code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A ( a_ ) -> Optional[Any]: if is_torch_version('<' ,'2.0.0' ) or not hasattr(a_ ,'_dynamo' ): return False return isinstance(a_ ,torch._dynamo.eval_frame.OptimizedModule ) def A ( a_ ,a_ = True ) -> Optional[int]: __UpperCamelCase : Union[str, Any] =(torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase : List[Any] =is_compiled_module(a_ ) if is_compiled: __UpperCamelCase : Optional[Any] =model __UpperCamelCase : List[Any] =model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(a_ ,a_ ): __UpperCamelCase : Any =model.module if not keep_fpaa_wrapper: __UpperCamelCase : Any =getattr(a_ ,'forward' ) __UpperCamelCase : List[Any] =model.__dict__.pop('_original_forward' ,a_ ) if original_forward is not None: while hasattr(a_ ,'__wrapped__' ): __UpperCamelCase : Optional[int] =forward.__wrapped__ if forward == original_forward: break __UpperCamelCase : str =forward if getattr(a_ ,'_converted_to_transformer_engine' ,a_ ): convert_model(a_ ,to_transformer_engine=a_ ) if is_compiled: __UpperCamelCase : Dict =model __UpperCamelCase : int =compiled_model return model def A ( ) -> Optional[Any]: PartialState().wait_for_everyone() def A ( a_ ,a_ ) -> List[Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(a_ ,a_ ) elif PartialState().local_process_index == 0: torch.save(a_ ,a_ ) @contextmanager def A ( **a_ ) -> int: for key, value in kwargs.items(): __UpperCamelCase : Optional[Any] =str(a_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A ( a_ ) -> List[Any]: if not hasattr(a_ ,'__qualname__' ) and not hasattr(a_ ,'__name__' ): __UpperCamelCase : int =getattr(a_ ,'__class__' ,a_ ) if hasattr(a_ ,'__qualname__' ): return obj.__qualname__ if hasattr(a_ ,'__name__' ): return obj.__name__ return str(a_ ) def A ( a_ ,a_ ) -> List[str]: for key, value in source.items(): if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =destination.setdefault(a_ ,{} ) merge_dicts(a_ ,a_ ) else: __UpperCamelCase : Optional[int] =value return destination def A ( a_ = None ) -> bool: if port is None: __UpperCamelCase : Any =29_500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
71
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :Tuple = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Union[str, Any] = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys A_ :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Dict = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[Any] = "gpt_neo" _UpperCAmelCase :Dict = ["past_key_values"] _UpperCAmelCase :Union[str, Any] = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Tuple , snake_case__ : Optional[Any]=5_0257 , snake_case__ : Optional[int]=2048 , snake_case__ : Dict=2048 , snake_case__ : int=24 , snake_case__ : str=[[["global", "local"], 12]] , snake_case__ : Union[str, Any]=16 , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[int]=256 , snake_case__ : int="gelu_new" , snake_case__ : Optional[int]=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Any=1E-5 , snake_case__ : List[Any]=0.02 , snake_case__ : List[str]=True , snake_case__ : Dict=5_0256 , snake_case__ : List[str]=5_0256 , **snake_case__ : List[Any] , ): lowerCamelCase_ : Tuple =vocab_size lowerCamelCase_ : Any =max_position_embeddings lowerCamelCase_ : int =hidden_size lowerCamelCase_ : int =num_layers lowerCamelCase_ : Union[str, Any] =num_heads lowerCamelCase_ : List[str] =intermediate_size lowerCamelCase_ : int =window_size lowerCamelCase_ : Any =activation_function lowerCamelCase_ : Dict =resid_dropout lowerCamelCase_ : Optional[Any] =embed_dropout lowerCamelCase_ : Tuple =attention_dropout lowerCamelCase_ : Tuple =classifier_dropout lowerCamelCase_ : List[Any] =layer_norm_epsilon lowerCamelCase_ : List[str] =initializer_range lowerCamelCase_ : Union[str, Any] =use_cache lowerCamelCase_ : Union[str, Any] =bos_token_id lowerCamelCase_ : Optional[int] =eos_token_id lowerCamelCase_ : Tuple =attention_types lowerCamelCase_ : Dict =self.expand_attention_types_params(snake_case__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) @staticmethod def UpperCAmelCase__ ( snake_case__ : str ): lowerCamelCase_ : Any =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any ) -> Optional[Any]: import torch lowerCamelCase_ : Union[str, Any] =input.size() lowerCamelCase_ : Any =len(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =shape[dimension] lowerCamelCase_ : Optional[Any] =torch.arange(0 , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[str] =torch.div(sizedim - size , lowerCamelCase__ , rounding_mode="floor" ) + 1 lowerCamelCase_ : List[Any] =torch.arange(lowerCamelCase__ ) + low_indices[:min_length][:, None] lowerCamelCase_ : Any =[slice(lowerCamelCase__ )] * rank lowerCamelCase_ : Tuple =indices lowerCamelCase_ : List[Any] =input[s] lowerCamelCase_ : Dict =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCamelCase__ ) def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int ) -> Tuple: import torch lowerCamelCase_ : str =torch.arange(1 , lowerCamelCase__ ) lowerCamelCase_ : List[str] =torch.remainder(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Dict =remainders == 0 lowerCamelCase_ : List[Any] =candidates[divisor_indices] lowerCamelCase_ : Optional[Any] =torch.max(lowerCamelCase__ ) return largest_divisor, torch.div(lowerCamelCase__ , lowerCamelCase__ , rounding_mode="floor" ) class lowercase__ ( snake_case__ ): @property def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Tuple =OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) lowerCamelCase_ : List[Any] ={0: "batch", 1: "past_sequence + sequence"} else: lowerCamelCase_ : Tuple ={0: "batch", 1: "sequence"} return common_inputs @property def UpperCAmelCase__ ( self : List[Any] ): return self._config.num_heads def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): lowerCamelCase_ : Optional[int] =super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() lowerCamelCase_ : Optional[int] =OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase_ , lowerCamelCase_ : List[Any] =common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase_ : List[str] =seqlen + 2 lowerCamelCase_ : List[str] =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase_ : Optional[int] =[ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] lowerCamelCase_ : Optional[Any] =common_inputs["attention_mask"] if self.use_past: lowerCamelCase_ : Optional[int] =ordered_inputs["attention_mask"].dtype lowerCamelCase_ : Tuple =torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self : Optional[Any] ): return 13
209
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A__ : List[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } A__ : Optional[int] = { 'facebook/blenderbot_small-90M': 512, } class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Tuple = BlenderbotSmallTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : str=None , snake_case__ : Any="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : str=False , snake_case__ : int=True , **snake_case__ : Tuple , ): super().__init__( ByteLevelBPETokenizer( vocab=snake_case__ , merges=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , ) , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , **snake_case__ , ) lowerCamelCase_ : Optional[int] =add_prefix_space def UpperCAmelCase__ ( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[str]=None ): lowerCamelCase_ : Optional[Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : int =[self.sep_token_id] lowerCamelCase_ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
209
1
'''simple docstring''' from scipy.stats import pearsonr import datasets _A : Optional[int] =''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' _A : Optional[int] =''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' _A : List[str] =''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def lowerCamelCase_ ( self: str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Any=False ): if return_pvalue: lowerCamelCase__ : str = pearsonr(UpperCamelCase__ , UpperCamelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCamelCase__ , UpperCamelCase__ )[0] )}
41
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """depth_multiplier""" ) ) class _lowercase : def __init__( self: str , UpperCamelCase__: Dict , UpperCamelCase__: Tuple=13 , UpperCamelCase__: Optional[int]=3 , UpperCamelCase__: List[Any]=32 , UpperCamelCase__: Optional[Any]=0.25 , UpperCamelCase__: int=8 , UpperCamelCase__: Any=True , UpperCamelCase__: Dict=1_024 , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Tuple="relu6" , UpperCamelCase__: int=0.1 , UpperCamelCase__: List[Any]=0.02 , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: Union[str, Any]=True , UpperCamelCase__: Union[str, Any]=10 , UpperCamelCase__: str=None , ): lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : Optional[Any] = depth_multiplier lowerCamelCase__ : Union[str, Any] = min_depth lowerCamelCase__ : Optional[Any] = tf_padding lowerCamelCase__ : str = int(last_hidden_size * depth_multiplier ) lowerCamelCase__ : Any = output_stride lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Tuple = classifier_dropout_prob lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Optional[Any] = scope def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Dict = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self: str ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: int , UpperCamelCase__: str , UpperCamelCase__: Any , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : List[str] = MobileNetVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Optional[Any] = MobileNetVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = config_and_inputs lowerCamelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () a = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[int] = MobileNetVaModelTester(self ) lowerCamelCase__ : List[str] = MobileNetVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def lowerCamelCase_ ( self: Optional[Any] ): pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def lowerCamelCase_ ( self: Any ): pass def lowerCamelCase_ ( self: Any ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) lowerCamelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): def check_hidden_states_output(UpperCamelCase__: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] ): lowerCamelCase__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : List[Any] = outputs.hidden_states lowerCamelCase__ : Tuple = 26 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Optional[Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: List[str] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = MobileNetVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> Union[str, Any]: lowerCamelCase__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Optional[int] ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : List[Any] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(UpperCamelCase__ ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : int = prepare_img() lowerCamelCase__ : List[Any] = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : str = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : List[str] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : List[str] = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
41
1
'''simple docstring''' def UpperCamelCase_( snake_case : float ): '''simple docstring''' if edge <= 0 or not isinstance(snake_case , snake_case ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase_( snake_case : float ): '''simple docstring''' if edge <= 0 or not isinstance(snake_case , snake_case ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _SCREAMING_SNAKE_CASE : List[Any] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } _SCREAMING_SNAKE_CASE : Any = "▁" class _snake_case ( lowercase_ ): lowerCAmelCase_ : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Tuple = ["input_ids", "attention_mask"] def __init__( self , a__ , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__ = None , **a__ , ) -> None: '''simple docstring''' snake_case_ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) snake_case_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case_ = len(self.sp_model ) - 1 snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , a__ , a__ = None , a__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , a__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a__ , out_type=a__ ) def lowerCAmelCase__ ( self , a__ ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = [] snake_case_ = "" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(a__ ) snake_case_ = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self ) -> Dict: '''simple docstring''' snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , a__ ) -> str: '''simple docstring''' snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
92
1
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = IFImgaImgSuperResolutionPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) _a = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCAmelCase__ ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ): '''simple docstring''' if str(UpperCAmelCase__ ).startswith('''mps''' ): UpperCamelCase__ :List[Any] = torch.manual_seed(UpperCAmelCase__ ) else: UpperCamelCase__ :Optional[int] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) UpperCamelCase__ :Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) UpperCamelCase__ :Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) UpperCamelCase__ :Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCAmelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self._test_save_load_local() def lowerCAmelCase__ ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
97
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : str = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
54
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a : """simple docstring""" __UpperCAmelCase : Union[str, Any] = MBartConfig __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any]=13 , lowerCamelCase : List[Any]=7 , lowerCamelCase : Dict=True , lowerCamelCase : List[Any]=False , lowerCamelCase : List[Any]=99 , lowerCamelCase : Optional[Any]=32 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[str]=4 , lowerCamelCase : Optional[int]=37 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Optional[Any]=20 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]=1 , lowerCamelCase : int=0 , ) -> Union[str, Any]: __snake_case : str = parent __snake_case : List[Any] = batch_size __snake_case : Optional[Any] = seq_length __snake_case : List[Any] = is_training __snake_case : List[Any] = use_labels __snake_case : Any = vocab_size __snake_case : Optional[Any] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : int = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : Any = eos_token_id __snake_case : Dict = pad_token_id __snake_case : Union[str, Any] = bos_token_id def __snake_case ( self : Any ) -> List[str]: __snake_case : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __snake_case : Tuple = prepare_mbart_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, inputs_dict def __snake_case ( self : Any , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Any: __snake_case : Optional[int] = TFMBartModel(config=lowerCamelCase ).get_decoder() __snake_case : List[str] = inputs_dict["input_ids"] __snake_case : List[Any] = input_ids[:1, :] __snake_case : Dict = inputs_dict["attention_mask"][:1, :] __snake_case : Dict = inputs_dict["head_mask"] __snake_case : int = 1 # first forward pass __snake_case : Any = model(lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , use_cache=lowerCamelCase ) __snake_case : List[Any] = outputs.to_tuple() __snake_case : str = past_key_values[1] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ): if attention_mask is None: __snake_case : Any = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __snake_case : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCAmelCase : List[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCAmelCase : List[Any] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCAmelCase : List[str] = True __UpperCAmelCase : int = False __UpperCAmelCase : Tuple = False def __snake_case ( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict ) -> Union[str, Any]: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __snake_case ( self : Union[str, Any] ) -> Optional[int]: __snake_case : Dict = TFMBartModelTester(self ) __snake_case : Tuple = ConfigTester(self , config_class=lowerCamelCase ) def __snake_case ( self : Tuple ) -> int: self.config_tester.run_common_tests() def __snake_case ( self : Optional[int] ) -> Optional[Any]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class a (unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = [ " UN Chief Says There Is No Military Solution in Syria", ] __UpperCAmelCase : int = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __UpperCAmelCase : Dict = "facebook/mbart-large-en-ro" @cached_property def __snake_case ( self : Optional[int] ) -> Dict: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __snake_case ( self : str ) -> str: __snake_case : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __snake_case ( self : Tuple , **lowerCamelCase : Dict ) -> Optional[Any]: __snake_case : Union[str, Any] = self.translate_src_text(**lowerCamelCase ) self.assertListEqual(self.expected_text , lowerCamelCase ) def __snake_case ( self : str , **lowerCamelCase : Optional[Any] ) -> Optional[int]: __snake_case : Optional[int] = self.tokenizer(self.src_text , **lowerCamelCase , return_tensors="tf" ) __snake_case : Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __snake_case : Optional[int] = self.tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) return generated_words @slow def __snake_case ( self : List[str] ) -> Optional[Any]: self._assert_generated_batch_equal_expected()
362
from __future__ import annotations _snake_case : Union[str, Any] = [] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): for i in range(len(__lowerCamelCase ) ): if board[row][i] == 1: return False for i in range(len(__lowerCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(__lowerCamelCase , -1 , -1 ) , range(__lowerCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__lowerCamelCase , -1 , -1 ) , range(__lowerCamelCase , len(__lowerCamelCase ) ) ): if board[i][j] == 1: return False return True def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if row >= len(__lowerCamelCase ): solution.append(__lowerCamelCase ) printboard(__lowerCamelCase ) print() return True for i in range(len(__lowerCamelCase ) ): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = 1 solve(__lowerCamelCase , row + 1 ) __snake_case : Union[str, Any] = 0 return False def lowerCAmelCase_ ( __lowerCamelCase ): for i in range(len(__lowerCamelCase ) ): for j in range(len(__lowerCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _snake_case : List[str] = 8 _snake_case : Optional[int] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
134
0
'''simple docstring''' class A__ : def __init__( self , UpperCamelCase__ ) -> None: '''simple docstring''' A_ = len(UpperCamelCase__ ) A_ = [0] * len_array if len_array > 0: A_ = array[0] for i in range(1 , UpperCamelCase__ ): A_ = self.prefix_sum[i - 1] + array[i] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def snake_case_ ( self , UpperCamelCase__ ) -> bool: '''simple docstring''' A_ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
162
from ...processing_utils import ProcessorMixin class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''feature_extractor'''] lowerCamelCase__ = '''TvltImageProcessor''' lowerCamelCase__ = '''TvltFeatureExtractor''' def __init__( self : List[str] , __magic_name__ : Any , __magic_name__ : Any ) -> int: super().__init__(image_processor=__magic_name__ , feature_extractor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processor SCREAMING_SNAKE_CASE_ = feature_extractor def __call__( self : List[str] , __magic_name__ : Optional[Any]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : int=None , __magic_name__ : str=None , __magic_name__ : Any=False , __magic_name__ : int=False , *__magic_name__ : int , **__magic_name__ : Any , ) -> List[Any]: if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) SCREAMING_SNAKE_CASE_ = None if images is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , mask_pixel=__magic_name__ , *__magic_name__ , **__magic_name__ ) if images_mixed is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , is_mixed=__magic_name__ , *__magic_name__ , **__magic_name__ ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor( __magic_name__ , *__magic_name__ , sampling_rate=__magic_name__ , mask_audio=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = {} if audio is not None: output_dict.update(__magic_name__ ) if images is not None: output_dict.update(__magic_name__ ) if images_mixed_dict is not None: output_dict.update(__magic_name__ ) return output_dict @property def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names SCREAMING_SNAKE_CASE_ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
118
0
UpperCamelCase__ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCAmelCase_ ( __A, __A, __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = [False] * len(__A ) UpperCAmelCase__ = [s] UpperCAmelCase__ = True while queue: UpperCAmelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__A ) UpperCAmelCase__ = True UpperCAmelCase__ = u return visited[t] def lowerCAmelCase_ ( __A, __A, __A ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = [-1] * (len(__A )) UpperCAmelCase__ = 0 UpperCAmelCase__ = [] UpperCAmelCase__ = [i[:] for i in graph] # Record original cut, copy. while bfs(__A, __A, __A, __A ): UpperCAmelCase__ = float("Inf" ) UpperCAmelCase__ = sink while s != source: # Find the minimum value in select path UpperCAmelCase__ = min(__A, graph[parent[s]][s] ) UpperCAmelCase__ = parent[s] max_flow += path_flow UpperCAmelCase__ = sink while v != source: UpperCAmelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase__ = parent[v] for i in range(len(__A ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
366
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } UpperCamelCase__ = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Union[str, Any] = PegasusTokenizer __UpperCAmelCase : Any = ['input_ids', 'attention_mask'] def __init__(self : Optional[int] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]="<pad>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : int="<mask_2>" , __UpperCAmelCase : Optional[Any]="<mask_1>" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=1_0_3 , **__UpperCAmelCase : str , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is""" f""" {type(__UpperCAmelCase )}""" ) UpperCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase__ = additional_special_tokens_extended else: UpperCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def lowercase_ (self : List[Any] , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ (self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
143
0
# Imports import numpy as np class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ): '''simple docstring''' self.set_matricies(red=__lowerCAmelCase , green=__lowerCAmelCase , blue=__lowerCAmelCase , red_edge=__lowerCAmelCase , nir=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ): '''simple docstring''' if red is not None: lowerCamelCase__ = red if green is not None: lowerCamelCase__ = green if blue is not None: lowerCamelCase__ = blue if red_edge is not None: lowerCamelCase__ = red_edge if nir is not None: lowerCamelCase__ = nir return True def __lowerCamelCase ( self , __lowerCAmelCase="" , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ): '''simple docstring''' self.set_matricies(red=__lowerCAmelCase , green=__lowerCAmelCase , blue=__lowerCAmelCase , red_edge=__lowerCAmelCase , nir=__lowerCAmelCase ) lowerCamelCase__ = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def __lowerCamelCase ( self ): '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __lowerCamelCase ( self ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __lowerCamelCase ( self ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def __lowerCamelCase ( self ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def __lowerCamelCase ( self ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __lowerCamelCase ( self , __lowerCAmelCase=0.08 , __lowerCAmelCase=1.22 , __lowerCAmelCase=0.03 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __lowerCamelCase ( self ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir / self.green) - 1 def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def __lowerCamelCase ( self ): '''simple docstring''' return (self.red - self.blue) / self.red def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __lowerCamelCase ( self ): '''simple docstring''' return self.nir - self.green def __lowerCamelCase ( self ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __lowerCamelCase ( self , __lowerCAmelCase=0.16 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def __lowerCamelCase ( self , __lowerCAmelCase=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __lowerCamelCase ( self ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def __lowerCamelCase ( self , __lowerCAmelCase=None , __lowerCAmelCase=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __lowerCamelCase ( self ): '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def __lowerCamelCase ( self ): '''simple docstring''' return self.nir / self.red def __lowerCamelCase ( self ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def __lowerCamelCase ( self ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __lowerCamelCase ( self ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def __lowerCamelCase ( self ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase__ = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __lowerCamelCase ( self ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __lowerCamelCase ( self ): '''simple docstring''' return self.nir / self.red def __lowerCamelCase ( self ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def __lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
209
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """camembert""" def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = classifier_dropout class __A ( lowerCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
209
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class a_ ( unittest.TestCase ): def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = jnp.ones((batch_size, length) ) / length return scores def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = None UpperCamelCase = 20 UpperCamelCase = self._get_uniform_logits(batch_size=2 , length=_SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore UpperCamelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCamelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCamelCase = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) UpperCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCamelCase = jax.nn.softmax(temp_dist_warper_sharper(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) UpperCamelCase = jax.nn.softmax(temp_dist_warper_smoother(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = None UpperCamelCase = 10 UpperCamelCase = 2 # create ramp distribution UpperCamelCase = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() UpperCamelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCamelCase = FlaxTopKLogitsWarper(3 ) UpperCamelCase = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCamelCase = 5 UpperCamelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCamelCase = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() UpperCamelCase = top_k_warp_safety_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = None UpperCamelCase = 10 UpperCamelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCamelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) UpperCamelCase = FlaxTopPLogitsWarper(0.8 ) UpperCamelCase = np.exp(top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCamelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCamelCase = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCamelCase = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept UpperCamelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCamelCase = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 20 UpperCamelCase = 4 UpperCamelCase = 0 UpperCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 UpperCamelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) UpperCamelCase = 5 UpperCamelCase = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 UpperCamelCase = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = 15 UpperCamelCase = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 20 UpperCamelCase = 4 UpperCamelCase = 0 UpperCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score UpperCamelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) UpperCamelCase = 1 UpperCamelCase = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCamelCase = 3 UpperCamelCase = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = 20 UpperCamelCase = 4 UpperCamelCase = 0 UpperCamelCase = 5 UpperCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCamelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) UpperCamelCase = 4 UpperCamelCase = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCamelCase = 3 UpperCamelCase = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 10 UpperCamelCase = 15 UpperCamelCase = 2 UpperCamelCase = 1 UpperCamelCase = 15 # dummy input_ids and scores UpperCamelCase = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) UpperCamelCase = input_ids.copy() UpperCamelCase = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = scores.copy() # instantiate all dist processors UpperCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase = FlaxTopKLogitsWarper(3 ) UpperCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCamelCase = 10 # no processor list UpperCamelCase = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # with processor list UpperCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 10 UpperCamelCase = 15 UpperCamelCase = 2 UpperCamelCase = 1 UpperCamelCase = 15 # dummy input_ids and scores UpperCamelCase = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) UpperCamelCase = input_ids.copy() UpperCamelCase = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = scores.copy() # instantiate all dist processors UpperCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase = FlaxTopKLogitsWarper(3 ) UpperCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCamelCase = 10 # no processor list def run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) UpperCamelCase = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores UpperCamelCase = jax.jit(_SCREAMING_SNAKE_CASE ) UpperCamelCase = jax.jit(_SCREAMING_SNAKE_CASE ) UpperCamelCase = jitted_run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = jitted_run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
183
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def lowercase__ ( __UpperCamelCase )-> str: return "".join(sorted(__UpperCamelCase ) ) def lowercase__ ( __UpperCamelCase )-> list[str]: return word_by_signature[signature(__UpperCamelCase )] SCREAMING_SNAKE_CASE__ = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') SCREAMING_SNAKE_CASE__ = sorted({word.strip().lower() for word in data.splitlines()}) SCREAMING_SNAKE_CASE__ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
183
1
UpperCamelCase__ = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCamelCase__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCamelCase__ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
92
class a__ ( snake_case__ ): pass class a__ ( snake_case__ ): pass class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = [ [], [], [], ] def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(_A ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self ): """simple docstring""" return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = [] def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if len(self.queue ) == 1_0_0: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.queue: raise UnderFlowError("The queue is empty" ) else: __lowerCAmelCase = min(self.queue ) self.queue.remove(_A ) return data def __str__( self ): """simple docstring""" return str(self.queue ) def _a ( ): __lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(SCREAMING_SNAKE_CASE_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(SCREAMING_SNAKE_CASE_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _a ( ): __lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(SCREAMING_SNAKE_CASE_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(SCREAMING_SNAKE_CASE_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
92
1
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> int: """simple docstring""" snake_case : Dict = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __lowerCAmelCase ( lowercase : int = 100 ) -> int: """simple docstring""" snake_case : Dict = 1 snake_case : Union[str, Any] = 2 for i in range(2 , max_n + 1 ): snake_case : List[Any] = pre_numerator snake_case : Dict = 2 * i // 3 if i % 3 == 0 else 1 snake_case : Any = cur_numerator snake_case : str = e_cont * pre_numerator + temp return sum_digits(lowercase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
351
"""simple docstring""" def __lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase : int , lowercase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case : Dict = update_area_of_max_square(lowercase , col + 1 ) snake_case : Tuple = update_area_of_max_square(row + 1 , col + 1 ) snake_case : Any = update_area_of_max_square(row + 1 , lowercase ) if mat[row][col]: snake_case : List[Any] = 1 + min([right, diagonal, down] ) snake_case : Any = max(largest_square_area[0] , lowercase ) return sub_problem_sol else: return 0 snake_case : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case : List[str] = update_area_of_max_square_using_dp_array(lowercase , col + 1 , lowercase ) snake_case : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase ) snake_case : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , lowercase , lowercase ) if mat[row][col]: snake_case : Dict = 1 + min([right, diagonal, down] ) snake_case : Union[str, Any] = max(largest_square_area[0] , lowercase ) snake_case : str = sub_problem_sol return sub_problem_sol else: return 0 snake_case : Union[str, Any] = [0] snake_case : int = [[-1] * cols for _ in range(lowercase )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase ) return largest_square_area[0] def __lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: """simple docstring""" snake_case : int = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case : Tuple = dp_array[row][col + 1] snake_case : Any = dp_array[row + 1][col + 1] snake_case : List[str] = dp_array[row + 1][col] if mat[row][col] == 1: snake_case : Optional[int] = 1 + min(lowercase , lowercase , lowercase ) snake_case : Tuple = max(dp_array[row][col] , lowercase ) else: snake_case : List[Any] = 0 return largest_square_area def __lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> int: """simple docstring""" snake_case : Any = [0] * (cols + 1) snake_case : Any = [0] * (cols + 1) snake_case : Any = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case : Dict = current_row[col + 1] snake_case : List[Any] = next_row[col + 1] snake_case : Dict = next_row[col] if mat[row][col] == 1: snake_case : Union[str, Any] = 1 + min(lowercase , lowercase , lowercase ) snake_case : Optional[int] = max(current_row[col] , lowercase ) else: snake_case : Optional[Any] = 0 snake_case : str = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
112
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Any = [] snake_case_ : Tuple = [] snake_case_ : Tuple = [] for rt in rc.restypes: snake_case_ : List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case_ : Any = {name: i for i, name in enumerate(__snake_case )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case_ : List[str] = torch.tensor( __snake_case , dtype=torch.intaa , device=protein['aatype'].device , ) snake_case_ : Tuple = torch.tensor( __snake_case , dtype=torch.intaa , device=protein['aatype'].device , ) snake_case_ : List[str] = torch.tensor( __snake_case , dtype=torch.floataa , device=protein['aatype'].device , ) snake_case_ : Any = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case_ : Union[str, Any] = restype_atomaa_to_atomaa[protein_aatype] snake_case_ : Union[str, Any] = restype_atomaa_mask[protein_aatype] snake_case_ : Dict = residx_atomaa_mask snake_case_ : int = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case_ : List[Any] = restype_atomaa_to_atomaa[protein_aatype] snake_case_ : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case_ : int = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case_ : Optional[int] = rc.restype_atoa[restype_letter] snake_case_ : Union[str, Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case_ : Optional[int] = rc.atom_order[atom_name] snake_case_ : List[str] = 1 snake_case_ : Tuple = restype_atomaa_mask[protein_aatype] snake_case_ : str = residx_atomaa_mask return protein def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : int = tree_map(lambda __a : torch.tensor(__snake_case , device=batch['aatype'].device ) , __snake_case , np.ndarray ) snake_case_ : str = tensor_tree_map(lambda __a : np.array(__snake_case ) , make_atomaa_masks(__snake_case ) ) return out
327
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __snake_case : Tuple = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def __lowerCamelCase ( __snake_case : List[str], __snake_case : List[Any], __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" f" reinstalling {pkg}." ) if not ops[op](version.parse(__snake_case ), version.parse(__snake_case ) ): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[str] = None ) -> None: """simple docstring""" A__ : int =f"\n{hint}" if hint is not None else """""" # non-versioned check if re.match(r"""^[\w_\-\d]+$""", __snake_case ): A__ , A__ , A__ : Union[str, Any] =requirement, None, None else: A__ : List[str] =re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""", __snake_case ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f" got {requirement}" ) A__ , A__ : Optional[int] =match[0] A__ : Tuple =want_full.split(""",""" ) # there could be multiple requirements A__ : Optional[Any] ={} for w in want_range: A__ : Tuple =re.findall(r"""^([\s!=<>]{1,2})(.+)""", __snake_case ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f" but got {requirement}" ) A__ , A__ : str =match[0] A__ : Optional[Any] =want_ver if op not in ops: raise ValueError(f"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": A__ : Any =""".""".join([str(__snake_case ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) return # check if any version is installed try: A__ : Optional[int] =importlib.metadata.version(__snake_case ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : List[Any] ) -> int: """simple docstring""" A__ : str ="""Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(__snake_case, __snake_case )
134
0
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration UpperCAmelCase : Optional[Any] = "facebook/wmt19-en-de" UpperCAmelCase : List[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model UpperCAmelCase : Optional[int] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) UpperCAmelCase : Optional[int] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test UpperCAmelCase : str = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCAmelCase : str = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save UpperCAmelCase : List[str] = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
360
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Dict = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[Any] = """mvp""" _lowercase : Tuple = ["""past_key_values"""] _lowercase : Dict = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase__=5_0_2_6_7 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=1_2 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=1_6 , lowerCAmelCase__=1_2 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=1_6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.0 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=1_0_0 , lowerCAmelCase__=8_0_0 , **lowerCAmelCase__ , ) -> str: '''simple docstring''' a__ : Dict =vocab_size a__ : List[str] =max_position_embeddings a__ : List[str] =d_model a__ : Optional[Any] =encoder_ffn_dim a__ : Dict =encoder_layers a__ : List[str] =encoder_attention_heads a__ : List[str] =decoder_ffn_dim a__ : Tuple =decoder_layers a__ : Tuple =decoder_attention_heads a__ : Any =dropout a__ : str =attention_dropout a__ : str =activation_dropout a__ : Optional[int] =activation_function a__ : Union[str, Any] =init_std a__ : Dict =encoder_layerdrop a__ : List[str] =decoder_layerdrop a__ : Union[str, Any] =classifier_dropout a__ : Union[str, Any] =use_cache a__ : Optional[Any] =encoder_layers a__ : List[str] =scale_embedding # scale factor will be sqrt(d_model) if True a__ : int =use_prompt a__ : Union[str, Any] =prompt_length a__ : Dict =prompt_mid_dim super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , lowerCAmelCase__ ): a__ : Tuple =self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." )
148
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
54
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase__ : Dict = logging.get_logger(__name__) enable_full_determinism() class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[Any] = 4 snake_case__ : List[Any] = 3 snake_case__ : int = (32, 32) snake_case__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : str = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Union[str, Any] = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } snake_case__ : List[Any] = self.dummy_input return init_dict, inputs_dict class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = 4 snake_case__ : List[Any] = 4 snake_case__ : List[str] = (32, 32) snake_case__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> int: '''simple docstring''' return (4, 32, 32) @property def __a ( self ) -> str: '''simple docstring''' return (4, 32, 32) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Union[str, Any] = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } snake_case__ : List[Any] = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> str: '''simple docstring''' snake_case__ , snake_case__ : Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCamelCase ) snake_case__ : List[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ , snake_case__ : List[str] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) model.to(__UpperCamelCase ) snake_case__ : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def __a ( self ) -> str: '''simple docstring''' snake_case__ , snake_case__ : List[str] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) model_accelerate.to(__UpperCamelCase ) model_accelerate.eval() snake_case__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ : Union[str, Any] = noise.to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) snake_case__ : str = model_accelerate(__UpperCamelCase , __UpperCamelCase )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case__ , snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase , low_cpu_mem_usage=__UpperCamelCase ) model_normal_load.to(__UpperCamelCase ) model_normal_load.eval() snake_case__ : List[str] = model_normal_load(__UpperCamelCase , __UpperCamelCase )['sample'] assert torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__UpperCamelCase ) snake_case__ : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ : List[Any] = noise.to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : List[str] = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case__ : int = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self , __UpperCamelCase=(32, 32) ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = 4 snake_case__ : Dict = 3 snake_case__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __a ( self ) -> int: '''simple docstring''' return (3, 32, 32) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } snake_case__ : str = self.dummy_input return init_dict, inputs_dict @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ , snake_case__ : str = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCamelCase ) snake_case__ : Dict = self.dummy_input snake_case__ : Union[str, Any] = floats_tensor((4, 3) + (256, 256) ).to(__UpperCamelCase ) snake_case__ : List[Any] = noise snake_case__ : Any = model(**__UpperCamelCase ) assert image is not None, "Make sure output is not None" @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : str = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__UpperCamelCase ) snake_case__ : Optional[Any] = 4 snake_case__ : str = 3 snake_case__ : List[Any] = (256, 256) snake_case__ : Dict = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor(batch_size * [1E-4] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : str = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : Optional[int] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : Optional[int] = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-2 ) ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__UpperCamelCase ) snake_case__ : Dict = 4 snake_case__ : List[str] = 3 snake_case__ : Union[str, Any] = (32, 32) snake_case__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor(batch_size * [1E-4] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : Tuple = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : Optional[int] = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-2 ) ) def __a ( self ) -> Tuple: '''simple docstring''' pass
143
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) - pat_len + 1 ): UpperCAmelCase__ = True for j in range(SCREAMING_SNAKE_CASE__ ): if s[i + j] != pattern[j]: UpperCAmelCase__ = False break if match_found: position.append(SCREAMING_SNAKE_CASE__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
61
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = input_str.split("""_""" ) UpperCAmelCase__ = 0 if use_pascal else 1 UpperCAmelCase__ = words[start_index:] UpperCAmelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
61
1
"""simple docstring""" from __future__ import annotations class a : def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> List[Any]: lowerCamelCase_ , lowerCamelCase_ = text, pattern lowerCamelCase_ , lowerCamelCase_ = len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase ( self : Optional[Any] ) -> list[int]: # searches pattern in text and returns index positions lowerCamelCase_ = [] for i in range(self.textLen - self.patLen + 1 ): lowerCamelCase_ = self.mismatch_in_text(__SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ = self.match_in_pattern(self.text[mismatch_index] ) lowerCamelCase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _SCREAMING_SNAKE_CASE : Dict = '''ABAABA''' _SCREAMING_SNAKE_CASE : int = '''AB''' _SCREAMING_SNAKE_CASE : Union[str, Any] = BoyerMooreSearch(text, pattern) _SCREAMING_SNAKE_CASE : Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
183
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class a ( __snake_case ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str = "▁" , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[str, AddedToken] = "<unk>" , __SCREAMING_SNAKE_CASE : Union[str, AddedToken] = "</s>" , __SCREAMING_SNAKE_CASE : Union[str, AddedToken] = "<pad>" , ) -> Optional[int]: lowerCamelCase_ = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } lowerCamelCase_ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase_ = token_dict['token'] lowerCamelCase_ = Tokenizer(Unigram() ) lowerCamelCase_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) lowerCamelCase_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=__SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase_ = decoders.Metaspace(replacement=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) lowerCamelCase_ = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : int = 8000 , __SCREAMING_SNAKE_CASE : bool = True , ) -> Tuple: lowerCamelCase_ = trainers.UnigramTrainer( vocab_size=__SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=__SCREAMING_SNAKE_CASE , ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = [files] self._tokenizer.train(__SCREAMING_SNAKE_CASE , trainer=__SCREAMING_SNAKE_CASE ) self.add_unk_id() def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[Iterator[str], Iterator[Iterator[str]]] , __SCREAMING_SNAKE_CASE : int = 8000 , __SCREAMING_SNAKE_CASE : bool = True , ) -> str: lowerCamelCase_ = trainers.UnigramTrainer( vocab_size=__SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=__SCREAMING_SNAKE_CASE , ) self._tokenizer.train_from_iterator(__SCREAMING_SNAKE_CASE , trainer=__SCREAMING_SNAKE_CASE ) self.add_unk_id() def UpperCamelCase ( self : List[Any] ) -> Dict: lowerCamelCase_ = json.loads(self._tokenizer.to_str() ) lowerCamelCase_ = self.special_tokens['unk']['id'] lowerCamelCase_ = Tokenizer.from_str(json.dumps(__SCREAMING_SNAKE_CASE ) )
183
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class A_ : def __init__( self: Union[str, Any] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : List[Any] = value _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None class A_ : def __init__( self: Tuple ,__lowerCAmelCase: Node ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = tree def _lowercase ( self: int ,__lowerCAmelCase: Node | None ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self: Any ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: dict ): __SCREAMING_SNAKE_CASE : List[str] = set() # edges = list of graph's edges __SCREAMING_SNAKE_CASE : Union[str, Any] = get_edges(_lowerCamelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = edges.pop() chosen_vertices.add(_lowerCamelCase ) chosen_vertices.add(_lowerCamelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowerCamelCase ) return chosen_vertices def lowerCAmelCase_ ( _lowerCamelCase: dict ): __SCREAMING_SNAKE_CASE : Any = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
112
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def UpperCamelCase__ ( *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Any ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' _A : Optional[int] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __SCREAMING_SNAKE_CASE : Any = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCAmelCase__ ) self.assertGreater(lowerCAmelCase__ , 0 ) self.assertEqual( lowerCAmelCase__ , [ { """score""": ANY(lowerCAmelCase__ ), """label""": ANY(lowerCAmelCase__ ), """box""": {"""xmin""": ANY(lowerCAmelCase__ ), """ymin""": ANY(lowerCAmelCase__ ), """xmax""": ANY(lowerCAmelCase__ ), """ymax""": ANY(lowerCAmelCase__ )}, } for i in range(lowerCAmelCase__ ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" pass @require_torch def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __SCREAMING_SNAKE_CASE : int = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.72_35, """label""": """cat""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.72_18, """label""": """remote""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.71_84, """label""": """couch""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.67_48, """label""": """remote""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.66_56, """label""": """cat""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.66_14, """label""": """couch""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.64_56, """label""": """remote""", """box""": {"""xmin""": 4_9_4, """ymin""": 1_0_5, """xmax""": 5_2_1, """ymax""": 1_2_7}}, {"""score""": 0.6_42, """label""": """remote""", """box""": {"""xmin""": 6_7, """ymin""": 2_7_4, """xmax""": 9_3, """ymax""": 2_9_7}}, {"""score""": 0.64_19, """label""": """cat""", """box""": {"""xmin""": 4_9_4, """ymin""": 1_0_5, """xmax""": 5_2_1, """ymax""": 1_2_7}}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"""score""": 0.72_35, """label""": """cat""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.72_18, """label""": """remote""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.71_84, """label""": """couch""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.67_48, """label""": """remote""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.66_56, """label""": """cat""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.66_14, """label""": """couch""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.64_56, """label""": """remote""", """box""": {"""xmin""": 4_9_4, """ymin""": 1_0_5, """xmax""": 5_2_1, """ymax""": 1_2_7}}, {"""score""": 0.6_42, """label""": """remote""", """box""": {"""xmin""": 6_7, """ymin""": 2_7_4, """xmax""": 9_3, """ymax""": 2_9_7}}, {"""score""": 0.64_19, """label""": """cat""", """box""": {"""xmin""": 4_9_4, """ymin""": 1_0_5, """xmax""": 5_2_1, """ymax""": 1_2_7}}, ] ] , ) @require_torch @slow def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pipeline("""zero-shot-object-detection""" ) __SCREAMING_SNAKE_CASE : List[str] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.28_68, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.2_77, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, {"""score""": 0.25_37, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 5_5, """xmax""": 3_1_5, """ymax""": 4_7_2}}, {"""score""": 0.14_74, """label""": """remote""", """box""": {"""xmin""": 3_3_5, """ymin""": 7_4, """xmax""": 3_7_1, """ymax""": 1_8_7}}, {"""score""": 0.12_08, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_4_2, """ymax""": 4_7_6}}, ] , ) __SCREAMING_SNAKE_CASE : Dict = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"""score""": 0.28_68, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.2_77, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, {"""score""": 0.25_37, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 5_5, """xmax""": 3_1_5, """ymax""": 4_7_2}}, {"""score""": 0.14_74, """label""": """remote""", """box""": {"""xmin""": 3_3_5, """ymin""": 7_4, """xmax""": 3_7_1, """ymax""": 1_8_7}}, {"""score""": 0.12_08, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_4_2, """ymax""": 4_7_6}}, ], [ {"""score""": 0.28_68, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.2_77, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, {"""score""": 0.25_37, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 5_5, """xmax""": 3_1_5, """ymax""": 4_7_2}}, {"""score""": 0.14_74, """label""": """remote""", """box""": {"""xmin""": 3_3_5, """ymin""": 7_4, """xmax""": 3_7_1, """ymax""": 1_8_7}}, {"""score""": 0.12_08, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_4_2, """ymax""": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def UpperCamelCase__ ( self : Any ): """simple docstring""" pass @require_torch @slow def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = 0.2 __SCREAMING_SNAKE_CASE : Dict = pipeline("""zero-shot-object-detection""" ) __SCREAMING_SNAKE_CASE : Any = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.28_68, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.2_77, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, {"""score""": 0.25_37, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 5_5, """xmax""": 3_1_5, """ymax""": 4_7_2}}, ] , ) @require_torch @slow def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : int = pipeline("""zero-shot-object-detection""" ) __SCREAMING_SNAKE_CASE : int = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.28_68, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.2_77, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, ] , )
112
1
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _a ( unittest.TestCase ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=100, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, ) -> Dict: UpperCAmelCase_: Optional[Any] = parent UpperCAmelCase_: Tuple = vocab_size UpperCAmelCase_: str = batch_size UpperCAmelCase_: List[str] = image_size UpperCAmelCase_: Any = patch_size UpperCAmelCase_: Any = num_channels UpperCAmelCase_: Dict = is_training UpperCAmelCase_: Optional[int] = use_labels UpperCAmelCase_: Optional[int] = hidden_size UpperCAmelCase_: str = num_hidden_layers UpperCAmelCase_: Any = num_attention_heads UpperCAmelCase_: Optional[int] = intermediate_size UpperCAmelCase_: Dict = hidden_act UpperCAmelCase_: Optional[int] = hidden_dropout_prob UpperCAmelCase_: str = attention_probs_dropout_prob UpperCAmelCase_: Dict = type_sequence_label_size UpperCAmelCase_: Optional[int] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_: Union[str, Any] = (image_size // patch_size) ** 2 UpperCAmelCase_: Tuple = num_patches + 1 def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_: str = None if self.use_labels: UpperCAmelCase_: Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: Optional[Any] = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, ) return config, pixel_values, labels def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: List[Any] = FlaxBeitModel(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: List[Any] = FlaxBeitForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = self.type_sequence_label_size UpperCAmelCase_: Tuple = FlaxBeitForImageClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_: Union[str, Any] = 1 UpperCAmelCase_: Tuple = FlaxBeitForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Optional[Any] = self.prepare_config_and_inputs() ( UpperCAmelCase_ ): List[str] = config_and_inputs UpperCAmelCase_: List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class _a ( _lowerCAmelCase , unittest.TestCase ): A = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __snake_case (self ) -> None: UpperCAmelCase_: Tuple = FlaxBeitModelTester(self ) UpperCAmelCase_: Tuple = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> Optional[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: str = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase_: str = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_: str = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase_: Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase_: int = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape, output.shape ) def __snake_case (self ) -> Any: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Dict: UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> int: for model_class_name in self.all_model_classes: UpperCAmelCase_: List[Any] = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) UpperCAmelCase_: str = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> Optional[int]: return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def __snake_case (self ) -> int: UpperCAmelCase_: List[str] = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) UpperCAmelCase_: List[str] = self.default_image_processor UpperCAmelCase_: Any = prepare_img() UpperCAmelCase_: Dict = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors="""np""" ).pixel_values # prepare bool_masked_pos UpperCAmelCase_: Any = np.ones((1, 196), dtype=SCREAMING_SNAKE_CASE_ ) # forward pass UpperCAmelCase_: List[str] = model(pixel_values=SCREAMING_SNAKE_CASE_, bool_masked_pos=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = outputs.logits # verify the logits UpperCAmelCase_: Union[str, Any] = (1, 196, 8192) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -13.9174], [-3.2_4_5_6, 0.4_9_4_8, -13.9401], [-3.2_0_3_3, 0.5_1_2_1, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], SCREAMING_SNAKE_CASE_, atol=1E-2 ) ) @slow def __snake_case (self ) -> List[Any]: UpperCAmelCase_: int = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) UpperCAmelCase_: Optional[Any] = self.default_image_processor UpperCAmelCase_: Dict = prepare_img() UpperCAmelCase_: Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors="""np""" ) # forward pass UpperCAmelCase_: Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = outputs.logits # verify the logits UpperCAmelCase_: List[str] = (1, 1000) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) ) UpperCAmelCase_: Any = 281 self.assertEqual(logits.argmax(-1 ).item(), SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: int = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) UpperCAmelCase_: Dict = self.default_image_processor UpperCAmelCase_: Optional[Any] = prepare_img() UpperCAmelCase_: List[Any] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors="""np""" ) # forward pass UpperCAmelCase_: Optional[Any] = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = outputs.logits # verify the logits UpperCAmelCase_: Optional[Any] = (1, 21841) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) ) UpperCAmelCase_: List[str] = 2396 self.assertEqual(logits.argmax(-1 ).item(), SCREAMING_SNAKE_CASE_ )
363
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a : str = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Dict=None ): """simple docstring""" UpperCAmelCase_: Any = XLNetConfig.from_json_file(lowerCAmelCase__ ) UpperCAmelCase_: int = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) UpperCAmelCase_: Optional[int] = finetuning_task UpperCAmelCase_: int = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_: Optional[Any] = XLNetForSequenceClassification(lowerCAmelCase__ ) elif "squad" in finetuning_task: UpperCAmelCase_: List[Any] = finetuning_task UpperCAmelCase_: Optional[Any] = XLNetForQuestionAnswering(lowerCAmelCase__ ) else: UpperCAmelCase_: Tuple = XLNetLMHeadModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model UpperCAmelCase_: Tuple = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(F'Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {os.path.abspath(lowerCAmelCase__ )}' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) a : List[str] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
82
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf a =logging.get_logger(__name__) @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[str, Any] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[int] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCamelCase : Union[str, Any] = deprecated_arg[3:] __lowerCamelCase : Tuple = not kwargs.pop(SCREAMING_SNAKE_CASE__) logger.warning( F"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}") __lowerCamelCase : Optional[Any] = kwargs.pop('tpu_name' ,self.tpu_name) __lowerCamelCase : Union[str, Any] = kwargs.pop('device_idx' ,self.device_idx) __lowerCamelCase : Tuple = kwargs.pop('eager_mode' ,self.eager_mode) __lowerCamelCase : Tuple = kwargs.pop('use_xla' ,self.use_xla) super().__init__(**SCREAMING_SNAKE_CASE__) _UpperCAmelCase : str = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Name of TPU'''} , ) _UpperCAmelCase : int = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) _UpperCAmelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Benchmark models in eager model.'''} ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def lowerCAmelCase ( self : Tuple): requires_backends(self ,['tf']) __lowerCamelCase : str = None if self.tpu: try: if self.tpu_name: __lowerCamelCase : Any = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name) else: __lowerCamelCase : int = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowerCamelCase : Union[str, Any] = None return tpu @cached_property def lowerCAmelCase ( self : List[Any]): requires_backends(self ,['tf']) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu) __lowerCamelCase : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'GPU') __lowerCamelCase : str = tf.distribute.OneDeviceStrategy(device=F"/gpu:{self.device_idx}") else: tf.config.set_visible_devices([] ,'GPU') # disable GPU __lowerCamelCase : Tuple = tf.distribute.OneDeviceStrategy(device=F"/cpu:{self.device_idx}") return strategy @property def lowerCAmelCase ( self : List[Any]): requires_backends(self ,['tf']) return self._setup_tpu is not None @property def lowerCAmelCase ( self : Optional[Any]): requires_backends(self ,['tf']) return self._setup_strategy @property def lowerCAmelCase ( self : str): requires_backends(self ,['tf']) return tf.config.list_physical_devices('GPU') @property def lowerCAmelCase ( self : Union[str, Any]): requires_backends(self ,['tf']) if self.cuda: return len(self.gpu_list) return 0 @property def lowerCAmelCase ( self : Optional[int]): return self.n_gpu > 0
73
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowercase__ : int , lowercase__ : List[str] , lowercase__ : List[str] ): # Initialise PyTorch model snake_case : Optional[Any] = TaConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case : Tuple = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
148
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int ): """simple docstring""" __lowerCamelCase = 3 __lowerCamelCase = 2_50 __lowerCamelCase = ids_tensor((batch_size, length) , a ) __lowerCamelCase = torch.ones((batch_size, length) , device=a , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self._get_tensors(5 ) __lowerCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(a , a ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = MaxLengthCriteria(max_length=10 ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(a , a ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(a , a ) ) __lowerCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self._get_tensors(5 ) __lowerCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(a , a ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(a ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __lowerCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(a ) , 1 )
353
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict =(DPMSolverSDEScheduler,) lowerCamelCase : List[str] =1_0 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , **a : Optional[int] ): """simple docstring""" __lowerCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**a ) return config def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=a , beta_end=a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(a , a ) __lowerCamelCase = model(a , a ) __lowerCamelCase = scheduler.step(a , a , a ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(a ) ) __lowerCamelCase = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1e-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowerCamelCase = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(a , a ) __lowerCamelCase = model(a , a ) __lowerCamelCase = scheduler.step(a , a , a ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(a ) ) __lowerCamelCase = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1e-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1e-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1e-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1e-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowerCamelCase = scheduler.scale_model_input(a , a ) __lowerCamelCase = model(a , a ) __lowerCamelCase = scheduler.step(a , a , a ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(a ) ) __lowerCamelCase = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1e-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma __lowerCamelCase = sample.to(a ) for t in scheduler.timesteps: __lowerCamelCase = scheduler.scale_model_input(a , a ) __lowerCamelCase = model(a , a ) __lowerCamelCase = scheduler.step(a , a , a ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(a ) ) __lowerCamelCase = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2
237
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a = False class A_ (unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : int = pipe.dual_guided( prompt="first prompt" , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Optional[int] = generator.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.dual_guided( prompt="first prompt" , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = "cyberpunk 2077" UpperCAmelCase_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCAmelCase_ : List[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCAmelCase_ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Any = "A painting of a squirrel eating a burger " UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images UpperCAmelCase_ : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : int = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Optional[Any] = pipe.image_variation(lowercase_ , generator=lowercase_ , output_type="numpy" ).images UpperCAmelCase_ : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
61
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: UpperCAmelCase_ : Union[str, Any] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: UpperCAmelCase_ : Optional[int] = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: UpperCAmelCase_ : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=32 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : str = eos_token_id UpperCAmelCase_ : str = pad_token_id UpperCAmelCase_ : str = bos_token_id UpperCAmelCase_ : List[Any] = initializer_range def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase_ : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase_ : str = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) UpperCAmelCase_ : Optional[int] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : int = model_class_name(lowercase_ ) UpperCAmelCase_ : Optional[int] = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : int = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Optional[Any] = model.decode(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : Any = model_class_name(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ : int = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Dict = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) UpperCAmelCase_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 99 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ : Any = input_ids.shape[0] UpperCAmelCase_ : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._get_config_and_data() UpperCAmelCase_ : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : Optional[int] = lm_model(input_ids=lowercase_ ) UpperCAmelCase_ : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase_ : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase_ : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase_ : Tuple = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) UpperCAmelCase_ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase_ : Dict = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : Tuple = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() UpperCAmelCase_ : Optional[Any] = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ (lowercase__ ,unittest.TestCase ,lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = FlaxBlenderbotSmallModelTester(self ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = model_class(lowercase_ ) @jax.jit def encode_jitted(lowercase_ , lowercase_=None , **lowercase_ ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : List[Any] = encode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Optional[Any] = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase_ : int = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowercase_ , lowercase_ , lowercase_ ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : str = decode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : List[Any] = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ : List[str] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase_ : Optional[int] = model(lowercase_ ) self.assertIsNotNone(lowercase_ )
61
1
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) __UpperCAmelCase : Optional[Any] = VideoClassificationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase , top_k=2 ) __UpperCAmelCase : Any = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Dict ): '''simple docstring''' for example in examples: __UpperCAmelCase : Tuple = video_classifier(UpperCamelCase ) self.assertEqual( UpperCamelCase , [ {"""score""": ANY(UpperCamelCase ), """label""": ANY(UpperCamelCase )}, {"""score""": ANY(UpperCamelCase ), """label""": ANY(UpperCamelCase )}, ] , ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" __UpperCAmelCase : Any = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) __UpperCAmelCase : List[str] = pipeline( """video-classification""" , model=UpperCamelCase , feature_extractor=UpperCamelCase , frame_sampling_rate=4 ) __UpperCAmelCase : int = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) __UpperCAmelCase : Optional[int] = video_classifier(UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) __UpperCAmelCase : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[list[str]] , UpperCAmelCase_ : int , ): """simple docstring""" a :Optional[int] = len(UpperCamelCase_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCamelCase_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase_ , UpperCamelCase_ , ) def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :List[Any] = [] depth_first_search([] , [] , [] , UpperCamelCase_ , UpperCamelCase_ ) # Print all the boards for board in boards: for column in board: print(UpperCamelCase_ ) print('''''' ) print(len(UpperCamelCase_ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _UpperCAmelCase: lowercase__ = BlenderbotConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_blenderbot_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = TFBlenderbotModel(config=__a).get_decoder() _UpperCamelCase = inputs_dict['''input_ids'''] _UpperCamelCase = input_ids[:1, :] _UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] _UpperCamelCase = inputs_dict['''head_mask'''] _UpperCamelCase = 1 # first forward pass _UpperCamelCase = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1) _UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1) _UpperCamelCase = model(__a , attention_mask=__a)[0] _UpperCamelCase = model(__a , attention_mask=__a , past_key_values=__a)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1])) _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, __snake_case=None, __snake_case=None, __snake_case=None, ) -> Optional[Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowercase__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = TFBlenderbotModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a) @require_tokenizers @require_tf class _UpperCAmelCase( unittest.TestCase ): lowercase__ = ['My friends are cool but they eat too many carbs.'] lowercase__ = 'facebook/blenderbot-400M-distill' @cached_property def UpperCAmelCase ( self) -> Any: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name) @cached_property def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , return_tensors='''tf''') _UpperCamelCase = self.model.generate( model_inputs.input_ids , ) _UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__a)[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
100
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'bert' def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.02 , __a=1e-12 , __a=0 , __a="absolute" , __a=True , __a=None , **__a , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
100
1
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, "models/bert/")) _lowerCAmelCase : Tuple = self.transformer_dir shutil.copy( os.path.join(_snake_case, "src/transformers/models/bert/modeling_bert.py"), os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "src/transformers" shutil.rmtree(self.transformer_dir) def snake_case__ ( self, __a, __a, __a, __a=None): '''simple docstring''' _lowerCAmelCase : List[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: _lowerCAmelCase : Union[str, Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result _lowerCAmelCase : str = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119) _lowerCAmelCase : Dict = black.format_str(_snake_case, mode=_snake_case) _lowerCAmelCase : Optional[int] = os.path.join(self.transformer_dir, "new_code.py") with open(_snake_case, "w", newline="\n") as f: f.write(_snake_case) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_snake_case)) == 0) else: check_copies.is_copy_consistent(f.name, overwrite=_snake_case) with open(_snake_case, "r") as f: self.assertTrue(f.read(), _snake_case) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") self.assertEqual(_snake_case, _snake_case) def snake_case__ ( self): '''simple docstring''' self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", "BertLMPredictionHead", REFERENCE_CODE + "\n", ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", "BertLMPredictionHead", _snake_case, ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", "TestModelLMPredictionHead", re.sub("Bert", "TestModel", _snake_case), ) # Copy consistency with a really long name _lowerCAmelCase : Dict = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}", f"{long_class_name}LMPredictionHead", re.sub("Bert", _snake_case, _snake_case), ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", "TestModelLMPredictionHead", _snake_case, overwrite_result=re.sub("Bert", "TestModel", _snake_case), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = check_copies.LOCALIZED_READMES["README_zh-hans.md"] _lowerCAmelCase : List[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) _lowerCAmelCase : Any = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) _lowerCAmelCase , _lowerCAmelCase : Any = check_copies.convert_to_localized_md( _snake_case, _snake_case, localized_readme["format_model_list"]) self.assertFalse(_snake_case) self.assertEqual(_snake_case, _snake_case) _lowerCAmelCase , _lowerCAmelCase : Any = check_copies.convert_to_localized_md( _snake_case, _snake_case, localized_readme["format_model_list"]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_snake_case) _lowerCAmelCase : Optional[int] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) _lowerCAmelCase : Optional[int] = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase : Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase , _lowerCAmelCase : Any = check_copies.convert_to_localized_md( _snake_case, _snake_case, localized_readme["format_model_list"]) # Check if the model link is synchronized. self.assertEqual(_snake_case, _snake_case)
36
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase (_snake_case ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCamelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , 'depth_multiplier' ) ) class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=3 , _UpperCamelCase=3_2 , _UpperCamelCase=0.25 , _UpperCamelCase=8 , _UpperCamelCase=8 , _UpperCamelCase=6 , _UpperCamelCase=3_2 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="relu6" , _UpperCamelCase=1_2_8_0 , _UpperCamelCase=0.1 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=1_0 , _UpperCamelCase=None , ) -> str: UpperCAmelCase_ : int = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Optional[Any] = depth_multiplier UpperCAmelCase_ : Optional[Any] = depth_divisible_by UpperCAmelCase_ : Dict = min_depth UpperCAmelCase_ : Tuple = expand_ratio UpperCAmelCase_ : Optional[int] = tf_padding UpperCAmelCase_ : Union[str, Any] = output_stride UpperCAmelCase_ : Tuple = first_layer_is_expansion UpperCAmelCase_ : Dict = finegrained_output UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase_ : Optional[Any] = classifier_dropout_prob UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Dict = scope def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ) -> Any: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : List[Any] = MobileNetVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : int = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Dict = MobileNetVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileNetVaForSemanticSegmentation(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Tuple = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ : Any = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _snake_case : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : int = False _snake_case : Tuple = False _snake_case : str = False _snake_case : List[str] = False def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : str = MobileNetVaModelTester(self ) UpperCAmelCase_ : Any = MobileNetVaConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def __UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def __UpperCAmelCase ( self ) -> Any: pass def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[int] = model_class(_UpperCamelCase ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : int = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) UpperCAmelCase_ : List[Any] = outputs.hidden_states UpperCAmelCase_ : List[str] = 1_6 self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[str]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : str = MobileNetVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ) -> Tuple: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : str = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = self.default_image_processor UpperCAmelCase_ : Optional[Any] = prepare_img() UpperCAmelCase_ : Tuple = image_processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**_UpperCamelCase ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) UpperCAmelCase_ : str = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : int = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCAmelCase_ : Tuple = model.to(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : List[str] = image_processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ : List[str] = model(**_UpperCamelCase ) UpperCAmelCase_ : Any = outputs.logits # verify the logits UpperCAmelCase_ : List[Any] = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , _UpperCamelCase ) UpperCAmelCase_ : Dict = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=_UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
145
from __future__ import annotations def lowercase__ ( __snake_case : list[int] , __snake_case : int ): '''simple docstring''' if len(__snake_case ) == 0: return False UpperCAmelCase_ : Optional[int] = len(__snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __snake_case ) else: return binary_search(a_list[midpoint + 1 :] , __snake_case ) if __name__ == "__main__": __UpperCAmelCase = input('Enter numbers separated by comma:\n').strip() __UpperCAmelCase = [int(item.strip()) for item in user_input.split(',')] __UpperCAmelCase = int(input('Enter the number to be found in the list:\n').strip()) __UpperCAmelCase = '' if binary_search(sequence, target) else 'not ' print(F'{target} was {not_str}found in {sequence}')
145
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowerCAmelCase ( nn.Module ): def __init__( self : Dict ) -> Tuple: super().__init__() lowerCamelCase__ : List[str] = nn.Linear(3 , 4 ) lowerCamelCase__ : Optional[Any] = nn.BatchNormad(4 ) lowerCamelCase__ : Dict = nn.Linear(4 , 5 ) def A_ ( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class lowerCAmelCase ( UpperCamelCase__ ): def A_ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> int: return (args[0] + 1,) + args[1:], kwargs class lowerCAmelCase ( UpperCamelCase__ ): def A_ ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] ) -> int: return output + 1 class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : int ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = ModelForTest() lowerCamelCase__ : int = ModelHook() add_hook_to_module(lowercase_ , lowercase_ ) self.assertEqual(test_model._hf_hook , lowercase_ ) self.assertTrue(hasattr(lowercase_ , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(lowercase_ ) self.assertFalse(hasattr(lowercase_ , '_hf_hook' ) ) self.assertFalse(hasattr(lowercase_ , '_old_forward' ) ) def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : Optional[int] = ModelForTest() lowerCamelCase__ : List[Any] = ModelHook() add_hook_to_module(lowercase_ , lowercase_ ) add_hook_to_module(lowercase_ , lowercase_ , append=lowercase_ ) self.assertEqual(isinstance(test_model._hf_hook , lowercase_ ) , lowercase_ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(lowercase_ , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(lowercase_ ) self.assertFalse(hasattr(lowercase_ , '_hf_hook' ) ) self.assertFalse(hasattr(lowercase_ , '_old_forward' ) ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : int = ModelForTest() lowerCamelCase__ : Union[str, Any] = torch.randn(2 , 3 ) lowerCamelCase__ : Optional[int] = test_model(x + 1 ) lowerCamelCase__ : Optional[Any] = test_model(x + 2 ) lowerCamelCase__ : List[str] = PreForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) lowerCamelCase__ : List[Any] = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCamelCase__ : Optional[Any] = PreForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) lowerCamelCase__ : Tuple = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCamelCase__ : Tuple = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(lowercase_ , lowercase_ ) lowerCamelCase__ : List[Any] = test_model(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) def A_ ( self : int ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = ModelForTest() lowerCamelCase__ : int = torch.randn(2 , 3 ) lowerCamelCase__ : Any = test_model(lowercase_ ) lowerCamelCase__ : Optional[Any] = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) lowerCamelCase__ : List[str] = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCamelCase__ : Union[str, Any] = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) lowerCamelCase__ : Dict = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCamelCase__ : int = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(lowercase_ , lowercase_ ) lowerCamelCase__ : Union[str, Any] = test_model(lowercase_ ) assert torch.allclose(lowercase_ , output + 2 , atol=1e-5 ) def A_ ( self : Any ) -> Dict: lowerCamelCase__ : Optional[Any] = ModelForTest() lowerCamelCase__ : Union[str, Any] = torch.randn(2 , 3 ) lowerCamelCase__ : Union[str, Any] = test_model(lowercase_ ) lowerCamelCase__ : Union[str, Any] = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) lowerCamelCase__ : Optional[Any] = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowerCamelCase__ : str = True lowerCamelCase__ : Union[str, Any] = test_model(lowercase_ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A_ ( self : Tuple ) -> str: lowerCamelCase__ : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowerCamelCase__ : Optional[Any] = torch.randn(2 , 3 ) lowerCamelCase__ : Optional[int] = model(lowercase_ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase_ , AlignDevicesHook(io_same_device=lowercase_ ) ) lowerCamelCase__ : str = torch.randn(2 , 3 ).to(0 ) lowerCamelCase__ : int = model(lowercase_ ) self.assertEqual(output.device , torch.device(0 ) ) def A_ ( self : List[str] ) -> str: lowerCamelCase__ : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCamelCase__ : List[str] = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCamelCase__ : Optional[int] = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) lowerCamelCase__ : Optional[Any] = torch.randn(2 , 3 ) lowerCamelCase__ : List[Any] = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload lowerCamelCase__ : List[Any] = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCamelCase__ : Any = torch.randn(2 , 3 ) lowerCamelCase__ : List[Any] = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCamelCase__ : Optional[int] = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCamelCase__ : List[str] = torch.device(lowercase_ ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) lowerCamelCase__ : str = torch.randn(2 , 3 ) lowerCamelCase__ : Dict = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ , offload_buffers=lowercase_ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCamelCase__ : List[Any] = torch.randn(2 , 3 ) lowerCamelCase__ : List[str] = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def A_ ( self : Optional[Any] ) -> Any: lowerCamelCase__ : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCamelCase__ : int = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCamelCase__ : Union[str, Any] = torch.device(lowercase_ ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) lowerCamelCase__ : List[str] = torch.randn(2 , 3 ) lowerCamelCase__ : int = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() , offload_buffers=lowercase_ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCamelCase__ : Optional[int] = torch.randn(2 , 3 ) lowerCamelCase__ : str = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
50
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __lowerCAmelCase : List[str] ={ "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : Dict ={ "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : Union[str, Any] ={ "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : str ={ "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Tuple ={ "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Dict ={ "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def UpperCamelCase ( _lowerCamelCase : Tuple ): if isinstance(_lowerCamelCase , _lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int]=False ): A__ = checkpoint[F"{old_prefix}.in_layers.0.weight"] A__ = checkpoint[F"{old_prefix}.in_layers.0.bias"] A__ = checkpoint[F"{old_prefix}.in_layers.2.weight"] A__ = checkpoint[F"{old_prefix}.in_layers.2.bias"] A__ = checkpoint[F"{old_prefix}.emb_layers.1.weight"] A__ = checkpoint[F"{old_prefix}.emb_layers.1.bias"] A__ = checkpoint[F"{old_prefix}.out_layers.0.weight"] A__ = checkpoint[F"{old_prefix}.out_layers.0.bias"] A__ = checkpoint[F"{old_prefix}.out_layers.3.weight"] A__ = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: A__ = checkpoint[F"{old_prefix}.skip_connection.weight"] A__ = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=None ): A__, A__, A__ = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) A__, A__, A__ = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) A__ = checkpoint[F"{old_prefix}.norm.weight"] A__ = checkpoint[F"{old_prefix}.norm.bias"] A__ = weight_q.squeeze(-1 ).squeeze(-1 ) A__ = bias_q.squeeze(-1 ).squeeze(-1 ) A__ = weight_k.squeeze(-1 ).squeeze(-1 ) A__ = bias_k.squeeze(-1 ).squeeze(-1 ) A__ = weight_v.squeeze(-1 ).squeeze(-1 ) A__ = bias_v.squeeze(-1 ).squeeze(-1 ) A__ = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) A__ = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : List[str] ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) A__ = {} A__ = checkpoint["time_embed.0.weight"] A__ = checkpoint["time_embed.0.bias"] A__ = checkpoint["time_embed.2.weight"] A__ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: A__ = checkpoint["label_emb.weight"] A__ = checkpoint["input_blocks.0.0.weight"] A__ = checkpoint["input_blocks.0.0.bias"] A__ = unet_config["down_block_types"] A__ = unet_config["layers_per_block"] A__ = unet_config["attention_head_dim"] A__ = unet_config["block_out_channels"] A__ = 1 A__ = channels_list[0] for i, layer_type in enumerate(_lowerCamelCase ): A__ = channels_list[i] A__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_lowerCamelCase ): A__ = F"down_blocks.{i}.resnets.{j}" A__ = F"input_blocks.{current_layer}.0" A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_lowerCamelCase ): A__ = F"down_blocks.{i}.resnets.{j}" A__ = F"input_blocks.{current_layer}.0" A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) A__ = F"down_blocks.{i}.attentions.{j}" A__ = F"input_blocks.{current_layer}.1" A__ = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"down_blocks.{i}.downsamplers.0" A__ = F"input_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 A__ = current_channels # hardcoded the mid-block for now A__ = "mid_block.resnets.0" A__ = "middle_block.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "mid_block.attentions.0" A__ = "middle_block.1" A__ = convert_attention(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "mid_block.resnets.1" A__ = "middle_block.2" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = 0 A__ = unet_config["up_block_types"] for i, layer_type in enumerate(_lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): A__ = F"up_blocks.{i}.resnets.{j}" A__ = F"output_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"up_blocks.{i}.upsamplers.0" A__ = F"output_blocks.{current_layer-1}.1" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): A__ = F"up_blocks.{i}.resnets.{j}" A__ = F"output_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) A__ = F"up_blocks.{i}.attentions.{j}" A__ = F"output_blocks.{current_layer}.1" A__ = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"up_blocks.{i}.upsamplers.0" A__ = F"output_blocks.{current_layer-1}.2" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = checkpoint["out.0.weight"] A__ = checkpoint["out.0.bias"] A__ = checkpoint["out.2.weight"] A__ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __lowerCAmelCase : Optional[Any] =parser.parse_args() __lowerCAmelCase : List[Any] =strabool(args.class_cond) __lowerCAmelCase : List[str] =os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __lowerCAmelCase : List[str] =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : List[str] =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __lowerCAmelCase : Any =TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __lowerCAmelCase : Dict =None __lowerCAmelCase : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) __lowerCAmelCase : Dict =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __lowerCAmelCase : List[str] =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __lowerCAmelCase : Dict =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : Dict =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") __lowerCAmelCase : Dict =CMStochasticIterativeScheduler(**scheduler_config) __lowerCAmelCase : str =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
237
0
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Dict ) -> tuple[int | None, int | None, float]: '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] UpperCamelCase__ = (low + high) // 2 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = max_subarray(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = max_subarray(SCREAMING_SNAKE_CASE_ , mid + 1 , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = max_cross_sum(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : int ) -> tuple[int, int, float]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = float("-inf" ), -1 UpperCamelCase__ , UpperCamelCase__ = float("-inf" ), -1 UpperCamelCase__ = 0 for i in range(SCREAMING_SNAKE_CASE_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: UpperCamelCase__ = summ UpperCamelCase__ = i UpperCamelCase__ = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: UpperCamelCase__ = summ UpperCamelCase__ = i return max_left, max_right, (left_sum + right_sum) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] ) -> float: '''simple docstring''' UpperCamelCase__ = [randint(1 , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] UpperCamelCase__ = time.time() max_subarray(SCREAMING_SNAKE_CASE_ , 0 , input_size - 1 ) UpperCamelCase__ = time.time() return end - start def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] UpperCamelCase__ = [time_max_subarray(SCREAMING_SNAKE_CASE_ ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): print(SCREAMING_SNAKE_CASE_ , "\t\t" , SCREAMING_SNAKE_CASE_ ) plt.plot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
365
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowerCAmelCase ( nn.Module ): def __init__( self : List[str] , A : List[Any]) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = torchvision.models.resnetaaa(pretrained=__UpperCAmelCase) _UpperCAmelCase = list(model.children())[:-2] _UpperCAmelCase = nn.Sequential(*__UpperCAmelCase) _UpperCAmelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def _lowerCamelCase ( self : str , A : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = self.pool(self.model(__UpperCAmelCase)) _UpperCAmelCase = torch.flatten(__UpperCAmelCase , start_dim=2) _UpperCAmelCase = out.transpose(1 , 2).contiguous() return out # BxNx2048 class __lowerCAmelCase ( a__ ): def __init__( self : List[Any] , A : Dict , A : Optional[int] , A : Optional[Any] , A : Optional[Any] , A : Any) -> str: """simple docstring""" _UpperCAmelCase = [json.loads(__UpperCAmelCase) for l in open(__UpperCAmelCase)] _UpperCAmelCase = os.path.dirname(__UpperCAmelCase) _UpperCAmelCase = tokenizer _UpperCAmelCase = labels _UpperCAmelCase = len(__UpperCAmelCase) _UpperCAmelCase = max_seq_length _UpperCAmelCase = transforms def __len__( self : Dict) -> Tuple: """simple docstring""" return len(self.data) def __getitem__( self : Any , A : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__UpperCAmelCase)) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = sentence[0], sentence[1:-1], sentence[-1] _UpperCAmelCase = sentence[: self.max_seq_length] _UpperCAmelCase = torch.zeros(self.n_classes) _UpperCAmelCase = 1 _UpperCAmelCase = Image.open(os.path.join(self.data_dir , self.data[index]['img'])).convert('RGB') _UpperCAmelCase = self.transforms(__UpperCAmelCase) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = Counter() for row in self.data: label_freqs.update(row['label']) return label_freqs def A ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = [len(row['sentence'] ) for row in batch] _UpperCAmelCase , _UpperCAmelCase = len(_lowerCAmelCase ), max(_lowerCAmelCase ) _UpperCAmelCase = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) _UpperCAmelCase = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase ) ): _UpperCAmelCase = input_row['sentence'] _UpperCAmelCase = 1 _UpperCAmelCase = torch.stack([row['image'] for row in batch] ) _UpperCAmelCase = torch.stack([row['label'] for row in batch] ) _UpperCAmelCase = torch.stack([row['image_start_token'] for row in batch] ) _UpperCAmelCase = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A ( ) -> Optional[int]: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A ( ) -> Tuple: '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
339
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
0
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Optional[int] = '''examples/''' __UpperCamelCase : List[Any] = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : Optional[Any] = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Any = '''README.md''' def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): with open(A_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase__ : List[str] = f.read() lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = REPLACE_PATTERNS[pattern] lowerCAmelCase__ : Optional[int] = replace.replace('''VERSION''' , A_ ) lowerCAmelCase__ : Optional[int] = re_pattern.sub(A_ , A_ ) with open(A_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): for folder, directories, fnames in os.walk(A_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A_ , A_ ) , A_ , pattern='''examples''' ) def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A_ , A_ , A_ ) if not patch: update_version_in_examples(A_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Any = '''🤗 Transformers currently provides the following architectures''' lowerCAmelCase__ : int = '''1. Want to contribute a new model?''' with open(A_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase__ : Union[str, Any] = f.readlines() # Find the start of the list. lowerCAmelCase__ : Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase__ : List[str] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCAmelCase__ : List[Any] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(A_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A_ ) def __SCREAMING_SNAKE_CASE ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowerCAmelCase__ : str = f.read() lowerCAmelCase__ : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(A_ ).groups()[0] return packaging.version.parse(A_ ) def __SCREAMING_SNAKE_CASE ( A_=False ): lowerCAmelCase__ : Any = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCAmelCase__ : int = default_version.base_version elif patch: lowerCAmelCase__ : List[str] = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase__ : Dict = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase__ : List[str] = input(f'Which version are you releasing? [{default_version}]' ) if len(A_ ) == 0: lowerCAmelCase__ : List[str] = default_version print(f'Updating version to {version}.' ) global_version_update(A_ , patch=A_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Union[str, Any] = get_version() lowerCAmelCase__ : int = f'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase__ : Any = current_version.base_version # Check with the user we got that right. lowerCAmelCase__ : Tuple = input(f'Which version are we developing now? [{dev_version}]' ) if len(A_ ) == 0: lowerCAmelCase__ : List[str] = dev_version print(f'Updating version to {version}.' ) global_version_update(A_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
74
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = 0 for ch in input_str: lowerCAmelCase__ : Any = ord(A_ ) lowerCAmelCase__ : Any = pow(2 , A_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
74
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=1_0 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.9 , lowerCAmelCase__=None , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = tubelet_size __SCREAMING_SNAKE_CASE = num_frames __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = mask_ratio __SCREAMING_SNAKE_CASE = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __SCREAMING_SNAKE_CASE = int(mask_ratio * self.seq_length) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def snake_case_ ( self): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = VideoMAEModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = VideoMAEForPreTraining(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __SCREAMING_SNAKE_CASE = torch.ones((self.num_masks,)) __SCREAMING_SNAKE_CASE = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) __SCREAMING_SNAKE_CASE = mask.expand(self.batch_size , -1).bool() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , lowerCAmelCase__) # model only returns predictions for masked patches __SCREAMING_SNAKE_CASE = mask.sum().item() __SCREAMING_SNAKE_CASE = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __lowercase : int = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) __lowercase : int = False __lowercase : Optional[int] = False __lowercase : Optional[Any] = False __lowercase : Optional[Any] = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = VideoMAEModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False): __SCREAMING_SNAKE_CASE = copy.deepcopy(lowerCAmelCase__) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __SCREAMING_SNAKE_CASE = torch.ones((self.model_tester.num_masks,)) __SCREAMING_SNAKE_CASE = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) __SCREAMING_SNAKE_CASE = mask.expand(self.model_tester.batch_size , -1).bool() __SCREAMING_SNAKE_CASE = bool_masked_pos.to(lowerCAmelCase__) if return_labels: if model_class in [ *get_values(lowerCAmelCase__), ]: __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) return inputs_dict def snake_case_ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""") def snake_case_ ( self): pass def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__) @slow def snake_case_ ( self): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = VideoMAEModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def snake_case_ ( self): if not self.has_attentions: pass else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = self.model_tester.seq_length - self.model_tester.num_masks __SCREAMING_SNAKE_CASE = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __SCREAMING_SNAKE_CASE = len(lowerCAmelCase__) # Check attention is always last and order is fine __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) self.assertEqual(out_len + 1 , len(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case_ ( self): def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.model_tester.seq_length - self.model_tester.num_masks __SCREAMING_SNAKE_CASE = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def snake_case_ ( self): pass def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __SCREAMING_SNAKE_CASE = np.load(UpperCamelCase_ ) return list(UpperCamelCase_ ) @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case_ ( self): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""").to( lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_video() __SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors="""pt""").to(lowerCAmelCase__) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 4_0_0)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor([0.36_69, -0.06_88, -0.24_21]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""").to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_video() __SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors="""pt""").to(lowerCAmelCase__) # add boolean mask, indicating which patches to mask __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""") __SCREAMING_SNAKE_CASE = torch.load(lowerCAmelCase__) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size([1, 1_4_0_8, 1_5_3_6]) __SCREAMING_SNAKE_CASE = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowerCAmelCase__) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `True`) __SCREAMING_SNAKE_CASE = torch.tensor([0.51_42] , device=lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase__ , atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `False`) __SCREAMING_SNAKE_CASE = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=lowerCAmelCase__).to( lowerCAmelCase__) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor(torch.tensor([0.64_69]) , device=lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase__ , atol=1E-4))
100
"""simple docstring""" from math import isqrt, loga def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = False return [i for i in range(2 , UpperCamelCase_ ) if is_prime[i]] def _lowerCAmelCase ( UpperCamelCase_ = 80_0800 , UpperCamelCase_ = 80_0800 ): __SCREAMING_SNAKE_CASE = degree * loga(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = int(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = calculate_prime_numbers(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
100
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed snake_case__ : List[Any] = '''true''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Any=82 , lowerCamelCase_ : str=16 ): """simple docstring""" set_seed(42 ) UpperCAmelCase_ : int = RegressionModel() UpperCAmelCase_ : Any = deepcopy(_lowerCamelCase ) UpperCAmelCase_ : List[str] = RegressionDataset(length=_lowerCamelCase ) UpperCAmelCase_ : Any = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase ) model.to(accelerator.device ) UpperCAmelCase_ : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return model, ddp_model, dataloader def _lowerCamelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple=False ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) UpperCAmelCase_ : List[Any] = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(lowerCamelCase_ : Optional[Any] ): UpperCAmelCase_ : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : Union[str, Any] = dataset.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) UpperCAmelCase_ : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ : Any ): if use_longest: return tokenizer.pad(_lowerCamelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_lowerCamelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=16 ) def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCAmelCase_ : Dict = Accelerator(dispatch_batches=_lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase_ : List[str] = get_dataloader(_lowerCamelCase , not dispatch_batches ) UpperCAmelCase_ : int = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_lowerCamelCase ) UpperCAmelCase_ : Any = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _lowerCamelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCAmelCase_ : Tuple = [] for batch in dataloader: UpperCAmelCase_ : Dict = batch.values() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(_lowerCamelCase ) UpperCAmelCase_ : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ : str = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCamelCase ) targs.append(_lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = torch.cat(_lowerCamelCase ), torch.cat(_lowerCamelCase ) return logits, targs def _lowerCamelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any]=82 , lowerCamelCase_ : int=False , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Tuple=16 ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_basic_setup(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = generate_predictions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) assert ( len(_lowerCamelCase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCamelCase )}''' def _lowerCamelCase ( lowerCamelCase_ : int = False , lowerCamelCase_ : Tuple = False ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = evaluate.load('glue' , 'mrpc' ) UpperCAmelCase_ : Dict = get_mrpc_setup(_lowerCamelCase , _lowerCamelCase ) # First do baseline UpperCAmelCase_ : Optional[Any] = setup["""no"""] model.to(_lowerCamelCase ) model.eval() for batch in dataloader: batch.to(_lowerCamelCase ) with torch.inference_mode(): UpperCAmelCase_ : List[Any] = model(**_lowerCamelCase ) UpperCAmelCase_ : Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCamelCase , references=batch['labels'] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ : Optional[int] = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Union[str, Any] = model(**_lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : List[str] = batch["""labels"""] UpperCAmelCase_ : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCamelCase , references=_lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : str = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_lowerCamelCase , _lowerCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Tuple = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_lowerCamelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) UpperCAmelCase_ : Optional[Any] = Accelerator() test_torch_metrics(_lowerCamelCase , 512 ) accelerator.state._reset_state() def _lowerCamelCase ( lowerCamelCase_ : List[str] ): """simple docstring""" main() if __name__ == "__main__": main()
363
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _UpperCamelCase ( *snake_case_ , **snake_case_ ): '''simple docstring''' pass def _lowerCamelCase ( lowerCamelCase_ : Image ): """simple docstring""" UpperCAmelCase_ : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = DepthEstimationPipeline(model=snake_case_ , image_processor=snake_case_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , snake_case_ ) import datasets UpperCAmelCase_ : Optional[int] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) UpperCAmelCase_ : Union[str, Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , snake_case_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @slow @require_torch def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = 'Intel/dpt-large' UpperCAmelCase_ : Dict = pipeline('depth-estimation' , model=snake_case_ ) UpperCAmelCase_ : Optional[int] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCAmelCase_ : Union[str, Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_62 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
274
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __a = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) _UpperCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=None ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCAmelCase : List[Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCAmelCase : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) _UpperCAmelCase : Optional[int] = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowerCAmelCase__ , "w" , newline="\n" ) as f: f.write(lowerCAmelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase__ ) with open(lowerCAmelCase__ , "r" ) as f: self.assertTrue(f.read() , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowerCAmelCase__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowerCAmelCase__ ) , ) # Copy consistency with a really long name _UpperCAmelCase : int = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , lowerCAmelCase__ , lowerCAmelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowerCAmelCase__ , overwrite_result=re.sub("DDPM" , "Test" , lowerCAmelCase__ ) , )
145
'''simple docstring''' import math def __UpperCAmelCase ( a_: int ): return math.sqrt(a_ ) * math.sqrt(a_ ) == num def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Dict = 0 _UpperCAmelCase : List[str] = n while left <= right: _UpperCAmelCase : Dict = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _UpperCAmelCase : int = mid - 1 else: _UpperCAmelCase : Tuple = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
145
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = tempfile.mkdtemp() snake_case : Tuple = BlipImageProcessor() snake_case : Optional[int] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) snake_case : Dict = BlipaProcessor(snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : str , **snake_case__ : int ) -> Union[str, Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def _SCREAMING_SNAKE_CASE (self : str , **snake_case__ : Any ) -> Union[str, Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' snake_case : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case : Tuple = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' snake_case : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case : Union[str, Any] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) snake_case : Dict = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' snake_case : List[str] = self.get_image_processor() snake_case : str = self.get_tokenizer() snake_case : Optional[Any] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = self.prepare_image_inputs() snake_case : Optional[int] = image_processor(snake_case__ , return_tensors="np" ) snake_case : List[Any] = processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Tuple: '''simple docstring''' snake_case : int = self.get_image_processor() snake_case : Tuple = self.get_tokenizer() snake_case : List[str] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Union[str, Any] = "lower newer" snake_case : int = processor(text=snake_case__ ) snake_case : List[str] = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : int = self.get_image_processor() snake_case : List[Any] = self.get_tokenizer() snake_case : List[str] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : int = "lower newer" snake_case : str = self.prepare_image_inputs() snake_case : Union[str, Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = self.get_image_processor() snake_case : List[str] = self.get_tokenizer() snake_case : Tuple = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : Dict = processor.batch_decode(snake_case__ ) snake_case : str = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : int = self.get_image_processor() snake_case : int = self.get_tokenizer() snake_case : Optional[int] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : List[str] = "lower newer" snake_case : int = self.prepare_image_inputs() snake_case : Dict = processor(text=snake_case__ , images=snake_case__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
59
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = [] def _A ( self : Any , A : Union[str, Any] , A : Optional[int] , A : List[str] , **A : Tuple ): self.events.append("on_init_end" ) def _A ( self : Any , A : str , A : List[Any] , A : List[Any] , **A : Tuple ): self.events.append("on_train_begin" ) def _A ( self : Tuple , A : List[str] , A : Tuple , A : int , **A : List[str] ): self.events.append("on_train_end" ) def _A ( self : Optional[Any] , A : Dict , A : Any , A : Optional[Any] , **A : List[Any] ): self.events.append("on_epoch_begin" ) def _A ( self : Optional[Any] , A : List[Any] , A : List[str] , A : Optional[int] , **A : Optional[int] ): self.events.append("on_epoch_end" ) def _A ( self : List[str] , A : Optional[int] , A : List[Any] , A : Union[str, Any] , **A : Any ): self.events.append("on_step_begin" ) def _A ( self : Tuple , A : Union[str, Any] , A : int , A : Optional[int] , **A : int ): self.events.append("on_step_end" ) def _A ( self : Optional[int] , A : Optional[Any] , A : Union[str, Any] , A : str , **A : Union[str, Any] ): self.events.append("on_evaluate" ) def _A ( self : Optional[Any] , A : Optional[int] , A : Dict , A : List[Any] , **A : Dict ): self.events.append("on_predict" ) def _A ( self : Dict , A : Dict , A : List[Any] , A : Dict , **A : str ): self.events.append("on_save" ) def _A ( self : Tuple , A : Optional[Any] , A : Union[str, Any] , A : Optional[int] , **A : Dict ): self.events.append("on_log" ) def _A ( self : Optional[int] , A : Optional[Any] , A : Tuple , A : Tuple , **A : List[str] ): self.events.append("on_prediction_step" ) @require_torch class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() def _A ( self : List[Any] ): shutil.rmtree(self.output_dir ) def _A ( self : Union[str, Any] , A : Optional[int]=0 , A : Optional[Any]=0 , A : Optional[Any]=64 , A : Dict=64 , A : Any=None , A : Tuple=False , **A : Optional[int] ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. _UpperCAmelCase : str = RegressionDataset(length=A ) _UpperCAmelCase : Union[str, Any] = RegressionDataset(length=A ) _UpperCAmelCase : Any = RegressionModelConfig(a=A , b=A ) _UpperCAmelCase : List[Any] = RegressionPreTrainedModel(A ) _UpperCAmelCase : Dict = TrainingArguments(self.output_dir , disable_tqdm=A , report_to=[] , **A ) return Trainer( A , A , train_dataset=A , eval_dataset=A , callbacks=A , ) def _A ( self : str , A : List[str] , A : List[str] ): self.assertEqual(len(A ) , len(A ) ) # Order doesn't matter _UpperCAmelCase : Tuple = sorted(A , key=lambda A : cb.__name__ if isinstance(A , A ) else cb.__class__.__name__ ) _UpperCAmelCase : Any = sorted(A , key=lambda A : cb.__name__ if isinstance(A , A ) else cb.__class__.__name__ ) for cba, cba in zip(A , A ): if isinstance(A , A ) and isinstance(A , A ): self.assertEqual(A , A ) elif isinstance(A , A ) and not isinstance(A , A ): self.assertEqual(A , cba.__class__ ) elif not isinstance(A , A ) and isinstance(A , A ): self.assertEqual(cba.__class__ , A ) else: self.assertEqual(A , A ) def _A ( self : int , A : List[str] ): _UpperCAmelCase : List[str] = ["on_init_end", "on_train_begin"] _UpperCAmelCase : str = 0 _UpperCAmelCase : Optional[Any] = len(trainer.get_eval_dataloader() ) _UpperCAmelCase : Optional[int] = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(A ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _A ( self : str ): _UpperCAmelCase : Any = self.get_trainer() _UpperCAmelCase : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # Callbacks passed at init are added to the default callbacks _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _UpperCAmelCase : List[Any] = self.get_trainer(disable_tqdm=A ) _UpperCAmelCase : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _UpperCAmelCase : Dict = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A ) expected_callbacks.remove(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) _UpperCAmelCase : Optional[Any] = self.get_trainer() _UpperCAmelCase : Any = trainer.pop_callback(A ) self.assertEqual(cb.__class__ , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) trainer.add_callback(A ) expected_callbacks.insert(0 , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # We can also add, pop, or remove by instance _UpperCAmelCase : Union[str, Any] = self.get_trainer() _UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(A ) expected_callbacks.remove(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) _UpperCAmelCase : List[Any] = self.get_trainer() _UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[0] _UpperCAmelCase : Union[str, Any] = trainer.pop_callback(A ) self.assertEqual(A , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) trainer.add_callback(A ) expected_callbacks.insert(0 , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) def _A ( self : Optional[Any] ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=A ) _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # Independent log/save/eval _UpperCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() _UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() _UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # A bit of everything _UpperCAmelCase : int = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() _UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: _UpperCAmelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A ) in warn_mock.call_args[0][0]
31
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : int ) -> List[Any]: __snake_case : List[Any] = params __snake_case : int = np.array(lowerCamelCase ) __snake_case : Any = np.array([len(lowerCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : List[Any] , lowerCamelCase : Dict ) -> str: return (self.token_ids[index], self.lengths[index]) def __len__( self : Dict ) -> Union[str, Any]: return len(self.lengths ) def __snake_case ( self : Optional[int] ) -> str: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __snake_case ( self : Union[str, Any] ) -> List[str]: __snake_case : Optional[int] = self.params.max_model_input_size __snake_case : Union[str, Any] = self.lengths > max_len logger.info(F'Splitting {sum(lowerCamelCase )} too long sequences.' ) def divide_chunks(lowerCamelCase : str , lowerCamelCase : Any ): return [l[i : i + n] for i in range(0 , len(lowerCamelCase ) , lowerCamelCase )] __snake_case : str = [] __snake_case : int = [] if self.params.mlm: __snake_case , __snake_case : Optional[int] = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: __snake_case , __snake_case : List[Any] = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __snake_case : str = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __snake_case : List[Any] = np.insert(lowerCamelCase , 0 , lowerCamelCase ) if sub_s[-1] != sep_id: __snake_case : Optional[Any] = np.insert(lowerCamelCase , len(lowerCamelCase ) , lowerCamelCase ) assert len(lowerCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCamelCase ) new_tok_ids.extend(lowerCamelCase ) new_lengths.extend([len(lowerCamelCase ) for l in sub_seqs] ) __snake_case : str = np.array(lowerCamelCase ) __snake_case : Optional[Any] = np.array(lowerCamelCase ) def __snake_case ( self : Any ) -> List[Any]: __snake_case : List[Any] = len(self ) __snake_case : int = self.lengths > 11 __snake_case : str = self.token_ids[indices] __snake_case : Optional[int] = self.lengths[indices] __snake_case : Tuple = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def __snake_case ( self : int ) -> Optional[Any]: if "unk_token" not in self.params.special_tok_ids: return else: __snake_case : str = self.params.special_tok_ids["unk_token"] __snake_case : Optional[Any] = len(self ) __snake_case : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __snake_case : int = (unk_occs / self.lengths) < 0.5 __snake_case : Tuple = self.token_ids[indices] __snake_case : List[str] = self.lengths[indices] __snake_case : List[Any] = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def __snake_case ( self : str ) -> List[str]: if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __snake_case ( self : Any , lowerCamelCase : Any ) -> Union[str, Any]: __snake_case : str = [t[0] for t in batch] __snake_case : Union[str, Any] = [t[1] for t in batch] assert len(lowerCamelCase ) == len(lowerCamelCase ) # Max for paddings __snake_case : List[str] = max(lowerCamelCase ) # Pad token ids if self.params.mlm: __snake_case : Any = self.params.special_tok_ids["pad_token"] else: __snake_case : List[str] = self.params.special_tok_ids["unk_token"] __snake_case : Any = [list(t.astype(lowerCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(lowerCamelCase )) for t in token_ids] assert len(tk_ ) == len(lowerCamelCase ) assert all(len(lowerCamelCase ) == max_seq_len_ for t in tk_ ) __snake_case : Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_) __snake_case : str = torch.tensor(lowerCamelCase ) # (bs) return tk_t, lg_t
134
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _snake_case : Optional[Any] = "Create a default config file for Accelerate with only a few flags set." def lowerCAmelCase_ ( __lowerCamelCase="no" , __lowerCamelCase = default_json_config_file , __lowerCamelCase = False ): __snake_case : int = Path(__lowerCamelCase ) path.parent.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __snake_case : Any = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __snake_case : Optional[int] = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): __snake_case : Dict = torch.cuda.device_count() __snake_case : Tuple = num_gpus __snake_case : List[str] = False if num_gpus > 1: __snake_case : Optional[int] = "MULTI_GPU" else: __snake_case : Dict = "NO" elif is_xpu_available() and use_xpu: __snake_case : List[str] = torch.xpu.device_count() __snake_case : str = num_xpus __snake_case : int = False if num_xpus > 1: __snake_case : Optional[int] = "MULTI_XPU" else: __snake_case : str = "NO" elif is_npu_available(): __snake_case : Any = torch.npu.device_count() __snake_case : str = num_npus __snake_case : str = False if num_npus > 1: __snake_case : Optional[int] = "MULTI_NPU" else: __snake_case : int = "NO" else: __snake_case : List[Any] = 0 __snake_case : Dict = True __snake_case : Tuple = 1 __snake_case : Tuple = "NO" __snake_case : str = ClusterConfig(**__lowerCamelCase ) config.to_json_file(__lowerCamelCase ) return path def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = parser.add_parser("default" , parents=__lowerCamelCase , help=__lowerCamelCase , formatter_class=__lowerCamelCase ) parser.add_argument( "--config_file" , default=__lowerCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=__lowerCamelCase , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=__lowerCamelCase ) return parser def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
134
1
"""simple docstring""" _lowercase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowercase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowercase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
74
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : str ,A_ : Dict=13 ,A_ : str=7 ,A_ : str=True ,A_ : Any=True ,A_ : Optional[Any]=True ,A_ : Any=True ,A_ : Optional[Any]=True ,A_ : Any=False ,A_ : str=False ,A_ : Tuple=False ,A_ : str=2 ,A_ : Optional[int]=99 ,A_ : Union[str, Any]=0 ,A_ : Optional[Any]=32 ,A_ : Optional[int]=5 ,A_ : Optional[int]=4 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=0.1 ,A_ : Union[str, Any]=512 ,A_ : Union[str, Any]=2 ,A_ : Any=0.02 ,A_ : List[str]=2 ,A_ : int=4 ,A_ : int="last" ,A_ : Dict=True ,A_ : Union[str, Any]=None ,A_ : Any=0 ,) -> List[Any]: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ,A_ : int ,A_ : Dict ,A_ : str ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Union[str, Any] ,A_ : int ,A_ : str ,) -> Any: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Any ,A_ : str ,A_ : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ,A_ : str ,A_ : Any ,A_ : str ,A_ : Dict ,) -> Dict: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[str] ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : Any ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Optional[Any] ,) -> int: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Optional[int] ,A_ : Any ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Tuple ,A_ : List[str] ,A_ : Optional[int] ,) -> List[Any]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Tuple ,A_ : int ,A_ : Optional[int] ,A_ : List[str] ,A_ : str ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ,) -> Optional[int]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ,A_ : str ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : Optional[int] ,A_ : Optional[int] ,) -> List[str]: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Optional[int] ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : Union[str, Any] ,A_ : Dict ,A_ : List[Any] ,) -> List[str]: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[int] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Optional[int] ,A_ : List[Any]=False ) -> int: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any] ,A_ : Any ,A_ : str ,A_ : Tuple ,A_ : Any ,A_ : Any=False ,A_ : Any=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Optional[int] ,A_ : str ,A_ : Optional[int] ,A_ : int ,A_ : Any ,A_ : str=False ,A_ : Any=1 ) -> Tuple: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
74
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A : Optional[Any] = pd.read_csv('''sample_data.csv''', header=None) __A : List[Any] = df.shape[:1][0] # If you're using some other dataset input the target column __A : Dict = df.iloc[:, 1:2] __A : List[str] = actual_data.values.reshape(len_data, 1) __A : List[str] = MinMaxScaler().fit_transform(actual_data) __A : List[str] = 10 __A : Optional[int] = 5 __A : Optional[int] = 20 __A : Optional[Any] = len_data - periods * look_back __A : int = actual_data[:division] __A : int = actual_data[division - look_back :] __A , __A : Dict = [], [] __A , __A : Tuple = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A : List[Any] = np.array(train_x) __A : str = np.array(test_x) __A : Dict = np.array([list(i.ravel()) for i in train_y]) __A : int = np.array([list(i.ravel()) for i in test_y]) __A : Optional[Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __A : Union[str, Any] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __A : Union[str, Any] = model.predict(x_test)
27
"""simple docstring""" def A_ ( snake_case_ : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(snake_case_ ,(list, tuple) ) or not all( isinstance(snake_case_ ,snake_case_ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) UpperCamelCase : int = numbers[0] for i in range(1 ,len(snake_case_ ) ): # update the maximum and minimum subarray products UpperCamelCase : List[str] = numbers[i] if number < 0: UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number ) UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number ) # update the maximum product found till now UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ ) return max_prod
27
1
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ ) -> list[list[int]]: __a = [] create_all_state(1 , a__ , a__ , [] , a__ ) return result def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(a__ , total_number - level + 2 ): current_list.append(a__ ) create_all_state(i + 1 , a__ , level - 1 , a__ , a__ ) current_list.pop() def __lowerCAmelCase ( a__ ) -> None: for i in total_list: print(*a__ ) if __name__ == "__main__": A : Union[str, Any] = 4 A : Optional[int] = 2 A : Dict = generate_all_combinations(n, k) print_all_state(total_list)
6
from sklearn.metrics import fa_score import datasets A : Any = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' A : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' A : List[Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def a_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Any="binary" , __lowerCAmelCase : Optional[int]=None ) -> List[Any]: """simple docstring""" A__ = fa_score( __lowerCAmelCase , __lowerCAmelCase , labels=__lowerCAmelCase , pos_label=__lowerCAmelCase , average=__lowerCAmelCase , sample_weight=__lowerCAmelCase ) return {"f1": float(__lowerCAmelCase ) if score.size == 1 else score}
274
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''facebook/bart-large-mnli''' __SCREAMING_SNAKE_CASE = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) __SCREAMING_SNAKE_CASE = '''text_classifier''' __SCREAMING_SNAKE_CASE = AutoTokenizer __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification __SCREAMING_SNAKE_CASE = ['''text''', ['''text''']] __SCREAMING_SNAKE_CASE = ['''text'''] def __lowerCamelCase ( self ) -> str: super().setup() __UpperCamelCase = self.model.config __UpperCamelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): __UpperCamelCase = int(__A ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def __lowerCamelCase ( self , lowercase , lowercase ) -> int: __UpperCamelCase = labels return self.pre_processor( [text] * len(__A ) , [f"This example is {label}" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def __lowerCamelCase ( self , lowercase ) -> Union[str, Any]: __UpperCamelCase = outputs.logits __UpperCamelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
359
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = filter(lambda __A : p.requires_grad ,model.parameters() ) __UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Optional[Any] = logging.getLogger(__name__) def _lowercase ( __A ,__A ): '''simple docstring''' if metric == "rouge2": __UpperCamelCase = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": __UpperCamelCase = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": __UpperCamelCase = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) __UpperCamelCase = ModelCheckpoint( dirpath=__A ,filename=__A ,monitor=f"val_{metric}" ,mode="""max""" ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def _lowercase ( __A ,__A ): '''simple docstring''' return EarlyStopping( monitor=f"val_{metric}" ,mode="""min""" if """loss""" in metric else """max""" ,patience=__A ,verbose=__A ,) class UpperCAmelCase__ ( pl.Callback): def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase = {f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=True ) -> None: logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) __UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results __UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase = od / """test_results.txt""" __UpperCamelCase = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase = od / f"{type_path}_results/{trainer.global_step:05d}.txt" __UpperCamelCase = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=lowercase ) generations_file.parent.mkdir(exist_ok=lowercase ) with open(lowercase , """a+""" ) as writer: for key in sorted(lowercase ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase = metrics[key] if isinstance(lowercase , torch.Tensor ): __UpperCamelCase = val.item() __UpperCamelCase = f"{key}: {val:.6f}\n" writer.write(lowercase ) if not save_generations: return if "preds" in metrics: __UpperCamelCase = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> str: try: __UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase = pl_module.model.num_parameters() __UpperCamelCase = count_trainable_parameters(lowercase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase , lowercase , """test""" ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
243
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def _lowercase ( __snake_case ,__snake_case ) -> str | Literal[False]: __lowerCAmelCase : Optional[int] = list(lowerCAmelCase_ ) __lowerCAmelCase : Optional[Any] = list(lowerCAmelCase_ ) __lowerCAmelCase : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 __lowerCAmelCase : Optional[int] = '_' if count > 1: return False else: return "".join(lowerCAmelCase_ ) def _lowercase ( __snake_case ) -> list[str]: __lowerCAmelCase : Optional[int] = [] while True: __lowerCAmelCase : Any = ['$'] * len(lowerCAmelCase_ ) __lowerCAmelCase : List[str] = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 ,len(lowerCAmelCase_ ) ): __lowerCAmelCase : Optional[int] = compare_string(binary[i] ,binary[j] ) if k is False: __lowerCAmelCase : Optional[Any] = '*' __lowerCAmelCase : Optional[Any] = '*' temp.append("X" ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi __lowerCAmelCase : Any = list(set(lowerCAmelCase_ ) ) def _lowercase ( __snake_case ,__snake_case ) -> list[str]: __lowerCAmelCase : int = [] for minterm in minterms: __lowerCAmelCase : Optional[int] = '' for _ in range(lowerCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> bool: __lowerCAmelCase : int = list(lowerCAmelCase_ ) __lowerCAmelCase : Union[str, Any] = list(lowerCAmelCase_ ) __lowerCAmelCase : str = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _lowercase ( __snake_case ,__snake_case ) -> list[str]: __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : Optional[Any] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : int = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 __lowerCAmelCase : int = j if count == 1: __lowerCAmelCase : List[Any] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase : Any = 0 temp.append(prime_implicants[i] ) while True: __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : List[Any] = -1 __lowerCAmelCase : str = 0 for i in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: __lowerCAmelCase : Any = count_n __lowerCAmelCase : int = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase : List[str] = 0 def _lowercase ( __snake_case ,__snake_case ) -> list[list[int]]: __lowerCAmelCase : int = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase : str = prime_implicants[i].count("_" ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,lowerCAmelCase_ ): __lowerCAmelCase : Optional[Any] = 1 return chart def _lowercase ( ) -> None: __lowerCAmelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) __lowerCAmelCase : List[Any] = [ float(lowerCAmelCase_ ) for x in input( "Enter the decimal representation of Minterms \'Spaces Separated\'\n" ).split() ] __lowerCAmelCase : List[str] = decimal_to_binary(lowerCAmelCase_ ,lowerCAmelCase_ ) __lowerCAmelCase : Dict = check(lowerCAmelCase_ ) print("Prime Implicants are:" ) print(lowerCAmelCase_ ) __lowerCAmelCase : List[Any] = prime_implicant_chart(lowerCAmelCase_ ,lowerCAmelCase_ ) __lowerCAmelCase : int = selection(lowerCAmelCase_ ,lowerCAmelCase_ ) print("Essential Prime Implicants are:" ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
269
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str | Literal[False]: _a : Optional[int] = list(lowerCAmelCase_ ) _a : Optional[Any] = list(lowerCAmelCase_ ) _a : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 _a : Optional[int] = '_' if count > 1: return False else: return "".join(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ ) -> list[str]: _a : Optional[int] = [] while True: _a : Any = ['$'] * len(lowerCAmelCase_ ) _a : List[str] = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): _a : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: _a : Optional[Any] = '*' _a : Optional[Any] = '*' temp.append('X' ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi _a : Any = list(set(lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : int = [] for minterm in minterms: _a : Optional[int] = '' for _ in range(lowerCAmelCase_ ): _a : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: _a : int = list(lowerCAmelCase_ ) _a : Union[str, Any] = list(lowerCAmelCase_ ) _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : List[Any] = [] _a : Optional[Any] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): _a : Union[str, Any] = 0 _a : int = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 _a : int = j if count == 1: _a : List[Any] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): _a : Any = 0 temp.append(prime_implicants[i] ) while True: _a : Union[str, Any] = 0 _a : List[Any] = -1 _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): _a : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _a : Any = count_n _a : int = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): _a : List[str] = 0 def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int]]: _a : int = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): _a : str = prime_implicants[i].count('_' ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): _a : Optional[Any] = 1 return chart def __lowerCamelCase ( ) -> None: _a : Optional[int] = int(input('Enter the no. of variables\n' ) ) _a : List[Any] = [ float(lowerCAmelCase_ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _a : List[str] = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Dict = check(lowerCAmelCase_ ) print('Prime Implicants are:' ) print(lowerCAmelCase_ ) _a : List[Any] = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print('Essential Prime Implicants are:' ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
89
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : Union[str, Any] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a ( SCREAMING_SNAKE_CASE_ : dict ): """simple docstring""" return (data["data"], data["target"]) def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" UpperCamelCase : Optional[Any] = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Predict target for test data UpperCamelCase : Any = xgb.predict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = predictions.reshape(len(SCREAMING_SNAKE_CASE_ ) , 1 ) return predictions def a ( ): """simple docstring""" UpperCamelCase : Tuple = fetch_california_housing() UpperCamelCase , UpperCamelCase : Tuple = data_handling(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = train_test_split( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , test_size=0.25 , random_state=1 ) UpperCamelCase : Optional[Any] = xgboost(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
315
0
'''simple docstring''' from scipy.stats import spearmanr import datasets __snake_case : List[str] = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __snake_case : Tuple = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __snake_case : Any = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=False ) -> int: '''simple docstring''' A__ : Optional[Any] =spearmanr(lowerCAmelCase_ , lowerCAmelCase_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
134
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCamelCase ( unittest.TestCase , lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Any: '''simple docstring''' A__ : int =load_tool("""text-to-speech""" ) self.tool.setup() def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) A__ : List[str] =self.tool("""hey""" ) A__ : Dict =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) A__ : Optional[int] =self.tool("""hey""" ) A__ : Tuple =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
134
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
360
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase (): __a , __a : Union[str, Any] = 9, 14 # noqa: F841 __a : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __a : Dict = defaultdict(_SCREAMING_SNAKE_CASE ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __a : Union[str, Any] = mst(_SCREAMING_SNAKE_CASE ) __a : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __a : Optional[Any] = tuple(answer[:2] ) __a : Any = tuple(edge[::-1] ) assert edge in result or reverse in result
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase : Dict = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A ( ) -> Any: __UpperCamelCase = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 2_0, 'a ' * 3_0, 'b ' * 7], } __UpperCamelCase = Dataset.from_dict(snake_case ) return dataset class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = get_dataset() __UpperCamelCase = make_duplicate_clusters(__UpperCAmelCase , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = get_dataset() __UpperCamelCase , __UpperCamelCase = deduplicate_dataset(__UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) print(__UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , __UpperCAmelCase )
263
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = """""" a_ : Dict = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) ->Optional[int]: super().__init__(self , **__UpperCAmelCase) a_ = repo_info a_ = token a_ = None def UpperCAmelCase__ ( self) ->Tuple: if self.dir_cache is None: a_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCAmelCase): {"name": str(__UpperCAmelCase), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , **__UpperCAmelCase , ) ->List[Any]: if not isinstance(self.repo_info , __UpperCAmelCase): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''') a_ = hf_hub_url(self.repo_info.id , __UpperCAmelCase , revision=self.repo_info.sha) return fsspec.open( __UpperCAmelCase , mode=__UpperCAmelCase , headers=get_authentication_headers_for_url(__UpperCAmelCase , use_auth_token=self.token) , client_kwargs={"trust_env": True} , ).open() def UpperCAmelCase__ ( self , __UpperCAmelCase , **__UpperCAmelCase) ->int: self._get_dirs() a_ = self._strip_protocol(__UpperCAmelCase) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase) ->List[Any]: self._get_dirs() a_ = PurePosixPath(path.strip("/")) a_ = {} for p, f in self.dir_cache.items(): a_ = PurePosixPath(p.strip("/")) a_ = p.parent if root == path: a_ = f a_ = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
243
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[Any]: if not is_accelerate_available(): return method lowerCamelCase__ : Any = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCamelCase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *UpperCamelCase , **UpperCamelCase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *UpperCamelCase , **UpperCamelCase ) return wrapper
129
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _A : Optional[Any] =logging.get_logger(__name__) _A : List[str] ={ '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _lowercase ( _lowercase ): a = """marian""" a = ["""past_key_values"""] a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Tuple , UpperCamelCase__: Optional[Any]=58_101 , UpperCamelCase__: Optional[int]=None , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Any=12 , UpperCamelCase__: Optional[int]=4_096 , UpperCamelCase__: Tuple=16 , UpperCamelCase__: Dict=12 , UpperCamelCase__: Optional[Any]=4_096 , UpperCamelCase__: Any=16 , UpperCamelCase__: List[str]=0.0 , UpperCamelCase__: Tuple=0.0 , UpperCamelCase__: str=True , UpperCamelCase__: Optional[int]=True , UpperCamelCase__: Optional[int]="gelu" , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Optional[int]=0.1 , UpperCamelCase__: Optional[Any]=0.0 , UpperCamelCase__: Optional[Any]=0.0 , UpperCamelCase__: Optional[int]=0.02 , UpperCamelCase__: str=58_100 , UpperCamelCase__: Tuple=False , UpperCamelCase__: Optional[Any]=58_100 , UpperCamelCase__: int=0 , UpperCamelCase__: Union[str, Any]=0 , UpperCamelCase__: List[str]=True , **UpperCamelCase__: str , ): lowerCamelCase__ : int = vocab_size lowerCamelCase__ : Tuple = decoder_vocab_size or vocab_size lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[Any] = d_model lowerCamelCase__ : int = encoder_ffn_dim lowerCamelCase__ : Union[str, Any] = encoder_layers lowerCamelCase__ : Dict = encoder_attention_heads lowerCamelCase__ : Optional[int] = decoder_ffn_dim lowerCamelCase__ : List[str] = decoder_layers lowerCamelCase__ : Dict = decoder_attention_heads lowerCamelCase__ : int = dropout lowerCamelCase__ : str = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : List[str] = activation_function lowerCamelCase__ : Union[str, Any] = init_std lowerCamelCase__ : str = encoder_layerdrop lowerCamelCase__ : Any = decoder_layerdrop lowerCamelCase__ : List[str] = use_cache lowerCamelCase__ : List[str] = encoder_layers lowerCamelCase__ : int = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _lowercase ( _lowercase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase_ ( self: Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : List[str] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ : Dict = {0: """batch"""} lowerCamelCase__ : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCamelCase__ : Any = {0: """batch""", 1: """decoder_sequence"""} lowerCamelCase__ : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(UpperCamelCase__ ): lowerCamelCase__ : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} else: lowerCamelCase__ : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase_ ( self: Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super().outputs else: lowerCamelCase__ : Any = super(UpperCamelCase__ , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers for i in range(UpperCamelCase__ ): lowerCamelCase__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCamelCase_ ( self: str , UpperCamelCase__: PreTrainedTokenizer , UpperCamelCase__: int = -1 , UpperCamelCase__: int = -1 , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[TensorType] = None , ): lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs lowerCamelCase__ : Any = seq_length if not self.use_past else 1 lowerCamelCase__ : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[int] = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = common_inputs["""input_ids"""].shape lowerCamelCase__ : Tuple = common_inputs["""decoder_input_ids"""].shape[1] lowerCamelCase__ , lowerCamelCase__ : List[str] = self.num_attention_heads lowerCamelCase__ : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Tuple = decoder_seq_length + 3 lowerCamelCase__ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : Optional[int] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) lowerCamelCase__ : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : Any = self.num_layers lowerCamelCase__ : str = min(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers lowerCamelCase__ : int = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. lowerCamelCase__ : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: PreTrainedTokenizer , UpperCamelCase__: int = -1 , UpperCamelCase__: int = -1 , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[TensorType] = None , ): lowerCamelCase__ : Any = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ : Optional[Any] = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Dict = self.num_layers lowerCamelCase__ , lowerCamelCase__ : Dict = self.num_attention_heads lowerCamelCase__ : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[Any] = common_inputs["""attention_mask"""].dtype lowerCamelCase__ : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) lowerCamelCase__ : int = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: PreTrainedTokenizer , UpperCamelCase__: int = -1 , UpperCamelCase__: int = -1 , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ : List[Any] = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : Union[str, Any] = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) lowerCamelCase__ : Any = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Union[str, Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : str = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: PreTrainedTokenizer , UpperCamelCase__: int = -1 , UpperCamelCase__: int = -1 , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: lowerCamelCase__ : Tuple = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: lowerCamelCase__ : List[Any] = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @property def lowerCamelCase_ ( self: Union[str, Any] ): return 1e-4
129
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a , __a , __a , __a ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(__a , __a , __a=0 , __a=None ): lowerCamelCase__: str =round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCamelCase__: Dict =math.floor(val / multiple ) * multiple if x < min_val: lowerCamelCase__: Optional[Any] =math.ceil(val / multiple ) * multiple return x lowerCamelCase__: str =(output_size, output_size) if isinstance(_snake_case , _snake_case ) else output_size lowerCamelCase__ , lowerCamelCase__: Optional[Any] =get_image_size(_snake_case ) lowerCamelCase__ , lowerCamelCase__: Tuple =output_size # determine new height and width lowerCamelCase__: List[Any] =output_height / input_height lowerCamelCase__: Optional[int] =output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCamelCase__: List[Any] =scale_width else: # fit height lowerCamelCase__: List[Any] =scale_height lowerCamelCase__: List[str] =constraint_to_multiple_of(scale_height * input_height , multiple=_snake_case ) lowerCamelCase__: Dict =constraint_to_multiple_of(scale_width * input_width , multiple=_snake_case ) return (new_height, new_width) class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ): '''simple docstring''' lowercase_ = ['''pixel_values'''] def __init__(self : str , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->int: '''simple docstring''' super().__init__(**_UpperCAmelCase) lowerCamelCase__: int =size if size is not None else {"height": 384, "width": 384} lowerCamelCase__: Optional[Any] =get_size_dict(_UpperCAmelCase) lowerCamelCase__: List[Any] =do_resize lowerCamelCase__: Union[str, Any] =size lowerCamelCase__: Any =keep_aspect_ratio lowerCamelCase__: List[Any] =ensure_multiple_of lowerCamelCase__: Optional[Any] =resample lowerCamelCase__: Optional[int] =do_rescale lowerCamelCase__: Optional[int] =rescale_factor lowerCamelCase__: Tuple =do_normalize lowerCamelCase__: Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__: int =image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[Any] , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Dict =get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""") lowerCamelCase__: int =get_resize_output_image_size( _UpperCAmelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ) ->str: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Any , ) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =do_resize if do_resize is not None else self.do_resize lowerCamelCase__: int =size if size is not None else self.size lowerCamelCase__: Tuple =get_size_dict(_UpperCAmelCase) lowerCamelCase__: List[Any] =keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCamelCase__: Optional[Any] =ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCamelCase__: str =resample if resample is not None else self.resample lowerCamelCase__: Optional[int] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__: List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__: List[Any] =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__: Union[str, Any] =image_mean if image_mean is not None else self.image_mean lowerCamelCase__: List[Any] =image_std if image_std is not None else self.image_std lowerCamelCase__: int =make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. lowerCamelCase__: Optional[int] =[to_numpy_array(_UpperCAmelCase) for image in images] if do_resize: lowerCamelCase__: Tuple =[self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images] if do_rescale: lowerCamelCase__: List[Any] =[self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images] if do_normalize: lowerCamelCase__: Dict =[self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images] lowerCamelCase__: Optional[int] =[to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images] lowerCamelCase__: Optional[int] ={"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Tuple] = None) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCAmelCase) != len(_UpperCAmelCase): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(_UpperCAmelCase): lowerCamelCase__: str =target_sizes.numpy() lowerCamelCase__: int =[] for idx in range(len(_UpperCAmelCase)): lowerCamelCase__: List[Any] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=_UpperCAmelCase) lowerCamelCase__: Tuple =resized_logits[0].argmax(dim=0) semantic_segmentation.append(_UpperCAmelCase) else: lowerCamelCase__: Union[str, Any] =logits.argmax(dim=1) lowerCamelCase__: str =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
10
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model'''} A_ : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } A_ : List[Any] = { '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } A_ : List[str] = '''▁''' class lowercase ( _a ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self ,a_ ,a_="<s>" ,a_="</s>" ,a_="</s>" ,a_="<s>" ,a_="<unk>" ,a_="<pad>" ,a_="<mask>" ,a_ = None ,**a_ ,) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : int = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token _UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCamelCase ,) _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) _UpperCAmelCase : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _UpperCAmelCase : Tuple = len(self.sp_model ) - 1 _UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _snake_case ( self ,a_ ,a_ = None ) -> Union[str, Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Any = [self.cls_token_id] _UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self ,a_ ,a_ = None ) -> Dict: _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ) -> str: return len(self.sp_model ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self ,a_ ) -> Any: return self.sp_model.encode(__lowerCamelCase ,out_type=__lowerCamelCase ) def _snake_case ( self ,a_ ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : List[Any] = self.sp_model.PieceToId(__lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _snake_case ( self ,a_ ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCamelCase ) def _snake_case ( self ,a_ ) -> List[str]: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : str = """""" _UpperCAmelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _UpperCAmelCase : List[str] = True _UpperCAmelCase : Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: _UpperCAmelCase : Tuple = self.__dict__.copy() _UpperCAmelCase : str = None return state def __setstate__( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _UpperCAmelCase : Any = {} _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self ,a_ ,a_ = None ) -> Optional[Any]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : Union[str, Any] = os.path.join( __lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase ,"""wb""" ) as fi: _UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' from itertools import permutations def __lowerCamelCase ( __snake_case : Tuple ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False A__ : Union[str, Any] =[7, 11, 13, 17] for i, test in enumerate(lowercase__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowerCamelCase ( __snake_case : List[Any] = 10 ) -> int: """simple docstring""" return sum( int("""""".join(map(lowercase__, lowercase__ ) ) ) for num in permutations(range(lowercase__ ) ) if is_substring_divisible(lowercase__ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
134
from math import isqrt def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase__ ) + 1 ) ) def _lowerCamelCase( lowercase__ = 1_0**6 ) -> int: '''simple docstring''' __lowercase= 0 __lowercase= 1 __lowercase= 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
295
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] ) -> List[Any]: # Load checkpoint __a = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __a = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository __a = {} for k, v in state_dict.items(): if "pred_layer" in k: __a = v else: __a = v __a = chkpt['''params'''] __a = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase__ , (torch.FloatTensor, numpy.ndarray) )} __a = chkpt['''dico_word2id'''] __a = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model __a = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __a = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __a = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , indent=2 ) + '''\n''' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
364
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case : """simple docstring""" @staticmethod def snake_case ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCamelCase_ = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = object_detector(examples[0] , threshold=0.0 ) lowerCamelCase_ = len(UpperCamelCase ) self.assertGreater(UpperCamelCase , 0 ) self.assertEqual( UpperCamelCase , [ { "score": ANY(UpperCamelCase ), "label": ANY(UpperCamelCase ), "box": {"xmin": ANY(UpperCamelCase ), "ymin": ANY(UpperCamelCase ), "xmax": ANY(UpperCamelCase ), "ymax": ANY(UpperCamelCase )}, } for i in range(UpperCamelCase ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def snake_case ( self ): """simple docstring""" pass @require_torch def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCamelCase_ = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) lowerCamelCase_ = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline("zero-shot-object-detection" ) lowerCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) lowerCamelCase_ = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def snake_case ( self ): """simple docstring""" pass @require_torch @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 0.2 lowerCamelCase_ = pipeline("zero-shot-object-detection" ) lowerCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 2 lowerCamelCase_ = pipeline("zero-shot-object-detection" ) lowerCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
55
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): # Load configuration defined in the metadata file with open(UpperCamelCase__ ) as metadata_file: _UpperCAmelCase : Dict = json.load(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = LukeConfig(use_entity_aware_attention=UpperCamelCase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase : List[Any] = torch.load(UpperCamelCase__ , map_location='''cpu''' ) # Load the entity vocab file _UpperCAmelCase : Optional[int] = load_entity_vocab(UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase : int = AddedToken('''<ent>''' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = AddedToken('''<ent2>''' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : Any = LukeTokenizer.from_pretrained(UpperCamelCase__ ) # Initialize the embeddings of the special tokens _UpperCAmelCase : str = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase : Dict = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) _UpperCAmelCase : Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) _UpperCAmelCase : Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase : List[Any] = F'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase : Optional[Any] = state_dict[prefix + matrix_name] _UpperCAmelCase : Tuple = state_dict[prefix + matrix_name] _UpperCAmelCase : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase : Any = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase : Dict = entity_emb[entity_vocab['''[MASK]''']] _UpperCAmelCase : Optional[int] = LukeModel(config=UpperCamelCase__ ).eval() _UpperCAmelCase , _UpperCAmelCase : int = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if not (len(UpperCamelCase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(UpperCamelCase__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs _UpperCAmelCase : Optional[int] = LukeTokenizer.from_pretrained(UpperCamelCase__ , task='''entity_classification''' ) _UpperCAmelCase : List[str] = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) _UpperCAmelCase : Dict = (39, 42) _UpperCAmelCase : Any = tokenizer(UpperCamelCase__ , entity_spans=[span] , add_prefix_space=UpperCamelCase__ , return_tensors='''pt''' ) _UpperCAmelCase : List[Any] = model(**UpperCamelCase__ ) # Verify word hidden states if model_size == "large": _UpperCAmelCase : str = torch.Size((1, 42, 1024) ) _UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base _UpperCAmelCase : Optional[Any] = torch.Size((1, 42, 768) ) _UpperCAmelCase : str = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _UpperCAmelCase : int = torch.Size((1, 1, 1024) ) _UpperCAmelCase : str = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base _UpperCAmelCase : List[str] = torch.Size((1, 1, 768) ) _UpperCAmelCase : List[Any] = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(UpperCamelCase__ ) ) model.save_pretrained(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): _UpperCAmelCase : Any = {} with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(UpperCamelCase__ ): _UpperCAmelCase , _UpperCAmelCase : Any = line.rstrip().split('''\t''' ) _UpperCAmelCase : Tuple = index return entity_vocab if __name__ == "__main__": _lowerCAmelCase :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) _lowerCAmelCase :Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
263
0
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Union[str, Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(_A, _A ) ) if __name__ == "__main__": __magic_name__: Optional[Any] = "0094702343221" print(is_sri_lankan_phone_number(phone))
138
def UpperCamelCase ( _A = 1, _A = 1000 ): """simple docstring""" __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = 0 for divide_by_number in range(_A, digit + 1 ): __magic_name__ : list[int] = [] __magic_name__ : Any = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_A ): __magic_name__ : int = len(_A ) __magic_name__ : Dict = divide_by_number else: has_been_divided.append(_A ) __magic_name__ : Optional[int] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
138
1
from torch import nn def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""")
129
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Dict =logging.get_logger(__name__) __snake_case : Optional[int] ={ 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""xlm-roberta-xl""" def __init__(self ,__lowerCamelCase=25_08_80 ,__lowerCamelCase=25_60 ,__lowerCamelCase=36 ,__lowerCamelCase=32 ,__lowerCamelCase=1_02_40 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_14 ,__lowerCamelCase=1 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-05 ,__lowerCamelCase=1 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,__lowerCamelCase="absolute" ,__lowerCamelCase=True ,__lowerCamelCase=None ,**__lowerCamelCase ,) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = position_embedding_type lowerCAmelCase__ : Union[str, Any] = use_cache lowerCAmelCase__ : str = classifier_dropout class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @property def lowerCAmelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
129
1
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _UpperCamelCase : list[float] ) -> List[Any]: return np.maximum(0, __UpperCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
368
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _A = logging.get_logger(__name__) class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : str = None @staticmethod def _a ( ) -> Optional[int]: raise NotImplementedError def _a ( self , A_ , A_ , A_ , **A_ ) -> Dict: raise NotImplementedError def _a ( self , A_ ) -> List[Any]: raise NotImplementedError def _a ( self ) -> str: if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def _a ( cls ) -> int: return f'`pip install {cls.pip_package or cls.name}`' class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "optuna" @staticmethod def _a ( ) -> Union[str, Any]: return is_optuna_available() def _a ( self , A_ , A_ , A_ , **A_ ) -> List[Any]: return run_hp_search_optuna(A_ , A_ , A_ , **A_ ) def _a ( self , A_ ) -> Dict: return default_hp_space_optuna(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = "ray" UpperCAmelCase__ : str = "'ray[tune]'" @staticmethod def _a ( ) -> str: return is_ray_available() def _a ( self , A_ , A_ , A_ , **A_ ) -> str: return run_hp_search_ray(A_ , A_ , A_ , **A_ ) def _a ( self , A_ ) -> List[Any]: return default_hp_space_ray(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = "sigopt" @staticmethod def _a ( ) -> Tuple: return is_sigopt_available() def _a ( self , A_ , A_ , A_ , **A_ ) -> int: return run_hp_search_sigopt(A_ , A_ , A_ , **A_ ) def _a ( self , A_ ) -> Union[str, Any]: return default_hp_space_sigopt(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[Any] = "wandb" @staticmethod def _a ( ) -> Any: return is_wandb_available() def _a ( self , A_ , A_ , A_ , **A_ ) -> Optional[Any]: return run_hp_search_wandb(A_ , A_ , A_ , **A_ ) def _a ( self , A_ ) -> List[str]: return default_hp_space_wandb(A_ ) _A = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _UpperCAmelCase ( ): __UpperCamelCase =[backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase =available_backends[0].name if len(SCREAMING_SNAKE_CASE__ ) > 1: logger.info( F'{len(SCREAMING_SNAKE_CASE__ )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
62
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger a__ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self , lowercase = None ) -> List[str]: __UpperCamelCase = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __UpperCamelCase = Extractor def __lowerCamelCase ( self , lowercase ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __UpperCamelCase = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def __lowerCamelCase ( self , lowercase , lowercase ) -> bool: return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str: __UpperCamelCase = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path __UpperCamelCase = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod @abstractmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: ... @staticmethod @abstractmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: ... class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> int: with open(lowercase , """rb""" ) as f: return f.read(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if not magic_number: __UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: __UpperCamelCase = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: return tarfile.is_tarfile(lowercase ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link __UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) __UpperCamelCase = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x1F\x8B'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with gzip.open(lowercase , """rb""" ) as gzip_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , """rb""" ) as fp: __UpperCamelCase = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: __UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , """r""" ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with lzma.open(lowercase ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __UpperCamelCase = zstd.ZstdDecompressor() with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh: dctx.copy_stream(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with bza.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , """r""" ) as archive: archive.extractall(lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCamelCase ( cls ) -> Union[str, Any]: return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/> __UpperCamelCase = cls._get_magic_number_max_length() __UpperCamelCase = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions __UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format else: __UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
349
0
__A =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __A =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __A ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
364
from collections import defaultdict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = first_str.lower().strip() lowerCamelCase_ = second_str.lower().strip() # Remove whitespace lowerCamelCase_ = first_str.replace(" " , "" ) lowerCamelCase_ = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False # Default values for count should be 0 lowerCamelCase_ = defaultdict(lowerCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A =input('''Enter the first string ''').strip() __A =input('''Enter the second string ''').strip() __A =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
47
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Any = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : str = "timesformer" def __init__( self : List[str] , A : List[Any]=2_24 , A : int=16 , A : int=3 , A : Tuple=8 , A : Optional[int]=7_68 , A : Any=12 , A : Optional[int]=12 , A : int=30_72 , A : Optional[Any]="gelu" , A : Optional[Any]=0.0 , A : Dict=0.0 , A : int=0.02 , A : Tuple=1e-6 , A : Optional[int]=True , A : str="divided_space_time" , A : List[Any]=0 , **A : Any , ) -> Tuple: super().__init__(**__lowerCamelCase ) lowercase_ : Any = image_size lowercase_ : Union[str, Any] = patch_size lowercase_ : Tuple = num_channels lowercase_ : Dict = num_frames lowercase_ : int = hidden_size lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Union[str, Any] = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : Tuple = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : str = qkv_bias lowercase_ : str = attention_type lowercase_ : Dict = drop_path_rate
33
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self : Dict , A : UNetaDModel , A : KarrasVeScheduler ): super().__init__() self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self : Union[str, Any] , A : int = 1 , A : int = 50 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : Optional[str] = "pil" , A : bool = True , **A : Tuple , ): __snake_case: List[Any] = self.unet.config.sample_size __snake_case: Dict = (batch_size, 3, img_size, img_size) __snake_case: List[Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __snake_case: List[str] = randn_tensor(A , generator=A , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __snake_case: Dict = self.scheduler.schedule[t] __snake_case: str = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __snake_case: Any = self.scheduler.add_noise_to_input(A , A , generator=A ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __snake_case: int = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __snake_case: Any = self.scheduler.step(A , A , A , A ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __snake_case: List[str] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __snake_case: str = self.scheduler.step_correct( A , A , A , A , step_output.prev_sample , step_output["""derivative"""] , ) __snake_case: Any = step_output.prev_sample __snake_case: Union[str, Any] = (sample / 2 + 0.5).clamp(0 , 1 ) __snake_case: str = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case: List[Any] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
356
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __UpperCAmelCase : Tuple = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> str: if args.student_type == "roberta": __snake_case: Optional[Any] = False elif args.student_type == "gpt2": __snake_case: str = False def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: if args.student_type == "roberta": __snake_case: Optional[int] = False def A__ ( ) -> Tuple: __snake_case: Optional[int] = argparse.ArgumentParser(description="""Training""") parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""") parser.add_argument( """--dump_path""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The output directory (log, checkpoints, parameters, etc.)""") parser.add_argument( """--data_file""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=SCREAMING_SNAKE_CASE__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=SCREAMING_SNAKE_CASE__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""Path to the student configuration.""") parser.add_argument( """--student_pretrained_weights""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Load student initialization checkpoint.""") parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=SCREAMING_SNAKE_CASE__ , help="""Teacher type (BERT, RoBERTa).""") parser.add_argument("""--teacher_name""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The teacher model.""") parser.add_argument("""--temperature""" , default=2.0 , type=SCREAMING_SNAKE_CASE__ , help="""Temperature for the softmax temperature.""") parser.add_argument( """--alpha_ce""" , default=0.5 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the distillation loss. Must be >=0.""") parser.add_argument( """--alpha_mlm""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the CLM loss. Must be >=0.""") parser.add_argument("""--alpha_mse""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight of the MSE loss. Must be >=0.""") parser.add_argument( """--alpha_cos""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""") parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""") parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to mask out.""") parser.add_argument("""--word_keep""" , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to keep.""") parser.add_argument("""--word_rand""" , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to randomly replace.""") parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=SCREAMING_SNAKE_CASE__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=SCREAMING_SNAKE_CASE__ , help="""The token counts in the data_file for MLM.""") parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=SCREAMING_SNAKE_CASE__ , default=3 , help="""Number of pass on the whole dataset.""") parser.add_argument("""--batch_size""" , type=SCREAMING_SNAKE_CASE__ , default=5 , help="""Batch size (for each process).""") parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE__ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=SCREAMING_SNAKE_CASE__ , help="""Linear warmup proportion.""") parser.add_argument("""--weight_decay""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Weight decay if we apply some.""") parser.add_argument("""--learning_rate""" , default=5e-4 , type=SCREAMING_SNAKE_CASE__ , help="""The initial learning rate for Adam.""") parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=SCREAMING_SNAKE_CASE__ , help="""Epsilon for Adam optimizer.""") parser.add_argument("""--max_grad_norm""" , default=5.0 , type=SCREAMING_SNAKE_CASE__ , help="""Max gradient norm.""") parser.add_argument("""--initializer_range""" , default=0.02 , type=SCREAMING_SNAKE_CASE__ , help="""Random initialization range.""") parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=SCREAMING_SNAKE_CASE__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""Number of GPUs in the node.""") parser.add_argument("""--local_rank""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , help="""Distributed training - Local rank""") parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE__ , default=56 , help="""Random seed""") parser.add_argument("""--log_interval""" , type=SCREAMING_SNAKE_CASE__ , default=500 , help="""Tensorboard logging interval.""") parser.add_argument("""--checkpoint_interval""" , type=SCREAMING_SNAKE_CASE__ , default=4000 , help="""Checkpoint interval.""") __snake_case: List[Any] = parser.parse_args() sanity_checks(SCREAMING_SNAKE_CASE__) # ARGS # init_gpu_params(SCREAMING_SNAKE_CASE__) set_seed(SCREAMING_SNAKE_CASE__) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""") else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''') # SAVE PARAMS # logger.info(F'''Param: {args}''') with open(os.path.join(args.dump_path , """parameters.json""") , """w""") as f: json.dump(vars(SCREAMING_SNAKE_CASE__) , SCREAMING_SNAKE_CASE__ , indent=4) git_log(args.dump_path) __snake_case , __snake_case , __snake_case: str = MODEL_CLASSES[args.student_type] __snake_case , __snake_case , __snake_case: Union[str, Any] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __snake_case: Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name) __snake_case: str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __snake_case: List[str] = tokenizer.all_special_tokens.index(SCREAMING_SNAKE_CASE__) __snake_case: Optional[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''') __snake_case: Optional[Any] = special_tok_ids __snake_case: List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file , """rb""") as fp: __snake_case: int = pickle.load(SCREAMING_SNAKE_CASE__) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''') with open(args.token_counts , """rb""") as fp: __snake_case: List[str] = pickle.load(SCREAMING_SNAKE_CASE__) __snake_case: Dict = np.maximum(SCREAMING_SNAKE_CASE__ , 1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __snake_case: Union[str, Any] = 0.0 # do not predict special tokens __snake_case: Any = torch.from_numpy(SCREAMING_SNAKE_CASE__) else: __snake_case: Any = None __snake_case: Union[str, Any] = LmSeqsDataset(params=SCREAMING_SNAKE_CASE__ , data=SCREAMING_SNAKE_CASE__) logger.info("""Data loader created.""") # STUDENT # logger.info(F'''Loading student config from {args.student_config}''') __snake_case: Tuple = student_config_class.from_pretrained(args.student_config) __snake_case: List[str] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''') __snake_case: Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights , config=SCREAMING_SNAKE_CASE__) else: __snake_case: Union[str, Any] = student_model_class(SCREAMING_SNAKE_CASE__) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''') logger.info("""Student loaded.""") # TEACHER # __snake_case: Optional[int] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=SCREAMING_SNAKE_CASE__) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''') logger.info(F'''Teacher loaded from {args.teacher_name}.''') # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if args.freeze_token_type_embds: freeze_token_type_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __snake_case: List[str] = Distiller( params=SCREAMING_SNAKE_CASE__ , dataset=SCREAMING_SNAKE_CASE__ , token_probs=SCREAMING_SNAKE_CASE__ , student=SCREAMING_SNAKE_CASE__ , teacher=SCREAMING_SNAKE_CASE__) distiller.train() logger.info("""Let's go get some drinks.""") if __name__ == "__main__": main()
293
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __A : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __A : Tuple = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Dict = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ), dtype=_UpperCAmelCase )[0] @deprecated(_UpperCAmelCase, 'Please use tf.data to implement this functionality.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowerCAmelCase : List[str] = _readaa(_UpperCAmelCase ) if magic != 2_051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowerCAmelCase : Optional[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Any = _readaa(_UpperCAmelCase ) lowerCAmelCase : List[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase : Any = numpy.frombuffer(_UpperCAmelCase, dtype=numpy.uinta ) lowerCAmelCase : Optional[int] = data.reshape(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, 1 ) return data @deprecated(_UpperCAmelCase, 'Please use tf.one_hot on tensors.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[Any] = labels_dense.shape[0] lowerCAmelCase : Union[str, Any] = numpy.arange(_UpperCAmelCase ) * num_classes lowerCAmelCase : List[str] = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase : List[str] = 1 return labels_one_hot @deprecated(_UpperCAmelCase, 'Please use tf.data to implement this functionality.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=10 ) -> List[str]: '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowerCAmelCase : List[str] = _readaa(_UpperCAmelCase ) if magic != 2_049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowerCAmelCase : Optional[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Dict = bytestream.read(_UpperCAmelCase ) lowerCAmelCase : Dict = numpy.frombuffer(_UpperCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCAmelCase, _UpperCAmelCase ) return labels class __A : @deprecated( UpperCAmelCase_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=dtypes.floataa , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=None , ): lowerCAmelCase , lowerCAmelCase : int = random_seed.get_seed(UpperCAmelCase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase : List[str] = dtypes.as_dtype(UpperCAmelCase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowerCAmelCase : Dict = 10000 lowerCAmelCase : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase : Optional[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase : Optional[int] = images.astype(numpy.floataa ) lowerCAmelCase : Dict = numpy.multiply(UpperCAmelCase_ , 1.0 / 2_55.0 ) lowerCAmelCase : List[str] = images lowerCAmelCase : List[str] = labels lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 @property def lowercase__ ( self : str ): return self._images @property def lowercase__ ( self : Dict ): return self._labels @property def lowercase__ ( self : List[Any] ): return self._num_examples @property def lowercase__ ( self : Any ): return self._epochs_completed def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True ): if fake_data: lowerCAmelCase : Union[str, Any] = [1] * 784 lowerCAmelCase : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCAmelCase_ )], [fake_label for _ in range(UpperCAmelCase_ )], ) lowerCAmelCase : Union[str, Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.images[perma] lowerCAmelCase : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase : Tuple = self._num_examples - start lowerCAmelCase : Union[str, Any] = self._images[start : self._num_examples] lowerCAmelCase : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.images[perm] lowerCAmelCase : Optional[Any] = self.labels[perm] # Start next epoch lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Dict = batch_size - rest_num_examples lowerCAmelCase : int = self._index_in_epoch lowerCAmelCase : Union[str, Any] = self._images[start:end] lowerCAmelCase : int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase : Optional[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCAmelCase, 'Please write your own downloading logic.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' if not gfile.Exists(_UpperCAmelCase ): gfile.MakeDirs(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) if not gfile.Exists(_UpperCAmelCase ): urllib.request.urlretrieve(_UpperCAmelCase, _UpperCAmelCase ) # noqa: S310 with gfile.GFile(_UpperCAmelCase ) as f: lowerCAmelCase : List[Any] = f.size() print('Successfully downloaded', _UpperCAmelCase, _UpperCAmelCase, 'bytes.' ) return filepath @deprecated( _UpperCAmelCase, 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=dtypes.floataa, _UpperCAmelCase=True, _UpperCAmelCase=5_000, _UpperCAmelCase=None, _UpperCAmelCase=DEFAULT_SOURCE_URL, ) -> Tuple: '''simple docstring''' if fake_data: def fake(): return _DataSet( [], [], fake_data=_UpperCAmelCase, one_hot=_UpperCAmelCase, dtype=_UpperCAmelCase, seed=_UpperCAmelCase ) lowerCAmelCase : Tuple = fake() lowerCAmelCase : Optional[Any] = fake() lowerCAmelCase : List[Any] = fake() return _Datasets(train=_UpperCAmelCase, validation=_UpperCAmelCase, test=_UpperCAmelCase ) if not source_url: # empty string check lowerCAmelCase : Any = DEFAULT_SOURCE_URL lowerCAmelCase : Optional[Any] = 'train-images-idx3-ubyte.gz' lowerCAmelCase : Any = 'train-labels-idx1-ubyte.gz' lowerCAmelCase : int = 't10k-images-idx3-ubyte.gz' lowerCAmelCase : Union[str, Any] = 't10k-labels-idx1-ubyte.gz' lowerCAmelCase : str = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + train_images_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : Any = _extract_images(_UpperCAmelCase ) lowerCAmelCase : Tuple = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + train_labels_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : int = _extract_labels(_UpperCAmelCase, one_hot=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + test_images_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : List[Any] = _extract_images(_UpperCAmelCase ) lowerCAmelCase : Any = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + test_labels_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : List[str] = _extract_labels(_UpperCAmelCase, one_hot=_UpperCAmelCase ) if not 0 <= validation_size <= len(_UpperCAmelCase ): lowerCAmelCase : str = ( 'Validation size should be between 0 and ' f"{len(_UpperCAmelCase )}. Received: {validation_size}." ) raise ValueError(_UpperCAmelCase ) lowerCAmelCase : str = train_images[:validation_size] lowerCAmelCase : Dict = train_labels[:validation_size] lowerCAmelCase : List[str] = train_images[validation_size:] lowerCAmelCase : str = train_labels[validation_size:] lowerCAmelCase : str = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowerCAmelCase : int = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) return _Datasets(train=_UpperCAmelCase, validation=_UpperCAmelCase, test=_UpperCAmelCase )
138
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __A : Any = TypeVar('''T''') class __A ( Generic[T] ): def __init__( self : Dict , UpperCAmelCase_ : list[T] , UpperCAmelCase_ : Callable[[T, T], T] ): lowerCAmelCase : Any | T = None lowerCAmelCase : int = len(UpperCAmelCase_ ) lowerCAmelCase : list[T] = [any_type for _ in range(self.N )] + arr lowerCAmelCase : List[Any] = fnc self.build() def lowercase__ ( self : str ): for p in range(self.N - 1 , 0 , -1 ): lowerCAmelCase : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : T ): p += self.N lowerCAmelCase : int = v while p > 1: lowerCAmelCase : List[Any] = p // 2 lowerCAmelCase : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): # noqa: E741 lowerCAmelCase , lowerCAmelCase : str = l + self.N, r + self.N lowerCAmelCase : T | None = None while l <= r: if l % 2 == 1: lowerCAmelCase : Any = self.st[l] if res is None else self.fn(UpperCAmelCase_ , self.st[l] ) if r % 2 == 0: lowerCAmelCase : Optional[int] = self.st[r] if res is None else self.fn(UpperCAmelCase_ , self.st[r] ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __A : str = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __A : List[Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __A : Optional[int] = SegmentTree(test_array, min) __A : Optional[int] = SegmentTree(test_array, max) __A : Dict = SegmentTree(test_array, lambda a, b: a + b) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' for i in range(len(_UpperCAmelCase ) ): for j in range(_UpperCAmelCase, len(_UpperCAmelCase ) ): lowerCAmelCase : str = reduce(_UpperCAmelCase, test_array[i : j + 1] ) lowerCAmelCase : Dict = reduce(_UpperCAmelCase, test_array[i : j + 1] ) lowerCAmelCase : str = reduce(lambda _UpperCAmelCase, _UpperCAmelCase : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_UpperCAmelCase, _UpperCAmelCase ) assert max_range == max_segment_tree.query(_UpperCAmelCase, _UpperCAmelCase ) assert sum_range == sum_segment_tree.query(_UpperCAmelCase, _UpperCAmelCase ) test_all_segments() for index, value in test_updates.items(): __A : int = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
138
1
def UpperCamelCase ( _A : int )-> int: """simple docstring""" A__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCamelCase ( _A : int = 100 )-> int: """simple docstring""" A__ = 1 A__ = 2 for i in range(2 , max_n + 1 ): A__ = pre_numerator A__ = 2 * i // 3 if i % 3 == 0 else 1 A__ = cur_numerator A__ = e_cont * pre_numerator + temp return sum_digits(_A ) if __name__ == "__main__": print(F'''{solution() = }''')
362
from manim import * class UpperCamelCase ( _UpperCAmelCase ): def __A ( self ): A__ = Rectangle(height=0.5 , width=0.5 ) A__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("CPU" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(4 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("GPU" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("Model" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase__ ) A__ = [] for i, rect in enumerate(UpperCAmelCase__ ): rect.set_stroke(UpperCAmelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) A__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=UpperCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=UpperCAmelCase__ , buff=0.0 ) self.add(UpperCAmelCase__ ) cpu_targs.append(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("Loaded Checkpoint" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , aligned_edge=UpperCAmelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) A__ = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase__ ) , Write(UpperCAmelCase__ ) ) self.play(Write(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) ) A__ = [] A__ = [] for i, rect in enumerate(UpperCAmelCase__ ): A__ = fill.copy().set_fill(UpperCAmelCase__ , opacity=0.7 ) target.move_to(UpperCAmelCase__ ) first_animations.append(GrowFromCenter(UpperCAmelCase__ , run_time=1 ) ) A__ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(UpperCAmelCase__ , run_time=1.5 ) ) self.play(*UpperCAmelCase__ ) self.play(*UpperCAmelCase__ ) self.wait()
198
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __UpperCAmelCase = TypeVar('T') class _SCREAMING_SNAKE_CASE ( Generic[T] ): UpperCAmelCase_ :deque[T] # Cache store of keys UpperCAmelCase_ :set[T] # References of the keys in cache UpperCAmelCase_ :int = 10 # Maximum capacity of cache def __init__( self , __A ) -> None: lowerCAmelCase_ :Tuple = deque() lowerCAmelCase_ :Any = set() if not n: lowerCAmelCase_ :str = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowerCAmelCase_ :Any = n def __lowerCAmelCase ( self , __A ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase_ :int = self.dq_store.pop() self.key_reference.remove(__A ) else: self.dq_store.remove(__A ) self.dq_store.appendleft(__A ) self.key_reference.add(__A ) def __lowerCAmelCase ( self ) -> None: for k in self.dq_store: print(__A ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
84
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Optional[Any]=13 ,_snake_case : List[str]=7 ,_snake_case : List[Any]=True ,_snake_case : Optional[Any]=True ,_snake_case : Any=False ,_snake_case : str=True ,_snake_case : Optional[Any]=99 ,_snake_case : Optional[int]=32 ,_snake_case : str=5 ,_snake_case : Optional[int]=4 ,_snake_case : Dict=37 ,_snake_case : str="gelu" ,_snake_case : str=0.1 ,_snake_case : Any=0.1 ,_snake_case : Any=512 ,_snake_case : Dict=16 ,_snake_case : List[str]=2 ,_snake_case : Any=0.02 ,_snake_case : List[str]=3 ,_snake_case : str=4 ,_snake_case : Dict=None ,) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = parent lowercase__ : List[str] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : List[Any] = use_input_mask lowercase__ : List[Any] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : str = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : int = type_sequence_label_size lowercase__ : List[str] = initializer_range lowercase__ : Any = num_labels lowercase__ : List[str] = num_choices lowercase__ : int = scope def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Tuple = None if self.use_input_mask: lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[Any] = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase__ : Optional[Any] = None lowercase__ : Optional[int] = None lowercase__ : List[str] = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,use_stable_embedding=_snake_case ,) def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : Dict ,_snake_case : List[Any] ,_snake_case : Any ,_snake_case : Dict ) -> int: """simple docstring""" lowercase__ : List[Any] = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ,attention_mask=_snake_case ) lowercase__ : List[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : int ,_snake_case : Any ,_snake_case : Tuple ,_snake_case : Any ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : str ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Any ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = True lowercase__ : str = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,) lowercase__ : int = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,) lowercase__ : str = model(_snake_case ,attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Dict ,_snake_case : List[Any] ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Any ,_snake_case : Optional[int] ,_snake_case : str ,_snake_case : str ,_snake_case : Optional[Any] ,_snake_case : List[Any] ,) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Tuple ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : List[Any] ,) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = True lowercase__ : int = True lowercase__ : List[Any] = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowercase__ : List[str] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,use_cache=_snake_case ,) lowercase__ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase__ : int = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase__ : str = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase__ : Union[str, Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase__ : Tuple = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] lowercase__ : Any = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,past_key_values=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] # select random slice lowercase__ : Optional[int] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[int] = config_and_inputs lowercase__ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase : Union[str, Any] = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[int] = False def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = OpenLlamaModelTester(self ) lowercase__ : Tuple = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : Tuple = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : int = input_dict['''input_ids'''] lowercase__ : Dict = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : Union[str, Any] = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = 3 lowercase__ : Any = '''single_label_classification''' lowercase__ : Dict = input_dict['''input_ids'''] lowercase__ : Optional[int] = input_ids.ne(1 ).to(_snake_case ) lowercase__ : str = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : Any = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Any = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = 3 lowercase__ : Optional[int] = '''multi_label_classification''' lowercase__ : Dict = input_dict['''input_ids'''] lowercase__ : str = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : Optional[Any] = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Dict = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = ids_tensor([1, 10] ,config.vocab_size ) lowercase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : Optional[int] = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowercase__ : Union[str, Any] = original_model(_snake_case ).last_hidden_state lowercase__ : Optional[int] = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : List[str] = {'''type''': scaling_type, '''factor''': 10.0} lowercase__ : Dict = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowercase__ : Union[str, Any] = scaled_model(_snake_case ).last_hidden_state lowercase__ : Dict = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) )
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowerCAmelCase ( nn.Module ): snake_case_ : str = 42 snake_case_ : Optional[int] = 42 snake_case_ : Optional[Any] = 0.0 snake_case_ : int = 1 snake_case_ : List[str] = 1 snake_case_ : Union[str, Any] = True snake_case_ : str = False snake_case_ : Dict = False snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = jnp.floataa def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] for i in range(self.num_layers ): _UpperCAmelCase = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase = FlaxResnetBlockaD( in_channels=_a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _UpperCAmelCase = resnets _UpperCAmelCase = attentions if self.add_downsample: _UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[Any]=True ): """simple docstring""" _UpperCAmelCase = () for resnet, attn in zip(self.resnets , self.attentions ): _UpperCAmelCase = resnet(_a , _a , deterministic=_a ) _UpperCAmelCase = attn(_a , _a , deterministic=_a ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase = self.downsamplers_a(_a ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): snake_case_ : List[str] = 42 snake_case_ : Dict = 42 snake_case_ : str = 0.0 snake_case_ : Union[str, Any] = 1 snake_case_ : Tuple = True snake_case_ : List[str] = jnp.floataa def UpperCamelCase ( self : Dict ): """simple docstring""" _UpperCAmelCase = [] for i in range(self.num_layers ): _UpperCAmelCase = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase = FlaxResnetBlockaD( in_channels=_a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _UpperCAmelCase = resnets if self.add_downsample: _UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any]=True ): """simple docstring""" _UpperCAmelCase = () for resnet in self.resnets: _UpperCAmelCase = resnet(_a , _a , deterministic=_a ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase = self.downsamplers_a(_a ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): snake_case_ : Dict = 42 snake_case_ : List[str] = 42 snake_case_ : List[Any] = 42 snake_case_ : List[Any] = 0.0 snake_case_ : str = 1 snake_case_ : Tuple = 1 snake_case_ : Optional[Any] = True snake_case_ : Any = False snake_case_ : int = False snake_case_ : Union[str, Any] = False snake_case_ : Optional[Any] = jnp.floataa def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] for i in range(self.num_layers ): _UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _UpperCAmelCase = resnets _UpperCAmelCase = attentions if self.add_upsample: _UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : List[str]=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _UpperCAmelCase = res_hidden_states_tuple[-1] _UpperCAmelCase = res_hidden_states_tuple[:-1] _UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _UpperCAmelCase = resnet(_a , _a , deterministic=_a ) _UpperCAmelCase = attn(_a , _a , deterministic=_a ) if self.add_upsample: _UpperCAmelCase = self.upsamplers_a(_a ) return hidden_states class __lowerCAmelCase ( nn.Module ): snake_case_ : Optional[int] = 42 snake_case_ : Optional[int] = 42 snake_case_ : Optional[int] = 42 snake_case_ : List[Any] = 0.0 snake_case_ : Optional[int] = 1 snake_case_ : Any = True snake_case_ : str = jnp.floataa def UpperCamelCase ( self : Optional[int] ): """simple docstring""" _UpperCAmelCase = [] for i in range(self.num_layers ): _UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _UpperCAmelCase = resnets if self.add_upsample: _UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states _UpperCAmelCase = res_hidden_states_tuple[-1] _UpperCAmelCase = res_hidden_states_tuple[:-1] _UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _UpperCAmelCase = resnet(_a , _a , deterministic=_a ) if self.add_upsample: _UpperCAmelCase = self.upsamplers_a(_a ) return hidden_states class __lowerCAmelCase ( nn.Module ): snake_case_ : List[Any] = 42 snake_case_ : List[str] = 0.0 snake_case_ : str = 1 snake_case_ : Optional[int] = 1 snake_case_ : Optional[Any] = False snake_case_ : int = False snake_case_ : Union[str, Any] = jnp.floataa def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _UpperCAmelCase = [] for _ in range(self.num_layers ): _UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _UpperCAmelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _UpperCAmelCase = resnets _UpperCAmelCase = attentions def __call__( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : str=True ): """simple docstring""" _UpperCAmelCase = self.resnets[0](_a , _a ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _UpperCAmelCase = attn(_a , _a , deterministic=_a ) _UpperCAmelCase = resnet(_a , _a , deterministic=_a ) return hidden_states
133
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class A__ ( A__ , A__ ): @register_to_config def __init__( self : Dict , _a : int = 768 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(1 , _a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(torch.ones(1 , _a ) ) def A ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =nn.Parameter(self.mean.to(_a ).to(_a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def A ( self : Tuple , _a : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds - self.mean) * 1.0 / self.std return embeds def A ( self : List[str] , _a : Optional[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds * self.std) + self.mean return embeds
47
0
lowercase_ = 8.314_462 # Unit - J mol-1 K-1 def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
20
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowercase_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowercase_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowercase_ = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } lowercase_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = ["input_ids"] A : Tuple = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : List[Any] = do_lower_case __snake_case : Any = sentencepiece_model_ckpt __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=_lowerCAmelCase ) else: __snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : str = {v: k for k, v in self.vocab.items()} def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ): if text is None: return None __snake_case : List[Any] = self.tokenize(_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = """""", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __snake_case , __snake_case , __snake_case : str = normalized_text, [], 0 if self.do_lower_case: __snake_case : int = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset __snake_case : int = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : str = end return token_mapping @property def snake_case__ ( self : Tuple ): return len(self.vocab ) def snake_case__ ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : int ): __snake_case : str = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __snake_case : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __snake_case : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Union[str, Any] = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __snake_case : Optional[int] = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __snake_case : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Tuple = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): __snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __snake_case : Dict = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ): __snake_case : Dict = {} with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_lowerCAmelCase ): __snake_case : Tuple = line.rstrip("""\n""" ) __snake_case : List[str] = int(_lowerCAmelCase ) return token_to_idx def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Optional[int] = 0 if os.path.isdir(_lowerCAmelCase ): __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __snake_case : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 __snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" ) with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
20
1
from sklearn.metrics import fa_score import datasets __UpperCamelCase : List[str] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" __UpperCamelCase : Dict = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" __UpperCamelCase : Tuple = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self :Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def lowerCamelCase__ ( self :Any , __magic_name__ :str , __magic_name__ :Any , __magic_name__ :Optional[Any]=None , __magic_name__ :Optional[Any]=1 , __magic_name__ :Union[str, Any]="binary" , __magic_name__ :List[str]=None ): '''simple docstring''' a = fa_score( __UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase , pos_label=__UpperCAmelCase , average=__UpperCAmelCase , sample_weight=__UpperCAmelCase ) return {"f1": float(__UpperCAmelCase ) if score.size == 1 else score}
228
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
0
from typing import Dict from .base import GenericTensor, Pipeline class __a ( __UpperCamelCase ): def A ( self : str , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=None , **UpperCAmelCase : int ): if tokenize_kwargs is None: lowerCAmelCase_ : Dict = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) lowerCAmelCase_ : Union[str, Any] = truncation lowerCAmelCase_ : List[str] = tokenize_kwargs lowerCAmelCase_ : str = {} if return_tensors is not None: lowerCAmelCase_ : Any = return_tensors return preprocess_params, {}, postprocess_params def A ( self : List[str] , UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): lowerCAmelCase_ : List[str] = self.framework lowerCAmelCase_ : List[Any] = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) return model_inputs def A ( self : Any , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : str = self.model(**UpperCAmelCase ) return model_outputs def A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any]=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ): return super().__call__(*UpperCAmelCase , **UpperCAmelCase )
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int=3 , lowerCamelCase__ : Any=32 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Dict=10 , lowerCamelCase__ : Tuple=[10, 20, 30, 40] , lowerCamelCase__ : int=[1, 1, 2, 1] , lowerCamelCase__ : str=True , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int="relu" , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : List[str]=None , ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[Any] = parent UpperCamelCase__ : List[Any] = batch_size UpperCamelCase__ : int = image_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Optional[Any] = embeddings_size UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : str = depths UpperCamelCase__ : Optional[int] = is_training UpperCamelCase__ : List[Any] = use_labels UpperCamelCase__ : str = hidden_act UpperCamelCase__ : str = num_labels UpperCamelCase__ : Union[str, Any] = scope UpperCamelCase__ : List[Any] = len(__lowerCAmelCase ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Optional[int] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ : Dict = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : List[str] = TFResNetModel(config=__lowerCAmelCase ) UpperCamelCase__ : Optional[Any] = model(__lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : int = self.num_labels UpperCamelCase__ : Tuple = TFResNetForImageClassification(__lowerCAmelCase ) UpperCamelCase__ : Tuple = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Tuple = self.prepare_config_and_inputs() UpperCamelCase__ : Optional[Any] = config_and_inputs UpperCamelCase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __magic_name__ ( a__ , a__ , unittest.TestCase): A: Dict = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () A: Dict = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) A: str = False A: str = False A: Union[str, Any] = False A: Optional[int] = False A: Any = False def UpperCAmelCase__ ( self : int ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = TFResNetModelTester(self ) UpperCamelCase__ : Dict = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def UpperCAmelCase__ ( self : int ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Dict ) -> Any: '''simple docstring''' return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(__lowerCAmelCase ) UpperCamelCase__ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] ): UpperCamelCase__ : Optional[int] = model_class(__lowerCAmelCase ) UpperCamelCase__ : Tuple = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) UpperCamelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ : str = layer_type UpperCamelCase__ : Optional[int] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : int = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : str = TFResNetModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _a ( ): """simple docstring""" UpperCamelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : int ) -> List[str]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase__ : Any = self.default_image_processor UpperCamelCase__ : List[Any] = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='''tf''' ) # forward pass UpperCamelCase__ : Optional[Any] = model(**__lowerCAmelCase ) # verify the logits UpperCamelCase__ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) UpperCamelCase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __lowerCAmelCase , atol=1E-4 ) )
146
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> List[str]: super().__init__() lowercase__ : List[str] = model lowercase__ : Dict = 2 lowercase__ : Any = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase( self ) -> str: pass def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # load longformer model from model identifier lowercase__ : Dict = LongformerModel.from_pretrained(UpperCAmelCase ) lowercase__ : List[str] = LightningModel(UpperCAmelCase ) lowercase__ : List[Any] = torch.load(UpperCAmelCase , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model lowercase__ : Optional[int] = LongformerForQuestionAnswering.from_pretrained(UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __a: Tuple = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
198
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __UpperCamelCase : List[str] = "__DUMMY_TRANSFORMERS_USER__" __UpperCamelCase : Optional[int] = "Dummy User" __UpperCamelCase : Union[str, Any] = "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" __UpperCamelCase : Dict = "https://hub-ci.huggingface.co" __UpperCamelCase : Tuple = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" __UpperCamelCase : Union[str, Any] = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" __UpperCamelCase : Any = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __A ( __lowerCamelCase ) -> List[Any]: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __lowerCamelCase ) @pytest.fixture def __A ( __lowerCamelCase ) -> Dict: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __lowerCamelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __lowerCamelCase ) @pytest.fixture def __A ( __lowerCamelCase ) -> Optional[Any]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __lowerCamelCase ) @pytest.fixture def __A ( __lowerCamelCase , __lowerCamelCase ) -> Dict: HfFolder.save_token(__lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __A ( ) -> Any: return HfApi(endpoint=__lowerCamelCase ) @pytest.fixture(scope="""session""" ) def __A ( __lowerCamelCase ) -> Union[str, Any]: a = HfFolder.get_token() HfFolder.save_token(__lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__lowerCamelCase ) @pytest.fixture def __A ( __lowerCamelCase ) -> Dict: def _cleanup_repo(__lowerCamelCase ): hf_api.delete_repo(__lowerCamelCase , token=__lowerCamelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __A ( __lowerCamelCase ) -> Tuple: @contextmanager def _temporary_repo(__lowerCamelCase ): try: yield repo_id finally: cleanup_repo(__lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: a = f'repo_txt_data-{int(time.time() * 1_0E3 )}' a = f'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__lowerCamelCase , token=__lowerCamelCase , repo_type="""dataset""" , private=__lowerCamelCase ) hf_api.upload_file( token=__lowerCamelCase , path_or_fileobj=str(__lowerCamelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCamelCase , token=__lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: a = f'repo_zipped_txt_data-{int(time.time() * 1_0E3 )}' a = f'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__lowerCamelCase , token=__lowerCamelCase , repo_type="""dataset""" , private=__lowerCamelCase ) hf_api.upload_file( token=__lowerCamelCase , path_or_fileobj=str(__lowerCamelCase ) , path_in_repo="""data.zip""" , repo_id=__lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCamelCase , token=__lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: a = f'repo_zipped_img_data-{int(time.time() * 1_0E3 )}' a = f'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__lowerCamelCase , token=__lowerCamelCase , repo_type="""dataset""" , private=__lowerCamelCase ) hf_api.upload_file( token=__lowerCamelCase , path_or_fileobj=str(__lowerCamelCase ) , path_in_repo="""data.zip""" , repo_id=__lowerCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__lowerCamelCase , token=__lowerCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: return hf_private_dataset_repo_zipped_img_data_
347
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
347
1
import math import sys import cva import numpy as np def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float ): """simple docstring""" __a = math.sqrt(_SCREAMING_SNAKE_CASE ) __a = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float ): """simple docstring""" __a = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _SCREAMING_SNAKE_CASE ): for j in range(0 , _SCREAMING_SNAKE_CASE ): __a = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int , ): """simple docstring""" __a = np.zeros(img.shape ) __a = get_gauss_kernel(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __a = get_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = img_s - img_s[kernel_size // 2, kernel_size // 2] __a = vec_gaussian(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = np.multiply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = np.multiply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = np.sum(_SCREAMING_SNAKE_CASE ) / np.sum(_SCREAMING_SNAKE_CASE ) __a = val return imga def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" __a = args[1] if args[1:] else """../image_data/lena.jpg""" __a = float(args[2] ) if args[2:] else 1.0 __a = float(args[3] ) if args[3:] else 1.0 if args[4:]: __a = int(args[4] ) __a = kernel_size + abs(kernel_size % 2 - 1 ) else: __a = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parse_args(sys.argv) lowerCamelCase__ = cva.imread(filename, 0) cva.imshow("""input image""", img) lowerCamelCase__ = img / 255 lowerCamelCase__ = out.astype("""float32""") lowerCamelCase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCamelCase__ = out * 255 lowerCamelCase__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
302
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __snake_case : def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[str] =TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase : Dict =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] =UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase : List[Any] =DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=snake_case__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[int] =TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase : Dict =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.414 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase : List[Any] =DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=snake_case__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase : Tuple =DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =self.get_dummy_components() UpperCAmelCase : List[str] =self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] =self.get_dummy_inputs(snake_case__ ) UpperCAmelCase : Union[str, Any] =inputs['''prompt'''] UpperCAmelCase : Any =inputs['''generator'''] UpperCAmelCase : Optional[int] =inputs['''num_inference_steps'''] UpperCAmelCase : Tuple =inputs['''output_type'''] if "image" in inputs: UpperCAmelCase : Union[str, Any] =inputs['''image'''] else: UpperCAmelCase : Tuple =None if "mask_image" in inputs: UpperCAmelCase : Union[str, Any] =inputs['''mask_image'''] else: UpperCAmelCase : List[str] =None if "original_image" in inputs: UpperCAmelCase : Optional[Any] =inputs['''original_image'''] else: UpperCAmelCase : Optional[int] =None UpperCAmelCase , UpperCAmelCase : List[Any] =pipe.encode_prompt(snake_case__ ) # inputs with prompt converted to embeddings UpperCAmelCase : List[Any] ={ '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase : Any =image if mask_image is not None: UpperCAmelCase : Dict =mask_image if original_image is not None: UpperCAmelCase : Optional[int] =original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Tuple =pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) UpperCAmelCase : Tuple =self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case__ , snake_case__ ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCAmelCase : Optional[int] =self.get_dummy_inputs(snake_case__ ) UpperCAmelCase : List[Any] =inputs['''generator'''] UpperCAmelCase : int =inputs['''num_inference_steps'''] UpperCAmelCase : Any =inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCAmelCase : Union[str, Any] ={ '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase : List[Any] =image if mask_image is not None: UpperCAmelCase : Union[str, Any] =mask_image if original_image is not None: UpperCAmelCase : List[Any] =original_image UpperCAmelCase : Tuple =pipe_loaded(**snake_case__ )[0] UpperCAmelCase : Dict =np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ , 1e-4 ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.get_dummy_components() UpperCAmelCase : Dict =self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Tuple =self.get_dummy_inputs(snake_case__ ) UpperCAmelCase : str =pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) UpperCAmelCase : Optional[Any] =self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase : List[Any] =self.get_dummy_inputs(snake_case__ ) UpperCAmelCase : Optional[Any] =pipe_loaded(**snake_case__ )[0] UpperCAmelCase : str =np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ , 1e-4 )
78
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
78
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : List[Any] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class __snake_case ( lowerCAmelCase ): _a : int= "encodec" def __init__( self ,snake_case=[1.5, 3.0, 6.0, 12.0, 24.0] ,snake_case=24000 ,snake_case=1 ,snake_case=False ,snake_case=None ,snake_case=None ,snake_case=128 ,snake_case=32 ,snake_case=1 ,snake_case=[8, 5, 4, 2] ,snake_case="weight_norm" ,snake_case=7 ,snake_case=7 ,snake_case=3 ,snake_case=2 ,snake_case=True ,snake_case="reflect" ,snake_case=2 ,snake_case=2 ,snake_case=1.0 ,snake_case=1024 ,snake_case=None ,snake_case=True ,**snake_case ,): '''simple docstring''' lowercase : Tuple = target_bandwidths lowercase : int = sampling_rate lowercase : List[str] = audio_channels lowercase : Tuple = normalize lowercase : Optional[Any] = chunk_length_s lowercase : List[str] = overlap lowercase : List[Any] = hidden_size lowercase : Tuple = num_filters lowercase : Dict = num_residual_layers lowercase : str = upsampling_ratios lowercase : str = norm_type lowercase : List[Any] = kernel_size lowercase : Tuple = last_kernel_size lowercase : Any = residual_kernel_size lowercase : Union[str, Any] = dilation_growth_rate lowercase : Union[str, Any] = use_causal_conv lowercase : int = pad_mode lowercase : List[str] = compress lowercase : List[str] = num_lstm_layers lowercase : Union[str, Any] = trim_right_ratio lowercase : List[Any] = codebook_size lowercase : List[Any] = codebook_dim if codebook_dim is not None else hidden_size lowercase : Optional[int] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**snake_case ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
20
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __snake_case = get_tests_dir("""fixtures""") class lowercase__ ( unittest.TestCase ): def A_ ( self : List[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 500 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase_ ) as mock_head: SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def A_ ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def A_ ( self : List[Any] ): with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(UpperCAmelCase_ ) @is_staging_test class lowercase__ ( unittest.TestCase ): @classmethod def A_ ( cls : List[str] ): SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def A_ ( cls : List[str] ): try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(UpperCAmelCase_ ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase_ , repo_id='test-image-processor' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(UpperCAmelCase_ ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase_ , repo_id='valid_org/test-image-processor-org' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def A_ ( self : str ): CustomImageProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomImageProcessor.from_pretrained(UpperCAmelCase_ ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained( F'{USER}/test-dynamic-image-processor' , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
357
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __snake_case = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __snake_case = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __snake_case = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) __snake_case = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) __snake_case = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions __snake_case = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) __snake_case = tf.keras.preprocessing.image.img_to_array(test_image) __snake_case = np.expand_dims(test_image, axis=0) __snake_case = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __snake_case = """Normal""" if result[0][0] == 1: __snake_case = """Abnormality detected"""
169
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class lowercase ( _a,unittest.TestCase ): _a = GPTSwaTokenizer _a = False _a = True _a = False def a__ ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Optional[Any] = GPTSwaTokenizer(UpperCamelCase__ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self , _a ) -> Tuple: _A : List[str] = """This is a test""" _A : List[Any] = """This is a test""" return input_text, output_text def a__ ( self ) -> Dict: _A : List[Any] = """<s>""" _A : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(UpperCamelCase__ ) , 2000 ) def a__ ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def a__ ( self ) -> List[Any]: _A : int = GPTSwaTokenizer(UpperCamelCase__ ) _A : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [465, 287, 265, 631, 842] ) _A : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( UpperCamelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on _A : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) _A : int = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) # fmt: off self.assertListEqual( UpperCamelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def a__ ( self ) -> List[Any]: _A : Any = GPTSwaTokenizer(UpperCamelCase__ ) _A : Union[str, Any] = ["""This is a test""", """I was born in 92000, and this is falsé."""] _A : Dict = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertListEqual(tokenizer.encode_fast(UpperCamelCase__ ) , UpperCamelCase__ ) # Test that decode_fast returns the input text for text, token_ids in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(tokenizer.decode_fast(UpperCamelCase__ ) , UpperCamelCase__ ) @slow def a__ ( self ) -> Optional[int]: _A : Any = [ """<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off _A : Any = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=UpperCamelCase__ , )
26
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=1_3 , UpperCamelCase__ : Optional[int]=3_2 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : str=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase__ : str=[2, 2, 3, 2] , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=3_7 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Dict=1_0 , UpperCamelCase__ : Union[str, Any]=0.0_2 , UpperCamelCase__ : int=["stage2", "stage3", "stage4"] , UpperCamelCase__ : List[str]=[2, 3, 4] , UpperCamelCase__ : Any=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = num_stages UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = scope def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A ( self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = ConvNextModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = ConvNextForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ConvNextModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : List[str] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Optional[int] ): """simple docstring""" return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def A ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def A ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def A ( self : Optional[int] ): """simple docstring""" pass def A ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(UpperCamelCase__ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): UpperCamelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def A ( self : Dict ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ConvNextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCamelCase ( ) -> Any: """simple docstring""" UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(UpperCamelCase__ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**UpperCamelCase__ ) # verify the logits UpperCamelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = (ConvNextBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ConvNextConfig _SCREAMING_SNAKE_CASE = False def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ConvNextModelTester(self )
28
0
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if hor == 1_28: snake_case_ : Tuple = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") snake_case_ : Tuple = (32, 1_28, 2_56) snake_case_ : Dict = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: snake_case_ : str = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") snake_case_ : Union[str, Any] = (32, 64, 1_28, 2_56) snake_case_ : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") snake_case_ : Dict = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) snake_case_ : str = model.state_dict() snake_case_ : int = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } snake_case_ : Optional[Any] = UNetaDModel(**lowerCamelCase_ ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) snake_case_ : str = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case_ : List[Any] = state_dict.pop(lowerCamelCase_ ) hf_value_function.load_state_dict(lowerCamelCase_ ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : str = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } snake_case_ : int = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) snake_case_ : int = model snake_case_ : Dict = UNetaDModel(**lowerCamelCase_ ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) snake_case_ : Optional[int] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case_ : List[str] = state_dict.pop(lowerCamelCase_ ) hf_value_function.load_state_dict(lowerCamelCase_ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
8
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,): snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : int = min_resolution snake_case_ : int = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = apply_ocr def a__ ( self :Union[str, Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self :int ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self :Any ): snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ) self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} ) def a__ ( self :Optional[Any] ): pass def a__ ( self :Union[str, Any] ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_UpperCamelCase ) self.assertIsInstance(encoding.boxes ,_UpperCamelCase ) # Test batched snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Tuple ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Optional[Any] ): # Initialize image_processing snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :List[Any] ): # with apply_OCR = True snake_case_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_UpperCamelCase ) self.assertListEqual(encoding.boxes ,_UpperCamelCase ) # with apply_OCR = False snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
8
1
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __SCREAMING_SNAKE_CASE : List[str] = '__DUMMY_TRANSFORMERS_USER__' __SCREAMING_SNAKE_CASE : Dict = 'Dummy User' __SCREAMING_SNAKE_CASE : Tuple = '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' __SCREAMING_SNAKE_CASE : Optional[Any] = 'https://hub-ci.huggingface.co' __SCREAMING_SNAKE_CASE : List[str] = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' __SCREAMING_SNAKE_CASE : Optional[int] = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' __SCREAMING_SNAKE_CASE : Union[str, Any] = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> str: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: HfFolder.save_token(_SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def _a ( ) -> List[str]: return HfApi(endpoint=_SCREAMING_SNAKE_CASE ) @pytest.fixture(scope="""session""" ) def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = HfFolder.get_token() HfFolder.save_token(_SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: def _cleanup_repo(_SCREAMING_SNAKE_CASE ): hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> str: @contextmanager def _temporary_repo(_SCREAMING_SNAKE_CASE ): try: yield repo_id finally: cleanup_repo(_SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope="""session""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = f"""repo_txt_data-{int(time.time() * 1_0E3 )}""" snake_case_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="""data/text_data.txt""" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = f"""repo_zipped_txt_data-{int(time.time() * 1_0E3 )}""" snake_case_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="""data.zip""" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = f"""repo_zipped_img_data-{int(time.time() * 1_0E3 )}""" snake_case_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="""data.zip""" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return hf_private_dataset_repo_zipped_img_data_
347
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]: snake_case_ = bnb_quantization_config.load_in_abit snake_case_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) snake_case_ = [] # custom device map if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: snake_case_ = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case_ = get_keys_to_not_convert(_SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_SCREAMING_SNAKE_CASE ) snake_case_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case_ = [] snake_case_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_SCREAMING_SNAKE_CASE ) # compatibility with peft snake_case_ = load_in_abit snake_case_ = load_in_abit snake_case_ = get_parameter_device(_SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) snake_case_ = replace_with_bnb_layers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) # convert param to the right dtype snake_case_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case_ = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_SCREAMING_SNAKE_CASE ): param.to(_SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): snake_case_ = replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) snake_case_ = get_quantized_model_device_map( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_memory=_SCREAMING_SNAKE_CASE , no_split_module_classes=_SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case_ = True snake_case_ = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=_SCREAMING_SNAKE_CASE , offload_state_dict=_SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , offload_dir=_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: if device_map is None: if torch.cuda.is_available(): snake_case_ = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) snake_case_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case_ = {} snake_case_ = special_dtypes snake_case_ = no_split_module_classes snake_case_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case_ = get_balanced_memory( _SCREAMING_SNAKE_CASE , low_zero=(device_map == """balanced_low_0""") , max_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ = max_memory snake_case_ = infer_auto_device_map(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: if modules_to_not_convert is None: snake_case_ = [] snake_case_ , snake_case_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[Any]: snake_case_ = False for name, module in model.named_children(): if current_key_name is None: snake_case_ = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case_ = """.""".join(_SCREAMING_SNAKE_CASE ) snake_case_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) snake_case_ = module.weight.data if module.bias is not None: snake_case_ = module.bias.data bnb_module.requires_grad_(_SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = True if len(list(module.children() ) ) > 0: snake_case_ , snake_case_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( _SCREAMING_SNAKE_CASE ) -> Any: # Create a copy of the model with init_empty_weights(): snake_case_ = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case_ = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ = sum(_SCREAMING_SNAKE_CASE , [] ) snake_case_ = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model snake_case_ = False if hasattr(_SCREAMING_SNAKE_CASE , """base_model_prefix""" ): snake_case_ = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ = list(model.named_children() ) snake_case_ = [list_modules[-1][0]] # add last module together with tied weights snake_case_ = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) snake_case_ = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys snake_case_ = [""".weight""", """.bias"""] snake_case_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ = name.replace(_SCREAMING_SNAKE_CASE , """""" ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: for m in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: return next(parameter.parameters() ).device def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , dtype=_SCREAMING_SNAKE_CASE , value=_SCREAMING_SNAKE_CASE ) snake_case_ = param_name snake_case_ = model if "." in tensor_name: snake_case_ = tensor_name.split(""".""" ) for split in splits[:-1]: snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) snake_case_ = new_module snake_case_ = splits[-1] # offload weights snake_case_ = False offload_weight(module._parameters[tensor_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , ) else: offload_weight(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) offload_weight(_SCREAMING_SNAKE_CASE , param_name.replace("""weight""" , """SCB""" ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """meta""" , dtype=_SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
347
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } UpperCAmelCase_ = { 'facebook/xglm-564M': 2_0_4_8, } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Tuple = VOCAB_FILES_NAMES lowerCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str="<s>" , _UpperCAmelCase : Optional[Any]="</s>" , _UpperCAmelCase : Optional[Any]="</s>" , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : List[Any]="<unk>" , _UpperCAmelCase : Dict="<pad>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Optional[int] , ): """simple docstring""" UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase__ = 7 UpperCAmelCase__ = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] UpperCAmelCase__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) UpperCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase__ = len(self.sp_model ) UpperCAmelCase__ = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_UpperCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None UpperCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str ): """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
61
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ = s.rsplit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new.join(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = {} UpperCAmelCase__ = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCAmelCase__ = key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: UpperCAmelCase__ = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): UpperCAmelCase__ = rreplace(SCREAMING_SNAKE_CASE__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): UpperCAmelCase__ = rreplace(SCREAMING_SNAKE_CASE__ , """.b""" , """.bias""" , 1 ) UpperCAmelCase__ = value.float() return upgrade @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[Any]=True ): '''simple docstring''' from dall_e import Encoder UpperCAmelCase__ = Encoder() if os.path.exists(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = ckpt.state_dict() encoder.load_state_dict(SCREAMING_SNAKE_CASE__ ) if config_path is not None: UpperCAmelCase__ = FlavaImageCodebookConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = FlavaImageCodebookConfig() UpperCAmelCase__ = FlavaImageCodebook(SCREAMING_SNAKE_CASE__ ).eval() UpperCAmelCase__ = encoder.state_dict() UpperCAmelCase__ = upgrade_state_dict(SCREAMING_SNAKE_CASE__ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = hf_model.state_dict() UpperCAmelCase__ = count_parameters(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = count_parameters(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) else: return hf_state_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCAmelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
61
1
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :str = "▁" , lowercase_ :bool = True , lowercase_ :Union[str, AddedToken] = "<unk>" , lowercase_ :Union[str, AddedToken] = "</s>" , lowercase_ :Union[str, AddedToken] = "<pad>" , ) -> str: UpperCAmelCase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase = token_dict['token'] UpperCAmelCase = Tokenizer(Unigram() ) UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ), pre_tokenizers.Digits(individual_digits=lowercase_ ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) UpperCAmelCase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Union[str, List[str]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Union[str, Any]: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [files] self._tokenizer.train(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :str , lowercase_ :Union[Iterator[str], Iterator[Iterator[str]]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Tuple: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = json.loads(self._tokenizer.to_str() ) UpperCAmelCase = self.special_tokens['unk']['id'] UpperCAmelCase = Tokenizer.from_str(json.dumps(lowercase_ ) )
78
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , lowercase_ ).groups()[0] class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :List[str] , lowercase_ :Dict , lowercase_ :List[str]=None , lowercase_ :Optional[Any]=None ) -> Optional[int]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self :Optional[int] ) -> Optional[Any]: return len(self.file_names ) def __getitem__( self :int , lowercase_ :str ) -> List[str]: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowercase_ ) UpperCAmelCase = raw_image.convert('RGB' ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowercase_ ) UpperCAmelCase = extract_label(lowercase_ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase ( lowercase_ , lowercase_ ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['lr'] UpperCAmelCase = int(config['num_epochs'] ) UpperCAmelCase = int(config['seed'] ) UpperCAmelCase = int(config['batch_size'] ) UpperCAmelCase = config['image_size'] if not isinstance(lowercase_ , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(lowercase_ )[-1].split('.' )[0] accelerator.init_trackers(lowercase_ , lowercase_ ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , lowercase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences UpperCAmelCase = [extract_label(lowercase_ ) for fname in file_names] UpperCAmelCase = list(set(lowercase_ ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(lowercase_ )} # Set the seed before splitting the data. np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(lowercase_ ) ) UpperCAmelCase = int(0.8 * len(lowercase_ ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(lowercase_ , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(lowercase_ ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model('resnet50d' , pretrained=lowercase_ , num_classes=len(lowercase_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=lowercase_ , max_lr=lowercase_ , epochs=lowercase_ , steps_per_epoch=len(lowercase_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(lowercase_ )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace('step_' , '' ) ) UpperCAmelCase = resume_step // len(lowercase_ ) resume_step -= starting_epoch * len(lowercase_ ) # Now we train the model for epoch in range(lowercase_ , lowercase_ ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(lowercase_ , lowercase_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = torch.nn.functional.cross_entropy(lowercase_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std with torch.no_grad(): UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(lowercase_ ), 'epoch': epoch, } , step=lowercase_ , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase ( ): UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=lowercase_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=lowercase_ , default=lowercase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=lowercase_ , default=lowercase_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=lowercase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowercase_ , default=lowercase_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=lowercase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
78
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" return [ord(SCREAMING_SNAKE_CASE ) - 96 for elem in plain] def _a ( SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def _a ( ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
51
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE : Union[tf.Tensor, np.ndarray] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): return list(tensor.shape ) UpperCamelCase__ : List[Any] = tf.shape(SCREAMING_SNAKE_CASE ) if tensor.shape == tf.TensorShape(SCREAMING_SNAKE_CASE ): return dynamic UpperCamelCase__ : Optional[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(SCREAMING_SNAKE_CASE )] def _a ( SCREAMING_SNAKE_CASE : tf.Tensor , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int=1E-5 , SCREAMING_SNAKE_CASE : Any=-1 ): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized UpperCamelCase__ , UpperCamelCase__ : Dict = tf.nn.moments(SCREAMING_SNAKE_CASE , axes=[axis] , keepdims=SCREAMING_SNAKE_CASE ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCamelCase__ : Tuple = [1] * inputs.shape.rank UpperCamelCase__ : List[str] = shape_list(SCREAMING_SNAKE_CASE )[axis] UpperCamelCase__ : Union[str, Any] = tf.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = tf.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Compute layer normalization using the batch_normalization # function. UpperCamelCase__ : List[Any] = tf.nn.batch_normalization( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , offset=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , variance_epsilon=SCREAMING_SNAKE_CASE , ) return outputs def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple=0 , SCREAMING_SNAKE_CASE : Tuple=-1 ): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCamelCase__ : Union[str, Any] = tf.shape(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCamelCase__ : Tuple = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : tf.Tensor ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , tf.Tensor ): UpperCamelCase__ : int = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCamelCase__ : List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCamelCase__ : Any = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCamelCase__ : Dict = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _a ( SCREAMING_SNAKE_CASE : tf.Tensor , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str = "input_ids" ): """simple docstring""" tf.debugging.assert_less( SCREAMING_SNAKE_CASE , tf.cast(SCREAMING_SNAKE_CASE , dtype=tensor.dtype ) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(SCREAMING_SNAKE_CASE )}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" UpperCamelCase__ : str = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCamelCase__ : List[str] = [x for x in data if len(SCREAMING_SNAKE_CASE ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) UpperCamelCase__ : Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = 1 UpperCamelCase__ : Tuple = np.array_split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCamelCase__ : Any = np.array_split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[int] = chunk_data else: UpperCamelCase__ : List[Any] = data def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if name in group.attrs: UpperCamelCase__ : List[Any] = [n.decode('''utf8''' ) if hasattr(SCREAMING_SNAKE_CASE , '''decode''' ) else n for n in group.attrs[name]] else: UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Union[str, Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(SCREAMING_SNAKE_CASE , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" def _expand_single_ad_tensor(SCREAMING_SNAKE_CASE : str ): if isinstance(SCREAMING_SNAKE_CASE , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(SCREAMING_SNAKE_CASE , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , SCREAMING_SNAKE_CASE )
51
1
def lowerCamelCase__ ( __lowerCamelCase : int ): if num < 0: return False __UpperCAmelCase : Optional[int] = num __UpperCAmelCase : Union[str, Any] = 0 while num > 0: __UpperCAmelCase : Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
114
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :int , lowerCamelCase :AutoencoderKL , lowerCamelCase :CLIPTextModel , lowerCamelCase :CLIPTokenizer , lowerCamelCase :UNetaDConditionModel , lowerCamelCase :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase :StableDiffusionSafetyChecker , lowerCamelCase :CLIPImageProcessor , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self :int , lowerCamelCase :Union[str, List[str]] , lowerCamelCase :int = 512 , lowerCamelCase :int = 512 , lowerCamelCase :int = 50 , lowerCamelCase :float = 7.5 , lowerCamelCase :Optional[Union[str, List[str]]] = None , lowerCamelCase :Optional[int] = 1 , lowerCamelCase :float = 0.0 , lowerCamelCase :Optional[torch.Generator] = None , lowerCamelCase :Optional[torch.FloatTensor] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , lowerCamelCase :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase :int = 1 , lowerCamelCase :Optional[torch.FloatTensor] = None , **lowerCamelCase :List[str] , ) -> str: if isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowerCamelCase )}.''' ) # get prompt text embeddings UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = text_embeddings.shape UpperCAmelCase__ = text_embeddings.repeat(1 , lowerCamelCase , 1 ) UpperCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ = 42 if negative_prompt is None: UpperCAmelCase__ = [""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=''' f''' {type(lowerCamelCase )}.''' ) elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCAmelCase__ = negative_prompt UpperCAmelCase__ = text_input_ids.shape[-1] UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="pt" , ) UpperCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ = uncond_embeddings.shape[1] UpperCAmelCase__ = uncond_embeddings.repeat(lowerCamelCase , lowerCamelCase , 1 ) UpperCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to(self.device ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase__ = latents_reference.to(self.device ) UpperCAmelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase__ = 0 if dx < 0 else dx UpperCAmelCase__ = 0 if dy < 0 else dy UpperCAmelCase__ = max(-dx , 0 ) UpperCAmelCase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ = {} if accepts_eta: UpperCAmelCase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 1 / 0.1_82_15 * latents UpperCAmelCase__ = self.vae.decode(lowerCamelCase ).sample UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase__ = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) , return_tensors="pt" ).to( self.device ) UpperCAmelCase__ , UpperCAmelCase__ = self.safety_checker( images=lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase__ = None if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
169
0
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = ['audio_values', 'audio_mask'] def __init__( self :Dict , a :Any=2_0_4_8 , a :str=1 , a :Optional[Any]=[1_6, 1_6] , a :str=1_2_8 , a :int=4_4_1_0_0 , a :Tuple=8_6 , a :Optional[Any]=2_0_4_8 , a :List[Any]=0.0 , **a :Tuple , ) -> Tuple: super().__init__( feature_size=a , sampling_rate=a , padding_value=a , **a , ) __UpperCamelCase : List[str] = spectrogram_length __UpperCamelCase : Dict = num_channels __UpperCamelCase : Tuple = patch_size __UpperCamelCase : List[str] = feature_size // self.patch_size[1] __UpperCamelCase : str = n_fft __UpperCamelCase : List[Any] = sampling_rate // hop_length_to_sampling_rate __UpperCamelCase : List[str] = sampling_rate __UpperCamelCase : Optional[int] = padding_value __UpperCamelCase : Optional[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=a , norm="slaney" , mel_scale="slaney" , ).T def _lowerCamelCase ( self :Optional[Any] , a :np.array ) -> np.ndarray: __UpperCamelCase : List[str] = spectrogram( a , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) __UpperCamelCase : int = log_spec[:, :-1] __UpperCamelCase : Optional[int] = log_spec - 20.0 __UpperCamelCase : str = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self :List[Any] , a :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a :Optional[Union[str, TensorType]] = None , a :Optional[bool] = True , a :Optional[int] = None , a :bool = False , a :bool = False , **a :List[str] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCamelCase : Optional[Any] = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __UpperCamelCase : str = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase : str = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): __UpperCamelCase : Any = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __UpperCamelCase : Tuple = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , a ): __UpperCamelCase : Union[str, Any] = [np.asarray(a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __UpperCamelCase : Dict = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __UpperCamelCase : Optional[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __UpperCamelCase : str = np.array(a ).astype(np.floataa ) # convert into correct format for padding __UpperCamelCase : Optional[Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __UpperCamelCase : List[Any] = np.ones([len(a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __UpperCamelCase : List[str] = padded_audio_features * self.padding_value for i in range(len(a ) ): __UpperCamelCase : int = audio_features[i] __UpperCamelCase : Tuple = feature # return as BatchFeature if return_attention_mask: __UpperCamelCase : Dict = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: __UpperCamelCase : Dict = {"audio_values": padded_audio_features} __UpperCamelCase : Union[str, Any] = BatchFeature(data=a , tensor_type=a ) return encoded_inputs
362
import qiskit def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 2) -> qiskit.result.counts.Counts: '''simple docstring''' __UpperCamelCase : List[str] = qubits # Using Aer's simulator __UpperCamelCase : int = qiskit.Aer.get_backend("aer_simulator") # Creating a Quantum Circuit acting on the q register __UpperCamelCase : List[str] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1 , _lowerCamelCase): # Adding CX (CNOT) gate circuit.cx(i - 1 , _lowerCamelCase) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_lowerCamelCase)) , list(range(_lowerCamelCase))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __UpperCamelCase : Any = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1_000) return job.result().get_counts(_lowerCamelCase) if __name__ == "__main__": print(f"Total count for various states are: {quantum_entanglement(3)}")
151
0
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if hor == 128: snake_case_ = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') snake_case_ = (32, 128, 256) snake_case_ = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: snake_case_ = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') snake_case_ = (32, 64, 128, 256) snake_case_ = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') snake_case_ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) snake_case_ = model.state_dict() snake_case_ = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 65536, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } snake_case_ = UNetaDModel(**SCREAMING_SNAKE_CASE__ ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) snake_case_ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__ ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (): snake_case_ = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 128, 256), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 65536, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } snake_case_ = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) snake_case_ = model snake_case_ = UNetaDModel(**SCREAMING_SNAKE_CASE__ ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) snake_case_ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__ ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
8
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
1
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowercase : Optional[Any] = get_logger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0 ): '''simple docstring''' os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A : str = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A : List[str] = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A : Any = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A : List[str] = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A : List[Any] = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A : int = os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving model to {ckpt_dir}' ) A : Optional[int] = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return A : str = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A : List[str] = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A : List[Any] = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A : Any = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A : int = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A : Optional[int] = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A : Optional[int] = ( os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) A : Optional[int] = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) A : Union[str, Any] = state_dict['''model'''] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0 ): '''simple docstring''' os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A : Any = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: A : Optional[Any] = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A : Dict = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: A : Any = os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A : Tuple = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: A : Optional[Any] = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A : Optional[int] = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) A : List[Any] = torch.load(snake_case__ ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: A : Dict = ( os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) A : str = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) A : Optional[int] = optim_state['''optimizer'''] logger.info(F'Optimizer loaded from {ckpt_dir}' ) A : List[Any] = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
311
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" A : Any = parent A : List[Any] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : int = use_input_mask A : Union[str, Any] = vocab_size A : List[Any] = hidden_size A : List[Any] = num_hidden_layers A : Optional[int] = num_attention_heads A : str = intermediate_size A : Tuple = hidden_act A : Union[str, Any] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : int = max_position_embeddings A : Optional[int] = initializer_range A : Any = use_labels A : Optional[int] = scope def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ) : Any = self.prepare_config_and_inputs() A : Tuple = True A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) A : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" A : List[str] = True A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , ) A : List[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Optional[Any] = True A : Tuple = True A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval() # first forward pass A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , ) A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] A : Any = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A, A, A : Optional[int] = self.prepare_config_and_inputs() A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __magic_name__ = (BertGenerationDecoder,) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[str] = BertGenerationEncoderTester(self ) A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs() A : str = '''bert''' self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() A : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Dict = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Dict = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Any = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
1
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase ): return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
61
"""simple docstring""" from __future__ import annotations def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
61
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a ( SCREAMING_SNAKE_CASE_ ): snake_case__ = '''gpt_neo''' snake_case__ = ['''past_key_values'''] snake_case__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , _snake_case=5_02_57 , _snake_case=20_48 , _snake_case=20_48 , _snake_case=24 , _snake_case=[[["global", "local"], 12]] , _snake_case=16 , _snake_case=None , _snake_case=2_56 , _snake_case="gelu_new" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=1E-5 , _snake_case=0.02 , _snake_case=True , _snake_case=5_02_56 , _snake_case=5_02_56 , **_snake_case , ): """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_layers lowerCAmelCase = num_heads lowerCAmelCase = intermediate_size lowerCAmelCase = window_size lowerCAmelCase = activation_function lowerCAmelCase = resid_dropout lowerCAmelCase = embed_dropout lowerCAmelCase = attention_dropout lowerCAmelCase = classifier_dropout lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = use_cache lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id lowerCAmelCase = attention_types lowerCAmelCase = self.expand_attention_types_params(__a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) @staticmethod def UpperCamelCase__ ( _snake_case ): """simple docstring""" lowerCAmelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] ): import torch lowerCAmelCase = input.size() lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = shape[dimension] lowerCAmelCase = torch.arange(0 , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = torch.div(sizedim - size , _UpperCAmelCase , rounding_mode='floor' ) + 1 lowerCAmelCase = torch.arange(_UpperCAmelCase ) + low_indices[:min_length][:, None] lowerCAmelCase = [slice(_UpperCAmelCase )] * rank lowerCAmelCase = indices lowerCAmelCase = input[s] lowerCAmelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ): import torch lowerCAmelCase = torch.arange(1 , _UpperCAmelCase ) lowerCAmelCase = torch.remainder(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = remainders == 0 lowerCAmelCase = candidates[divisor_indices] lowerCAmelCase = torch.max(_UpperCAmelCase ) return largest_divisor, torch.div(_UpperCAmelCase , _UpperCAmelCase , rounding_mode='floor' ) class a ( SCREAMING_SNAKE_CASE_ ): @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) lowerCAmelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCamelCase__ ( self ): """simple docstring""" return self._config.num_heads def UpperCamelCase__ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ): """simple docstring""" lowerCAmelCase = super(__a , self ).generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) # We need to order the input in the way they appears in the forward() lowerCAmelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCAmelCase = seqlen + 2 lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers ) ] lowerCAmelCase = common_inputs['attention_mask'] if self.use_past: lowerCAmelCase = ordered_inputs['attention_mask'].dtype lowerCAmelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__a , __a , dtype=__a )] , dim=1 ) return ordered_inputs @property def UpperCamelCase__ ( self ): """simple docstring""" return 13
350
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {"tokenizer_file": "tokenizer.json"} snake_case_ : Tuple = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class __snake_case ( a ): UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[str] = None def __init__( self : int , _snake_case : List[Any]=None , _snake_case : Dict=None , _snake_case : str=None , _snake_case : int="<unk>" , _snake_case : Dict="<s>" , _snake_case : List[str]="</s>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[Any]=False , _snake_case : int=False , **_snake_case : Dict , ): """simple docstring""" super().__init__( _snake_case , _snake_case , tokenizer_file=_snake_case , unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , add_prefix_space=_snake_case , clean_up_tokenization_spaces=_snake_case , **_snake_case , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , _snake_case) != add_prefix_space: UpperCAmelCase_ = getattr(_snake_case , pre_tok_state.pop('''type''')) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**_snake_case) UpperCAmelCase_ = add_prefix_space def lowerCamelCase ( self : Optional[Any] , *_snake_case : Optional[int] , **_snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''') return super()._batch_encode_plus(*_snake_case , **_snake_case) def lowerCamelCase ( self : int , *_snake_case : str , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''') return super()._encode_plus(*_snake_case , **_snake_case) def lowerCamelCase ( self : Tuple , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" UpperCAmelCase_ = self._tokenizer.model.save(_snake_case , name=_snake_case) return tuple(_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : "Conversation"): """simple docstring""" UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case) + [self.eos_token_id]) if len(_snake_case) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
51
def A (__A : list , __A : int , __A : int = 0 , __A : int = 0 ) -> int: """simple docstring""" UpperCAmelCase_ = right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
51
1
"""simple docstring""" from scipy.stats import pearsonr import datasets __A = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __A = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __A = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: if return_pvalue: _lowerCAmelCase =pearsonr(__UpperCAmelCase , __UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__UpperCAmelCase , __UpperCAmelCase )[0] )}
341
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ : Dict = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ : List[str] = { 'openbmb/cpm-ant-10b': 10_24, } def _lowerCamelCase ( lowercase : Any ) -> List[str]: _a = collections.OrderedDict() with open(UpperCAmelCase_ , "r" , encoding="utf-8" ) as reader: _a = reader.readlines() for index, token in enumerate(UpperCAmelCase_ ): _a = token.rstrip("\n" ) _a = index return vocab class __SCREAMING_SNAKE_CASE (_snake_case ): """simple docstring""" def __init__( self : Tuple , __a : List[Any] , __a : Optional[Any]="<unk>" , __a : Optional[int]=2_00 ): _a = vocab _a = unk_token _a = max_input_chars_per_word def UpperCamelCase__ ( self : Dict , __a : List[str] ): _a = list(lowercase_ ) if len(lowercase_ ) > self.max_input_chars_per_word: return [self.unk_token] _a = 0 _a = [] while start < len(lowercase_ ): _a = len(lowercase_ ) _a = None while start < end: _a = ''.join(chars[start:end] ) if substr in self.vocab: _a = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowercase_ ) _a = end return sub_tokens class __SCREAMING_SNAKE_CASE (_snake_case ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =["""input_ids""", """attention_mask"""] __a =False def __init__( self : Any , __a : Union[str, Any] , __a : Union[str, Any]="<d>" , __a : int="</d>" , __a : Optional[int]="<s>" , __a : List[Any]="</s>" , __a : Dict="<pad>" , __a : Dict="<unk>" , __a : Any="</n>" , __a : List[Any]="</_>" , __a : Dict="left" , **__a : List[Any] , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowercase_ , eod_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , unk_token=lowercase_ , line_token=lowercase_ , space_token=lowercase_ , padding_side=lowercase_ , **lowercase_ , ) _a = bod_token _a = eod_token _a = load_vocab(lowercase_ ) _a = self.encoder[space_token] _a = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __a : x[1] ) ) _a = {v: k for k, v in self.encoder.items()} _a = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def UpperCamelCase__ ( self : str ): return self.encoder[self.bod_token] @property def UpperCamelCase__ ( self : Any ): return self.encoder[self.eod_token] @property def UpperCamelCase__ ( self : Tuple ): return self.encoder["\n"] @property def UpperCamelCase__ ( self : str ): return len(self.encoder ) def UpperCamelCase__ ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : List[str] , __a : List[str] ): _a = [] for x in jieba.cut(lowercase_ , cut_all=lowercase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowercase_ ) ) return output_tokens def UpperCamelCase__ ( self : Tuple , __a : Tuple , **__a : str ): _a = [i for i in token_ids if i >= 0] _a = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self : str , __a : Union[str, Any] ): return token in self.encoder def UpperCamelCase__ ( self : List[str] , __a : List[str] ): return "".join(lowercase_ ) def UpperCamelCase__ ( self : Dict , __a : List[Any] ): return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : str , __a : Tuple ): return self.decoder.get(lowercase_ , self.unk_token ) def UpperCamelCase__ ( self : Dict , __a : str , __a : Optional[str] = None ): if os.path.isdir(lowercase_ ): _a = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: _a = (filename_prefix + '-' if filename_prefix else '') + save_directory _a = 0 if " " in self.encoder: _a = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: _a = self.encoder['\n'] del self.encoder["\n"] _a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __a : x[1] ) ) with open(lowercase_ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) _a = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def UpperCamelCase__ ( self : Dict , __a : List[int] , __a : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCamelCase__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) return [1] + ([0] * len(lowercase_ ))
63
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=2 , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : List[str]=10 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=32 * 4 , lowercase_ : str=32 * 6 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=32 , ) -> Optional[int]: UpperCAmelCase : List[str] = parent UpperCAmelCase : int = batch_size UpperCAmelCase : int = is_training UpperCAmelCase : int = use_auxiliary_loss UpperCAmelCase : List[Any] = num_queries UpperCAmelCase : List[str] = num_channels UpperCAmelCase : List[str] = min_size UpperCAmelCase : Dict = max_size UpperCAmelCase : Tuple = num_labels UpperCAmelCase : str = mask_feature_size def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase_ ) UpperCAmelCase : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_ ) UpperCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_ ) > 0.5 ).float() UpperCAmelCase : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=lowercase_ ) > 0.5).long() UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> int: UpperCAmelCase : int = output.encoder_hidden_states UpperCAmelCase : Any = output.pixel_decoder_hidden_states UpperCAmelCase : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict=False ) -> Tuple: with torch.no_grad(): UpperCAmelCase : str = MaskFormerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[str] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Union[str, Any] = model(lowercase_ , output_hidden_states=lowercase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() def comm_check_on_output(lowercase_ : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Dict = model(lowercase_ ) comm_check_on_output(lowercase_ ) UpperCAmelCase : Any = model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) comm_check_on_output(lowercase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase_ : Optional[Any] = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Tuple = False def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Optional[Any] = MaskFormerModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowercase_ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def UpperCAmelCase_ ( self : str ) -> List[str]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self : int ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self : Dict ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(lowercase_ ) UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase : Tuple = MaskFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Optional[Any] = (self.model_tester.min_size,) * 2 UpperCAmelCase : str = { 'pixel_values': torch.randn((2, 3, *size) , device=lowercase_ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase_ ), 'class_labels': torch.zeros(2 , 10 , device=lowercase_ ).long(), } UpperCAmelCase : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowercase_ ) UpperCAmelCase : Optional[int] = model(**lowercase_ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowercase_ ).to(lowercase_ ) UpperCAmelCase : List[Any] = model(**lowercase_ , output_attentions=lowercase_ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Dict = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : Tuple = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ).loss loss.backward() def UpperCAmelCase_ ( self : List[str] ) -> str: # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Optional[int] = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : List[str] = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : List[str] = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ = 1e-4 def UpperCamelCase( ): UpperCAmelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: UpperCAmelCase : List[Any] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(lowercase_ ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Optional[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(**lowercase_ ) UpperCAmelCase : str = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : List[Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : Optional[int] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Optional[Any] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : str = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : int = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Dict = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : Optional[int] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCAmelCase : Optional[int] = inputs['pixel_values'].to(lowercase_ ) UpperCAmelCase : Optional[Any] = [el.to(lowercase_ ) for el in inputs['mask_labels']] UpperCAmelCase : List[str] = [el.to(lowercase_ ) for el in inputs['class_labels']] with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) self.assertTrue(outputs.loss is not None )
151
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
42
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase__ ( _a , _a ): @register_to_config def __init__( self : str , _a : int = 7_6_8 , ): super().__init__() a__: Optional[Any] =nn.Parameter(torch.zeros(1 , _a ) ) a__: List[str] =nn.Parameter(torch.ones(1 , _a ) ) def _lowerCamelCase ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ): a__: str =nn.Parameter(self.mean.to(_a ).to(_a ) ) a__: List[Any] =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def _lowerCamelCase ( self : List[Any] , _a : Dict ): a__: str =(embeds - self.mean) * 1.0 / self.std return embeds def _lowerCamelCase ( self : List[Any] , _a : str ): a__: Optional[Any] =(embeds * self.std) + self.mean return embeds
42
1
'''simple docstring''' import re def lowercase ( __magic_name__ ): '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' try: UpperCAmelCase : Optional[int] = split_input(__magic_name__ ) if upper: UpperCAmelCase : str = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase : Union[str, Any] = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowercase ( __magic_name__ ): '''simple docstring''' return to_simple_case(__magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' try: UpperCAmelCase : List[str] = to_simple_case(__magic_name__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return to_complex_case(__magic_name__ , __magic_name__ , "_" ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return to_complex_case(__magic_name__ , __magic_name__ , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
311
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( __magic_name__ ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase : Any = False def lowercase ( ): '''simple docstring''' UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = plt.imshow(__magic_name__ ) fig.axes.get_xaxis().set_visible(__magic_name__ ) fig.axes.get_yaxis().set_visible(__magic_name__ ) plt.show() def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = datetime.now() UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
311
1
"""simple docstring""" def a__ ( snake_case__ ) -> Dict: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection lowerCamelCase = len(snake_case__ ) lowerCamelCase = max(snake_case__ ) lowerCamelCase = min(snake_case__ ) # create the counting array lowerCamelCase = coll_max + 1 - coll_min lowerCamelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case__ ): lowerCamelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCamelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case__ ) ): lowerCamelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def a__ ( snake_case__ ) -> Optional[int]: return "".join([chr(snake_case__ ) for i in counting_sort([ord(snake_case__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowerCAmelCase : str = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
168
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_a , speech_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , ) def _lowerCAmelCase ( self , _a = "auto" ): """simple docstring""" if slice_size == "auto": lowerCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _lowerCAmelCase ( self ): """simple docstring""" self.enable_attention_slicing(_a ) @torch.no_grad() def __call__( self , _a , _a=16_000 , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): """simple docstring""" lowerCamelCase = self.speech_processor.feature_extractor( _a , return_tensors="""pt""" , sampling_rate=_a ).input_features.to(self.device ) lowerCamelCase = self.speech_model.generate(_a , max_length=480_000 ) lowerCamelCase = self.speech_processor.tokenizer.batch_decode(_a , skip_special_tokens=_a , normalize=_a )[ 0 ] if isinstance(_a , _a ): lowerCamelCase = 1 elif isinstance(_a , _a ): lowerCamelCase = len(_a ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(_a )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_a )}.' ) # get prompt text embeddings lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase , lowerCamelCase , lowerCamelCase = text_embeddings.shape lowerCamelCase = text_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , _a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase = 42 if negative_prompt is None: lowerCamelCase = [""""""] * batch_size elif type(_a ) is not type(_a ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=' f' {type(_a )}.' ) elif isinstance(_a , _a ): lowerCamelCase = [negative_prompt] elif batch_size != len(_a ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: lowerCamelCase = negative_prompt lowerCamelCase = text_input_ids.shape[-1] lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""pt""" , ) lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase = uncond_embeddings.shape[1] lowerCamelCase = uncond_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , _a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase = torch.randn(_a , generator=_a , device="""cpu""" , dtype=_a ).to( self.device ) else: lowerCamelCase = torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase = {} if accepts_eta: lowerCamelCase = eta for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual lowerCamelCase = self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase , lowerCamelCase = noise_pred.chunk(2 ) lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a , _a ) lowerCamelCase = 1 / 0.18_215 * latents lowerCamelCase = self.vae.decode(_a ).sample lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase = self.numpy_to_pil(_a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
168
1
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = StableDiffusionXLImgaImgPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self : str ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) UpperCamelCase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_ ) UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=lowerCamelCase_ ) UpperCamelCase = CLIPTextModelWithProjection(lowerCamelCase_ ) UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=lowerCamelCase_ ) UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase_ ( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int]=0 ): """simple docstring""" UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) UpperCamelCase = image / 2 + 0.5 if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionXLImgaImgPipeline(**lowerCamelCase_ ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = sd_pipe(**lowerCamelCase_ ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionXLImgaImgPipeline(**lowerCamelCase_ ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # forward without prompt embeds UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * ["""this is a negative prompt"""] UpperCamelCase = negative_prompt UpperCamelCase = 3 * [inputs["""prompt"""]] UpperCamelCase = sd_pipe(**lowerCamelCase_ ) UpperCamelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * ["""this is a negative prompt"""] UpperCamelCase = 3 * [inputs.pop("""prompt""" )] ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = sd_pipe.encode_prompt(lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) UpperCamelCase = sd_pipe( **lowerCamelCase_ , prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , pooled_prompt_embeds=lowerCamelCase_ , negative_pooled_prompt_embeds=lowerCamelCase_ , ) UpperCamelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict="cpu" , lowerCamelCase_ : List[str]=torch.floataa , lowerCamelCase_ : Tuple=0 ): """simple docstring""" UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 4, 64, 64) ) UpperCamelCase = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) UpperCamelCase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_inputs(lowerCamelCase_ ) UpperCamelCase = pipe(**lowerCamelCase_ ).images UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
165
1
'''simple docstring''' from scipy.stats import pearsonr import datasets __lowerCAmelCase = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: if return_pvalue: _snake_case = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
341
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} snake_case = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } snake_case = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase__ ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCamelCase__ : List[str] = bs[:] UpperCamelCase__ : List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 UpperCamelCase__ : int = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" UpperCamelCase__ : List[str] = set() UpperCamelCase__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ : Dict = char return pairs class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int="replace" , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Dict="</s>" , UpperCAmelCase_ : List[str]="<s>" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : Union[str, Any]="<mask>" , UpperCAmelCase_ : List[str]=False , **UpperCAmelCase_ : Any , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else bos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else eos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else sep_token UpperCamelCase__ : List[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cls_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Optional[int] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: UpperCamelCase__ : str = json.load(UpperCAmelCase_ ) UpperCamelCase__ : int = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : int = errors # how to handle errors in decoding UpperCamelCase__ : Any = bytes_to_unicode() UpperCamelCase__ : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding="utf-8" ) as merges_handle: UpperCamelCase__ : Tuple = merges_handle.read().split("\n" )[1:-1] UpperCamelCase__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase__ : Union[str, Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) UpperCamelCase__ : Any = {} UpperCamelCase__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _A ( self : Optional[Any] ): return len(self.encoder ) def _A ( self : Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[Any] = tuple(UpperCAmelCase_ ) UpperCamelCase__ : Tuple = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : int = [] UpperCamelCase__ : List[Any] = 0 while i < len(UpperCAmelCase_ ): try: UpperCamelCase__ : Dict = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase__ : Optional[int] = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ : Union[str, Any] = tuple(UpperCAmelCase_ ) UpperCamelCase__ : Optional[int] = new_word if len(UpperCAmelCase_ ) == 1: break else: UpperCamelCase__ : Union[str, Any] = get_pairs(UpperCAmelCase_ ) UpperCamelCase__ : str = " ".join(UpperCAmelCase_ ) UpperCamelCase__ : Optional[int] = word return word def _A ( self : Dict , UpperCAmelCase_ : Any ): UpperCamelCase__ : List[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_ ): UpperCamelCase__ : Optional[int] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_ ).split(" " ) ) return bpe_tokens def _A ( self : str , UpperCAmelCase_ : List[str] ): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def _A ( self : Optional[int] , UpperCAmelCase_ : List[str] ): return self.decoder.get(UpperCAmelCase_ ) def _A ( self : Any , UpperCAmelCase_ : str ): UpperCamelCase__ : Tuple = "".join(UpperCAmelCase_ ) UpperCamelCase__ : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _A ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ : Dict = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ : Optional[int] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + "\n" ) UpperCamelCase__ : Any = 0 with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) UpperCamelCase__ : Dict = token_index writer.write(" ".join(UpperCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _A ( self : Optional[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : Tuple = [self.cls_token_id] UpperCamelCase__ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A ( self : Union[str, Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def _A ( self : Optional[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): UpperCamelCase__ : Dict = [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=False , **UpperCAmelCase_ : List[str] ): UpperCamelCase__ : Any = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase__ : int = " " + text return (text, kwargs)
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , lowerCAmelCase_ , ) super().__init__(args=lowerCAmelCase_ , **lowerCAmelCase_ )
42
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowercase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowercase : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowercase : set[int] = {ord(char) for char in VALID_CHARS} lowercase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str | None: _snake_case = "" _snake_case = 42 _snake_case = 42 _snake_case = 42 for keychar, cipherchar in zip(cycle(__A ) , __A ): _snake_case = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__A ) return decoded def SCREAMING_SNAKE_CASE__ ( __A ) -> list[str]: _snake_case = [] for key in product(__A , repeat=3 ): _snake_case = try_key(__A , __A ) if encoded is not None: possibles.append(__A ) return possibles def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE__ ( __A = "p059_cipher.txt" ) -> int: _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = Path(__A ).parent.joinpath(__A ).read_text(encoding='utf-8' ) _snake_case = [int(__A ) for number in data.strip().split(',' )] _snake_case = filter_valid_chars(__A ) for common_word in COMMON_WORDS: _snake_case = filter_common_word(__A , __A ) if len(__A ) == 1: break _snake_case = possibles[0] return sum(ord(__A ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
42
1
"""simple docstring""" from collections.abc import Sequence def A_ ( _lowerCAmelCase : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _a = nums[0] for i in range(1, len(_lowerCAmelCase ) ): _a = nums[i] _a = max(_lowerCAmelCase, ans + num, _lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __snake_case = int(input('''Enter number of elements : ''').strip()) __snake_case = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
153
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : List[str], _lowerCAmelCase : List[str] ): """simple docstring""" _a = BertConfig.from_json_file(_lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) _a = BertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
153
1