snake_case_ ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowercase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase_ : Optional[int] = parser.parse_args() check_copies(args.fix_and_overwrite)
133
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): snake_case_ : Tuple = StableDiffusionLDMaDPipeline snake_case_ : Optional[int] = TEXT_TO_IMAGE_PARAMS snake_case_ : str = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _UpperCAmelCase = CLIPTextModel(snake_case__ ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[int]=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(snake_case__ ) else: _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) _UpperCAmelCase = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = 3 * [inputs["prompt"]] # forward _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = 3 * [inputs.pop("prompt" )] _UpperCAmelCase = ldmad_pipe.tokenizer( snake_case__ , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="pt" , ) _UpperCAmelCase = text_inputs["input_ids"].to(snake_case__ ) _UpperCAmelCase = ldmad_pipe.text_encoder(snake_case__ )[0] _UpperCAmelCase = prompt_embeds # forward _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = PNDMScheduler(skip_prk_steps=snake_case__ ) _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = "french fries" _UpperCAmelCase = ldmad_pipe(**snake_case__ , negative_prompt=snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) _UpperCAmelCase = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : str , snake_case__ : Optional[int] , snake_case__ : Tuple="cpu" , snake_case__ : Any=torch.floataa , snake_case__ : Dict=0 ): """simple docstring""" _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) _UpperCAmelCase = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1].flatten() _UpperCAmelCase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _UpperCAmelCase = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) _UpperCAmelCase = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Any , snake_case__ : Optional[Any] , snake_case__ : int="cpu" , snake_case__ : Optional[Any]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) _UpperCAmelCase = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.495_586 _UpperCAmelCase = 0.33_795_515 _UpperCAmelCase = 112.48_518 _UpperCAmelCase = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCamelCase ( self : Tuple ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.4_194_127 _UpperCAmelCase = 0.35_375_586 _UpperCAmelCase = 0.5_638_502 _UpperCAmelCase = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
133
1
import os from collections.abc import Iterator def lowerCAmelCase_ ( UpperCamelCase_ = "." ) -> Tuple: for dir_path, dir_names, filenames in os.walk(a_ ): UpperCamelCase_ = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(a_ )[1] in (".py", ".ipynb"): yield os.path.join(a_ , a_ ).lstrip("./" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: return F'''{i * " "}*''' if i else "\n##" def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(a_ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(a_ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def lowerCAmelCase_ ( UpperCamelCase_ = "." ) -> List[Any]: UpperCamelCase_ = "" for filepath in sorted(good_file_paths(a_ ) ): UpperCamelCase_ = os.path.split(a_ ) if filepath != old_path: UpperCamelCase_ = print_path(a_ , a_ ) UpperCamelCase_ = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCamelCase_ = F'''{filepath}/{filename}'''.replace(" " , "%20" ) UpperCamelCase_ = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(F'''{md_prefix(a_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('.')
367
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Dict = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Any = '''cvt''' def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : Optional[Any]=[7, 3, 3] , __lowerCAmelCase : Optional[int]=[4, 2, 2] , __lowerCAmelCase : List[Any]=[2, 1, 1] , __lowerCAmelCase : Tuple=[64, 1_92, 3_84] , __lowerCAmelCase : Dict=[1, 3, 6] , __lowerCAmelCase : Dict=[1, 2, 10] , __lowerCAmelCase : Any=[4.0, 4.0, 4.0] , __lowerCAmelCase : str=[0.0, 0.0, 0.0] , __lowerCAmelCase : List[Any]=[0.0, 0.0, 0.0] , __lowerCAmelCase : Dict=[0.0, 0.0, 0.1] , __lowerCAmelCase : Optional[int]=[True, True, True] , __lowerCAmelCase : Optional[int]=[False, False, True] , __lowerCAmelCase : str=["dw_bn", "dw_bn", "dw_bn"] , __lowerCAmelCase : int=[3, 3, 3] , __lowerCAmelCase : Dict=[1, 1, 1] , __lowerCAmelCase : Union[str, Any]=[2, 2, 2] , __lowerCAmelCase : List[str]=[1, 1, 1] , __lowerCAmelCase : Tuple=[1, 1, 1] , __lowerCAmelCase : Any=0.0_2 , __lowerCAmelCase : Any=1e-12 , **__lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**__lowerCAmelCase ) A__ = num_channels A__ = patch_sizes A__ = patch_stride A__ = patch_padding A__ = embed_dim A__ = num_heads A__ = depth A__ = mlp_ratio A__ = attention_drop_rate A__ = drop_rate A__ = drop_path_rate A__ = qkv_bias A__ = cls_token A__ = qkv_projection_method A__ = kernel_qkv A__ = padding_kv A__ = stride_kv A__ = padding_q A__ = stride_q A__ = initializer_range A__ = layer_norm_eps
274
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __lowerCamelCase ( __a :Dict ) -> Any: """simple docstring""" A__ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__a , __a ) def __lowerCamelCase ( __a :str ) -> Union[str, Any]: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(__a , __a , bias=__a ) A__ = emb.weight.data return lin_layer def __lowerCamelCase ( __a :str ) -> List[str]: """simple docstring""" A__ = torch.load(__a , map_location="""cpu""" ) A__ = Namespace(**checkpoint["""cfg"""]["""model"""] ) A__ = checkpoint["""model"""] remove_ignore_keys_(__a ) A__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] A__ = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} A__ = XGLMConfig( vocab_size=__a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) A__ = XGLMForCausalLM(__a ) A__ = model.load_state_dict(__a , strict=__a ) print(__a ) A__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A : str = parser.parse_args() A : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
274
1
from __future__ import annotations lowercase : int = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase_ (_lowerCAmelCase : list[list[int]] , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : list[list[int]] , ): __UpperCamelCase : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCAmelCase ) ) ] # the reference grid __UpperCamelCase : Dict = 1 __UpperCamelCase : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCAmelCase ) ) ] # the action grid __UpperCamelCase : Any = init[0] __UpperCamelCase : List[str] = init[1] __UpperCamelCase : List[str] = 0 __UpperCamelCase : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell __UpperCamelCase : Any = [[f, g, x, y]] __UpperCamelCase : List[Any] = False # flag that is set when search is complete __UpperCamelCase : List[str] = False # flag set if we can't find expand while not found and not resign: if len(_lowerCAmelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __UpperCamelCase : int = cell.pop() __UpperCamelCase : Optional[Any] = next_cell[2] __UpperCamelCase : str = next_cell[3] __UpperCamelCase : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __UpperCamelCase : Dict = True else: for i in range(len(_lowerCAmelCase ) ): # to try out different valid actions __UpperCamelCase : Any = x + DIRECTIONS[i][0] __UpperCamelCase : int = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __UpperCamelCase : Any = g + cost __UpperCamelCase : str = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __UpperCamelCase : List[Any] = 1 __UpperCamelCase : int = i __UpperCamelCase : List[str] = [] __UpperCamelCase : List[Any] = goal[0] __UpperCamelCase : str = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __UpperCamelCase : Union[str, Any] = x - DIRECTIONS[action[x][y]][0] __UpperCamelCase : Any = y - DIRECTIONS[action[x][y]][1] __UpperCamelCase : Any = xa __UpperCamelCase : int = ya invpath.append([x, y] ) __UpperCamelCase : List[Any] = [] for i in range(len(_lowerCAmelCase ) ): path.append(invpath[len(_lowerCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": lowercase : Dict = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowercase : Optional[int] = [0, 0] # all coordinates are given in format [y,x] lowercase : List[Any] = [len(grid) - 1, len(grid[0]) - 1] lowercase : Any = 1 # the cost map which pushes the path closer to the goal lowercase : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowercase : Any = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowercase : List[str] = 99 lowercase , lowercase : List[str] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
171
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : nn.Module lowercase : List[nn.Module] = field(default_factory=lowerCamelCase__ ) lowercase : list = field(default_factory=lowerCamelCase__ ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(__UpperCamelCase , nn.Convad ) or isinstance(__UpperCamelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__UpperCamelCase ) def __call__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__UpperCamelCase ) [x.remove() for x in self.handles] return self @property def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' return list(filter(lambda __UpperCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : nn.Module lowercase : nn.Module lowercase : int = 0 lowercase : List = field(default_factory=lowerCamelCase__ ) lowercase : List = field(default_factory=lowerCamelCase__ ) def __call__( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[Any] = Tracker(self.dest )(__UpperCamelCase ).parametrized __UpperCamelCase : Union[str, Any] = Tracker(self.src )(__UpperCamelCase ).parametrized __UpperCamelCase : Union[str, Any] = list(filter(lambda __UpperCamelCase : type(__UpperCamelCase ) not in self.src_skip , __UpperCamelCase ) ) __UpperCamelCase : Any = list(filter(lambda __UpperCamelCase : type(__UpperCamelCase ) not in self.dest_skip , __UpperCamelCase ) ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise Exception( f'''Numbers of operations are different. Source module has {len(__UpperCamelCase )} operations while''' f''' destination module has {len(__UpperCamelCase )}.''' ) for dest_m, src_m in zip(__UpperCamelCase , __UpperCamelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : ResNetConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): __UpperCamelCase : Optional[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __UpperCamelCase : Union[str, Any] = ResNetForImageClassification(_lowerCAmelCase ).eval() __UpperCamelCase : Any = ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase ) __UpperCamelCase : Optional[int] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_lowerCAmelCase ) assert torch.allclose(from_model(_lowerCAmelCase ) , our_model(_lowerCAmelCase ).logits ), "The model logits don't match the original one." __UpperCamelCase : Tuple = F'''resnet{"-".join(name.split("resnet" ) )}''' print(_lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_lowerCAmelCase , ) # we can use the convnext one __UpperCamelCase : List[str] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_lowerCAmelCase , ) print(F'''Pushed {checkpoint_name}''' ) def UpperCAmelCase_ (_lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): __UpperCamelCase : str = "imagenet-1k-id2label.json" __UpperCamelCase : Dict = 10_00 __UpperCamelCase : Any = (1, num_labels) __UpperCamelCase : Union[str, Any] = "huggingface/label-files" __UpperCamelCase : List[Any] = num_labels __UpperCamelCase : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) __UpperCamelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __UpperCamelCase : List[str] = idalabel __UpperCamelCase : str = {v: k for k, v in idalabel.items()} __UpperCamelCase : Dict = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __UpperCamelCase : List[str] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(_lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowercase : Union[str, Any] = parser.parse_args() lowercase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
171
1
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowercase__ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' A_ : int = AutoencoderKL A_ : Optional[Any] = """sample""" A_ : Dict = 1E-2 @property def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = 4 _SCREAMING_SNAKE_CASE : Any = 3 _SCREAMING_SNAKE_CASE : List[str] = (32, 32) _SCREAMING_SNAKE_CASE : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) return {"sample": image} @property def UpperCAmelCase_ ( self ): return (3, 32, 32) @property def UpperCAmelCase_ ( self ): return (3, 32, 32) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } _SCREAMING_SNAKE_CASE : str = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def UpperCAmelCase_ ( self ): # enable deterministic behavior for gradient checkpointing _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = self.prepare_init_args_and_inputs_for_common() _SCREAMING_SNAKE_CASE : str = self.model_class(**__snake_case ) model.to(__snake_case ) assert not model.is_gradient_checkpointing and model.training _SCREAMING_SNAKE_CASE : Tuple = model(**__snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _SCREAMING_SNAKE_CASE : List[str] = torch.randn_like(__snake_case ) _SCREAMING_SNAKE_CASE : str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _SCREAMING_SNAKE_CASE : Optional[int] = self.model_class(**__snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _SCREAMING_SNAKE_CASE : List[Any] = model_a(**__snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _SCREAMING_SNAKE_CASE : Any = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) _SCREAMING_SNAKE_CASE : List[str] = dict(model.named_parameters() ) _SCREAMING_SNAKE_CASE : List[Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__snake_case ) _SCREAMING_SNAKE_CASE : str = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) _SCREAMING_SNAKE_CASE : List[str] = model.to(__snake_case ) model.eval() if torch_device == "mps": _SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) else: _SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=__snake_case ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _SCREAMING_SNAKE_CASE : int = image.to(__snake_case ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : str = model(__snake_case , sample_posterior=__snake_case , generator=__snake_case ).sample _SCREAMING_SNAKE_CASE : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _SCREAMING_SNAKE_CASE : Any = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": _SCREAMING_SNAKE_CASE : str = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _SCREAMING_SNAKE_CASE : Any = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(__snake_case , __snake_case , rtol=1e-2 ) ) @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case , __snake_case ): return f"""gaussian_noise_s={seed}_shape={"_".join([str(__snake_case ) for s in shape] )}.npy""" def UpperCAmelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self , __snake_case=0 , __snake_case=(4, 3, 512, 512) , __snake_case=False ): _SCREAMING_SNAKE_CASE : Optional[Any] = torch.floataa if fpaa else torch.floataa _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(__snake_case , __snake_case ) ) ).to(__snake_case ).to(__snake_case ) return image def UpperCAmelCase_ ( self , __snake_case="CompVis/stable-diffusion-v1-4" , __snake_case=False ): _SCREAMING_SNAKE_CASE : List[Any] = """fp16""" if fpaa else None _SCREAMING_SNAKE_CASE : str = torch.floataa if fpaa else torch.floataa _SCREAMING_SNAKE_CASE : Tuple = AutoencoderKL.from_pretrained( __snake_case , subfolder="""vae""" , torch_dtype=__snake_case , revision=__snake_case , ) model.to(__snake_case ).eval() return model def UpperCAmelCase_ ( self , __snake_case=0 ): if torch_device == "mps": return torch.manual_seed(__snake_case ) return torch.Generator(device=__snake_case ).manual_seed(__snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_vae_model() _SCREAMING_SNAKE_CASE : Any = self.get_sd_image(__snake_case ) _SCREAMING_SNAKE_CASE : Dict = self.get_generator(__snake_case ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[Any] = model(__snake_case , generator=__snake_case , sample_posterior=__snake_case ).sample assert sample.shape == image.shape _SCREAMING_SNAKE_CASE : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(__snake_case , __snake_case , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.get_sd_vae_model(fpaa=__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_image(__snake_case , fpaa=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = self.get_generator(__snake_case ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(__snake_case , generator=__snake_case , sample_posterior=__snake_case ).sample assert sample.shape == image.shape _SCREAMING_SNAKE_CASE : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _SCREAMING_SNAKE_CASE : str = torch.tensor(__snake_case ) assert torch_all_close(__snake_case , __snake_case , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.get_sd_vae_model() _SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(__snake_case ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[Any] = model(__snake_case ).sample assert sample.shape == image.shape _SCREAMING_SNAKE_CASE : Tuple = sample[-1, -2:, -2:, :2].flatten().float().cpu() _SCREAMING_SNAKE_CASE : int = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(__snake_case , __snake_case , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_vae_model() _SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(__snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Union[str, Any] = model.decode(__snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] _SCREAMING_SNAKE_CASE : List[str] = sample[-1, -2:, :2, -2:].flatten().cpu() _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(__snake_case ) assert torch_all_close(__snake_case , __snake_case , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Any = self.get_sd_vae_model(fpaa=__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(__snake_case , shape=(3, 4, 64, 64) , fpaa=__snake_case ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Dict = model.decode(__snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] _SCREAMING_SNAKE_CASE : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(__snake_case ) assert torch_all_close(__snake_case , __snake_case , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = self.get_sd_image(__snake_case , shape=(3, 4, 64, 64) , fpaa=__snake_case ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[int] = model.decode(__snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model.decode(__snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__snake_case , __snake_case , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_vae_model() _SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_image(__snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Tuple = model.decode(__snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[Any] = model.decode(__snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__snake_case , __snake_case , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model() _SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_image(__snake_case ) _SCREAMING_SNAKE_CASE : Dict = self.get_generator(__snake_case ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[Any] = model.encode(__snake_case ).latent_dist _SCREAMING_SNAKE_CASE : str = dist.sample(generator=__snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _SCREAMING_SNAKE_CASE : Dict = sample[0, -1, -3:, -3:].flatten().cpu() _SCREAMING_SNAKE_CASE : Any = torch.tensor(__snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(__snake_case , __snake_case , atol=__snake_case )
200
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def snake_case_ ( SCREAMING_SNAKE_CASE__ = 100_0000 , SCREAMING_SNAKE_CASE__ = 10 ): """simple docstring""" _SCREAMING_SNAKE_CASE : defaultdict = defaultdict(SCREAMING_SNAKE_CASE__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _SCREAMING_SNAKE_CASE : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _SCREAMING_SNAKE_CASE : List[str] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
200
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = dataset UpperCamelCase = process UpperCamelCase = params def __len__( self : List[str] ): """simple docstring""" return len(self.dataset ) def __getitem__( self : List[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.dataset[i] UpperCamelCase = self.process(UpperCamelCase__ , **self.params ) return processed class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str=None ): """simple docstring""" UpperCamelCase = loader UpperCamelCase = infer UpperCamelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCamelCase = None UpperCamelCase = loader_batch_size # Internal bookkeeping UpperCamelCase = None UpperCamelCase = None def __len__( self : Optional[int] ): """simple docstring""" return len(self.loader ) def __iter__( self : Any ): """simple docstring""" UpperCamelCase = iter(self.loader ) return self def A ( self : Dict ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCamelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCamelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Convert ModelOutput to tuple first UpperCamelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCamelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCamelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCamelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCamelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCamelCase = self._loader_batch_data.__class__(UpperCamelCase__ ) self._loader_batch_index += 1 return result def A ( self : Optional[Any] ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCamelCase = next(self.iterator ) UpperCamelCase = self.infer(UpperCamelCase__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase__ , torch.Tensor ): UpperCamelCase = processed else: UpperCamelCase = list(processed.keys() )[0] UpperCamelCase = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = len(UpperCamelCase__ ) else: UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCamelCase = observed_batch_size # Setting internal index to unwrap the batch UpperCamelCase = processed UpperCamelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : int=None ): """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __iter__( self : Optional[Any] ): """simple docstring""" UpperCamelCase = iter(self.loader ) UpperCamelCase = None return self def A ( self : Optional[Any] ): """simple docstring""" if self.subiterator is None: UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCamelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) UpperCamelCase = next(self.subiterator ) return processed class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __iter__( self : Dict ): """simple docstring""" UpperCamelCase = iter(self.loader ) return self def A ( self : Tuple ): """simple docstring""" UpperCamelCase = False UpperCamelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCamelCase = self.loader_batch_item() UpperCamelCase = item.pop('is_last' ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator while not is_last: UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase__ , torch.Tensor ): UpperCamelCase = processed else: UpperCamelCase = list(processed.keys() )[0] UpperCamelCase = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = len(UpperCamelCase__ ) else: UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCamelCase = observed_batch_size UpperCamelCase = processed UpperCamelCase = 0 while self._loader_batch_index < self.loader_batch_size: UpperCamelCase = self.loader_batch_item() UpperCamelCase = item.pop('is_last' ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator else: UpperCamelCase = processed UpperCamelCase = item.pop('is_last' ) accumulator.append(UpperCamelCase__ ) return accumulator class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Dataset , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = dataset UpperCamelCase = key def __len__( self : Tuple ): """simple docstring""" return len(self.dataset ) def __getitem__( self : List[Any] , UpperCamelCase__ : str ): """simple docstring""" return self.dataset[i][self.key] class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : Dataset , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = dataset UpperCamelCase = keya UpperCamelCase = keya def __len__( self : int ): """simple docstring""" return len(self.dataset ) def __getitem__( self : Optional[Any] , UpperCamelCase__ : str ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
359
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" UpperCamelCase , UpperCamelCase = image.size UpperCamelCase , UpperCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) UpperCamelCase = np.array(A__ ).astype(np.floataa ) / 255.0 UpperCamelCase = image[None].transpose(0 , 3 , 1 , 2 ) UpperCamelCase = torch.from_numpy(A__ ) return 2.0 * image - 1.0 class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : str , UpperCamelCase__ : VQModel , UpperCamelCase__ : UNetaDModel , UpperCamelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , UpperCamelCase__ : Optional[int] = 1 , UpperCamelCase__ : Optional[int] = 1_0_0 , UpperCamelCase__ : Optional[float] = 0.0 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , ): """simple docstring""" if isinstance(UpperCamelCase__ , PIL.Image.Image ): UpperCamelCase = 1 elif isinstance(UpperCamelCase__ , torch.Tensor ): UpperCamelCase = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCamelCase__ )}""" ) if isinstance(UpperCamelCase__ , PIL.Image.Image ): UpperCamelCase = preprocess(UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCamelCase = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCamelCase = next(self.unet.parameters() ).dtype UpperCamelCase = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) UpperCamelCase = image.to(device=self.device , dtype=UpperCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCamelCase__ , device=self.device ) UpperCamelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta for t in self.progress_bar(UpperCamelCase__ ): # concat latents and low resolution image in the channel dimension. UpperCamelCase = torch.cat([latents, image] , dim=1 ) UpperCamelCase = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual UpperCamelCase = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # decode the image latents with the VQVAE UpperCamelCase = self.vqvae.decode(UpperCamelCase__ ).sample UpperCamelCase = torch.clamp(UpperCamelCase__ , -1.0 , 1.0 ) UpperCamelCase = image / 2 + 0.5 UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
249
0
import math def _a ( lowerCamelCase, lowerCamelCase ): if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
287
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Optional[int] ={'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] =[ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __lowerCAmelCase : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" return 1 / (1 + np.exp(-z )) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple ) -> int: """simple docstring""" return (-y * np.log(_snake_case ) - (1 - y) * np.log(1 - h )).mean() def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = np.dot(_snake_case , _snake_case ) return np.sum(y * scores - np.log(1 + np.exp(_snake_case ) ) ) def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any]=70_000 ) -> List[Any]: """simple docstring""" lowerCAmelCase = np.zeros(x.shape[1] ) for iterations in range(_snake_case ): lowerCAmelCase = np.dot(_snake_case , _snake_case ) lowerCAmelCase = sigmoid_function(_snake_case ) lowerCAmelCase = np.dot(x.T , h - y ) / y.size lowerCAmelCase = theta - alpha * gradient # updating the weights lowerCAmelCase = np.dot(_snake_case , _snake_case ) lowerCAmelCase = sigmoid_function(_snake_case ) lowerCAmelCase = cost_function(_snake_case , _snake_case ) if iterations % 100 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase = datasets.load_iris() UpperCAmelCase = iris.data[:, :2] UpperCAmelCase = (iris.target != 0) * 1 UpperCAmelCase = 0.1 UpperCAmelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('theta: ', theta) # printing the theta i.e our weights vector def _snake_case ( _SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" return sigmoid_function( np.dot(_snake_case , _snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') (UpperCAmelCase) = (x[:, 0].min(), x[:, 0].max()) (UpperCAmelCase) = (x[:, 1].min(), x[:, 1].max()) (UpperCAmelCase) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
369
'''simple docstring''' from __future__ import annotations UpperCAmelCase = [] def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(_SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(_SCREAMING_SNAKE_CASE , -1 , -1 ) , range(_SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_SCREAMING_SNAKE_CASE , -1 , -1 ) , range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if row >= len(_SCREAMING_SNAKE_CASE ): solution.append(_SCREAMING_SNAKE_CASE ) printboard(_SCREAMING_SNAKE_CASE ) print() return True for i in range(len(_SCREAMING_SNAKE_CASE ) ): if is_safe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = 1 solve(_SCREAMING_SNAKE_CASE , row + 1 ) lowerCAmelCase = 0 return False def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] ) -> None: """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(len(_SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) UpperCAmelCase = 8 UpperCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
187
0
"""simple docstring""" from math import factorial, pi def a__ ( lowerCAmelCase , lowerCAmelCase = 30 ) -> float: if not isinstance(lowerCAmelCase , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase , lowerCAmelCase ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) UpperCAmelCase__ : List[Any] = float(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase , lowerCAmelCase = 30 ) -> float: if not isinstance(lowerCAmelCase , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase , lowerCAmelCase ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) UpperCAmelCase__ : int = float(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
171
"""simple docstring""" import os from datetime import datetime as dt from github import Github _A = [ """good first issue""", """feature request""", """wip""", ] def a__ ( ) -> str: UpperCAmelCase__ : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : Dict = g.get_repo("""huggingface/accelerate""" ) UpperCAmelCase__ : str = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase : i.created_at , reverse=lowerCAmelCase ) UpperCAmelCase__ : List[Any] = comments[0] if len(lowerCAmelCase ) > 0 else None UpperCAmelCase__ : Optional[Any] = dt.utcnow() UpperCAmelCase__ : List[str] = (current_time - issue.updated_at).days UpperCAmelCase__ : Optional[int] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
171
1
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(A__ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(A__ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A red cat sitting on a park bench" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
241
0