code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __UpperCAmelCase : str = logging.getLogger(__name__) @dataclass class __snake_case : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 @dataclass class __snake_case : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """train""" lowerCAmelCase__ = """dev""" lowerCAmelCase__ = """test""" class __snake_case : '''simple docstring''' @staticmethod def UpperCAmelCase__ ( A : int , A : Union[Split, str] ): raise NotImplementedError @staticmethod def UpperCAmelCase__ ( A : str ): raise NotImplementedError @staticmethod def UpperCAmelCase__ ( A : List[InputExample] , A : List[str] , A : int , A : PreTrainedTokenizer , A : Dict=False , A : Optional[Any]="[CLS]" , A : int=1 , A : str="[SEP]" , A : Optional[int]=False , A : List[Any]=False , A : Optional[Any]=0 , A : Tuple=0 , A : int=-100 , A : Optional[Any]=0 , A : Union[str, Any]=True , ): __snake_case: Optional[Any] = {label: i for i, label in enumerate(A )} __snake_case: str = [] for ex_index, example in enumerate(A ): if ex_index % 10_000 == 0: logger.info("""Writing example %d of %d""" , A , len(A ) ) __snake_case: Union[str, Any] = [] __snake_case: str = [] for word, label in zip(example.words , example.labels ): __snake_case: Optional[Any] = tokenizer.tokenize(A ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A ) > 0: tokens.extend(A ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __snake_case: Tuple = tokenizer.num_special_tokens_to_add() if len(A ) > max_seq_length - special_tokens_count: __snake_case: str = tokens[: (max_seq_length - special_tokens_count)] __snake_case: List[str] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __snake_case: List[str] = [sequence_a_segment_id] * len(A ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __snake_case: List[str] = [cls_token] + tokens __snake_case: str = [pad_token_label_id] + label_ids __snake_case: int = [cls_token_segment_id] + segment_ids __snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(A ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __snake_case: str = [1 if mask_padding_with_zero else 0] * len(A ) # Zero-pad up to the sequence length. __snake_case: Optional[Any] = max_seq_length - len(A ) if pad_on_left: __snake_case: Optional[int] = ([pad_token] * padding_length) + input_ids __snake_case: str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __snake_case: List[str] = ([pad_token_segment_id] * padding_length) + segment_ids __snake_case: int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(A ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(A ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(A ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(A ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(A ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __snake_case: List[str] = None features.append( InputFeatures( input_ids=A , attention_mask=A , token_type_ids=A , label_ids=A ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = nn.CrossEntropyLoss().ignore_index def __init__( self : Tuple , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : str=False , A : Split = Split.train , ): # Load data features from cache or dataset file __snake_case: Union[str, Any] = os.path.join( A , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(A ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case: Optional[int] = cached_features_file + """.lock""" with FileLock(A ): if os.path.exists(A ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) __snake_case: Dict = torch.load(A ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) __snake_case: Optional[Any] = token_classification_task.read_examples_from_file(A , A ) # TODO clean up all this to leverage built-in features of tokenizers __snake_case: Optional[int] = token_classification_task.convert_examples_to_features( A , A , A , A , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , A ) def __len__( self : Optional[int] ): return len(self.features ) def __getitem__( self : List[Any] , A : Dict ): return self.features[i] if is_tf_available(): import tensorflow as tf class __snake_case : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = -1_00 def __init__( self : List[str] , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : Optional[int]=False , A : Split = Split.train , ): __snake_case: Union[str, Any] = token_classification_task.read_examples_from_file(A , A ) # TODO clean up all this to leverage built-in features of tokenizers __snake_case: int = token_classification_task.convert_examples_to_features( A , A , A , A , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __snake_case: List[str] = tf.data.Dataset.from_generator( A , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __snake_case: List[Any] = tf.data.Dataset.from_generator( A , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def UpperCAmelCase__ ( self : str ): __snake_case: List[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Any ): return len(self.features ) def __getitem__( self : int , A : Tuple ): return self.features[i]
111
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """token-classification""" def __init__( self : Union[str, Any] , A : List[Any] ): if type(A ) == dict: __snake_case: str = Namespace(**A ) __snake_case: str = import_module("""tasks""" ) try: __snake_case: Tuple = getattr(A , hparams.task_type ) __snake_case: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __snake_case: Optional[int] = self.token_classification_task.get_labels(hparams.labels ) __snake_case: str = CrossEntropyLoss().ignore_index super().__init__(A , len(self.labels ) , self.mode ) def UpperCAmelCase__ ( self : Union[str, Any] , **A : Union[str, Any] ): return self.model(**A ) def UpperCAmelCase__ ( self : Any , A : Optional[int] , A : str ): __snake_case: str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case: List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case: Any = self(**A ) __snake_case: Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCAmelCase__ ( self : List[str] ): __snake_case: Tuple = self.hparams for mode in ["train", "dev", "test"]: __snake_case: Union[str, Any] = self._feature_file(A ) if os.path.exists(A ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , A ) __snake_case: Tuple = torch.load(A ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __snake_case: List[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , A ) __snake_case: Optional[int] = self.token_classification_task.convert_examples_to_features( A , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , A ) torch.save(A , A ) def UpperCAmelCase__ ( self : List[str] , A : int , A : int , A : bool = False ): __snake_case: List[str] = self._feature_file(A ) logger.info("""Loading features from cached file %s""" , A ) __snake_case: int = torch.load(A ) __snake_case: Optional[int] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case: Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __snake_case: Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __snake_case: Tuple = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __snake_case: Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(A , A , A , A ) , batch_size=A ) def UpperCAmelCase__ ( self : Tuple , A : Optional[Any] , A : int ): """Compute validation""" "" __snake_case: List[str] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case: Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case: List[str] = self(**A ) __snake_case , __snake_case: int = outputs[:2] __snake_case: List[str] = logits.detach().cpu().numpy() __snake_case: Any = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase__ ( self : Dict , A : Dict ): __snake_case: Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __snake_case: Tuple = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __snake_case: List[str] = np.argmax(A , axis=2 ) __snake_case: Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __snake_case: Tuple = dict(enumerate(self.labels ) ) __snake_case: Dict = [[] for _ in range(out_label_ids.shape[0] )] __snake_case: Tuple = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __snake_case: Dict = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(A , A ), """precision""": precision_score(A , A ), """recall""": recall_score(A , A ), """f1""": fa_score(A , A ), } __snake_case: Dict = dict(results.items() ) __snake_case: Dict = results return ret, preds_list, out_label_list def UpperCAmelCase__ ( self : Tuple , A : int ): # when stable __snake_case , __snake_case , __snake_case: List[str] = self._eval_end(A ) __snake_case: int = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase__ ( self : Dict , A : Optional[int] ): # updating to test_epoch_end instead of deprecated test_end __snake_case , __snake_case , __snake_case: int = self._eval_end(A ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __snake_case: List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase__ ( A : Any , A : int ): # Add NER specific options BaseTransformer.add_model_specific_args(A , A ) parser.add_argument( """--task_type""" , default="""NER""" , type=A , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=A , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=A , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __UpperCAmelCase : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCAmelCase : Tuple = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase : List[str] = parser.parse_args() __UpperCAmelCase : Optional[int] = NERTransformer(args) __UpperCAmelCase : Tuple = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) __UpperCAmelCase : Any = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
111
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowercase_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowercase_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowercase_ = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } lowercase_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = ["input_ids"] A : Tuple = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : List[Any] = do_lower_case __snake_case : Any = sentencepiece_model_ckpt __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=_lowerCAmelCase ) else: __snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : str = {v: k for k, v in self.vocab.items()} def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ): if text is None: return None __snake_case : List[Any] = self.tokenize(_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = """""", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __snake_case , __snake_case , __snake_case : str = normalized_text, [], 0 if self.do_lower_case: __snake_case : int = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset __snake_case : int = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : str = end return token_mapping @property def snake_case__ ( self : Tuple ): return len(self.vocab ) def snake_case__ ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : int ): __snake_case : str = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __snake_case : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __snake_case : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Union[str, Any] = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __snake_case : Optional[int] = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __snake_case : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Tuple = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): __snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __snake_case : Dict = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ): __snake_case : Dict = {} with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_lowerCAmelCase ): __snake_case : Tuple = line.rstrip("""\n""" ) __snake_case : List[str] = int(_lowerCAmelCase ) return token_to_idx def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Optional[int] = 0 if os.path.isdir(_lowerCAmelCase ): __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __snake_case : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 __snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" ) with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
20
1
lowercase_ = {str(digit): digit**5 for digit in range(10)} def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) ) def _snake_case( ) -> int: '''simple docstring''' return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": print(solution())
7
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
0
from collections.abc import Callable class lowerCamelCase : """simple docstring""" def __init__( self : Any , __magic_name__ : Callable | None = None ) -> None: # Stores actual heap items. SCREAMING_SNAKE_CASE_ = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_ = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_ = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_ = key or (lambda __magic_name__ : x) def __A ( self : Any , __magic_name__ : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __A ( self : List[Any] , __magic_name__ : int ) -> int | None: SCREAMING_SNAKE_CASE_ = int(2 * i + 1 ) return left if 0 < left < self.size else None def __A ( self : Tuple , __magic_name__ : int ) -> int | None: SCREAMING_SNAKE_CASE_ = int(2 * i + 2 ) return right if 0 < right < self.size else None def __A ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.arr[j], self.arr[i] def __A ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def __A ( self : int , __magic_name__ : int ) -> int: SCREAMING_SNAKE_CASE_ = self._left(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._right(__magic_name__ ) SCREAMING_SNAKE_CASE_ = i if left is not None and not self._cmp(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = left if right is not None and not self._cmp(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = right return valid_parent def __A ( self : Any , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = self._parent(__magic_name__ ) while parent is not None and not self._cmp(__magic_name__ , __magic_name__ ): self._swap(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parent, self._parent(__magic_name__ ) def __A ( self : List[Any] , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = self._get_valid_parent(__magic_name__ ) while valid_parent != index: self._swap(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = valid_parent, self._get_valid_parent(__magic_name__ ) def __A ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : int ) -> None: if item not in self.pos_map: return SCREAMING_SNAKE_CASE_ = self.pos_map[item] SCREAMING_SNAKE_CASE_ = [item, self.key(__magic_name__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__magic_name__ ) self._heapify_down(__magic_name__ ) def __A ( self : Tuple , __magic_name__ : int ) -> None: if item not in self.pos_map: return SCREAMING_SNAKE_CASE_ = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_ = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_ = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__magic_name__ ) self._heapify_down(__magic_name__ ) def __A ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__magic_name__ )] ) else: SCREAMING_SNAKE_CASE_ = [item, self.key(__magic_name__ )] SCREAMING_SNAKE_CASE_ = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __A ( self : Optional[int] ) -> tuple | None: return self.arr[0] if self.size else None def __A ( self : Union[str, Any] ) -> tuple | None: SCREAMING_SNAKE_CASE_ = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def a__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
367
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''text''': Value('''string''' )} ) lowerCamelCase__ = Features({'''summary''': Value('''string''' )} ) lowerCamelCase__ = "text" lowerCamelCase__ = "summary" @property def __A ( self : Dict ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
305
0
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Tuple = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : int = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : Optional[Any] = scope def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Dict = BioGptModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Any = model(snake_case_ , attention_mask=snake_case_ ) _lowerCAmelCase : str = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : List[str] = BioGptForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): _lowerCAmelCase : Optional[int] = BioGptModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() # create attention mask _lowerCAmelCase : int = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case_ ) _lowerCAmelCase : str = self.seq_length // 2 _lowerCAmelCase : List[str] = 0 # first forward pass _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ ).to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _lowerCAmelCase : List[str] = ids_tensor((1,) , snake_case_ ).item() + 1 _lowerCAmelCase : int = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _lowerCAmelCase : Optional[Any] = random_other_next_tokens # append to next input_ids and attn_mask _lowerCAmelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : Optional[int] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case_ )] , dim=1 , ) # get two different outputs _lowerCAmelCase : Optional[int] = model(snake_case_ , attention_mask=snake_case_ )["""last_hidden_state"""] _lowerCAmelCase : List[Any] = model(snake_case_ , past_key_values=snake_case_ , attention_mask=snake_case_ )["""last_hidden_state"""] # select random slice _lowerCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : str = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): _lowerCAmelCase : Tuple = BioGptModel(config=snake_case_ ).to(snake_case_ ).eval() _lowerCAmelCase : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case_ ) # first forward pass _lowerCAmelCase : Dict = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _lowerCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _lowerCAmelCase : Tuple = model(snake_case_ , attention_mask=snake_case_ )["""last_hidden_state"""] _lowerCAmelCase : Optional[int] = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[ """last_hidden_state""" ] # select random slice _lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ , snake_case_=False ): _lowerCAmelCase : Optional[int] = BioGptForCausalLM(snake_case_ ) model.to(snake_case_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __UpperCamelCase ( self , snake_case_ , *snake_case_ ): _lowerCAmelCase : Tuple = BioGptModel(snake_case_ ) _lowerCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ): _lowerCAmelCase : Tuple = self.num_labels _lowerCAmelCase : Union[str, Any] = BioGptForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Tuple = config_and_inputs _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ (_a , _a , _a , unittest.TestCase ): __lowerCAmelCase : Optional[int] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __lowerCAmelCase : Optional[int] = (BioGptForCausalLM,) if is_torch_available() else () __lowerCAmelCase : Tuple = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = BioGptModelTester(self ) _lowerCAmelCase : Dict = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : int = type self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case_ , gradient_checkpointing=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case_ ) _lowerCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) _lowerCAmelCase : Optional[int] = """left""" # Define PAD Token = EOS Token = 50256 _lowerCAmelCase : Optional[int] = tokenizer.eos_token _lowerCAmelCase : int = model.config.eos_token_id # use different length sentences to test batching _lowerCAmelCase : str = [ """Hello, my dog is a little""", """Today, I""", ] _lowerCAmelCase : Tuple = tokenizer(snake_case_ , return_tensors="""pt""" , padding=snake_case_ ) _lowerCAmelCase : Optional[int] = inputs["""input_ids"""].to(snake_case_ ) _lowerCAmelCase : Union[str, Any] = model.generate( input_ids=snake_case_ , attention_mask=inputs["""attention_mask"""].to(snake_case_ ) , ) _lowerCAmelCase : int = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case_ ) _lowerCAmelCase : Optional[int] = model.generate(input_ids=snake_case_ ) _lowerCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() _lowerCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case_ ) _lowerCAmelCase : Any = model.generate(input_ids=snake_case_ , max_length=model.config.max_length - num_paddings ) _lowerCAmelCase : List[str] = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ ) _lowerCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ ) _lowerCAmelCase : str = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] ) @slow def __UpperCamelCase ( self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : List[str] = input_dict["""input_ids"""] _lowerCAmelCase : Tuple = input_ids.ne(1 ).to(snake_case_ ) _lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase : Dict = BioGptForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : int = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = 3 _lowerCAmelCase : List[str] = """multi_label_classification""" _lowerCAmelCase : Dict = input_dict["""input_ids"""] _lowerCAmelCase : Optional[Any] = input_ids.ne(1 ).to(snake_case_ ) _lowerCAmelCase : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase : Optional[int] = BioGptForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : int = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class a_ (unittest.TestCase ): @slow def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) _lowerCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) _lowerCAmelCase : str = model(snake_case_ )[0] _lowerCAmelCase : Dict = 4_2_3_8_4 _lowerCAmelCase : Optional[Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case_ ) _lowerCAmelCase : Optional[Any] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) _lowerCAmelCase : Union[str, Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case_ ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case_ ) _lowerCAmelCase : Any = model.generate( **snake_case_ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=snake_case_ , ) _lowerCAmelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case_ ) _lowerCAmelCase : Union[str, Any] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case_ , snake_case_ )
309
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
1
import copy import random from transformers import CLIPTokenizer class _lowercase ( a__ ): """simple docstring""" def __init__(self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) a = {} def UpperCamelCase_ (self , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" a = super().add_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' " `placeholder_token` that is not already in the tokenizer." ) def UpperCamelCase_ (self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=1 , **lowerCamelCase_ ): """simple docstring""" a = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) else: a = [] for i in range(_lowerCamelCase ): a = placeholder_token + F'''_{i}''' self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) a = output def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0 ): """simple docstring""" if isinstance(_lowerCamelCase , _lowerCamelCase ): a = [] for i in range(len(_lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: a = self.token_map[placeholder_token] a = tokens[: 1 + int(len(_lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: a = copy.copy(_lowerCamelCase ) random.shuffle(_lowerCamelCase ) a = text.replace(_lowerCamelCase , " ".join(_lowerCamelCase ) ) return text def __call__(self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0 , **lowerCamelCase_ ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , ) def UpperCamelCase_ (self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0 , **lowerCamelCase_ ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
369
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = field(default="automatic-speech-recognition", metadata={"include_in_asdict_even_if_is_default": True} ) __A = Features({"audio": Audio()} ) __A = Features({"transcription": Value("string" )} ) __A = "audio" __A = "transcription" def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) a = copy.deepcopy(self ) a = self.input_schema.copy() a = features[self.audio_column] a = input_schema return task_template @property def UpperCamelCase_ (self ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
71
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowercase_ ( unittest.TestCase ): @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) UpperCamelCase_ = load_dataset("""ashraq/esc50""" ) UpperCamelCase_ = dataset["""train"""]["""audio"""][-1]["""array"""] UpperCamelCase_ = audio_classifier(__UpperCamelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @slow @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog UpperCamelCase_ = load_dataset("""ashraq/esc50""" ) UpperCamelCase_ = dataset["""train"""]["""audio"""][-1]["""array"""] UpperCamelCase_ = audio_classifier(__UpperCamelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) UpperCamelCase_ = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) UpperCamelCase_ = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass
122
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Any = DanceDiffusionPipeline A__ : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A__ : List[Any] = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } A__ : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A__ : str = False A__ : Any = False def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_ = IPNDMScheduler() UpperCamelCase_ = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = DanceDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ = pipe(**__UpperCamelCase ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_ = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def lowerCamelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
122
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __A ( UpperCamelCase__ ): a__ : Dict = """gpt_neox_japanese""" def __init__(self : Tuple , __a : Optional[int]=32000 , __a : List[str]=2560 , __a : Optional[int]=32 , __a : Optional[Any]=32 , __a : str=4 , __a : str="gelu" , __a : str=1.00 , __a : Optional[int]=10000 , __a : Optional[Any]=2048 , __a : Optional[Any]=0.02 , __a : Optional[int]=1E-5 , __a : Optional[int]=True , __a : Dict=31996 , __a : Optional[int]=31999 , __a : Union[str, Any]=0.1 , __a : Any=0.0 , **__a : Any , ): super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_multiple_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = rotary_pct UpperCAmelCase_ = rotary_emb_base UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = hidden_dropout
106
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } UpperCAmelCase_ = Dataset.from_dict(snake_case_ ) return dataset class __A ( UpperCamelCase__ ): def _lowercase (self : str ): UpperCAmelCase_ = get_dataset() UpperCAmelCase_ = make_duplicate_clusters(__a , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = get_dataset() UpperCAmelCase_ , UpperCAmelCase_ = deduplicate_dataset(__a ) self.assertEqual(len(__a ) , 2 ) print(__a ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , __a )
106
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : int = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
1
"""simple docstring""" import argparse import os import re __snake_case = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __snake_case = re.compile(R"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings __snake_case = re.compile(R"""\s*\(\s*\"(\S[^\"]+)\"""") def __lowerCAmelCase ( lowercase : int , lowercase : bool = False ) -> int: """simple docstring""" with open(lowercase , "r" , encoding="utf-8" ) as f: snake_case : str = f.read() snake_case : Any = content.split("\n" ) snake_case : List[Any] = [] snake_case : Dict = 0 while line_idx < len(lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: snake_case : str = len(re.search(R"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 snake_case : int = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": snake_case : Tuple = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers snake_case : Dict = sorted(lowercase , key=lambda lowercase : _re_identifier.search(lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase , "w" , encoding="utf-8" ) as f: f.write("\n".join(lowercase ) ) elif "\n".join(lowercase ) != content: return True def __lowerCAmelCase ( lowercase : bool = False ) -> Any: """simple docstring""" snake_case : Dict = [os.path.join(lowercase , lowercase ) for f in os.listdir(lowercase ) if f.endswith(".py" )] snake_case : List[Any] = [sort_auto_mapping(lowercase , overwrite=lowercase ) for fname in fnames] if not overwrite and any(lowercase ): snake_case : Tuple = [f for f, d in zip(lowercase , lowercase ) if d] raise ValueError( F'The following files have auto mappings that need sorting: {", ".join(lowercase )}. Run `make style` to fix' " this." ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") __snake_case = parser.parse_args() sort_all_auto_mappings(not args.check_only)
112
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def lowerCamelCase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : List[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case : int = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = object_detector(examples[0] , threshold=0.0 ) snake_case : str = len(UpperCamelCase__ ) self.assertGreater(UpperCamelCase__ , 0 ) self.assertEqual( UpperCamelCase__ , [ { "score": ANY(UpperCamelCase__ ), "label": ANY(UpperCamelCase__ ), "box": {"xmin": ANY(UpperCamelCase__ ), "ymin": ANY(UpperCamelCase__ ), "xmax": ANY(UpperCamelCase__ ), "ymax": ANY(UpperCamelCase__ )}, } for i in range(UpperCamelCase__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @require_torch def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Dict = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) snake_case : Dict = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Optional[int] = pipeline("zero-shot-object-detection" ) snake_case : Tuple = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) snake_case : List[Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass @require_torch @slow def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = 0.2 snake_case : List[str] = pipeline("zero-shot-object-detection" ) snake_case : List[Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = 2 snake_case : Optional[Any] = pipeline("zero-shot-object-detection" ) snake_case : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
112
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __magic_name__: Any = "realm" def __init__( self : Any , _A : Tuple=30522 , _A : Optional[Any]=768 , _A : Optional[Any]=128 , _A : Optional[int]=12 , _A : Any=12 , _A : List[Any]=8 , _A : List[str]=3072 , _A : Any="gelu_new" , _A : Union[str, Any]=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[Any]=512 , _A : Union[str, Any]=2 , _A : Optional[Any]=0.0_2 , _A : Dict=1E-12 , _A : List[Any]=256 , _A : Optional[int]=10 , _A : Union[str, Any]=1E-3 , _A : int=5 , _A : str=320 , _A : str=13353718 , _A : List[Any]=5000 , _A : Optional[Any]=1 , _A : str=0 , _A : Tuple=2 , **_A : List[Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) # Common config snake_case_ : Union[str, Any] = vocab_size snake_case_ : Tuple = max_position_embeddings snake_case_ : List[Any] = hidden_size snake_case_ : Tuple = retriever_proj_size snake_case_ : str = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Optional[int] = num_candidates snake_case_ : int = intermediate_size snake_case_ : str = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Any = initializer_range snake_case_ : Dict = type_vocab_size snake_case_ : Any = layer_norm_eps # Reader config snake_case_ : str = span_hidden_size snake_case_ : Optional[int] = max_span_width snake_case_ : Optional[int] = reader_layer_norm_eps snake_case_ : List[Any] = reader_beam_size snake_case_ : Optional[int] = reader_seq_len # Retrieval config snake_case_ : List[str] = num_block_records snake_case_ : List[str] = searcher_beam_size
327
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __lowercase : Optional[Any] = False class __UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a : Optional[int] = torch.manual_seed(0 ) __a : Tuple = pipe.dual_guided( prompt='first prompt' , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) __a : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(__a , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Tuple = generator.manual_seed(0 ) __a : Dict = pipe.dual_guided( prompt='first prompt' , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : str = 'cyberpunk 2077' __a : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a : Tuple = torch.manual_seed(0 ) __a : int = pipe.dual_guided( prompt=__a , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a : List[Any] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __a : Union[str, Any] = 'A painting of a squirrel eating a burger ' __a : List[str] = torch.manual_seed(0 ) __a : List[str] = pipe.text_to_image( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images __a : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a : Tuple = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __a : str = pipe.image_variation(__a , generator=__a , output_type='numpy' ).images __a : Optional[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a : int = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
294
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = CodeGenTokenizer A_ = CodeGenTokenizerFast A_ = True A_ = {"add_prefix_space": True} A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __a : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __a : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : Dict = {'unk_token': '<unk>'} __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = 'lower newer' __a : Tuple = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : str = 'lower newer' __a : Tuple = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) __a : List[str] = tokens + [tokenizer.unk_token] __a : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __a : List[Any] = self.get_tokenizer() __a : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Any = 'lower newer' # Testing tokenization __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) __a : Dict = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens __a : int = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __a : Tuple = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens __a : Tuple = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Union[str, Any] = tokenizer.encode(__a , add_prefix_space=__a ) __a : int = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token __a : Any = tokens + [rust_tokenizer.unk_token] __a : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self , *__a , **__a ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __a : List[Any] = 'This is a simple input' __a : Tuple = ['This is a simple input 1', 'This is a simple input 2'] __a : Tuple = ('This is a simple input', 'This is a pair') __a : str = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __a : str = 'This is a simple input' __a : Any = ['This is a simple input looooooooong', 'This is a simple input'] __a : Optional[int] = ('This is a simple input', 'This is a pair') __a : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __a : int = tokenizer.pad_token_id __a : List[Any] = tokenizer(__a , padding='max_length' , max_length=30 , return_tensors='np' ) __a : Union[str, Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) __a : Optional[Any] = tokenizer(*__a , padding='max_length' , max_length=60 , return_tensors='np' ) __a : List[Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = '$$$' __a : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) __a : Union[str, Any] = 'This is a simple input' __a : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] __a : List[Any] = tokenizer.bos_token_id __a : List[str] = tokenizer(__a ) __a : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __a : Any = tokenizer.decode(out_s.input_ids ) __a : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) __a : Optional[int] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' __a : Tuple = '\nif len_a > len_b: result = a\nelse: result = b' __a : Optional[int] = tokenizer.encode(__a ) __a : Union[str, Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] __a : Tuple = tokenizer.decode(__a , truncate_before_pattern=__a ) self.assertEqual(__a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' pass
294
1
"""simple docstring""" _a = 8.3_144_598 def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float) -> float: '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K") if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol") else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _a = 3_00 _a = 28 _a = rms_speed_of_molecule(temperature, molar_mass) print(F"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
17
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : List[str] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModel.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =AutoModel.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =AutoModelForPreTraining.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Tuple =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Tuple =TFAutoModelForCausalLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =AutoModelForCausalLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =AutoModelForCausalLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : int =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Tuple =TFAutoModelForMaskedLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =AutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Optional[Any] =AutoModelForMaskedLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[str] =TFAutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[Any] =AutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : str =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =AutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) __UpperCamelCase : str =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) __UpperCamelCase : int =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 )
71
0
def snake_case( __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def snake_case( ) -> Optional[int]: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
356
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''input_values''', '''attention_mask'''] def __init__( self : Optional[Any] , _A : int = 1 , _A : int = 16_000 , _A : float = 0.0 , _A : bool = False , _A : int = 80 , _A : int = 16 , _A : int = 64 , _A : str = "hann_window" , _A : float = 1.0 , _A : float = 80 , _A : float = 7_600 , _A : float = 1E-10 , _A : int = 2 , _A : bool = True , **_A : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) lowercase : str = do_normalize lowercase : int = return_attention_mask lowercase : Union[str, Any] = num_mel_bins lowercase : Union[str, Any] = hop_length lowercase : Dict = win_length lowercase : Union[str, Any] = win_function lowercase : int = frame_signal_scale lowercase : Dict = fmin lowercase : Optional[Any] = fmax lowercase : str = mel_floor lowercase : Dict = reduction_factor lowercase : List[Any] = win_length * sampling_rate // 1_000 lowercase : Union[str, Any] = hop_length * sampling_rate // 1_000 lowercase : Optional[Any] = optimal_fft_length(self.sample_size ) lowercase : Dict = (self.n_fft // 2) + 1 lowercase : Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) lowercase : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[int] = np.array(_A , np.intaa ) lowercase : Dict = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : List[str] = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __a ( self : Any , _A : np.ndarray , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = spectrogram( _A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : List[Any] , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , **_A : Tuple , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: lowercase : Any = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) else: lowercase : Any = None if audio_target is not None: lowercase : Tuple = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) if inputs is None: return inputs_target else: lowercase : Any = inputs_target['''input_values'''] lowercase : Dict = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase : Union[str, Any] = decoder_attention_mask return inputs def __a ( self : List[Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = False , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , **_A : Any , ) -> BatchFeature: """simple docstring""" lowercase : Optional[int] = isinstance(_A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : int = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : Optional[int] = [np.asarray(_A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[str] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase : List[str] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : Union[str, Any] = [speech] # needed to make pad() work on spectrogram inputs lowercase : Any = self.feature_size # convert into correct format for padding if is_target: lowercase : int = [self._extract_mel_features(_A ) for waveform in speech] lowercase : Any = BatchFeature({'''input_values''': features} ) lowercase : Optional[Any] = self.num_mel_bins else: lowercase : Optional[Any] = BatchFeature({'''input_values''': speech} ) lowercase : Optional[int] = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) lowercase : str = feature_size_hack # convert input values to correct format lowercase : List[Any] = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): lowercase : List[str] = [np.asarray(_A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase : List[str] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase : Optional[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase : int = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase : Union[str, Any] = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase : Any = ( attention_mask if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase : Optional[int] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_A , padding_value=self.padding_value ) if return_tensors is not None: lowercase : Tuple = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase : Optional[int] = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
116
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : Any = logging.getLogger(__name__) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int) __UpperCamelCase : Any = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: __UpperCamelCase : List[Any] = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __UpperCamelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) __UpperCamelCase : Optional[Any] = [0] * args.vocab_size for k, v in counter.items(): __UpperCamelCase : Dict = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
106
"""simple docstring""" import random def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = [], [], [] for element in data: if element < pivot: less.append(A_ ) elif element > pivot: greater.append(A_ ) else: equal.append(A_ ) return less, equal, greater def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(A_ ) or index < 0: return None lowerCAmelCase__ : str = items[random.randint(0 , len(A_ ) - 1 )] lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = _partition(A_ , A_ ) lowerCAmelCase__ : str = len(A_ ) lowerCAmelCase__ : Optional[Any] = len(A_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(A_ , A_ ) # must be in larger else: return quick_select(A_ , index - (m + count) )
106
1
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : int = 'Hello world! cécé herlolip' def snake_case (A_ :str , A_ :str , A_ :bool ): '''simple docstring''' a : int = FairseqRobertaModel.from_pretrained(A_ ) roberta.eval() # disable dropout a : Union[str, Any] = roberta.model.encoder.sentence_encoder a : List[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: a : List[str] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , A_ ) a : Optional[Any] = XLMRobertaXLForSequenceClassification(A_ ) if classification_head else XLMRobertaXLForMaskedLM(A_ ) model.eval() # Now let's copy all the weights. # Embeddings a : str = roberta_sent_encoder.embed_tokens.weight a : Optional[int] = roberta_sent_encoder.embed_positions.weight a : Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. a : Optional[Any] = roberta_sent_encoder.layer_norm.weight a : int = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer a : BertLayer = model.roberta.encoder.layer[i] a : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] a : RobertaAttention = layer.attention a : List[Any] = roberta_layer.self_attn_layer_norm.weight a : List[Any] = roberta_layer.self_attn_layer_norm.bias # self attention a : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) a : List[Any] = roberta_layer.self_attn.q_proj.weight a : Optional[int] = roberta_layer.self_attn.q_proj.bias a : int = roberta_layer.self_attn.k_proj.weight a : Optional[int] = roberta_layer.self_attn.k_proj.bias a : str = roberta_layer.self_attn.v_proj.weight a : str = roberta_layer.self_attn.v_proj.bias # self-attention output a : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape a : Dict = roberta_layer.self_attn.out_proj.weight a : List[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm a : List[Any] = roberta_layer.final_layer_norm.weight a : Dict = roberta_layer.final_layer_norm.bias # intermediate a : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape a : Tuple = roberta_layer.fca.weight a : Tuple = roberta_layer.fca.bias # output a : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape a : Union[str, Any] = roberta_layer.fca.weight a : Tuple = roberta_layer.fca.bias # end of layer if classification_head: a : List[str] = roberta.model.classification_heads['mnli'].dense.weight a : List[str] = roberta.model.classification_heads['mnli'].dense.bias a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head a : int = roberta.model.encoder.lm_head.dense.weight a : str = roberta.model.encoder.lm_head.dense.bias a : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight a : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.bias a : Tuple = roberta.model.encoder.lm_head.weight a : Tuple = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. a : torch.Tensor = roberta.encode(A_ ).unsqueeze(0 ) # batch of size 1 a : Union[str, Any] = model(A_ )[0] if classification_head: a : List[str] = roberta.model.classification_heads['mnli'](roberta.extract_features(A_ ) ) else: a : List[Any] = roberta.model(A_ )[0] print(our_output.shape , their_output.shape ) a : Optional[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 a : Union[str, Any] = torch.allclose(A_ , A_ , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(A_ ).mkdir(parents=A_ , exist_ok=A_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
357
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Optional[int] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) a : int = AutoTokenizer.from_pretrained('xlm-roberta-base' ) a : int = 'The dog is cute and lives in the garden house' a : List[Any] = jnp.array([tokenizer.encode(A )] ) a : int = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim a : Dict = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) a : Any = model(A )['last_hidden_state'] self.assertEqual(output.shape , A ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , A , atol=1E-3 ) )
186
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int ): assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = 1, 1 for _ in range(number_of_steps - 1 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
112
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCamelCase__ : str = logging.getLogger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''summarization''' _A : Optional[Any] = ['''loss'''] _A : Tuple = ROUGE_KEYS _A : int = '''rouge2''' def __init__( self : int , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: __SCREAMING_SNAKE_CASE : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , mode=self.mode , **lowerCAmelCase__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : int = Path(self.output_dir ) / """metrics.json""" __SCREAMING_SNAKE_CASE : Optional[Any] = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[Any] = defaultdict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.config.model_type __SCREAMING_SNAKE_CASE : List[Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size __SCREAMING_SNAKE_CASE : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __SCREAMING_SNAKE_CASE : List[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } __SCREAMING_SNAKE_CASE : Any = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __SCREAMING_SNAKE_CASE : Any = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __SCREAMING_SNAKE_CASE : Any = get_git_info()["""repo_sha"""] __SCREAMING_SNAKE_CASE : Any = hparams.num_workers __SCREAMING_SNAKE_CASE : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __SCREAMING_SNAKE_CASE : Any = self.decoder_start_token_id __SCREAMING_SNAKE_CASE : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.hparams.eval_max_gen_length else: __SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.max_length __SCREAMING_SNAKE_CASE : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Dict[str, torch.Tensor] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) __SCREAMING_SNAKE_CASE : Optional[int] = True return readable_batch def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return self.model(lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.batch_decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return lmap(str.strip , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.pad_token_id __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""], batch["""attention_mask"""] __SCREAMING_SNAKE_CASE : Tuple = batch["""labels"""] if isinstance(self.model , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = self.model._shift_right(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCAmelCase__ , lowerCAmelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __SCREAMING_SNAKE_CASE : Tuple = decoder_input_ids self.save_readable_batch(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __SCREAMING_SNAKE_CASE : Tuple = nn.CrossEntropyLoss(ignore_index=lowerCAmelCase__ ) assert lm_logits.shape[-1] == self.vocab_size __SCREAMING_SNAKE_CASE : List[Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = label_smoothed_nll_loss( lowerCAmelCase__ , lowerCAmelCase__ , self.hparams.label_smoothing , ignore_index=lowerCAmelCase__ ) return (loss,) @property def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return self.tokenizer.pad_token_id def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = dict(zip(self.loss_names , lowerCAmelCase__ ) ) # tokens per batch __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].eq(self.pad ).sum() __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]="val" ): """simple docstring""" self.step_count += 1 __SCREAMING_SNAKE_CASE : int = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __SCREAMING_SNAKE_CASE : List[Any] = losses["""loss"""] __SCREAMING_SNAKE_CASE : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } __SCREAMING_SNAKE_CASE : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __SCREAMING_SNAKE_CASE : torch.FloatTensor = torch.tensor(lowerCAmelCase__ ).type_as(lowerCAmelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = {F"{prefix}_avg_{k}": x for k, x in losses.items()} __SCREAMING_SNAKE_CASE : Optional[int] = self.step_count self.metrics[prefix].append(lowerCAmelCase__ ) # callback writes this to self.metrics_save_path __SCREAMING_SNAKE_CASE : int = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"{prefix}_loss": loss, F"{prefix}_{self.val_metric}": metric_tensor, } def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ): """simple docstring""" return calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __SCREAMING_SNAKE_CASE : List[str] = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCAmelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (time.time() - ta) / batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(batch["""labels"""] ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = dict(zip(self.loss_names , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = self.calc_generative_metrics(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = np.mean(lmap(lowerCAmelCase__ , lowerCAmelCase__ ) ) base_metrics.update(gen_time=lowerCAmelCase__ , gen_len=lowerCAmelCase__ , preds=lowerCAmelCase__ , target=lowerCAmelCase__ , **lowerCAmelCase__ ) return base_metrics def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int ): """simple docstring""" return self.validation_epoch_end(lowerCAmelCase__ , prefix="""test""" ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.n_obs[type_path] __SCREAMING_SNAKE_CASE : str = self.target_lens[type_path] __SCREAMING_SNAKE_CASE : str = self.dataset_class( self.tokenizer , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , max_target_length=lowerCAmelCase__ , **self.dataset_kwargs , ) return dataset def UpperCamelCase__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataset(lowerCAmelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Optional[int] = dataset.make_sortish_sampler(lowerCAmelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Any = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_sampler=lowerCAmelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCAmelCase__ ) return dataloader def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) add_generic_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument("""--logger_name""" , type=lowerCAmelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCAmelCase__ , default=5_0_0 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCAmelCase__ , default="""summarization""" , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCAmelCase__ , default=0.0 , required=lowerCAmelCase__ ) parser.add_argument("""--src_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--tgt_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--eval_beams""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( """--val_metric""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[Any] = '''translation''' _A : int = ['''loss'''] _A : Union[str, Any] = ['''bleu'''] _A : Dict = '''bleu''' def __init__( self : Any , lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ): """simple docstring""" super().__init__(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = hparams.src_lang __SCREAMING_SNAKE_CASE : Dict = hparams.tgt_lang def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): """simple docstring""" return calculate_bleu(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str=None ): Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: __SCREAMING_SNAKE_CASE : SummarizationModule = SummarizationModule(_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : SummarizationModule = TranslationModule(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): __SCREAMING_SNAKE_CASE : str = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Any = os.environ.get("""WANDB_PROJECT""" , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Optional[int] = WandbLogger(name=model.output_dir.name , project=F"hf_{dataset}" ) if args.early_stopping_patience >= 0: __SCREAMING_SNAKE_CASE : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = args.val_metric == """loss""" __SCREAMING_SNAKE_CASE : pl.Trainer = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model __SCREAMING_SNAKE_CASE : Optional[int] = """""" __SCREAMING_SNAKE_CASE : Any = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_lowerCamelCase ) ) if checkpoints: __SCREAMING_SNAKE_CASE : List[Any] = checkpoints[-1] __SCREAMING_SNAKE_CASE : str = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() UpperCamelCase__ : Dict = pl.Trainer.add_argparse_args(parser) UpperCamelCase__ : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ : List[str] = parser.parse_args() main(args)
112
1
from copy import deepcopy class __lowerCAmelCase : def __init__(self , __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if arr is None and size is not None: snake_case_ : Union[str, Any] = size snake_case_ : Dict = [0] * size elif arr is not None: self.init(__magic_name__ ) else: raise ValueError('''Either arr or size must be specified''' ) def lowerCamelCase (self , __magic_name__ ) -> None: '''simple docstring''' snake_case_ : Optional[int] = len(__magic_name__ ) snake_case_ : Optional[Any] = deepcopy(__magic_name__ ) for i in range(1 , self.size ): snake_case_ : Any = self.next_(__magic_name__ ) if j < self.size: self.tree[j] += self.tree[i] def lowerCamelCase (self ) -> list[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[Any] = self.next_(__magic_name__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowerCamelCase (__magic_name__ ) -> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def lowerCamelCase (__magic_name__ ) -> int: '''simple docstring''' return index - (index & (-index)) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Dict = self.next_(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' self.add(__magic_name__ , value - self.get(__magic_name__ ) ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' if right == 0: return 0 snake_case_ : List[Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Union[str, Any] = self.prev(__magic_name__ ) return result def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return self.query(__magic_name__ , index + 1 ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 snake_case_ : Optional[int] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Any = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
279
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Any = self.dummy_uncond_unet snake_case_ : Optional[Any] = PNDMScheduler() snake_case_ : Optional[Any] = PNDMPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pndm.to(__magic_name__ ) pndm.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Dict = pndm(generator=__magic_name__ , num_inference_steps=20 , output_type='''numpy''' ).images snake_case_ : str = torch.manual_seed(0 ) snake_case_ : str = pndm(generator=__magic_name__ , num_inference_steps=20 , output_type='''numpy''' , return_dict=__magic_name__ )[0] snake_case_ : Any = image[0, -3:, -3:, -1] snake_case_ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : str = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Tuple = '''google/ddpm-cifar10-32''' snake_case_ : Tuple = UNetaDModel.from_pretrained(__magic_name__ ) snake_case_ : Optional[Any] = PNDMScheduler() snake_case_ : Any = PNDMPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pndm.to(__magic_name__ ) pndm.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : int = torch.manual_seed(0 ) snake_case_ : Tuple = pndm(generator=__magic_name__ , output_type='''numpy''' ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : str = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
279
1
"""simple docstring""" import os import sys import unittest _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _snake_case = os.path.join(git_repo_path, 'src', 'diffusers') class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : List[Any] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(UpperCAmelCase__ , """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _a : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(UpperCAmelCase__ , """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _a : int = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(UpperCAmelCase__ , """torch_and_transformers_and_onnx""" ) def _lowercase ( self : str ) -> Optional[Any]: _a : str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , UpperCAmelCase__ ) self.assertIn("""torch_and_transformers""" , UpperCAmelCase__ ) self.assertIn("""flax_and_transformers""" , UpperCAmelCase__ ) self.assertIn("""torch_and_transformers_and_onnx""" , UpperCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""" , objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""] ) def _lowercase ( self : Any ) -> int: _a : List[str] = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(UpperCAmelCase__ , """\nCONSTANT = None\n""" ) _a : Tuple = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( UpperCAmelCase__ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _a : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _a : List[Any] = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> Any: _a : List[Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _a : Optional[int] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , UpperCAmelCase__ )
294
"""simple docstring""" from __future__ import annotations import time import numpy as np _snake_case = [8, 5, 9, 7] _snake_case = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _snake_case = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : list[list[int]] , ) -> None: _a : List[str] = claim_vector _a : List[Any] = allocated_resources_table _a : Union[str, Any] = maximum_claim_table def _lowercase ( self : Tuple ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _lowercase ( self : int ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _lowercase ( self : List[str] ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(UpperCAmelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _lowercase ( self : Optional[Any] ) -> dict[int, list[int]]: return {self.__need().index(UpperCAmelCase__ ): i for i in self.__need()} def _lowercase ( self : Dict , **UpperCAmelCase__ : Optional[Any] ) -> None: _a : List[Any] = self.__need() _a : Optional[int] = self.__allocated_resources_table _a : str = self.__available_resources() _a : Optional[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: _a : int = False for each_need in need_list: _a : Optional[int] = True for index, need in enumerate(UpperCAmelCase__ ): if need > available_resources[index]: _a : List[Any] = False break if execution: _a : str = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _a : Any = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(UpperCAmelCase__ ) # update available/freed resources stack _a : Union[str, Any] = np.array(UpperCAmelCase__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(UpperCAmelCase__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _lowercase ( self : Any ) -> Optional[int]: print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(UpperCAmelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(UpperCAmelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(UpperCAmelCase__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(UpperCAmelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
294
1
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): def get_matched_characters(snake_case_ :str , snake_case_ :str ) -> str: __UpperCAmelCase = [] __UpperCAmelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __UpperCAmelCase = int(max(0 , i - limit ) ) __UpperCAmelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(snake_case_ ) __UpperCAmelCase = F'''{_stra[0:_stra.index(snake_case_ )]} {_stra[_stra.index(snake_case_ ) + 1:]}''' return "".join(snake_case_ ) # matching characters __UpperCAmelCase = get_matched_characters(snake_case_ , snake_case_ ) __UpperCAmelCase = get_matched_characters(snake_case_ , snake_case_ ) __UpperCAmelCase = len(snake_case_ ) # transposition __UpperCAmelCase = ( len([(ca, ca) for ca, ca in zip(snake_case_ , snake_case_ ) if ca != ca] ) // 2 ) if not match_count: __UpperCAmelCase = 0.0 else: __UpperCAmelCase = ( 1 / 3 * ( match_count / len(snake_case_ ) + match_count / len(snake_case_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __UpperCAmelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
86
"""simple docstring""" class _UpperCAmelCase : def __init__( self : str , _lowercase : list ): __UpperCAmelCase = set_counts __UpperCAmelCase = max(_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = [1] * num_sets __UpperCAmelCase = list(range(_lowercase ) ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): __UpperCAmelCase = self.get_parent(_lowercase ) __UpperCAmelCase = self.get_parent(_lowercase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase = 0 __UpperCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase = 0 __UpperCAmelCase = src_parent __UpperCAmelCase = self.set_counts[src_parent] __UpperCAmelCase = max(self.max_set , _lowercase ) return True def a ( self : Optional[Any] , _lowercase : int ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
86
1
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _A (__a , __a ) -> List[Any]: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer SCREAMING_SNAKE_CASE_ : List[str] = flax_key_tuple[:-1] + ('''weight''',) SCREAMING_SNAKE_CASE_ : Dict = torch.permute(__a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__a ): # linear layer SCREAMING_SNAKE_CASE_ : Tuple = flax_key_tuple[:-1] + ('''weight''',) SCREAMING_SNAKE_CASE_ : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def _A (__a , __a , __a ) -> Union[str, Any]: """simple docstring""" if "metadata" in layer: SCREAMING_SNAKE_CASE_ : Tuple = layer.split('''metadata''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = ''''''.join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ : List[Any] = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: SCREAMING_SNAKE_CASE_ : Any = layer.split('''kvstore''' ) SCREAMING_SNAKE_CASE_ : Tuple = ''''''.join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ : Optional[Any] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer.split('''/''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = '''/'''.join(split_layer[:-1] ) SCREAMING_SNAKE_CASE_ : str = (split_layer[-1],) if "kvstore/path" in layer: SCREAMING_SNAKE_CASE_ : Optional[int] = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: SCREAMING_SNAKE_CASE_ : Optional[Any] = '''file''' else: SCREAMING_SNAKE_CASE_ : int = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _A (__a , __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = rename_keys(__a ) SCREAMING_SNAKE_CASE_ : List[str] = {} for k, v in current_block.items(): SCREAMING_SNAKE_CASE_ : Optional[Any] = v SCREAMING_SNAKE_CASE_ : Optional[Any] = new_current_block torch.save(__a , __a ) def _A (__a , __a , __a , __a , __a = WEIGHTS_NAME ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_file_size_to_int(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : List[Any] = 0 os.makedirs(__a , exist_ok=__a ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: SCREAMING_SNAKE_CASE_ : Dict = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = flatten_dict(__a , sep='''/''' ) SCREAMING_SNAKE_CASE_ : Tuple = {} for layer in checkpoint_info.keys(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = get_key_and_tensorstore_dict( __a , __a , __a ) if curr_real_layer_name in all_layers: SCREAMING_SNAKE_CASE_ : Any = content else: SCREAMING_SNAKE_CASE_ : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file SCREAMING_SNAKE_CASE_ : List[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = rename_base_flax_keys(tuple(key.split('''/''' ) ) , __a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = '''/'''.join(__a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join( __a , weights_name.replace('''.bin''' , f'-{len(__a )+1:05d}-of-???.bin' ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) del current_block SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : str = raw_weights.to(getattr(__a , __a ) ) current_block_size += weight_size total_size += weight_size # Add the last block SCREAMING_SNAKE_CASE_ : Dict = os.path.join(__a , weights_name.replace('''.bin''' , f'-{len(__a )+1:05d}-of-???.bin' ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} for idx, shard in enumerate(__a ): SCREAMING_SNAKE_CASE_ : List[str] = weights_name.replace( '''.bin''' , f'-{idx+1:05d}-of-{len(__a ):05d}.bin' ) # len(sharded_state_dicts):05d} SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(__a , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(__a , os.path.join(__a , __a ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = shard for key in shard: SCREAMING_SNAKE_CASE_ : Optional[Any] = shard_file # Add the metadata SCREAMING_SNAKE_CASE_ : Dict = {'''total_size''': total_size} SCREAMING_SNAKE_CASE_ : List[Any] = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__a , __a ) , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '''\n''' f.write(__a ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) UpperCAmelCase_ : Any = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _A () -> Tuple: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer SCREAMING_SNAKE_CASE_ : Optional[Any] = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ : str = TaTokenizer.from_pretrained('''t5-small''' ) SCREAMING_SNAKE_CASE_ : str = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' SCREAMING_SNAKE_CASE_ : List[str] = tokenizer(__a , return_tensors='''pt''' ).input_ids SCREAMING_SNAKE_CASE_ : int = model.generate(__a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
91
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "xmod" def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=False, lowerCamelCase__=2, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=("en_XX",), lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : int = vocab_size A : int = hidden_size A : str = num_hidden_layers A : List[str] = num_attention_heads A : List[str] = hidden_act A : Dict = intermediate_size A : Optional[int] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : int = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = initializer_range A : str = layer_norm_eps A : Union[str, Any] = position_embedding_type A : Any = use_cache A : int = classifier_dropout A : int = pre_norm A : List[str] = adapter_reduction_factor A : Any = adapter_layer_norm A : Any = adapter_reuse_layer_norm A : str = ln_before_adapter A : Dict = list(lowerCamelCase__ ) A : Union[str, Any] = default_language class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
116
0
'''simple docstring''' # Function to print upper half of diamond (pyramid) def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Any: for i in range(0 , UpperCAmelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> Any: for i in range(UpperCAmelCase__ , 0 , -1 ): for _ in range(UpperCAmelCase__ , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> str: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(UpperCAmelCase__ ) # upper half reverse_floyd(UpperCAmelCase__ ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") _lowercase : Dict = 1 while K: _lowercase : Optional[int] = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) _lowercase : List[str] = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
21
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a__ = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") a__ = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a__ = sorted(arg_to_scheduler.keys()) a__ = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class snake_case ( pl.LightningModule ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="base" , lowerCAmelCase : Any=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : int , ) -> Optional[Any]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_SCREAMING_SNAKE_CASE) _snake_case : List[str] = 0 _snake_case : Tuple = Path(self.hparams.output_dir) _snake_case : Any = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Optional[int] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: _snake_case : PretrainedConfig = config _snake_case : Union[str, Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): assert hasattr(self.config , _SCREAMING_SNAKE_CASE), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , _SCREAMING_SNAKE_CASE , getattr(self.hparams , _SCREAMING_SNAKE_CASE)) if tokenizer is None: _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_SCREAMING_SNAKE_CASE , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : List[str] = MODEL_MODES[mode] if model is None: _snake_case : Any = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path) , config=self.config , cache_dir=_SCREAMING_SNAKE_CASE , ) else: _snake_case : Dict = model def UpperCamelCase_ ( self : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : int = self.model_type.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : List[str]) -> Any: """simple docstring""" _snake_case : List[Any] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) _snake_case : Any = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCamelCase_ ( self : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[Any] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Dict = Adafactor( _SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=_SCREAMING_SNAKE_CASE , relative_step=_SCREAMING_SNAKE_CASE) else: _snake_case : List[str] = AdamW( _SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) _snake_case : int = optimizer _snake_case : List[str] = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" return self.validation_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" return self.validation_end(_SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : Tuple) -> int: """simple docstring""" _snake_case : Tuple = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores _snake_case : Any = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCamelCase_ ( self : str , lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" if stage == "test": _snake_case : str = len(self.test_dataloader().dataset) else: _snake_case : Optional[int] = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE) _snake_case : Dict = len(self.train_dataloader().dataset) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple = False) -> Optional[Any]: """simple docstring""" raise NotImplementedError("""You must implement this for your task""") def UpperCamelCase_ ( self : List[Any]) -> Optional[Any]: """simple docstring""" return self.train_loader def UpperCamelCase_ ( self : Optional[int]) -> str: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=_SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : int) -> int: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=_SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : int , lowerCAmelCase : int) -> int: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( _SCREAMING_SNAKE_CASE , list(filter(_SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("""/"""))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Optional[Any]) -> None: """simple docstring""" _snake_case : Optional[Any] = self.output_dir.joinpath("""best_tfmr""") _snake_case : List[str] = self.step_count self.model.save_pretrained(_SCREAMING_SNAKE_CASE) self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE) @staticmethod def UpperCamelCase_ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict) -> Tuple: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=_SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name""") parser.add_argument( """--tokenizer_name""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(_SCREAMING_SNAKE_CASE).parent / """test_run""" / """cache""") , type=_SCREAMING_SNAKE_CASE , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=_SCREAMING_SNAKE_CASE , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=_SCREAMING_SNAKE_CASE , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=_SCREAMING_SNAKE_CASE , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=_SCREAMING_SNAKE_CASE , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=_SCREAMING_SNAKE_CASE , help="""The initial learning rate for Adam.""") parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=_SCREAMING_SNAKE_CASE , metavar=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=_SCREAMING_SNAKE_CASE , help="""Weight decay if we apply some.""") parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=_SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""") parser.add_argument("""--warmup_steps""" , default=0 , type=_SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""") parser.add_argument("""--num_workers""" , default=4 , type=_SCREAMING_SNAKE_CASE , help="""kwarg passed to DataLoader""") parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=_SCREAMING_SNAKE_CASE) parser.add_argument("""--train_batch_size""" , default=32 , type=_SCREAMING_SNAKE_CASE) parser.add_argument("""--eval_batch_size""" , default=32 , type=_SCREAMING_SNAKE_CASE) parser.add_argument("""--adafactor""" , action="""store_true""") class snake_case ( pl.Callback ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class snake_case ( pl.Callback ): '''simple docstring''' def UpperCamelCase_ ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int) -> int: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_SCREAMING_SNAKE_CASE) class snake_case ( pl.Callback ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : str) -> int: """simple docstring""" _snake_case : List[str] = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : List[str] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" rank_zero_info("""***** Validation results *****""") _snake_case : str = trainer.callback_metrics # Log results for key in sorted(_SCREAMING_SNAKE_CASE): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(_SCREAMING_SNAKE_CASE , str(metrics[key]))) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" rank_zero_info("""***** Test results *****""") _snake_case : Optional[Any] = trainer.callback_metrics # Log and save results to file _snake_case : Optional[int] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""") with open(_SCREAMING_SNAKE_CASE , """w""") as writer: for key in sorted(_SCREAMING_SNAKE_CASE): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(_SCREAMING_SNAKE_CASE , str(metrics[key]))) writer.write("""{} = {}\n""".format(_SCREAMING_SNAKE_CASE , str(metrics[key]))) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( """--output_dir""" , default=str(Path(SCREAMING_SNAKE_CASE__ ).parent / """test_run""" / """model_checkpoints""" ) , type=SCREAMING_SNAKE_CASE__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=SCREAMING_SNAKE_CASE__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=SCREAMING_SNAKE_CASE__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(SCREAMING_SNAKE_CASE__ ).parent / """test_run""" / """dummy-train-data""" ) , type=SCREAMING_SNAKE_CASE__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[] , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict: pl.seed_everything(args.seed ) # init model _snake_case : Optional[Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : str = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(SCREAMING_SNAKE_CASE__ ) if logging_callback is None: _snake_case : Optional[Any] = LoggingCallback() _snake_case : Union[str, Any] = {} if args.fpaa: _snake_case : str = 16 if args.gpus > 1: _snake_case : str = '''auto''' _snake_case : Optional[int] = '''ddp''' _snake_case : Optional[int] = args.accumulate_grad_batches _snake_case : Optional[Any] = None _snake_case : int = '''auto''' _snake_case : Optional[int] = pl.Trainer.from_argparse_args( SCREAMING_SNAKE_CASE__ , weights_summary=SCREAMING_SNAKE_CASE__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=SCREAMING_SNAKE_CASE__ , val_check_interval=1 , num_sanity_val_steps=2 , **SCREAMING_SNAKE_CASE__ , ) if args.do_train: trainer.fit(SCREAMING_SNAKE_CASE__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
317
from math import isclose, sqrt def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[str] = point_y / 4 / point_x A_ : Union[str, Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) A_ : int = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) A_ : List[str] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 A_ : List[str] = outgoing_gradient**2 + 4 A_ : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) A_ : Any = (point_y - outgoing_gradient * point_x) ** 2 - 100 A_ : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) A_ : Any = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point A_ : int = x_minus if isclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else x_plus A_ : Any = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 1.4 , SCREAMING_SNAKE_CASE = -9.6 ): A_ : int = 0 A_ : float = first_x_coord A_ : float = first_y_coord A_ : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): A_ , A_ , A_ : List[str] = next_point(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
186
0
def UpperCamelCase ( snake_case__ : int ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) UpperCamelCase : Any = len(bin(_snake_case )[3:] ) UpperCamelCase : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
352
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def UpperCamelCase ( snake_case__ : Accelerator , snake_case__ : int = 16 ) -> Dict: UpperCamelCase : str = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case__ : Dict ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase : List[str] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase : str = 16 elif accelerator.mixed_precision != "no": UpperCamelCase : Dict = 8 else: UpperCamelCase : Union[str, Any] = None return tokenizer.pad( snake_case__ , padding='longest' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) UpperCamelCase : List[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase = mocked_dataloaders # noqa: F811 def UpperCamelCase ( snake_case__ : str , snake_case__ : List[Any] ) -> List[str]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , snake_case__ ) == "1": UpperCamelCase : List[str] = 2 # New Code # UpperCamelCase : Optional[int] = int(args.gradient_accumulation_steps ) UpperCamelCase : List[str] = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : Union[str, Any] = config['lr'] UpperCamelCase : Optional[int] = int(config['num_epochs'] ) UpperCamelCase : List[Any] = int(config['seed'] ) UpperCamelCase : List[str] = int(config['batch_size'] ) UpperCamelCase : Optional[Any] = evaluate.load('glue' , 'mrpc' ) set_seed(snake_case__ ) UpperCamelCase , UpperCamelCase : int = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase : List[str] = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler UpperCamelCase : Any = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() with LocalSGD( accelerator=snake_case__ , model=snake_case__ , local_sgd_steps=snake_case__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case__ ): UpperCamelCase : int = model(**snake_case__ ) UpperCamelCase : Union[str, Any] = output.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : Dict = model(**snake_case__ ) UpperCamelCase : Any = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase : Any = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) UpperCamelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , snake_case__ ) def UpperCamelCase ( ) -> Dict: UpperCamelCase : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case__ , default=snake_case__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=snake_case__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=snake_case__ , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase : str = parser.parse_args() UpperCamelCase : Tuple = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
103
0
from typing import Any class __lowerCAmelCase : def __init__(self , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = data snake_case_ : Tuple = None class __lowerCAmelCase : def __init__(self ) -> Any: '''simple docstring''' snake_case_ : Dict = None def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.head while temp is not None: print(temp.data , end=''' ''' ) snake_case_ : Optional[Any] = temp.next print() def lowerCamelCase (self , __magic_name__ ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = Node(__magic_name__ ) snake_case_ : Optional[int] = self.head snake_case_ : Tuple = new_node def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' if node_data_a == node_data_a: return else: snake_case_ : Any = self.head while node_a is not None and node_a.data != node_data_a: snake_case_ : int = node_a.next snake_case_ : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: snake_case_ : Optional[int] = node_a.next if node_a is None or node_a is None: return snake_case_ , snake_case_ : str = node_a.data, node_a.data if __name__ == "__main__": lowerCAmelCase_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
279
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=_UpperCamelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=_UpperCamelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=_UpperCamelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=_UpperCamelCase , default=1_000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=_UpperCamelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=_UpperCamelCase , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=_UpperCamelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) snake_case_ : List[Any] = parser.parse_args() return args def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple: """simple docstring""" def fn(_UpperCamelCase ): return tokenizer(examples['''text'''] ) return fn def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = [] for i in range(len(tokenized_data['''input_ids'''] ) ): snake_case_ : Any = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } snake_case_ : Optional[int] = tf.train.Features(feature=_UpperCamelCase ) snake_case_ : Optional[Any] = tf.train.Example(features=_UpperCamelCase ) snake_case_ : Optional[Any] = example.SerializeToString() records.append(_UpperCamelCase ) return records def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : int = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: snake_case_ : Union[str, Any] = min(len(_UpperCamelCase ) , args.limit ) snake_case_ : int = dataset.select(range(_UpperCamelCase ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) snake_case_ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case_ : str = os.path.join(args.output_dir , args.split ) if not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) else: snake_case_ : Optional[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. snake_case_ : Optional[Any] = tokenize_function(_UpperCamelCase ) snake_case_ : List[Any] = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_UpperCamelCase ): # Concatenate all texts. snake_case_ : Tuple = {k: sum(examples[k] , [] ) for k in examples.keys()} snake_case_ : List[str] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case_ : int = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case_ : Union[str, Any] = { k: [t[i : i + args.max_length] for i in range(0 , _UpperCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result snake_case_ : int = dataset_tokenized.map(_UpperCamelCase , batched=_UpperCamelCase , batch_size=1_000 , num_proc=4 ) snake_case_ : str = 0 snake_case_ : Optional[Any] = 0 for shard in range(0 , len(_UpperCamelCase ) , args.shard_size ): snake_case_ : Any = grouped_dataset[shard : shard + args.shard_size] snake_case_ : str = len(dataset_snapshot['''input_ids'''] ) snake_case_ : Union[str, Any] = os.path.join(_UpperCamelCase , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) snake_case_ : Dict = get_serialized_examples(_UpperCamelCase ) with tf.io.TFRecordWriter(_UpperCamelCase ) as out_file: for i in range(len(_UpperCamelCase ) ): snake_case_ : List[str] = serialized_examples[i] out_file.write(_UpperCamelCase ) print('''Wrote file {} containing {} records'''.format(_UpperCamelCase , _UpperCamelCase ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , '''w''' ) as f: print(f'''Total {args.split} records: {total_records}''' , file=_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = parse_args() main(args)
279
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""GLPNFeatureExtractor"""] __snake_case = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import string def __lowerCAmelCase ( lowercase : str ) -> str: """simple docstring""" snake_case : List[str] = "" for i in sequence: snake_case : Optional[Any] = ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __lowerCAmelCase ( lowercase : str ) -> str: """simple docstring""" snake_case : Dict = string.ascii_letters snake_case : List[Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __lowerCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running performance benchmarks..." ) snake_case : Optional[int] = "from string import printable ; from __main__ import atbash, atbash_slow" print(F'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds' ) print(F'> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
112
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCamelCase__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __lowerCAmelCase (_UpperCamelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return max(metric_fn(_UpperCamelCase , _UpperCamelCase ) for gt in ground_truths ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = [line.strip() for line in open(_UpperCamelCase , 'r' ).readlines()] __lowerCAmelCase : List[Any] = [] if args.gold_data_mode == "qa": __lowerCAmelCase : Optional[Any] = pd.read_csv(_UpperCamelCase , sep='\t' , header=_UpperCamelCase ) for answer_list in data[1]: __lowerCAmelCase : Union[str, Any] = ast.literal_eval(_UpperCamelCase ) answers.append(_UpperCamelCase ) else: __lowerCAmelCase : Optional[int] = [line.strip() for line in open(_UpperCamelCase , 'r' ).readlines()] __lowerCAmelCase : Optional[int] = [[reference] for reference in references] __lowerCAmelCase : int = 0 for prediction, ground_truths in zip(_UpperCamelCase , _UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) fa += metric_max_over_ground_truths(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = 100.0 * em / total __lowerCAmelCase : str = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = args.k __lowerCAmelCase : int = [line.strip() for line in open(_UpperCamelCase , 'r' ).readlines()] __lowerCAmelCase : str = [line.strip() for line in open(_UpperCamelCase , 'r' ).readlines()] __lowerCAmelCase : Tuple = 0 for hypo, reference in zip(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = set(hypo.split('\t' )[:k] ) __lowerCAmelCase : Optional[Any] = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __lowerCAmelCase : str = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): def strip_title(_UpperCamelCase ): if title.startswith('"' ): __lowerCAmelCase : Any = title[1:] if title.endswith('"' ): __lowerCAmelCase : List[Any] = title[:-1] return title __lowerCAmelCase : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase , truncation=_UpperCamelCase , )['input_ids'].to(args.device ) __lowerCAmelCase : Optional[int] = rag_model.rag.question_encoder(_UpperCamelCase ) __lowerCAmelCase : Dict = question_enc_outputs[0] __lowerCAmelCase : Dict = rag_model.retriever( _UpperCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) __lowerCAmelCase : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __lowerCAmelCase : Tuple = [] for docs in all_docs: __lowerCAmelCase : int = [strip_title(_UpperCamelCase ) for title in docs['title']] provenance_strings.append('\t'.join(_UpperCamelCase ) ) return provenance_strings def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): with torch.no_grad(): __lowerCAmelCase : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase , truncation=_UpperCamelCase ) __lowerCAmelCase : Tuple = inputs_dict.input_ids.to(args.device ) __lowerCAmelCase : Any = inputs_dict.attention_mask.to(args.device ) __lowerCAmelCase : Dict = rag_model.generate( # rag_model overwrites generate _UpperCamelCase , attention_mask=_UpperCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_UpperCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __lowerCAmelCase : List[Any] = rag_model.retriever.generator_tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) if args.print_predictions: for q, a in zip(_UpperCamelCase , _UpperCamelCase ): logger.info('Q: {} - A: {}'.format(_UpperCamelCase , _UpperCamelCase ) ) return answers def __lowerCAmelCase (): __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=_UpperCamelCase , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=_UpperCamelCase , choices=['exact', 'compressed', 'legacy'] , type=_UpperCamelCase , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=_UpperCamelCase , type=_UpperCamelCase , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=_UpperCamelCase , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=_UpperCamelCase , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=_UpperCamelCase , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=_UpperCamelCase , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=_UpperCamelCase , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=_UpperCamelCase , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=_UpperCamelCase , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=_UpperCamelCase , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=_UpperCamelCase , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) __lowerCAmelCase : Tuple = parser.parse_args() __lowerCAmelCase : Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[str] = {} if args.model_type is None: __lowerCAmelCase : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): __lowerCAmelCase : Union[str, Any] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration __lowerCAmelCase : Tuple = args.n_docs if args.index_name is not None: __lowerCAmelCase : List[Any] = args.index_name if args.index_path is not None: __lowerCAmelCase : Tuple = args.index_path else: __lowerCAmelCase : List[Any] = BartForConditionalGeneration __lowerCAmelCase : Any = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , _UpperCamelCase ) __lowerCAmelCase : str = get_scores if args.eval_mode == 'e2e' else get_precision_at_k __lowerCAmelCase : Optional[Any] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(_UpperCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(_UpperCamelCase ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): __lowerCAmelCase : str = RagRetriever.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) __lowerCAmelCase : Tuple = model_class.from_pretrained(_UpperCamelCase , retriever=_UpperCamelCase , **_UpperCamelCase ) model.retriever.init_retrieval() else: __lowerCAmelCase : Dict = model_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: __lowerCAmelCase : Tuple = [] for line in tqdm(_UpperCamelCase ): questions.append(line.strip() ) if len(_UpperCamelCase ) == args.eval_batch_size: __lowerCAmelCase : Union[str, Any] = evaluate_batch_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) preds_file.write('\n'.join(_UpperCamelCase ) + '\n' ) preds_file.flush() __lowerCAmelCase : Optional[Any] = [] if len(_UpperCamelCase ) > 0: __lowerCAmelCase : List[str] = evaluate_batch_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) preds_file.write('\n'.join(_UpperCamelCase ) ) preds_file.flush() score_fn(_UpperCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCamelCase__ = get_args() main(args)
86
"""simple docstring""" from __future__ import annotations import bisect def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): if hi < 0: __lowerCAmelCase : Tuple = len(_UpperCamelCase ) while lo < hi: __lowerCAmelCase : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowerCAmelCase : int = mid + 1 else: __lowerCAmelCase : List[str] = mid return lo def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): if hi < 0: __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) while lo < hi: __lowerCAmelCase : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowerCAmelCase : Dict = mid + 1 else: __lowerCAmelCase : str = mid return lo def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): sorted_collection.insert(bisect_left(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): sorted_collection.insert(bisect_right(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : int = len(_UpperCamelCase ) - 1 while left <= right: __lowerCAmelCase : List[Any] = left + (right - left) // 2 __lowerCAmelCase : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowerCAmelCase : Tuple = midpoint - 1 else: __lowerCAmelCase : str = midpoint + 1 return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = bisect.bisect_left(_UpperCamelCase , _UpperCamelCase ) if index != len(_UpperCamelCase ) and sorted_collection[index] == item: return index return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if right < left: return None __lowerCAmelCase : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_UpperCamelCase , _UpperCamelCase , midpoint + 1 , _UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by comma:\n""").strip() lowerCamelCase__ = sorted(int(item) for item in user_input.split(""",""")) lowerCamelCase__ = int(input("""Enter a single number to be found in the list:\n""")) lowerCamelCase__ = binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
86
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCamelCase_ = False @skip_mps class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Any = StableDiffusionAttendAndExcitePipeline __a: int = False __a: Tuple = TEXT_TO_IMAGE_PARAMS __a: Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) __a: str = TEXT_TO_IMAGE_IMAGE_PARAMS __a: Any = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _lowercase ( cls ) -> Any: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(_snake_case ) @classmethod def _lowercase ( cls ) -> str: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(_snake_case ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(_snake_case ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Tuple: '''simple docstring''' if str(_snake_case ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(_snake_case ) else: lowerCAmelCase_ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase_ = lowerCAmelCase_ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase_ = self.get_dummy_inputs(_snake_case ) lowerCAmelCase_ = pipe(**_snake_case ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) lowerCAmelCase_ = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1e-3 ) def _lowercase ( self ) -> Dict: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _lowercase ( self ) -> str: '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowercase ( cls ) -> Union[str, Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(_snake_case ) @classmethod def _lowercase ( cls ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(_snake_case ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = torch.manual_seed(5_1 ) lowerCAmelCase_ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=_snake_case , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCAmelCase_ = 'a painting of an elephant with glasses' lowerCAmelCase_ = [5, 7] lowerCAmelCase_ = pipe( prompt=_snake_case , token_indices=_snake_case , guidance_scale=7.5 , generator=_snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
357
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = "▁" SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } SCREAMING_SNAKE_CASE : str = { "google/pegasus-xsum": 512, } class _lowerCamelCase( _a ): lowercase_ : Optional[Any] = VOCAB_FILES_NAMES lowercase_ : Any = PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : List[Any] = PegasusTokenizer lowercase_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase="<pad>", lowerCamelCase="</s>", lowerCamelCase="<unk>", lowerCamelCase="<mask_2>", lowerCamelCase="<mask_1>", lowerCamelCase=None, lowerCamelCase=1_03, **lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : str = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase, lowerCamelCase): raise TypeError( F'''additional_special_tokens should be of type {type(lowerCamelCase)}, but is''' F''' {type(lowerCamelCase)}''') _lowercase : Any = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(lowerCamelCase), self.offset - 1) ] if len(set(lowerCamelCase)) != len(lowerCamelCase): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''') _lowercase : Any = additional_special_tokens_extended else: _lowercase : Optional[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2, self.offset)] super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, pad_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, mask_token=lowerCamelCase, mask_token_sent=lowerCamelCase, offset=lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) _lowercase : Optional[Any] = vocab_file _lowercase : List[str] = False if not self.vocab_file else True def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F''' {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}''') return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Any = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase): copyfile(self.vocab_file, lowerCamelCase) return (out_vocab_file,)
21
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
1
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] , snake_case : Dict )-> int: '''simple docstring''' return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : str , snake_case : List[Any] , snake_case : str="attention" )-> Dict: '''simple docstring''' UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) UpperCAmelCase__ : str = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) UpperCAmelCase__ : Union[str, Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) UpperCAmelCase__ : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCAmelCase__ : Union[str, Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) UpperCAmelCase__ : Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Union[str, Any]=False )-> Optional[int]: '''simple docstring''' if split_mlp_wi: UpperCAmelCase__ : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] UpperCAmelCase__ : Optional[int] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] UpperCAmelCase__ : List[str] = (wi_a, wi_a) else: UpperCAmelCase__ : List[Any] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] UpperCAmelCase__ : Optional[Any] = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Any , snake_case : Optional[Any] )-> Optional[int]: '''simple docstring''' return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE__ ( snake_case : dict , *, snake_case : int , snake_case : bool , snake_case : bool = False )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = traverse_util.flatten_dict(variables["target"] ) UpperCAmelCase__ : Tuple = {"/".join(snake_case ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase__ : int = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , snake_case ) UpperCAmelCase__ : List[str] = collections.OrderedDict() # Shared embeddings. UpperCAmelCase__ : Tuple = old["token_embedder/embedding"] # Encoder. for i in range(snake_case ): # Block i, layer 0 (Self Attention). UpperCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(snake_case , snake_case , "encoder" , "pre_attention_layer_norm" ) UpperCAmelCase__ : int = tax_attention_lookup(snake_case , snake_case , "encoder" , "attention" ) UpperCAmelCase__ : int = layer_norm UpperCAmelCase__ : Tuple = k.T UpperCAmelCase__ : str = o.T UpperCAmelCase__ : List[str] = q.T UpperCAmelCase__ : str = v.T # Block i, layer 1 (MLP). UpperCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(snake_case , snake_case , "encoder" , "pre_mlp_layer_norm" ) UpperCAmelCase__ : Dict = tax_mlp_lookup(snake_case , snake_case , "encoder" , snake_case ) UpperCAmelCase__ : Any = layer_norm if split_mlp_wi: UpperCAmelCase__ : List[Any] = wi[0].T UpperCAmelCase__ : Optional[Any] = wi[1].T else: UpperCAmelCase__ : Dict = wi.T UpperCAmelCase__ : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase__ : Tuple = tax_relpos_bias_lookup( snake_case , snake_case , "encoder" ).T UpperCAmelCase__ : Any = old["encoder/encoder_norm/scale"] if not scalable_attention: UpperCAmelCase__ : List[str] = tax_relpos_bias_lookup( snake_case , 0 , "encoder" ).T UpperCAmelCase__ : int = tax_relpos_bias_lookup( snake_case , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(snake_case ): # Block i, layer 0 (Self Attention). UpperCAmelCase__ : List[str] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_self_attention_layer_norm" ) UpperCAmelCase__ : Tuple = tax_attention_lookup(snake_case , snake_case , "decoder" , "self_attention" ) UpperCAmelCase__ : Tuple = layer_norm UpperCAmelCase__ : List[str] = k.T UpperCAmelCase__ : List[Any] = o.T UpperCAmelCase__ : Optional[int] = q.T UpperCAmelCase__ : int = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase__ : List[Any] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_cross_attention_layer_norm" ) UpperCAmelCase__ : Union[str, Any] = tax_attention_lookup(snake_case , snake_case , "decoder" , "encoder_decoder_attention" ) UpperCAmelCase__ : Union[str, Any] = layer_norm UpperCAmelCase__ : str = k.T UpperCAmelCase__ : Any = o.T UpperCAmelCase__ : Optional[Any] = q.T UpperCAmelCase__ : List[str] = v.T # Block i, layer 2 (MLP). UpperCAmelCase__ : Optional[int] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_mlp_layer_norm" ) UpperCAmelCase__ : Optional[Any] = tax_mlp_lookup(snake_case , snake_case , "decoder" , snake_case ) UpperCAmelCase__ : Dict = layer_norm if split_mlp_wi: UpperCAmelCase__ : Optional[Any] = wi[0].T UpperCAmelCase__ : Optional[Any] = wi[1].T else: UpperCAmelCase__ : Dict = wi.T UpperCAmelCase__ : Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase__ : List[str] = tax_relpos_bias_lookup(snake_case , snake_case , "decoder" ).T UpperCAmelCase__ : Optional[Any] = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase__ : Union[str, Any] = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : bool )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase__ : Union[str, Any] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase__ : Any = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) UpperCAmelCase__ : Dict = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : List[str] , snake_case : List[Any] , snake_case : str , snake_case : Dict )-> Any: '''simple docstring''' UpperCAmelCase__ : Dict = checkpoints.load_tax_checkpoint(snake_case ) UpperCAmelCase__ : List[str] = convert_tax_to_pytorch( snake_case , num_layers=config.num_layers , is_encoder_only=snake_case , scalable_attention=snake_case ) UpperCAmelCase__ : Union[str, Any] = make_state_dict(snake_case , snake_case ) model.load_state_dict(snake_case , strict=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : bool = False , snake_case : bool = False , )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : int = MTaConfig.from_json_file(snake_case ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase__ : str = UMTaEncoderModel(snake_case ) else: UpperCAmelCase__ : str = UMTaForConditionalGeneration(snake_case ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case , snake_case , snake_case , snake_case , snake_case ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case ) print("Done" ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) _lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
367
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
0
from __future__ import annotations class _lowerCamelCase: def __init__( self, lowerCamelCase=None) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = data _lowercase : List[str] = None def __repr__( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = [] _lowercase : Dict = self while temp: string_rep.append(F'''{temp.data}''') _lowercase : int = temp.next return "->".join(lowerCamelCase) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : List[str] = Node(elements_list[0] ) for i in range(1 , len(lowerCamelCase_ ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : str = current.next return head def UpperCamelCase_( lowerCamelCase_ ) -> None: if head_node is not None and isinstance(lowerCamelCase_ , lowerCamelCase_ ): print_reverse(head_node.next ) print(head_node.data ) def UpperCamelCase_( ) -> Dict: from doctest import testmod testmod() _lowercase : str = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowerCamelCase_ ) print('Elements in Reverse:' ) print_reverse(lowerCamelCase_ ) if __name__ == "__main__": main()
21
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A__ : Union[str, Any] = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(UpperCamelCase_ ) class __snake_case ( UpperCamelCase_ ): _a = '''rag''' _a = True def __init__( self : str , A_ : List[Any]=None , A_ : str=True , A_ : Tuple=None , A_ : Union[str, Any]=None , A_ : List[str]=None , A_ : List[str]=None , A_ : List[Any]=None , A_ : Union[str, Any]=" / " , A_ : Tuple=" // " , A_ : Any=5 , A_ : Optional[Any]=3_0_0 , A_ : Tuple=7_6_8 , A_ : Union[str, Any]=8 , A_ : Dict="wiki_dpr" , A_ : Optional[Any]="train" , A_ : Dict="compressed" , A_ : Optional[int]=None , A_ : List[str]=None , A_ : str=False , A_ : Dict=False , A_ : Dict=0.0 , A_ : List[str]=True , A_ : List[str]=False , A_ : List[Any]=False , A_ : Any=False , A_ : Optional[int]=True , A_ : int=None , **A_ : List[str] , ): super().__init__( bos_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , is_encoder_decoder=A_ , prefix=A_ , vocab_size=A_ , **A_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCAmelCase_ : List[str] = kwargs.pop('''question_encoder''') lowerCAmelCase_ : Tuple = question_encoder_config.pop('''model_type''') lowerCAmelCase_ : Tuple = kwargs.pop('''generator''') lowerCAmelCase_ : Dict = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ : Union[str, Any] = AutoConfig.for_model(A_ , **A_) lowerCAmelCase_ : int = AutoConfig.for_model(A_ , **A_) lowerCAmelCase_ : List[Any] = reduce_loss lowerCAmelCase_ : Optional[Any] = label_smoothing lowerCAmelCase_ : Union[str, Any] = exclude_bos_score lowerCAmelCase_ : List[Any] = do_marginalize lowerCAmelCase_ : int = title_sep lowerCAmelCase_ : Optional[int] = doc_sep lowerCAmelCase_ : List[str] = n_docs lowerCAmelCase_ : int = max_combined_length lowerCAmelCase_ : Union[str, Any] = dataset lowerCAmelCase_ : int = dataset_split lowerCAmelCase_ : Dict = index_name lowerCAmelCase_ : Union[str, Any] = retrieval_vector_size lowerCAmelCase_ : Optional[Any] = retrieval_batch_size lowerCAmelCase_ : List[str] = passages_path lowerCAmelCase_ : Any = index_path lowerCAmelCase_ : int = use_dummy_dataset lowerCAmelCase_ : Tuple = output_retrieved lowerCAmelCase_ : List[Any] = do_deduplication lowerCAmelCase_ : Union[str, Any] = use_cache if self.forced_eos_token_id is None: lowerCAmelCase_ : List[Any] = getattr(self.generator , '''forced_eos_token_id''' , A_) @classmethod def UpperCAmelCase__ ( cls : str , A_ : PretrainedConfig , A_ : PretrainedConfig , **A_ : Any): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : str = copy.deepcopy(self.__dict__) lowerCAmelCase_ : Tuple = self.question_encoder.to_dict() lowerCAmelCase_ : Dict = self.generator.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
103
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : def __init__( self :Tuple , _lowercase :Union[str, Any] , _lowercase :str=13 , _lowercase :Union[str, Any]=7 , _lowercase :Any=True , _lowercase :Any=True , _lowercase :List[Any]=True , _lowercase :int=True , _lowercase :Any=99 , _lowercase :Union[str, Any]=32 , _lowercase :Union[str, Any]=2 , _lowercase :List[str]=4 , _lowercase :List[Any]=37 , _lowercase :int="gelu" , _lowercase :int=0.1 , _lowercase :Any=0.1 , _lowercase :Dict=5_12 , _lowercase :Dict=16 , _lowercase :List[Any]=2 , _lowercase :List[Any]=0.02 , _lowercase :Optional[Any]=3 , _lowercase :Any=4 , _lowercase :Optional[Any]=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 3_84 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = "gelu" lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 5_12 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = 1_28 lowercase__ = 2 lowercase__ = 9 lowercase__ = 1 lowercase__ = None def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self :List[Any] , _lowercase :Optional[Any] , _lowercase :Optional[int] , _lowercase :int , _lowercase :Any , _lowercase :Tuple , _lowercase :List[Any] , _lowercase :Dict ): '''simple docstring''' lowercase__ = TFConvBertModel(config=_lowercase ) lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase__ = [input_ids, input_mask] lowercase__ = model(_lowercase ) lowercase__ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self :List[Any] , _lowercase :Dict , _lowercase :int , _lowercase :Optional[Any] , _lowercase :Dict , _lowercase :Any , _lowercase :Union[str, Any] , _lowercase :Any ): '''simple docstring''' lowercase__ = TFConvBertForMaskedLM(config=_lowercase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self :List[Any] , _lowercase :Optional[Any] , _lowercase :Any , _lowercase :str , _lowercase :int , _lowercase :List[str] , _lowercase :Dict , _lowercase :Optional[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFConvBertForSequenceClassification(config=_lowercase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self :Any , _lowercase :Optional[int] , _lowercase :Tuple , _lowercase :Dict , _lowercase :Optional[Any] , _lowercase :Union[str, Any] , _lowercase :Any , _lowercase :Tuple ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = TFConvBertForMultipleChoice(config=_lowercase ) lowercase__ = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase__ = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self :Any , _lowercase :Tuple , _lowercase :Dict , _lowercase :Any , _lowercase :Any , _lowercase :Dict , _lowercase :Tuple , _lowercase :int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFConvBertForTokenClassification(config=_lowercase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self :List[Any] , _lowercase :Dict , _lowercase :str , _lowercase :Any , _lowercase :int , _lowercase :int , _lowercase :List[str] , _lowercase :Optional[Any] ): '''simple docstring''' lowercase__ = TFConvBertForQuestionAnswering(config=_lowercase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __lowerCamelCase = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = TFConvBertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True lowercase__ = True if hasattr(_lowercase , "use_cache" ): lowercase__ = True lowercase__ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester , "key_length" , _lowercase ) for model_class in self.all_model_classes: lowercase__ = self._prepare_for_class(_lowercase , _lowercase ) lowercase__ = model_class(_lowercase ) lowercase__ = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) lowercase__ = os.path.join(_lowercase , "saved_model" , "1" ) lowercase__ = tf.keras.models.load_model(_lowercase ) lowercase__ = model(_lowercase ) if self.is_encoder_decoder: lowercase__ = outputs["encoder_hidden_states"] lowercase__ = outputs["encoder_attentions"] else: lowercase__ = outputs["hidden_states"] lowercase__ = outputs["attentions"] self.assertEqual(len(_lowercase ) , _lowercase ) lowercase__ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True lowercase__ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester , "key_length" , _lowercase ) lowercase__ = getattr(self.model_tester , "key_length" , _lowercase ) def check_decoder_attentions_output(_lowercase :int ): lowercase__ = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) lowercase__ = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowercase :Union[str, Any] ): lowercase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = model_class(_lowercase ) lowercase__ = model(self._prepare_for_class(_lowercase , _lowercase ) ) lowercase__ = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: lowercase__ = model_class(_lowercase ) lowercase__ = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(_lowercase ) lowercase__ = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(_lowercase ) lowercase__ = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_lowercase )[0] lowercase__ = [1, 6, 7_68] self.assertEqual(output.shape , _lowercase ) lowercase__ = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
201
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( __magic_name__ ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__magic_name__ , "_dynamo" ): return False return isinstance(__magic_name__ , torch._dynamo.eval_frame.OptimizedModule ) def _A ( __magic_name__ , __magic_name__ = True ): lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ = is_compiled_module(__magic_name__ ) if is_compiled: lowercase__ = model lowercase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__magic_name__ , __magic_name__ ): lowercase__ = model.module if not keep_fpaa_wrapper: lowercase__ = getattr(__magic_name__ , "forward" ) lowercase__ = model.__dict__.pop("_original_forward" , __magic_name__ ) if original_forward is not None: while hasattr(__magic_name__ , "__wrapped__" ): lowercase__ = forward.__wrapped__ if forward == original_forward: break lowercase__ = forward if getattr(__magic_name__ , "_converted_to_transformer_engine" , __magic_name__ ): convert_model(__magic_name__ , to_transformer_engine=__magic_name__ ) if is_compiled: lowercase__ = model lowercase__ = compiled_model return model def _A ( ): PartialState().wait_for_everyone() def _A ( __magic_name__ , __magic_name__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__magic_name__ , __magic_name__ ) elif PartialState().local_process_index == 0: torch.save(__magic_name__ , __magic_name__ ) @contextmanager def _A ( **__magic_name__ ): for key, value in kwargs.items(): lowercase__ = str(__magic_name__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( __magic_name__ ): if not hasattr(__magic_name__ , "__qualname__" ) and not hasattr(__magic_name__ , "__name__" ): lowercase__ = getattr(__magic_name__ , "__class__" , __magic_name__ ) if hasattr(__magic_name__ , "__qualname__" ): return obj.__qualname__ if hasattr(__magic_name__ , "__name__" ): return obj.__name__ return str(__magic_name__ ) def _A ( __magic_name__ , __magic_name__ ): for key, value in source.items(): if isinstance(__magic_name__ , __magic_name__ ): lowercase__ = destination.setdefault(__magic_name__ , {} ) merge_dicts(__magic_name__ , __magic_name__ ) else: lowercase__ = value return destination def _A ( __magic_name__ = None ): if port is None: lowercase__ = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
201
1
"""simple docstring""" import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Tuple: """simple docstring""" lowerCAmelCase__ :Optional[int] = True while ask_again: lowerCAmelCase__ :Tuple = input(_lowerCamelCase ) try: if default is not None and len(_lowerCamelCase ) == 0: return default return convert_value(_lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCamelCase ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=[] , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0 ) ->int: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = BulletMenu(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase__ :Dict = menu.run(default_choice=_lowerCamelCase ) return convert_value(_lowerCamelCase ) if convert_value is not None else result def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :List[str] = int(_lowerCamelCase ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" lowerCAmelCase__ :str = int(_lowerCamelCase ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Tuple = int(_lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" lowerCAmelCase__ :List[str] = int(_lowerCamelCase ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :int = int(_lowerCamelCase ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def __A (_SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class _lowerCAmelCase ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = super()._format_usage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ :Any = usage.replace('<command> [<args>] ' , '' ) return usage
293
'''simple docstring''' import string def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = """""" for i in sequence: __SCREAMING_SNAKE_CASE : Any = ord(_lowerCamelCase ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Optional[Any] = string.ascii_letters __SCREAMING_SNAKE_CASE : Union[str, Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_lowerCamelCase )] if c in letters else c for c in sequence ) def lowerCAmelCase_ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_lowerCamelCase )} seconds" ) print(F"> atbash(): {timeit('atbash(printable)' , setup=_lowerCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
112
0
"""simple docstring""" class UpperCAmelCase_ : def __init__( self : Union[str, Any] , A : Any , A : Optional[Any] , A : str ): _UpperCAmelCase : Optional[int] = name _UpperCAmelCase : Optional[int] = value _UpperCAmelCase : List[str] = weight def __repr__( self : List[Any] ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def snake_case_ ( self : Any ): return self.value def snake_case_ ( self : Optional[Any] ): return self.name def snake_case_ ( self : Tuple ): return self.weight def snake_case_ ( self : Union[str, Any] ): return self.value / self.weight def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: '''simple docstring''' _UpperCAmelCase : List[Any] = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[str] = [] _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = 0.0, 0.0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __snake_case ( ) -> List[Any]: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
202
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = GPTSanJapaneseTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[str] = {'do_clean_text': False, 'add_prefix_space': False} def snake_case_ ( self : Any ): super().setUp() # fmt: off _UpperCAmelCase : Any = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Optional[int] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _UpperCAmelCase : List[Any] = {"unk_token": "<unk>"} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def snake_case_ ( self : int , **A : List[str] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : int , A : Any ): _UpperCAmelCase : Optional[Any] = "こんにちは、世界。 \nこんばんは、㔺界。😀" _UpperCAmelCase : List[Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def snake_case_ ( self : Optional[Any] , A : str ): _UpperCAmelCase , _UpperCAmelCase : str = self.get_input_output_texts(A ) _UpperCAmelCase : List[Any] = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def snake_case_ ( self : Any ): pass # TODO add if relevant def snake_case_ ( self : Union[str, Any] ): pass # TODO add if relevant def snake_case_ ( self : int ): pass # TODO add if relevant def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Optional[int] = "こんにちは、世界。 こんばんは、㔺界。" _UpperCAmelCase : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _UpperCAmelCase : List[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens _UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens _UpperCAmelCase : str = tokens + [tokenizer.unk_token] _UpperCAmelCase : Any = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Any ): _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Dict = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _UpperCAmelCase : Tuple = "こんにちは、、、、世界。こんばんは、、、、世界。" _UpperCAmelCase : int = tokenizer.encode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Dict ): _UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : List[Any] = "こんにちは、世界。" _UpperCAmelCase : List[str] = "こんばんは、㔺界。😀" _UpperCAmelCase : Any = "こんにちは、世界。こんばんは、世界。😀" _UpperCAmelCase : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) _UpperCAmelCase : Tuple = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _UpperCAmelCase : Optional[int] = tokenizer.encode(A , prefix_text=A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : Any = "こんにちは、世界。" _UpperCAmelCase : List[Any] = "こんばんは、㔺界。😀" _UpperCAmelCase : Optional[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[str] = [1] + [0] * (len_prefix + len_text + 1) _UpperCAmelCase : str = [1] * (len_prefix + len_text + 1) + [0] _UpperCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCAmelCase : Union[str, Any] = tokenizer(prefix_text + input_text ).token_type_ids _UpperCAmelCase : Any = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _UpperCAmelCase : List[Any] = tokenizer(A , prefix_text=A ).token_type_ids self.assertListEqual(A , A ) self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Dict = tokenizer.encode("あンいワ" ) _UpperCAmelCase : str = tokenizer.encode("" , prefix_text="あンいワ" ) _UpperCAmelCase : Dict = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertNotEqual(A , A ) self.assertNotEqual(A , A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _UpperCAmelCase : Tuple = tokenizer(A , padding=A ) _UpperCAmelCase : str = tokenizer.batch_encode_plus(A , padding=A ) # fmt: off _UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _UpperCAmelCase : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A ) self.assertListEqual(x_token.token_type_ids , A ) self.assertListEqual(x_token.attention_mask , A ) self.assertListEqual(x_token_a.input_ids , A ) self.assertListEqual(x_token_a.token_type_ids , A ) self.assertListEqual(x_token_a.attention_mask , A ) def snake_case_ ( self : List[Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def snake_case_ ( self : int ): # tokenizer has no padding token pass
202
1
from __future__ import annotations from collections.abc import Callable lowercase_ = list[list[float | int]] def _snake_case( SCREAMING_SNAKE_CASE__ : Matrix , SCREAMING_SNAKE_CASE__ : Matrix ) -> Matrix: '''simple docstring''' A__ = len(SCREAMING_SNAKE_CASE__ ) A__ = [[0 for _ in range(size + 1 )] for _ in range(SCREAMING_SNAKE_CASE__ )] A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = 42 for row in range(SCREAMING_SNAKE_CASE__ ): for col in range(SCREAMING_SNAKE_CASE__ ): A__ = matrix[row][col] A__ = vector[row][0] A__ = 0 A__ = 0 while row < size and col < size: # pivoting A__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: A__ , A__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , SCREAMING_SNAKE_CASE__ ): A__ = augmented[rowa][col] / augmented[row][col] A__ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , SCREAMING_SNAKE_CASE__ ): for row in range(SCREAMING_SNAKE_CASE__ ): A__ = augmented[row][col] / augmented[col][col] for cola in range(SCREAMING_SNAKE_CASE__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(SCREAMING_SNAKE_CASE__ ) ] def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] ) -> Callable[[int], int]: '''simple docstring''' A__ = len(SCREAMING_SNAKE_CASE__ ) A__ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] A__ = [[0] for _ in range(SCREAMING_SNAKE_CASE__ )] A__ = 42 A__ = 42 A__ = 42 A__ = 42 for x_val, y_val in enumerate(SCREAMING_SNAKE_CASE__ ): for col in range(SCREAMING_SNAKE_CASE__ ): A__ = (x_val + 1) ** (size - col - 1) A__ = y_val A__ = solve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def interpolated_func(SCREAMING_SNAKE_CASE__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(SCREAMING_SNAKE_CASE__ ) ) return interpolated_func def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _snake_case( SCREAMING_SNAKE_CASE__ : Callable[[int], int] = question_function , SCREAMING_SNAKE_CASE__ : int = 10 ) -> int: '''simple docstring''' A__ = [func(SCREAMING_SNAKE_CASE__ ) for x_val in range(1 , order + 1 )] A__ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] A__ = 0 A__ = 42 A__ = 42 for poly in polynomials: A__ = 1 while func(SCREAMING_SNAKE_CASE__ ) == poly(SCREAMING_SNAKE_CASE__ ): x_val += 1 ret += poly(SCREAMING_SNAKE_CASE__ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
7
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
0
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __A ( enum.Enum ): a__ : str = 0 a__ : List[Any] = 1 a__ : str = 2 @add_end_docstrings(_lowerCAmelCase ) class __A ( _lowerCAmelCase ): a__ : Dict = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__(self : Optional[Any] , *__a : Any , **__a : Optional[int] ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ = None if self.model.config.prefix is not None: UpperCAmelCase_ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) UpperCAmelCase_ = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ = {**self._forward_params, **forward_params} def _lowercase (self : Any , __a : Optional[Any]=None , __a : List[str]=None , __a : int=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : List[Any]=None , **__a : str , ): UpperCAmelCase_ = {} if prefix is not None: UpperCAmelCase_ = prefix if prefix: UpperCAmelCase_ = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) UpperCAmelCase_ = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, \'hole\']" ) UpperCAmelCase_ = handle_long_generation preprocess_params.update(_lowercase ) UpperCAmelCase_ = generate_kwargs UpperCAmelCase_ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCAmelCase_ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCAmelCase_ = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCAmelCase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowercase (self : Optional[int] , *__a : Optional[int] , **__a : Any ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__(self : List[str] , __a : str , **__a : Optional[Any] ): return super().__call__(_lowercase , **_lowercase ) def _lowercase (self : Union[str, Any] , __a : Any , __a : Dict="" , __a : Union[str, Any]=None , **__a : Tuple ): UpperCAmelCase_ = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) UpperCAmelCase_ = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ = generate_kwargs["max_new_tokens"] else: UpperCAmelCase_ = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCAmelCase_ = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ = inputs["attention_mask"][:, -keep_length:] return inputs def _lowercase (self : Union[str, Any] , __a : List[str] , **__a : Optional[int] ): UpperCAmelCase_ = model_inputs["input_ids"] UpperCAmelCase_ = model_inputs.get("attention_mask" , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = 1 else: UpperCAmelCase_ = input_ids.shape[0] UpperCAmelCase_ = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCAmelCase_ = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) UpperCAmelCase_ = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _lowercase (self : Optional[int] , __a : Union[str, Any] , __a : Optional[int]=ReturnType.FULL_TEXT , __a : List[str]=True ): UpperCAmelCase_ = model_outputs["generated_sequence"][0] UpperCAmelCase_ = model_outputs["input_ids"] UpperCAmelCase_ = model_outputs["prompt_text"] UpperCAmelCase_ = generated_sequence.numpy().tolist() UpperCAmelCase_ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ = prompt_text + text[prompt_length:] else: UpperCAmelCase_ = text[prompt_length:] UpperCAmelCase_ = {"generated_text": all_text} records.append(_lowercase ) return records
370
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Any = ["""pixel_values"""] def __init__(self : Any , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : Dict[str, int] = None , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Dict , ): super().__init__(**__a ) UpperCAmelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = do_rescale UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase (self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ): UpperCAmelCase_ = get_size_dict(__a ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _lowercase (self : List[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): UpperCAmelCase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def _lowercase (self : str , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def _lowercase (self : Dict , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : Dict , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__a ) if not is_batched(__a ): UpperCAmelCase_ = [images] if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
106
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 # setable values snake_case_ = 42 snake_case_ = 42 snake_case_ = None @classmethod def lowercase_ ( cls , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return cls(common=_UpperCAmelCase , init_noise_sigma=_UpperCAmelCase , timesteps=_UpperCAmelCase ) @dataclass class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case_ = [e.name for e in FlaxKarrasDiffusionSchedulers] snake_case_ = 42 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return True @register_to_config def __init__( self , lowerCamelCase__ = 1_000 , lowerCamelCase__ = 0.00_01 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = "fixed_small" , lowerCamelCase__ = True , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = jnp.floataa , ) -> Tuple: '''simple docstring''' __lowerCamelCase = dtype def lowercase_ ( self , lowerCamelCase__ = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: __lowerCamelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowerCamelCase = jnp.array(1.0 , dtype=self.dtype ) __lowerCamelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_UpperCAmelCase , init_noise_sigma=_UpperCAmelCase , timesteps=_UpperCAmelCase , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> jnp.ndarray: '''simple docstring''' return sample def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = () ) -> DDPMSchedulerState: '''simple docstring''' __lowerCamelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (jnp.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ) -> Any: '''simple docstring''' __lowerCamelCase = state.common.alphas_cumprod[t] __lowerCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCamelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowerCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowerCamelCase = jnp.clip(_UpperCAmelCase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowerCamelCase = jnp.log(jnp.clip(_UpperCAmelCase , a_min=1e-20 ) ) elif variance_type == "fixed_large": __lowerCamelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowerCamelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowerCamelCase = variance __lowerCamelCase = state.common.betas[t] __lowerCamelCase = (predicted_variance + 1) / 2 __lowerCamelCase = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' __lowerCamelCase = timestep if key is None: __lowerCamelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowerCamelCase = jnp.split(_UpperCAmelCase , sample.shape[1] , axis=1 ) else: __lowerCamelCase = None # 1. compute alphas, betas __lowerCamelCase = state.common.alphas_cumprod[t] __lowerCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCamelCase = model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCamelCase = jnp.clip(_UpperCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowerCamelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowerCamelCase = jax.random.split(_UpperCAmelCase , num=1 ) __lowerCamelCase = jax.random.normal(_UpperCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_UpperCAmelCase , _UpperCAmelCase , predicted_variance=_UpperCAmelCase ) ** 0.5) * noise __lowerCamelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowerCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_UpperCAmelCase , state=_UpperCAmelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __len__( self ) -> List[Any]: '''simple docstring''' return self.config.num_train_timesteps
90
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCAmelCase = '''src/transformers''' _lowerCAmelCase = '''docs/source/en/tasks''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCamelCase : str = f.readlines() # Find the start prompt. __UpperCamelCase : Dict = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCamelCase : Dict = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) _lowerCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) __UpperCamelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __lowerCAmelCase ( snake_case__ , snake_case__=False ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __UpperCamelCase : List[str] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
298
0
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) lowercase__ = [] for i in range(len(SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowercase__ = True for j in range(SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowercase__ = False break if match_found: position.append(SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
93
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE ) return flax_params def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowercase__ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase__ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase__ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE ) lowercase__ = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase__ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE ) lowercase__ = flax_dict[key] lowercase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase__ = torch.from_numpy(converted_dict[key].T ) else: lowercase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = get_flax_param(SCREAMING_SNAKE_CASE ) if not use_large: lowercase__ = PixaStructVisionConfig() lowercase__ = PixaStructTextConfig() else: lowercase__ = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase__ = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) lowercase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE ) lowercase__ = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE ) lowercase__ = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) lowercase__ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowercase__ = PixaStructImageProcessor() lowercase__ = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) if use_large: lowercase__ = 40_96 lowercase__ = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') lowerCAmelCase = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
93
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } UpperCAmelCase_ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off UpperCAmelCase_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : int = VOCAB_FILES_NAMES a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = ["input_ids", "attention_mask"] a : Dict = MBartTokenizer a : List[int] = [] a : List[int] = [] def __init__( self, __magic_name__=None, __magic_name__=None, __magic_name__="<s>", __magic_name__="</s>", __magic_name__="</s>", __magic_name__="<s>", __magic_name__="<unk>", __magic_name__="<pad>", __magic_name__="<mask>", __magic_name__=None, __magic_name__=None, __magic_name__=None, **__magic_name__, ) -> Tuple: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Tuple = AddedToken(__magic_name__, lstrip=__magic_name__, rstrip=__magic_name__ ) if isinstance(__magic_name__, __magic_name__ ) else mask_token super().__init__( vocab_file=__magic_name__, tokenizer_file=__magic_name__, bos_token=__magic_name__, eos_token=__magic_name__, sep_token=__magic_name__, cls_token=__magic_name__, unk_token=__magic_name__, pad_token=__magic_name__, mask_token=__magic_name__, src_lang=__magic_name__, tgt_lang=__magic_name__, additional_special_tokens=__magic_name__, **__magic_name__, ) UpperCamelCase__ : Tuple = vocab_file UpperCamelCase__ : int = False if not self.vocab_file else True UpperCamelCase__ : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase__ : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__magic_name__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase__ : List[str] = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase__ : str = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase__ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> List[int]: """simple docstring""" UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, **__magic_name__ ) -> int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ : Union[str, Any] = src_lang UpperCamelCase__ : Tuple = self(__magic_name__, add_special_tokens=__magic_name__, return_tensors=__magic_name__, **__magic_name__ ) UpperCamelCase__ : List[str] = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase__ : Any = tgt_lang_id return inputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = "en_XX", __magic_name__ = None, __magic_name__ = "ro_RO", **__magic_name__, ) -> BatchEncoding: """simple docstring""" UpperCamelCase__ : str = src_lang UpperCamelCase__ : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__magic_name__, __magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : List[Any] = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : List[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase__ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str, pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : str = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase__ : str = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase__ : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str, pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__magic_name__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return UpperCamelCase__ : str = os.path.join( __magic_name__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file, __magic_name__ ) return (out_vocab_file,)
201
from math import factorial def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__UpperCAmelCase ) // (factorial(__UpperCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', F'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
201
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def lowercase ( _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[Any] ) ->Any: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Optional[int] = getattr(_snake_case , _snake_case ) if weight_type is not None: __snake_case : List[str] = getattr(_snake_case , _snake_case ).shape else: __snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : Optional[int] = value elif weight_type == "weight_g": __snake_case : Union[str, Any] = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : Optional[Any] = value else: __snake_case : Dict = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : Optional[Any] ) ->int: """simple docstring""" __snake_case : str = [] __snake_case : int = fairseq_model.state_dict() __snake_case : str = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __snake_case : List[Any] = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): __snake_case : List[Any] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __snake_case : List[str] = True if "*" in mapped_key: __snake_case : Optional[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Dict = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : List[Any] = '''weight_g''' elif "weight_v" in name: __snake_case : Optional[Any] = '''weight_v''' elif "bias" in name: __snake_case : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[str] = '''weight''' else: __snake_case : Dict = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Tuple , _snake_case : List[str] , _snake_case : str ) ->str: """simple docstring""" __snake_case : Optional[Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : Any = name.split('''.''' ) __snake_case : Tuple = int(items[0] ) __snake_case : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any]=None , _snake_case : int=None , _snake_case : Union[str, Any]=True ) ->str: """simple docstring""" if config_path is not None: __snake_case : int = UniSpeechSatConfig.from_pretrained(_snake_case ) else: __snake_case : str = UniSpeechSatConfig() __snake_case : Optional[Any] = '''''' if is_finetuned: __snake_case : Optional[Any] = UniSpeechSatForCTC(_snake_case ) else: __snake_case : Tuple = UniSpeechSatForPreTraining(_snake_case ) __snake_case : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __snake_case : Any = model[0].eval() recursively_load_weights(_snake_case , _snake_case ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _A : Any = TypeVar("""T""") _A : Tuple = TypeVar("""U""") class a__ ( Generic[T, U] ): def __init__( self , _a , _a ): lowercase : str = key lowercase : Dict = val lowercase : DoubleLinkedListNode[T, U] | None = None lowercase : DoubleLinkedListNode[T, U] | None = None def __repr__( self ): return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class a__ ( Generic[T, U] ): def __init__( self ): lowercase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_a , _a ) lowercase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_a , _a ) lowercase , lowercase : Union[str, Any] = self.rear, self.head def __repr__( self ): lowercase : Union[str, Any] = ["DoubleLinkedList"] lowercase : int = self.head while node.next is not None: rep.append(str(_a ) ) lowercase : Union[str, Any] = node.next rep.append(str(self.rear ) ) return ",\n ".join(_a ) def __magic_name__ ( self , _a ): lowercase : Union[str, Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase : Optional[int] = node lowercase : Union[str, Any] = previous lowercase : Tuple = node lowercase : Any = self.rear def __magic_name__ ( self , _a ): if node.prev is None or node.next is None: return None lowercase : List[str] = node.next lowercase : Optional[int] = node.prev lowercase : List[str] = None lowercase : str = None return node class a__ ( Generic[T, U] ): __lowerCAmelCase = {} def __init__( self , _a ): lowercase : DoubleLinkedList[T, U] = DoubleLinkedList() lowercase : List[Any] = capacity lowercase : Optional[int] = 0 lowercase : List[str] = 0 lowercase : str = 0 lowercase : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ): return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , _a ): return key in self.cache def __magic_name__ ( self , _a ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowercase : DoubleLinkedListNode[T, U] = self.cache[key] lowercase : List[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_a ) return node.val self.miss += 1 return None def __magic_name__ ( self , _a , _a ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase : Optional[int] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase : List[str] = DoubleLinkedListNode(_a , _a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase : Any = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowercase : str = value self.list.add(_a ) @classmethod def __magic_name__ ( cls , _a = 128 ): def cache_decorator_inner(_a ) -> Callable[..., U]: def cache_decorator_wrapper(*_a ) -> U: if func not in cls.decorator_function_to_instance_map: lowercase : Dict = LRUCache(_a ) lowercase : List[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowercase : Optional[int] = func(*_a ) cls.decorator_function_to_instance_map[func].put(args[0] , _a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_a , "cache_info" , _a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
202
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _A : Optional[int] = """ Human: <<task>> Assistant: """ _A : List[Any] = """huggingface-tools/default-prompts""" _A : Optional[int] = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def __magic_name__ ( __snake_case : int , __snake_case : List[Any] , __snake_case : Dict="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: lowercase : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , __snake_case ) is not None: return prompt_or_repo_id lowercase : Optional[int] = cached_file( __snake_case , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(__snake_case , "r" , encoding="utf-8" ) as f: return f.read()
202
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case_ : Tuple = logging.get_logger(__name__) def A (__A : Any , __A : List[str] , __A : Any ) -> List[Any]: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def A (__A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> str: """simple docstring""" UpperCAmelCase_ = to_pil_image(__A ) UpperCAmelCase_ , UpperCAmelCase_ = pil_image.size UpperCAmelCase_ = pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates UpperCAmelCase_ = [idx for idx, word in enumerate(__A ) if not word.strip()] UpperCAmelCase_ = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase_ = [] for x, y, w, h in zip(__A , __A , __A , __A ): UpperCAmelCase_ = [x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes UpperCAmelCase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __snake_case ( a ): UpperCAmelCase__ : Tuple = ['''pixel_values'''] def __init__( self : Dict , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : float = 1 / 255 , _snake_case : bool = True , _snake_case : Union[float, Iterable[float]] = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : bool = True , _snake_case : Optional[str] = None , _snake_case : Optional[str] = "" , **_snake_case : Optional[int] , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = size if size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ = get_size_dict(_snake_case) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_value UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCAmelCase_ = apply_ocr UpperCAmelCase_ = ocr_lang UpperCAmelCase_ = tesseract_config def lowerCamelCase ( self : str , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Union[str, Any] , ): """simple docstring""" UpperCAmelCase_ = get_size_dict(_snake_case) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""") UpperCAmelCase_ = (size['''height'''], size['''width''']) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Dict , ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Union[str, Any] , _snake_case : np.ndarray , _snake_case : Union[float, Iterable[float]] , _snake_case : Union[float, Iterable[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : Optional[int]=None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : bool = None , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : List[str] , ): """simple docstring""" UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_snake_case) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase_ = make_list_of_images(_snake_case) if not valid_images(_snake_case): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''') # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_snake_case) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''') UpperCAmelCase_ = [] UpperCAmelCase_ = [] for image in images: UpperCAmelCase_ , UpperCAmelCase_ = apply_tesseract(_snake_case , _snake_case , _snake_case) words_batch.append(_snake_case) boxes_batch.append(_snake_case) if do_resize: UpperCAmelCase_ = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_snake_case , scale=_snake_case) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_snake_case , _snake_case) for image in images] UpperCAmelCase_ = BatchFeature(data={'''pixel_values''': images} , tensor_type=_snake_case) if apply_ocr: UpperCAmelCase_ = words_batch UpperCAmelCase_ = boxes_batch return data
356
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
0
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() snake_case_ : int = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True ): if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _UpperCamelCase : List[str] = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) _UpperCamelCase : Optional[Any] = config_class.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = True _UpperCamelCase : List[str] = True print(f'Building TensorFlow model from configuration: {config}' ) _UpperCamelCase : Optional[int] = model_class(UpperCAmelCase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _UpperCamelCase : str = cached_file( UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _UpperCamelCase : Any = load_pytorch_checkpoint_in_tfa_model(UpperCAmelCase_ , UpperCAmelCase_ ) if compare_with_pt_model: _UpperCamelCase : Optional[int] = tf_model(tf_model.dummy_inputs , training=UpperCAmelCase_ ) # build the network _UpperCamelCase : List[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : List[str] = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCAmelCase_ , config=UpperCAmelCase_ , state_dict=UpperCAmelCase_ ) with torch.no_grad(): _UpperCamelCase : Tuple = pt_model(**pt_model.dummy_inputs ) _UpperCamelCase : int = pto[0].numpy() _UpperCamelCase : Optional[Any] = tfo[0].numpy() _UpperCamelCase : Dict = np.amax(np.abs(np_pt - np_tf ) ) print(f'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, f'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(f'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(UpperCAmelCase_ , save_format='h5' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=False , ): if args_model_type is None: _UpperCamelCase : Optional[Any] = list(MODEL_CLASSES.keys() ) else: _UpperCamelCase : Optional[int] = [args_model_type] for j, model_type in enumerate(UpperCAmelCase_ , start=1 ): print('=' * 1_0_0 ) print(f' Converting model type {j}/{len(UpperCAmelCase_ )}: {model_type}' ) print('=' * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _UpperCamelCase : Union[str, Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _UpperCamelCase : str = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCAmelCase_ , UpperCAmelCase_ ) , start=1 ): print('-' * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f' Skipping finetuned checkpoint {model_shortcut_name}' ) continue _UpperCamelCase : Union[str, Any] = model_shortcut_name elif only_convert_finetuned_models: print(f' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( f' Converting checkpoint {i}/{len(UpperCAmelCase_ )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 1_0_0 ) if config_shortcut_name in aws_config_map: _UpperCamelCase : Tuple = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) else: _UpperCamelCase : List[Any] = config_shortcut_name if model_shortcut_name in aws_model_maps: _UpperCamelCase : Union[str, Any] = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) else: _UpperCamelCase : int = model_shortcut_name if os.path.isfile(UpperCAmelCase_ ): _UpperCamelCase : Dict = 'converted_model' convert_pt_checkpoint_to_tf( model_type=UpperCAmelCase_ , pytorch_checkpoint_path=UpperCAmelCase_ , config_file=UpperCAmelCase_ , tf_dump_path=os.path.join(UpperCAmelCase_ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=UpperCAmelCase_ , ) if remove_cached_files: os.remove(UpperCAmelCase_ ) os.remove(UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') snake_case_ : Tuple = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
83
"""simple docstring""" import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : Dict="sayef/fsner-bert-base-uncased" ): super(lowercase_ ,self ).__init__() lowerCAmelCase__ : int = AutoModel.from_pretrained(lowercase_ ,return_dict=lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.nn.CosineSimilarity(3 ,1E-08 ) lowerCAmelCase__ : List[str] = torch.nn.Softmax(dim=1 ) def __lowerCAmelCase ( self : str ,**lowercase_ : int ): return self.bert(**lowercase_ ).last_hidden_state def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Optional[int] ): return token_embeddings.sum(2 ,keepdim=lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : int ,lowercase_ : str ,lowercase_ : Tuple=1 ): return self.softmax(T * self.cos(lowercase_ ,lowercase_ ) ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : List[Any] = W_supports['''sizes'''].tolist() lowerCAmelCase__ : Dict = W_supports['''start_token_id'''].item() lowerCAmelCase__ : Union[str, Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase__ : Optional[Any] = self.BERT(**lowercase_ ) lowerCAmelCase__ : int = self.BERT(**lowercase_ ) lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : int = W_supports['''input_ids'''] == start_token_id lowerCAmelCase__ : Optional[Any] = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(lowercase_ ): if i == 0: lowerCAmelCase__ : str = 0 else: lowerCAmelCase__ : List[Any] = support_sizes[i - 1] lowerCAmelCase__ : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase__ : List[Any] = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase__ : Union[str, Any] = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase__ : Any = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase__ : List[Any] = torch.vstack((p_starts, p_start) ) lowerCAmelCase__ : List[Any] = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase__ : Union[str, Any] = p_start lowerCAmelCase__ : str = p_end return p_starts, p_ends
106
0
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowerCAmelCase ( ): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=lowercase_ , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=lowercase_ , default=5 ) parser.add_argument('--batch_size' , type=lowercase_ , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=lowercase_ , default=1 ) parser.add_argument('--freeze' , type=lowercase_ , default=lowercase_ ) parser.add_argument('--learning_rate' , type=lowercase_ , default=5e-4 ) parser.add_argument('--seed' , type=lowercase_ , default=0 ) parser.add_argument('--lr_scheduler_type' , type=lowercase_ , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=lowercase_ , default=10 ) parser.add_argument('--weight_decay' , type=lowercase_ , default=0.0_1 ) parser.add_argument('--output_dir' , type=lowercase_ , default='./results' ) return parser.parse_args() snake_case_ = load("""accuracy""") def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase , UpperCAmelCase = eval_pred UpperCAmelCase = np.argmax(lowercase_ , axis=1 ) return metric.compute(predictions=lowercase_ , references=lowercase_ ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :int , lowercase_ :int ) -> None: super().__init__() UpperCAmelCase = trainer def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Dict , lowercase_ :Tuple , lowercase_ :Tuple , **lowercase_ :Dict ) -> List[str]: if control.should_evaluate: UpperCAmelCase = deepcopy(lowercase_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def _lowerCAmelCase ( ): UpperCAmelCase = get_args() set_seed(args.seed ) UpperCAmelCase = load_dataset('codeparrot/codecomplex' , split='train' ) UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) UpperCAmelCase = train_test['test'].train_test_split(test_size=0.5 ) UpperCAmelCase = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase = tokenizer.eos_token UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCAmelCase = False UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(lowercase_ ): UpperCAmelCase = tokenizer(example['src'] , truncation=lowercase_ , max_length=1024 ) UpperCAmelCase = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCAmelCase = train_test_validation.map( lowercase_ , batched=lowercase_ , remove_columns=train_test_validation['train'].column_names , ) UpperCAmelCase = DataCollatorWithPadding(tokenizer=lowercase_ ) UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) UpperCAmelCase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=lowercase_ , data_collator=lowercase_ , compute_metrics=lowercase_ , ) print('Training...' ) trainer.add_callback(CustomCallback(lowercase_ ) ) trainer.train() if __name__ == "__main__": main()
181
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Any , lowercase_ :Optional[Any] , lowercase_ :int=13 , lowercase_ :Optional[Any]=7 , lowercase_ :List[str]=True , lowercase_ :Dict=True , lowercase_ :str=True , lowercase_ :Optional[Any]=True , lowercase_ :Dict=99 , lowercase_ :int=32 , lowercase_ :str=5 , lowercase_ :Dict=4 , lowercase_ :Tuple=37 , lowercase_ :Dict="gelu" , lowercase_ :List[str]=0.1 , lowercase_ :int=0.1 , lowercase_ :Any=5_12 , lowercase_ :Optional[Any]=16 , lowercase_ :Optional[int]=2 , lowercase_ :Union[str, Any]=0.02 , lowercase_ :Dict=False , lowercase_ :Tuple=True , lowercase_ :Optional[Any]="None" , lowercase_ :int=3 , lowercase_ :Tuple=4 , lowercase_ :Optional[int]=None , ) -> Tuple: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = relative_attention UpperCAmelCase = position_biased_input UpperCAmelCase = pos_att_type UpperCAmelCase = scope def UpperCAmelCase__ ( self :Any ) -> Tuple: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self :Tuple ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str ) -> List[str]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :Tuple , lowercase_ :str , lowercase_ :int , lowercase_ :Union[str, Any] , lowercase_ :List[str] , lowercase_ :Optional[int] ) -> Optional[int]: UpperCAmelCase = DebertaVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase = model(lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Dict , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :int ) -> Any: UpperCAmelCase = DebertaVaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Any , lowercase_ :Dict , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Dict ) -> Union[str, Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaVaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :Union[str, Any] , lowercase_ :Any , lowercase_ :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaVaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self :Any , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :Optional[int] ) -> Dict: UpperCAmelCase = DebertaVaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Any , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = DebertaVaForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self :Dict ) -> int: UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = DebertaVaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> List[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowercase_ ) @slow def UpperCAmelCase__ ( self :Any ) -> Optional[int]: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = DebertaVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def UpperCAmelCase__ ( self :str ) -> Tuple: pass @slow def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCAmelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
181
1
'''simple docstring''' import csv import tweepy # Twitter API credentials _lowercase : Union[str, Any] = "" _lowercase : int = "" _lowercase : str = "" _lowercase : List[str] = "" def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : List[str] = tweepy.OAuthHandler(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) auth.set_access_token(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = tweepy.API(__SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets lowercase_ : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowercase_ : str = api.user_timeline(screen_name=__SCREAMING_SNAKE_CASE , count=200 ) # save most recent tweets alltweets.extend(__SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one lowercase_ : int = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__SCREAMING_SNAKE_CASE ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates lowercase_ : Tuple = api.user_timeline( screen_name=__SCREAMING_SNAKE_CASE , count=200 , max_id=__SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(__SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one lowercase_ : Dict = alltweets[-1].id - 1 print(F'''...{len(__SCREAMING_SNAKE_CASE )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv lowercase_ : str = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , '''w''' ) as f: lowercase_ : List[str] = csv.writer(__SCREAMING_SNAKE_CASE ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
93
'''simple docstring''' import argparse import copy def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : List[Any] = {} with open(__SCREAMING_SNAKE_CASE ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase_ : Union[str, Any] = [] _list.append([line.split()[1], line.split()[2]] ) lowercase_ : str = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase_ : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) lowercase_ : Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE ) as f: lowercase_ : List[str] = f.read(1 ) lowercase_ : Optional[int] = start_node lowercase_ : Any = [] lowercase_ : List[str] = start_node lowercase_ : Optional[Any] = 0 while visiting not in first_solution: lowercase_ : Any = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__SCREAMING_SNAKE_CASE ) and k[0] not in first_solution: lowercase_ : List[Any] = k[1] lowercase_ : List[Any] = k[0] first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = distance_of_first_solution + int(__SCREAMING_SNAKE_CASE ) lowercase_ : int = best_node first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase_ : Optional[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" lowercase_ : Tuple = [] for n in solution[1:-1]: lowercase_ : List[str] = solution.index(__SCREAMING_SNAKE_CASE ) for kn in solution[1:-1]: lowercase_ : Any = solution.index(__SCREAMING_SNAKE_CASE ) if n == kn: continue lowercase_ : Dict = copy.deepcopy(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = kn lowercase_ : List[Any] = n lowercase_ : str = 0 for k in _tmp[:-1]: lowercase_ : Tuple = _tmp[_tmp.index(__SCREAMING_SNAKE_CASE ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase_ : Optional[Any] = distance + int(i[1] ) _tmp.append(__SCREAMING_SNAKE_CASE ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase_ : Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __SCREAMING_SNAKE_CASE : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" lowercase_ : Optional[int] = 1 lowercase_ : List[str] = first_solution lowercase_ : Dict = [] lowercase_ : List[str] = distance_of_first_solution lowercase_ : Optional[Any] = solution while count <= iters: lowercase_ : int = find_neighborhood(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = 0 lowercase_ : Dict = neighborhood[index_of_best_solution] lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Tuple = False while not found: lowercase_ : Optional[int] = 0 while i < len(__SCREAMING_SNAKE_CASE ): if best_solution[i] != solution[i]: lowercase_ : Tuple = best_solution[i] lowercase_ : Optional[int] = solution[i] break lowercase_ : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase_ : Tuple = True lowercase_ : Optional[int] = best_solution[:-1] lowercase_ : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase_ : Optional[Any] = cost lowercase_ : int = solution else: lowercase_ : Any = index_of_best_solution + 1 lowercase_ : Any = neighborhood[index_of_best_solution] if len(__SCREAMING_SNAKE_CASE ) >= size: tabu_list.pop(0 ) lowercase_ : List[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str]=None ): """simple docstring""" lowercase_ : Any = generate_neighbours(args.File ) lowercase_ , lowercase_ : Union[str, Any] = generate_first_solution( args.File , __SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = tabu_search( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
93
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
120
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Dict = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
120
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> Any: if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) UpperCAmelCase_ : Tuple = img UpperCAmelCase_ : List[Any] = img.shape[1] UpperCAmelCase_ : Any = img.shape[0] UpperCAmelCase_ : Optional[int] = dst_width UpperCAmelCase_ : int = dst_height UpperCAmelCase_ : Any = self.src_w / self.dst_w UpperCAmelCase_ : List[str] = self.src_h / self.dst_h UpperCAmelCase_ : Any = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def A__ ( self: List[str] ) -> Optional[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCAmelCase_ : int = self.img[self.get_y(a__ )][self.get_x(a__ )] def A__ ( self: Union[str, Any] ,lowerCamelCase_: int ) -> str: return int(self.ratio_x * x ) def A__ ( self: List[Any] ,lowerCamelCase_: int ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": UpperCamelCase_ ,UpperCamelCase_ = 800, 600 UpperCamelCase_ = imread('''image_data/lena.jpg''', 1) UpperCamelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output ) waitKey(0) destroyAllWindows()
345
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
0
'''simple docstring''' def __A ( lowerCAmelCase_ = 1000 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
365
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCAmelCase_ : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : snake_case : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) snake_case : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) snake_case : int = field( default=1_0_2_4 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=__a , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) snake_case : bool = field( default=__a , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """A csv or a json file containing the training data."""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """A csv or a json file containing the validation data."""} ) snake_case : Optional[str] = field(default=__a , metadata={"""help""": """A csv or a json file containing the test data."""} ) def snake_case_ (self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: _UpperCAmelCase : List[str] = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _UpperCAmelCase : Union[str, Any] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCAmelCase : snake_case : str = field( default=__a , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) snake_case : bool = field( default=__a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) snake_case : bool = field( default=__a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCAmelCase : Dict = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _UpperCAmelCase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _UpperCAmelCase : Dict = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _UpperCAmelCase : int = data_args.train_file.split(""".""" )[-1] _UpperCAmelCase : str = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _UpperCAmelCase : Optional[Any] = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files _UpperCAmelCase : List[str] = load_dataset("""csv""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _UpperCAmelCase : List[str] = load_dataset("""json""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _UpperCAmelCase : Optional[int] = raw_datasets["""train"""].features["""label"""].names _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _UpperCAmelCase : Optional[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase_ , ) _UpperCAmelCase : str = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase : int = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase : List[str] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _UpperCAmelCase : Dict = {"""Refused""": 0, """Entailed""": 1} _UpperCAmelCase : List[Any] = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _UpperCAmelCase : str = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase_ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase_ ): _UpperCAmelCase : int = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] _UpperCAmelCase : Union[str, Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _UpperCAmelCase : Tuple = examples["""statement"""] _UpperCAmelCase : str = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) _UpperCAmelCase : Optional[int] = tokenizer(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ) _UpperCAmelCase : int = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): _UpperCAmelCase : str = raw_datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) _UpperCAmelCase : Dict = raw_datasets["""train"""] if data_args.max_train_samples is not None: _UpperCAmelCase : List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) _UpperCAmelCase : Optional[int] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: _UpperCAmelCase : Dict = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) _UpperCAmelCase : Tuple = raw_datasets["""test"""] if data_args.max_predict_samples is not None: _UpperCAmelCase : Tuple = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase_ ) ) , 3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ ): _UpperCAmelCase : Dict = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase_ ) else p.predictions _UpperCAmelCase : int = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase : Dict = default_data_collator elif training_args.fpaa: _UpperCAmelCase : List[str] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) else: _UpperCAmelCase : Optional[Any] = None # Initialize our Trainer _UpperCAmelCase : Optional[Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Optional[Any] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = train_result.metrics _UpperCAmelCase : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : Dict = trainer.evaluate(eval_dataset=lowerCAmelCase_ ) _UpperCAmelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _UpperCAmelCase : str = predict_dataset.remove_columns("""label""" ) _UpperCAmelCase : List[Any] = trainer.predict(lowerCAmelCase_ , metric_key_prefix="""predict""" ).predictions _UpperCAmelCase : Dict = np.argmax(lowerCAmelCase_ , axis=1 ) _UpperCAmelCase : List[Any] = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : List[str] = label_list[item] writer.write(f"{index}\t{item}\n" ) _UpperCAmelCase : Union[str, Any] = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def __A ( lowerCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
170
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if (ksize % 2) == 0: __SCREAMING_SNAKE_CASE = ksize + 1 __SCREAMING_SNAKE_CASE = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE__ ): for x in range(SCREAMING_SNAKE_CASE__ ): # distance from center __SCREAMING_SNAKE_CASE = x - ksize // 2 __SCREAMING_SNAKE_CASE = y - ksize // 2 # degree to radiant __SCREAMING_SNAKE_CASE = theta / 180 * np.pi __SCREAMING_SNAKE_CASE = np.cos(_theta ) __SCREAMING_SNAKE_CASE = np.sin(_theta ) # get kernel x __SCREAMING_SNAKE_CASE = cos_theta * px + sin_theta * py # get kernel y __SCREAMING_SNAKE_CASE = -sin_theta * px + cos_theta * py # fill kernel __SCREAMING_SNAKE_CASE = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image a__ : List[str] = imread('''../image_data/lena.jpg''') # turn image in gray scale value a__ : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges a__ : Tuple = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: a__ : Dict = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) a__ : Any = out / out.max() * 2_5_5 a__ : Tuple = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
54
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple: '''simple docstring''' A__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A__ = 'cpu' A__ = Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER A__ = AutoencoderKL.from_pretrained(model_path + '/vae' ) A__ = vae_decoder.config.latent_channels # forward only through the decoder part A__ = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowercase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
7
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } __snake_case = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class __snake_case ( _UpperCamelCase ): __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ['input_ids', 'attention_mask'] __lowerCamelCase : List[int] = [] def __init__( self , snake_case__ , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , snake_case__ = None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token UpperCAmelCase : Dict =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token UpperCAmelCase : List[Any] =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token UpperCAmelCase : List[str] =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token UpperCAmelCase : Dict =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token UpperCAmelCase : Optional[int] =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Optional[Any] =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token UpperCAmelCase : Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase : int =vocab_file UpperCAmelCase : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Dict ={self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.__dict__.copy() UpperCAmelCase : Union[str, Any] =None return state def __setstate__( self , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : List[str] =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] ={} UpperCAmelCase : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[int]: '''simple docstring''' return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' return self.sp_model.piece_to_id(_UpperCAmelCase ) def UpperCAmelCase__ ( self , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple =self.sp_model.IdToPiece(_UpperCAmelCase ) return token def UpperCAmelCase__ ( self , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : int ='' UpperCAmelCase : List[Any] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token UpperCAmelCase : Dict =True UpperCAmelCase : Tuple =[] else: current_sub_tokens.append(_UpperCAmelCase ) UpperCAmelCase : List[str] =False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = False , snake_case__ = None , snake_case__ = True , **snake_case__ , ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =kwargs.pop('''use_source_tokenizer''' , _UpperCAmelCase ) UpperCAmelCase : List[Any] =self.convert_ids_to_tokens(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase : str =[] UpperCAmelCase : int =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCAmelCase ) ) UpperCAmelCase : Dict =[] sub_texts.append(_UpperCAmelCase ) else: current_sub_text.append(_UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCAmelCase : List[str] =re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(_UpperCAmelCase ) ) else: UpperCAmelCase : str =''.join(_UpperCAmelCase ) UpperCAmelCase : str =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase : List[str] =self.clean_up_tokenization(_UpperCAmelCase ) return clean_text else: return text def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[str]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str =os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , '''wb''' ) as fi: UpperCAmelCase : Optional[int] =self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Dict: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Any =[self.cls_token_id] UpperCAmelCase : str =[self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[str]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Dict: '''simple docstring''' UpperCAmelCase : Any =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
368
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : str = """rwkv""" __lowerCamelCase : str = {"""max_position_embeddings""": """context_length"""} def __init__( self , snake_case__=5_0277 , snake_case__=1024 , snake_case__=4096 , snake_case__=32 , snake_case__=None , snake_case__=None , snake_case__=1e-5 , snake_case__=0 , snake_case__=0 , snake_case__=6 , snake_case__=False , snake_case__=True , **snake_case__ , ) -> List[str]: '''simple docstring''' UpperCAmelCase : int =vocab_size UpperCAmelCase : List[str] =context_length UpperCAmelCase : Any =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : str =attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase : List[Any] =intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase : Optional[int] =layer_norm_epsilon UpperCAmelCase : int =rescale_every UpperCAmelCase : Any =use_cache UpperCAmelCase : List[str] =bos_token_id UpperCAmelCase : Any =eos_token_id super().__init__( tie_word_embeddings=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
78
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable UpperCamelCase__ = list[list[float | int]] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Matrix: UpperCAmelCase__ : int = len(lowerCAmelCase__ ) UpperCAmelCase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase__ )] UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float for row in range(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[Any] = matrix[row][col] UpperCAmelCase__ : Tuple = vector[row][0] UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : int = 0 while row < size and col < size: # pivoting UpperCAmelCase__ : List[str] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase__ , lowerCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = augmented[rowa][col] / augmented[row][col] UpperCAmelCase__ : str = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase__ ): for row in range(lowerCAmelCase__ ): UpperCAmelCase__ : int = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowerCAmelCase__ ) ] def a__ ( lowerCAmelCase__ ) -> Callable[[int], int]: UpperCAmelCase__ : int = len(lowerCAmelCase__ ) UpperCAmelCase__ : Matrix = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] UpperCAmelCase__ : Matrix = [[0] for _ in range(lowerCAmelCase__ )] UpperCAmelCase__ : Matrix UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int for x_val, y_val in enumerate(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[Any] = (x_val + 1) ** (size - col - 1) UpperCAmelCase__ : Union[str, Any] = y_val UpperCAmelCase__ : Any = solve(lowerCAmelCase__ , lowerCAmelCase__ ) def interpolated_func(lowerCAmelCase__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase__ ) ) return interpolated_func def a__ ( lowerCAmelCase__ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def a__ ( lowerCAmelCase__ = question_function , lowerCAmelCase__ = 10 ) -> int: UpperCAmelCase__ : list[int] = [func(lowerCAmelCase__ ) for x_val in range(1 , order + 1 )] UpperCAmelCase__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Callable[[int], int] UpperCAmelCase__ : int for poly in polynomials: UpperCAmelCase__ : List[str] = 1 while func(lowerCAmelCase__ ) == poly(lowerCAmelCase__ ): x_val += 1 ret += poly(lowerCAmelCase__ ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
181
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
181
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = tf.data.AUTOTUNE def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=_UpperCamelCase , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=_UpperCamelCase , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=_UpperCamelCase , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=_UpperCamelCase , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=_UpperCamelCase , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=_UpperCamelCase , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=_UpperCamelCase , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=_UpperCamelCase , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=_UpperCamelCase , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=_UpperCamelCase , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=_UpperCamelCase , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=_UpperCamelCase , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=_UpperCamelCase , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=_UpperCamelCase , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=_UpperCamelCase , help='''Model ID to upload to on the Hugging Face Hub.''' ) snake_case_ : str = parser.parse_args() return args def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: snake_case_ : Dict = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case_ : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(_UpperCamelCase ) tf.tpu.experimental.initialize_tpu_system(_UpperCamelCase ) return tpu def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : Union[str, Any] = 0 for file in file_list: snake_case_ : str = file.split('''/''' )[-1] snake_case_ : List[Any] = re.search(R'''-\d+-(\d+)\.tfrecord''' , _UpperCamelCase ).group(1 ) snake_case_ : Dict = int(_UpperCamelCase ) num_samples += sample_count return num_samples def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = count_samples(_UpperCamelCase ) snake_case_ : List[Any] = tf.data.Dataset.from_tensor_slices(_UpperCamelCase ) if shuffle: snake_case_ : int = dataset.shuffle(len(_UpperCamelCase ) ) snake_case_ : Optional[int] = tf.data.TFRecordDataset(_UpperCamelCase , num_parallel_reads=_UpperCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case_ : Dict = dataset.apply(tf.data.experimental.assert_cardinality(_UpperCamelCase ) ) snake_case_ : Any = dataset.map(_UpperCamelCase , num_parallel_calls=_UpperCamelCase ) if shuffle: assert shuffle_buffer_size is not None snake_case_ : Dict = dataset.shuffle(args.shuffle_buffer_size ) snake_case_ : Tuple = dataset.batch(_UpperCamelCase , drop_remainder=_UpperCamelCase ) snake_case_ : List[Any] = dataset.map(_UpperCamelCase , num_parallel_calls=_UpperCamelCase ) snake_case_ : int = dataset.prefetch(_UpperCamelCase ) return dataset def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" if not args.no_tpu: snake_case_ : Any = initialize_tpu(_UpperCamelCase ) snake_case_ : Any = tf.distribute.TPUStrategy(_UpperCamelCase ) else: snake_case_ : str = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case_ : List[Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case_ : int = tokenizer.vocab_size snake_case_ : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) snake_case_ : List[str] = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) snake_case_ : int = count_samples(_UpperCamelCase ) snake_case_ : Union[str, Any] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case_ : int = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case_ : Tuple = TFAutoModelForMaskedLM.from_config(_UpperCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case_ : int = create_optimizer( num_train_steps=_UpperCamelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_UpperCamelCase , metrics=['''accuracy'''] ) def decode_fn(_UpperCamelCase ): snake_case_ : List[Any] = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_UpperCamelCase , _UpperCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case_ : List[Any] = DataCollatorForLanguageModeling( tokenizer=_UpperCamelCase , mlm_probability=args.mlm_probability , mlm=_UpperCamelCase , return_tensors='''tf''' ) def mask_with_collator(_UpperCamelCase ): # TF really needs an isin() function snake_case_ : str = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) snake_case_ : str = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(_UpperCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_UpperCamelCase , ) return batch snake_case_ : List[Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case_ : Tuple = prepare_dataset( _UpperCamelCase , decode_fn=_UpperCamelCase , mask_fn=_UpperCamelCase , batch_size=_UpperCamelCase , shuffle=_UpperCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case_ : Union[str, Any] = prepare_dataset( _UpperCamelCase , decode_fn=_UpperCamelCase , mask_fn=_UpperCamelCase , batch_size=_UpperCamelCase , shuffle=_UpperCamelCase , ) snake_case_ : Any = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_UpperCamelCase ) ) model.fit( _UpperCamelCase , validation_data=_UpperCamelCase , epochs=args.num_epochs , callbacks=_UpperCamelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCAmelCase_ = parse_args() main(args)
370
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''biogpt''' def __init__(self , __magic_name__=4_2384 , __magic_name__=1024 , __magic_name__=24 , __magic_name__=16 , __magic_name__=4096 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1024 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=True , __magic_name__=True , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , **__magic_name__ , ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = vocab_size snake_case_ : Dict = max_position_embeddings snake_case_ : Optional[int] = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Optional[int] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : str = scale_embedding snake_case_ : Optional[Any] = use_cache snake_case_ : Optional[Any] = layerdrop snake_case_ : Optional[Any] = activation_dropout super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
279
0
'''simple docstring''' import json import sys def UpperCamelCase_ ( A__ : Tuple , A__ : Optional[int] ): '''simple docstring''' with open(A__ , encoding="""utf-8""" ) as f: lowerCAmelCase_ : int = json.load(A__ ) lowerCAmelCase_ : List[str] = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(A__ ): lowerCAmelCase_ : Union[str, Any] = results[benchmark_name] lowerCAmelCase_ : Union[str, Any] = benchmark_name.split("""/""" )[-1] output_md.append(f'### Benchmark: {benchmark_file_name}' ) lowerCAmelCase_ : int = """| metric |""" lowerCAmelCase_ : Tuple = """|--------|""" lowerCAmelCase_ : int = """| new / old (diff) |""" for metric_name in sorted(A__ ): lowerCAmelCase_ : Optional[int] = benchmark_res[metric_name] lowerCAmelCase_ : int = metric_vals["""new"""] lowerCAmelCase_ : int = metric_vals.get("""old""" , A__ ) lowerCAmelCase_ : Any = metric_vals.get("""diff""" , A__ ) lowerCAmelCase_ : Optional[Any] = f' {new_val:f}' if isinstance(A__ , (int, float) ) else """None""" if old_val is not None: val_str += f' / {old_val:f}' if isinstance(A__ , (int, float) ) else "None" if dif_val is not None: val_str += f' ({dif_val:f})' if isinstance(A__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(A__ ) ) if __name__ == "__main__": __A : List[str] = sys.argv[1] __A : str = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
120
'''simple docstring''' from __future__ import annotations from typing import Any class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" pass class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Any ) -> None: lowerCAmelCase_ : Any = data lowerCAmelCase_ : Node | None = None def __iter__( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase_ : Union[str, Any] = self lowerCAmelCase_ : Any = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase ) yield node.data lowerCAmelCase_ : int = node.next_node @property def __lowercase ( self : str ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __A : Dict = Node(1) __A : Optional[Any] = Node(2) __A : int = Node(3) __A : Optional[Any] = Node(4) print(root_node.has_loop) # False __A : Any = root_node.next_node print(root_node.has_loop) # True __A : List[Any] = Node(5) __A : Dict = Node(6) __A : str = Node(5) __A : Dict = Node(6) print(root_node.has_loop) # False __A : Optional[int] = Node(1) print(root_node.has_loop) # False
120
1
'''simple docstring''' from __future__ import annotations from typing import Any class _lowerCAmelCase : def __init__(self , lowercase ): A_ : List[Any] = num_of_nodes A_ : list[list[int]] = [] A_ : dict[int, int] = {} def _a (self , lowercase , lowercase , lowercase ): self.m_edges.append([u_node, v_node, weight] ) def _a (self , lowercase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _a (self , lowercase ): if self.m_component[u_node] != u_node: for k in self.m_component: A_ : Tuple = self.find_component(lowercase ) def _a (self , lowercase , lowercase , lowercase ): if component_size[u_node] <= component_size[v_node]: A_ : Tuple = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase ) elif component_size[u_node] >= component_size[v_node]: A_ : Dict = self.find_component(lowercase ) component_size[u_node] += component_size[v_node] self.set_component(lowercase ) def _a (self ): A_ : Dict = [] A_ : int = 0 A_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) A_ : Optional[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: A_ : int = edge A_ : Optional[int] = self.m_component[u] A_ : Optional[int] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): A_ : List[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase , lowercase ): A_ : str = edge A_ : Any = self.m_component[u] A_ : List[str] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase , lowercase , lowercase ) print(F'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 A_ : Dict = [-1] * self.m_num_of_nodes print(F'The total weight of the minimal spanning tree is: {mst_weight}' ) def a ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): if tokenize_kwargs is None: A_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) A_ : str = truncation A_ : List[str] = tokenize_kwargs A_ : Dict = {} if return_tensors is not None: A_ : List[Any] = return_tensors return preprocess_params, {}, postprocess_params def _a (self , lowercase , **lowercase ): A_ : Optional[int] = self.framework A_ : str = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) return model_inputs def _a (self , lowercase ): A_ : str = self.model(**lowercase ) return model_outputs def _a (self , lowercase , lowercase=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self , *lowercase , **lowercase ): return super().__call__(*lowercase , **lowercase )
135
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
99
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Union[str, Any] ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _lowercase : Optional[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure)
170
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : Dict , __A : Tuple , __A : int , __A : Optional[Any]=None , __A : Dict=None ): snake_case__ : int = start snake_case__ : Optional[Any] = end snake_case__ : List[str] = val snake_case__ : str = (start + end) // 2 snake_case__ : Tuple = left snake_case__ : Optional[Any] = right def __repr__( self : List[str] ): return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Sequence , __A : Optional[int] ): snake_case__ : Optional[int] = collection snake_case__ : Union[str, Any] = function if self.collection: snake_case__ : Tuple = self._build_tree(0 , len(__A ) - 1 ) def _lowercase ( self : str , __A : Union[str, Any] , __A : Optional[Any] ): self._update_tree(self.root , __A , __A ) def _lowercase ( self : Optional[Any] , __A : int , __A : Optional[Any] ): return self._query_range(self.root , __A , __A ) def _lowercase ( self : Optional[Any] , __A : Tuple , __A : Any ): if start == end: return SegmentTreeNode(__A , __A , self.collection[start] ) snake_case__ : Dict = (start + end) // 2 snake_case__ : Tuple = self._build_tree(__A , __A ) snake_case__ : Tuple = self._build_tree(mid + 1 , __A ) return SegmentTreeNode(__A , __A , self.fn(left.val , right.val ) , __A , __A ) def _lowercase ( self : Any , __A : str , __A : int , __A : Any ): if node.start == i and node.end == i: snake_case__ : Optional[Any] = val return if i <= node.mid: self._update_tree(node.left , __A , __A ) else: self._update_tree(node.right , __A , __A ) snake_case__ : Union[str, Any] = self.fn(node.left.val , node.right.val ) def _lowercase ( self : Optional[int] , __A : List[Any] , __A : List[str] , __A : List[str] ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __A , __A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __A , node.mid ) , self._query_range(node.right , node.mid + 1 , __A ) , ) else: # range in right child tree return self._query_range(node.right , __A , __A ) def _lowercase ( self : List[Any] ): if self.root is not None: snake_case__ : Union[str, Any] = Queue() queue.put(self.root ) while not queue.empty(): snake_case__ : Union[str, Any] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) __lowerCamelCase : Optional[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
370
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = SMALL_MODEL_IDENTIFIER snake_case__ : Any = "pt" snake_case__ : Any = "tf" def _lowercase ( self : Union[str, Any] , __A : List[Any] ): snake_case__ : int = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__A ) def _lowercase ( self : Optional[int] , __A : Tuple ): snake_case__ : List[Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__A ) model_tf.save_pretrained(__A ) def _lowercase ( self : str ): snake_case__ : Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model , __A ) self.assertEqual(__A , __A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) snake_case__ : Optional[int] = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) snake_case__ : int = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) def _lowercase ( self : Dict ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) snake_case__ : List[str] = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) snake_case__ : Tuple = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__A ): snake_case__ : int = FeaturesManager.determine_framework(__A ) def _lowercase ( self : Dict ): snake_case__ : Dict = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ): snake_case__ : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow snake_case__ : Tuple = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_torch_available" , __A ): snake_case__ : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_tf ) # Both in environment -> use PyTorch snake_case__ : Dict = MagicMock(return_value=__A ) snake_case__ : Optional[int] = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ), patch( "transformers.onnx.features.is_torch_available" , __A ): snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # Both not in environment -> raise error snake_case__ : List[str] = MagicMock(return_value=__A ) snake_case__ : Optional[Any] = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ), patch( "transformers.onnx.features.is_torch_available" , __A ): with self.assertRaises(__A ): snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
286
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->list: '''simple docstring''' if n_term == "": return [] a : list = [] for temp in range(int(_lowercase ) ): series.append(F"""1/{temp + 1}""" if series else "1" ) return series if __name__ == "__main__": a : Any = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
105
"""simple docstring""" import requests snake_case_ = """""" # <-- Put your OpenWeatherMap appid here! snake_case_ = """https://api.openweathermap.org/data/2.5/""" def _lowerCAmelCase ( lowercase_ = "Chicago" , lowercase_ = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def _lowerCAmelCase ( lowercase_ = "Kolkata, India" , lowercase_ = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def _lowerCAmelCase ( lowercase_ = 5_5.6_8 , lowercase_ = 1_2.5_7 , lowercase_ = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: snake_case_ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
78
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class _a ( __lowerCAmelCase ): def __init__( self : str, *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : Optional[Any] ) -> Any: '''simple docstring''' super().__init__(*lowerCamelCase__, **lowerCamelCase__ ) _UpperCamelCase : Any = {} def snake_case ( self : Any, lowerCAmelCase__ : Dict, *lowerCAmelCase__ : Union[str, Any], **lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = super().add_tokens(lowerCamelCase__, *lowerCamelCase__, **lowerCamelCase__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ''' `placeholder_token` that is not already in the tokenizer.''' ) def snake_case ( self : str, lowerCAmelCase__ : Tuple, *lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Tuple=1, **lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : str = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase__, *lowerCamelCase__, **lowerCamelCase__ ) output.append(lowerCamelCase__ ) else: _UpperCamelCase : int = [] for i in range(lowerCamelCase__ ): _UpperCamelCase : Tuple = placeholder_token + f"""_{i}""" self.try_adding_tokens(lowerCamelCase__, *lowerCamelCase__, **lowerCamelCase__ ) output.append(lowerCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) _UpperCamelCase : int = output def snake_case ( self : int, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str]=False, lowerCAmelCase__ : Optional[int]=1.0 ) -> Optional[int]: '''simple docstring''' if isinstance(lowerCamelCase__, lowerCamelCase__ ): _UpperCamelCase : int = [] for i in range(len(lowerCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=lowerCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCamelCase : Any = self.token_map[placeholder_token] _UpperCamelCase : Union[str, Any] = tokens[: 1 + int(len(lowerCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: _UpperCamelCase : List[str] = copy.copy(lowerCamelCase__ ) random.shuffle(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = text.replace(lowerCamelCase__, ''' '''.join(lowerCamelCase__ ) ) return text def __call__( self : Dict, lowerCAmelCase__ : Tuple, *lowerCAmelCase__ : List[Any], lowerCAmelCase__ : Optional[int]=False, lowerCAmelCase__ : List[str]=1.0, **lowerCAmelCase__ : Dict ) -> Dict: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase__, vector_shuffle=lowerCamelCase__, prop_tokens_to_load=lowerCamelCase__ ), *lowerCamelCase__, **lowerCamelCase__, ) def snake_case ( self : str, lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[int]=False, lowerCAmelCase__ : str=1.0, **lowerCAmelCase__ : Any ) -> int: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase__, vector_shuffle=lowerCamelCase__, prop_tokens_to_load=lowerCamelCase__ ), *lowerCamelCase__, **lowerCamelCase__, )
357
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCamelCase_ ="""bart""" UpperCamelCase_ =True @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): if LOAD_DENSE_INDEX: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase : Union[str, Any] = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase : str = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase : List[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase : Dict = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase : List[Any] = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): if LOAD_DENSE_INDEX: _UpperCamelCase : List[Any] = faiss.StandardGpuResources() _UpperCamelCase : List[str] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase : Tuple = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) _UpperCamelCase : Optional[int] = faiss.IndexFlatIP(128 ) _UpperCamelCase : Tuple = faiss.index_cpu_to_gpu(_lowercase , 1 , _lowercase ) wikiaab_gpu_index_flat.add(_lowercase ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase : Tuple = (None, None) _UpperCamelCase : List[Any] = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): _UpperCamelCase : Optional[Any] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _UpperCamelCase : Any = elia['''train_eli5'''] _UpperCamelCase : Union[str, Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) _UpperCamelCase : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowercase ) return (elia_train, eli5_train_q_index) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =load_indexes() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =load_models() UpperCamelCase_ , UpperCamelCase_ =load_train_data() def a_ ( _lowercase , _lowercase=10 ): _UpperCamelCase : Any = embed_questions_for_retrieval([question] , _lowercase , _lowercase ) _UpperCamelCase , _UpperCamelCase : List[Any] = eli5_train_q_index.search(_lowercase , _lowercase ) _UpperCamelCase : Tuple = [elia_train[int(_lowercase )] for i in I[0]] return nn_examples def a_ ( _lowercase , _lowercase="wiki40b" , _lowercase="dense" , _lowercase=10 ): if source == "none": _UpperCamelCase , _UpperCamelCase : List[str] = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase : Dict = query_qa_dense_index( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) else: _UpperCamelCase , _UpperCamelCase : List[str] = query_es_index( _lowercase , _lowercase , index_name='''english_wiki40b_snippets_100w''' , n_results=_lowercase , ) _UpperCamelCase : Any = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase : List[Any] = '''question: {} context: {}'''.format(_lowercase , _lowercase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowercase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowercase : None), } ) def a_ ( _lowercase , _lowercase , _lowercase , _lowercase=64 , _lowercase=256 , _lowercase=False , _lowercase=2 , _lowercase=0.95 , _lowercase=0.8 ): with torch.no_grad(): _UpperCamelCase : List[Any] = qa_sas_generate( _lowercase , _lowercase , _lowercase , num_answers=1 , num_beams=_lowercase , min_len=_lowercase , max_len=_lowercase , do_sample=_lowercase , temp=_lowercase , top_p=_lowercase , top_k=_lowercase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar UpperCamelCase_ ="""<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" UpperCamelCase_ =""" <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCamelCase_ =""" This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) UpperCamelCase_ =[ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] UpperCamelCase_ =st.sidebar.checkbox("""Demo options""") if demo_options: UpperCamelCase_ =st.sidebar.selectbox( """""", action_list, index=3, ) UpperCamelCase_ =action_list.index(action_st) UpperCamelCase_ =st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) UpperCamelCase_ =show_type == """Show full text of passages""" else: UpperCamelCase_ =3 UpperCamelCase_ =True UpperCamelCase_ =st.sidebar.checkbox("""Retrieval options""") if retrieval_options: UpperCamelCase_ =""" ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) UpperCamelCase_ =st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) UpperCamelCase_ =st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: UpperCamelCase_ ="""wiki40b""" UpperCamelCase_ ="""dense""" UpperCamelCase_ ="""beam""" UpperCamelCase_ =2 UpperCamelCase_ =64 UpperCamelCase_ =256 UpperCamelCase_ =None UpperCamelCase_ =None UpperCamelCase_ =st.sidebar.checkbox("""Generation options""") if generate_options: UpperCamelCase_ =""" ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) UpperCamelCase_ =st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) UpperCamelCase_ =st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCamelCase_ =st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCamelCase_ =st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCamelCase_ =st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCamelCase_ =st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCamelCase_ =None # start main text UpperCamelCase_ =[ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] UpperCamelCase_ =st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCamelCase_ =st.text_input("""Enter your question here:""", """""") else: UpperCamelCase_ =question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method="""dense""", n_results=10) UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method="""sparse""", n_results=10) UpperCamelCase_ =[] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCamelCase_ =support_list[:10] UpperCamelCase_ ="""<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCamelCase_ , UpperCamelCase_ =answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): UpperCamelCase_ ="""https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) UpperCamelCase_ =res[1].strip() if sec_titles == "": UpperCamelCase_ ="""[{}]({})""".format(res[0], wiki_url) else: UpperCamelCase_ =sec_titles.split(""" & """) UpperCamelCase_ =""" & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: UpperCamelCase_ =find_nearest_training(question) UpperCamelCase_ =nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) UpperCamelCase_ =[ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) UpperCamelCase_ =""" --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
128
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
279
0
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : str = 2 while i * i <= n: UpperCAmelCase__ : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def a__ ( ) -> Any: UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : Any = 1 while True: i += 1 t_num += i if count_divisors(lowerCAmelCase__ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = None , ): SCREAMING_SNAKE_CASE_: Optional[int] ={} if train_file is not None: SCREAMING_SNAKE_CASE_: List[Any] =[train_file] if eval_file is not None: SCREAMING_SNAKE_CASE_: List[Any] =[eval_file] if test_file is not None: SCREAMING_SNAKE_CASE_: Optional[int] =[test_file] SCREAMING_SNAKE_CASE_: Optional[int] =datasets.load_dataset("""csv""" , data_files=_lowerCamelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =list(ds[list(files.keys() )[0]].features.keys() ) SCREAMING_SNAKE_CASE_: Optional[Any] =features_name.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE_: Dict =list(set(ds[list(files.keys() )[0]][label_name] ) ) SCREAMING_SNAKE_CASE_: List[str] ={label: i for i, label in enumerate(_lowerCamelCase )} SCREAMING_SNAKE_CASE_: Dict =tokenizer.model_input_names SCREAMING_SNAKE_CASE_: int ={} if len(_lowerCamelCase ) == 1: for k in files.keys(): SCREAMING_SNAKE_CASE_: Optional[int] =ds[k].map( lambda lowercase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): SCREAMING_SNAKE_CASE_: Optional[Any] =ds[k].map( lambda lowercase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: SCREAMING_SNAKE_CASE_: Optional[Any] ={k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE_: str =labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: SCREAMING_SNAKE_CASE_: str ={k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE_: Optional[int] =labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: SCREAMING_SNAKE_CASE_: List[Any] ={k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE_: Dict =labelaid[ex[label_name]] yield (d, label) SCREAMING_SNAKE_CASE_: Optional[Any] =( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: SCREAMING_SNAKE_CASE_: int =train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) SCREAMING_SNAKE_CASE_: Tuple =( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: SCREAMING_SNAKE_CASE_: List[Any] =val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) SCREAMING_SNAKE_CASE_: int =( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: SCREAMING_SNAKE_CASE_: Optional[Any] =test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class a : UpperCamelCase : str = field(metadata={'help': 'Which column contains the label'} ) UpperCamelCase : Optional[int] = field(default=a__ , metadata={'help': 'The path of the training file'} ) UpperCamelCase : Tuple = field(default=a__ , metadata={'help': 'The path of the development file'} ) UpperCamelCase : List[Any] = field(default=a__ , metadata={'help': 'The path of the test file'} ) UpperCamelCase : List[Any] = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCamelCase : Any = field( default=a__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class a : UpperCamelCase : List[Any] = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase : Optional[int] = field( default=a__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCamelCase : Optional[int] = field( default=a__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) UpperCamelCase : Optional[int] = field(default=a__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase : Dict = field( default=a__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) SCREAMING_SNAKE_CASE_: Optional[Any] =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_: Dict =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE_: str =get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) SCREAMING_SNAKE_CASE_: Any =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): SCREAMING_SNAKE_CASE_: List[str] =TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase ) -> Dict: SCREAMING_SNAKE_CASE_: List[str] =np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer SCREAMING_SNAKE_CASE_: Dict =TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE_: int ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) SCREAMING_SNAKE_CASE_: Any =trainer.evaluate() SCREAMING_SNAKE_CASE_: List[str] =os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
173
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' __A = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' __A = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCamelCase__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCamelCase__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any=4 , UpperCAmelCase : str=False ): __lowerCamelCase : Dict = compute_bleu( reference_corpus=UpperCAmelCase , translation_corpus=UpperCAmelCase , max_order=UpperCAmelCase , smooth=UpperCAmelCase ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) : List[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
135
0
from ...configuration_utils import PretrainedConfig class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : int ="""bert-generation""" def __init__( self , UpperCamelCase_=5_0358 , UpperCamelCase_=1024 , UpperCamelCase_=24 , UpperCamelCase_=16 , UpperCamelCase_=4096 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_="absolute" , UpperCamelCase_=True , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase_ :int = vocab_size lowercase_ :Any = hidden_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :Union[str, Any] = num_attention_heads lowercase_ :int = hidden_act lowercase_ :Optional[int] = intermediate_size lowercase_ :List[Any] = hidden_dropout_prob lowercase_ :int = attention_probs_dropout_prob lowercase_ :Union[str, Any] = max_position_embeddings lowercase_ :Dict = initializer_range lowercase_ :Dict = layer_norm_eps lowercase_ :List[Any] = position_embedding_type lowercase_ :Tuple = use_cache
252
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = False ): lowercase_ :List[str] = scheduler lowercase_ :Optional[Any] = optimizers if isinstance(UpperCamelCase_ , (list, tuple) ) else [optimizers] lowercase_ :Tuple = split_batches lowercase_ :str = step_with_optimizer lowercase_ :int = GradientState() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowercase_ :Optional[Any] = AcceleratorState().num_processes for _ in range(UpperCamelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_last_lr() def UpperCamelCase ( self ): return self.scheduler.state_dict() def UpperCamelCase ( self , UpperCamelCase_ ): self.scheduler.load_state_dict(UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_lr() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.scheduler.print_lr(*UpperCamelCase_ , **UpperCamelCase_ )
252
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class lowerCAmelCase_ ( UpperCAmelCase__ ): __lowerCamelCase : Dict = """switch_transformers""" __lowerCamelCase : str = ["""past_key_values"""] __lowerCamelCase : Dict = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , _lowerCAmelCase=32128 , _lowerCAmelCase=768 , _lowerCAmelCase=64 , _lowerCAmelCase=2048 , _lowerCAmelCase=64 , _lowerCAmelCase=12 , _lowerCAmelCase=3 , _lowerCAmelCase=12 , _lowerCAmelCase=3 , _lowerCAmelCase=12 , _lowerCAmelCase=8 , _lowerCAmelCase=False , _lowerCAmelCase=0.01 , _lowerCAmelCase="float32" , _lowerCAmelCase=False , _lowerCAmelCase=32 , _lowerCAmelCase=128 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=0.001 , _lowerCAmelCase=0.001 , _lowerCAmelCase=1.0 , _lowerCAmelCase="relu" , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=1 , **_lowerCAmelCase , ) -> List[str]: _lowerCAmelCase = vocab_size _lowerCAmelCase = d_model _lowerCAmelCase = d_kv _lowerCAmelCase = d_ff _lowerCAmelCase = num_sparse_encoder_layers _lowerCAmelCase = num_layers _lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCAmelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _lowerCAmelCase = self.num_layers // self.num_sparse_encoder_layers else: _lowerCAmelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _lowerCAmelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: _lowerCAmelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers _lowerCAmelCase = num_heads _lowerCAmelCase = num_experts _lowerCAmelCase = expert_capacity _lowerCAmelCase = router_bias _lowerCAmelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _lowerCAmelCase = router_dtype _lowerCAmelCase = router_ignore_padding_tokens _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = relative_attention_max_distance _lowerCAmelCase = dropout_rate _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_factor _lowerCAmelCase = feed_forward_proj _lowerCAmelCase = use_cache _lowerCAmelCase = add_router_probs _lowerCAmelCase = router_z_loss_coef _lowerCAmelCase = router_aux_loss_coef _lowerCAmelCase = self.feed_forward_proj.split("-" ) _lowerCAmelCase = act_info[-1] _lowerCAmelCase = act_info[0] == 'gated' if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "\'gated-gelu\' or \'relu\'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCAmelCase = 'gelu_new' super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , )
158
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Dict = ["""image_processor""", """tokenizer"""] lowercase_ : Union[str, Any] = """ViltImageProcessor""" lowercase_ : Any = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): """simple docstring""" A_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) A_ : Dict = kwargs.pop('feature_extractor' ) A_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case_ , snake_case_ ) A_ : List[str] = self.image_processor def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): """simple docstring""" A_ : str = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel_values + pixel_mask A_ : Optional[int] = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def lowerCamelCase_ ( self , *snake_case_ , **snake_case_ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCamelCase_ ( self , *snake_case_ , **snake_case_ ): """simple docstring""" return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCamelCase_ ( self ): """simple docstring""" A_ : Any = self.tokenizer.model_input_names A_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , ) return self.image_processor_class @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , ) return self.image_processor
286
0
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : str = to_pil_image(_lowerCAmelCase ) snake_case__ , snake_case__ : Optional[int] = pil_image.size snake_case__ : int = pytesseract.image_to_data(_lowerCAmelCase , lang=_lowerCAmelCase , output_type="""dict""" , config=_lowerCAmelCase ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates snake_case__ : Optional[Any] = [idx for idx, word in enumerate(_lowerCAmelCase ) if not word.strip()] snake_case__ : Dict = [word for idx, word in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] snake_case__ : List[str] = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] snake_case__ : Union[str, Any] = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] snake_case__ : int = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] snake_case__ : List[Any] = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case__ : Tuple = [] for x, y, w, h in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Optional[int] = [x, y, x + w, y + h] actual_boxes.append(_lowerCAmelCase ) # finally, normalize the bounding boxes snake_case__ : List[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = ["pixel_values"] def __init__( self : Tuple , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = True , snake_case_ : float = 1 / 255 , snake_case_ : bool = True , snake_case_ : Union[float, Iterable[float]] = None , snake_case_ : Union[float, Iterable[float]] = None , snake_case_ : bool = True , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = "" , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) snake_case__ : Tuple = size if size is not None else {"""height""": 224, """width""": 224} snake_case__ : Union[str, Any] = get_size_dict(snake_case_ ) snake_case__ : Optional[Any] = do_resize snake_case__ : Tuple = size snake_case__ : Tuple = resample snake_case__ : Any = do_rescale snake_case__ : str = rescale_value snake_case__ : Union[str, Any] = do_normalize snake_case__ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD snake_case__ : str = apply_ocr snake_case__ : Tuple = ocr_lang snake_case__ : Tuple = tesseract_config def lowerCamelCase ( self : List[Any] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) snake_case__ : str = (size["""height"""], size["""width"""]) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Union[str, Any] , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : List[Any] , snake_case_ : np.ndarray , snake_case_ : Union[float, Iterable[float]] , snake_case_ : Union[float, Iterable[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : List[str] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : Union[str, Any]=None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Union[float, Iterable[float]] = None , snake_case_ : Union[float, Iterable[float]] = None , snake_case_ : bool = None , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Optional[Any] , ): snake_case__ : str = do_resize if do_resize is not None else self.do_resize snake_case__ : Tuple = size if size is not None else self.size snake_case__ : Tuple = get_size_dict(snake_case_ ) snake_case__ : Optional[Any] = resample if resample is not None else self.resample snake_case__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Any = image_mean if image_mean is not None else self.image_mean snake_case__ : Optional[Any] = image_std if image_std is not None else self.image_std snake_case__ : List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case__ : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case__ : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case__ : Dict = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. snake_case__ : List[Any] = [to_numpy_array(snake_case_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) snake_case__ : Optional[int] = [] snake_case__ : Dict = [] for image in images: snake_case__ , snake_case__ : List[str] = apply_tesseract(snake_case_ , snake_case_ , snake_case_ ) words_batch.append(snake_case_ ) boxes_batch.append(snake_case_ ) if do_resize: snake_case__ : Tuple = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: snake_case__ : Optional[int] = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] snake_case__ : List[str] = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] snake_case__ : Optional[int] = BatchFeature(data={"""pixel_values""": images} , tensor_type=snake_case_ ) if apply_ocr: snake_case__ : Tuple = words_batch snake_case__ : Union[str, Any] = boxes_batch return data
43
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __a = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) __a = "sshleifer/student_marian_en_ro_6_1" __a = "sshleifer/tiny-mbart" @require_torch class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Any , snake_case_ : List[str]=False , snake_case_ : Tuple=None , snake_case_ : Dict=True , snake_case_ : Any=True , snake_case_ : Tuple=True , snake_case_ : List[str]=True , ): snake_case__ : List[Any] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=snake_case_ , num_train_epochs=1 , distributed=snake_case_ , extra_args_str=snake_case_ , predict_with_generate=snake_case_ , do_train=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , ) snake_case__ : int = TrainerState.load_from_json(os.path.join(snake_case_ , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case__ : Tuple = [log for log in logs if """eval_loss""" in log.keys()] snake_case__ : List[Any] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case__ : Dict = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , snake_case_ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCamelCase ( self : List[Any] ): self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCamelCase ( self : int ): self.run_seqaseq_quick(distributed=snake_case_ ) @require_torch_multi_gpu def lowerCamelCase ( self : Tuple ): self.run_seqaseq_quick(distributed=snake_case_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : int ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : str ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : List[str] ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=snake_case_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : str ): self.run_seqaseq_quick( distributed=snake_case_ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=snake_case_ ) @require_apex @require_torch_gpu def lowerCamelCase ( self : str ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCamelCase ( self : Optional[int] , snake_case_ : Union[str, Any] ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case__ : Any = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case__ : Optional[int] = experiments[experiment_id] snake_case__ : Optional[int] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case__ : Union[str, Any] = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**snake_case_ , extra_args_str=data["""extra_args_str"""] ) snake_case__ : str = len(re.findall(snake_case_ , cl.err ) ) self.assertEqual(snake_case_ , data["""n_matches"""] ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=10 , distributed=snake_case_ , ) # Check metrics snake_case__ : Dict = TrainerState.load_from_json(os.path.join(snake_case_ , """trainer_state.json""" ) ).log_history snake_case__ : List[str] = [log for log in logs if """eval_loss""" in log.keys()] snake_case__ : List[str] = eval_metrics[0] snake_case__ : Any = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , snake_case_ ) # test if do_predict saves generations and metrics snake_case__ : Optional[int] = os.listdir(snake_case_ ) snake_case__ : List[str] = {os.path.basename(snake_case_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCamelCase ( self : List[str] ): from transformers.training_args import OptimizerNames def train_and_return_metrics(snake_case_ : str ) -> Tuple[int, float]: snake_case__ : Dict = """--skip_memory_metrics 0""" snake_case__ : Optional[int] = self.run_trainer( max_len=128 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1 , optim=snake_case_ , distributed=snake_case_ , extra_args_str=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , n_gpus_to_use=1 , ) # Check metrics snake_case__ : Optional[Any] = TrainerState.load_from_json(Path(snake_case_ , """trainer_state.json""" ) ).log_history snake_case__ : Optional[int] = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case__ : Tuple = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case__ : Optional[int] = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case__ , snake_case__ , snake_case__ : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case__ , snake_case__ , snake_case__ : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case__ : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case__ : Optional[Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case__ : Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case__ : Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case__ : int = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( snake_case_ , snake_case_ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( snake_case_ , snake_case_ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( snake_case_ , snake_case_ , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def lowerCamelCase ( self : Dict , snake_case_ : int , snake_case_ : str , snake_case_ : int , snake_case_ : float = 3E-3 , snake_case_ : str = "adafactor" , snake_case_ : bool = False , snake_case_ : str = None , snake_case_ : int = 0 , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : int = None , ): snake_case__ : Optional[Any] = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case__ : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case__ : List[Any] = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(snake_case_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(snake_case_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() snake_case__ : List[Any] = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(snake_case_ )}\n ".split() snake_case__ : Dict = """ --do_predict """.split() snake_case__ : List[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case__ : Any = get_gpu_count() snake_case__ : Optional[int] = get_torch_dist_unique_port() snake_case__ : List[str] = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() snake_case__ : int = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ , env=self.get_env() ) else: snake_case__ : str = ["""run_translation.py"""] + args with patch.object(snake_case_ , """argv""" , snake_case_ ): main() return output_dir
43
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
48
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Any =logging.get_logger(__name__) def _lowerCAmelCase (_lowerCAmelCase): print("Loading config file...") def flatten_yaml_as_dict(_lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase="."): UpperCamelCase_ = [] for k, v in d.items(): UpperCamelCase_ = parent_key + sep + k if parent_key else k if isinstance(_lowerCAmelCase , collections.abc.MutableMapping): items.extend(flatten_yaml_as_dict(_lowerCAmelCase , _lowerCAmelCase , sep=_lowerCAmelCase).items()) else: items.append((new_key, v)) return dict(_lowerCAmelCase) UpperCamelCase_ = argparse.Namespace() with open(_lowerCAmelCase , "r") as yaml_file: try: UpperCamelCase_ = yaml.load(_lowerCAmelCase , Loader=yaml.FullLoader) UpperCamelCase_ = flatten_yaml_as_dict(_lowerCAmelCase) for k, v in flat_cfg.items(): setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(_lowerCAmelCase , str(_lowerCAmelCase))) return config def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = MobileViTVaConfig() UpperCamelCase_ = False # dataset if task_name.startswith("imagenet1k_"): UpperCamelCase_ = 10_00 if int(task_name.strip().split("_")[-1]) == 3_84: UpperCamelCase_ = 3_84 else: UpperCamelCase_ = 2_56 UpperCamelCase_ = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_"): UpperCamelCase_ = 2_10_00 if int(task_name.strip().split("_")[-1]) == 3_84: UpperCamelCase_ = 3_84 else: UpperCamelCase_ = 2_56 UpperCamelCase_ = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_"): UpperCamelCase_ = 1_51 UpperCamelCase_ = 5_12 UpperCamelCase_ = "ade20k-id2label.json" UpperCamelCase_ = True elif task_name.startswith("voc_"): UpperCamelCase_ = 21 UpperCamelCase_ = 5_12 UpperCamelCase_ = "pascal-voc-id2label.json" UpperCamelCase_ = True # orig_config UpperCamelCase_ = load_orig_config_file(_lowerCAmelCase) assert getattr(_lowerCAmelCase , "model.classification.name" , -1) == "mobilevit_v2", "Invalid model" UpperCamelCase_ = getattr(_lowerCAmelCase , "model.classification.mitv2.width_multiplier" , 1.0) assert ( getattr(_lowerCAmelCase , "model.classification.mitv2.attn_norm_layer" , -1) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCamelCase_ = getattr(_lowerCAmelCase , "model.classification.activation.name" , "swish") # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCamelCase_ = getattr(_lowerCAmelCase , "model.segmentation.output_stride" , 16) if "_deeplabv3" in task_name: UpperCamelCase_ = getattr(_lowerCAmelCase , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36]) UpperCamelCase_ = getattr(_lowerCAmelCase , "model.segmentation.deeplabv3.aspp_out_channels" , 5_12) UpperCamelCase_ = getattr(_lowerCAmelCase , "model.segmentation.deeplabv3.aspp_dropout" , 0.1) # id2label UpperCamelCase_ = "huggingface/label-files" UpperCamelCase_ = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset") , "r")) UpperCamelCase_ = {int(_lowerCAmelCase): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = dct.pop(_lowerCAmelCase) UpperCamelCase_ = val def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=False): if base_model: UpperCamelCase_ = "" else: UpperCamelCase_ = "mobilevitv2." UpperCamelCase_ = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCamelCase_ = k[8:] else: UpperCamelCase_ = k if ".block." in k: UpperCamelCase_ = k_new.replace(".block." , ".") if ".conv." in k: UpperCamelCase_ = k_new.replace(".conv." , ".convolution.") if ".norm." in k: UpperCamelCase_ = k_new.replace(".norm." , ".normalization.") if "conv_1." in k: UpperCamelCase_ = k_new.replace("conv_1." , f"""{model_prefix}conv_stem.""") for i in [1, 2]: if f"""layer_{i}.""" in k: UpperCamelCase_ = k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""") if ".exp_1x1." in k: UpperCamelCase_ = k_new.replace(".exp_1x1." , ".expand_1x1.") if ".red_1x1." in k: UpperCamelCase_ = k_new.replace(".red_1x1." , ".reduce_1x1.") for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: UpperCamelCase_ = k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""") if f"""layer_{i}.1.local_rep.0.""" in k: UpperCamelCase_ = k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""") if f"""layer_{i}.1.local_rep.1.""" in k: UpperCamelCase_ = k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""") for i in [3, 4, 5]: if i == 3: UpperCamelCase_ = [0, 1] elif i == 4: UpperCamelCase_ = [0, 1, 2, 3] elif i == 5: UpperCamelCase_ = [0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: UpperCamelCase_ = k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""") if f"""layer_{i}.1.global_rep.{j+1}.""" in k: UpperCamelCase_ = k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""") if f"""layer_{i}.1.conv_proj.""" in k: UpperCamelCase_ = k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""") if "pre_norm_attn.0." in k: UpperCamelCase_ = k_new.replace("pre_norm_attn.0." , "layernorm_before.") if "pre_norm_attn.1." in k: UpperCamelCase_ = k_new.replace("pre_norm_attn.1." , "attention.") if "pre_norm_ffn.0." in k: UpperCamelCase_ = k_new.replace("pre_norm_ffn.0." , "layernorm_after.") if "pre_norm_ffn.1." in k: UpperCamelCase_ = k_new.replace("pre_norm_ffn.1." , "ffn.conv1.") if "pre_norm_ffn.3." in k: UpperCamelCase_ = k_new.replace("pre_norm_ffn.3." , "ffn.conv2.") if "classifier.1." in k: UpperCamelCase_ = k_new.replace("classifier.1." , "classifier.") if "seg_head." in k: UpperCamelCase_ = k_new.replace("seg_head." , "segmentation_head.") if ".aspp_layer." in k: UpperCamelCase_ = k_new.replace(".aspp_layer." , ".") if ".aspp_pool." in k: UpperCamelCase_ = k_new.replace(".aspp_pool." , ".") rename_keys.append((k, k_new)) return rename_keys def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head."): keys_to_ignore.append(_lowerCAmelCase) for k in keys_to_ignore: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase) def _lowerCAmelCase (): UpperCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCamelCase_ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase).raw) return im @torch.no_grad() def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = get_mobilevitva_config(_lowerCAmelCase , _lowerCAmelCase) # load original state_dict UpperCamelCase_ = torch.load(_lowerCAmelCase , map_location="cpu") # load huggingface model if task_name.startswith("ade20k_") or task_name.startswith("voc_"): UpperCamelCase_ = MobileViTVaForSemanticSegmentation(_lowerCAmelCase).eval() UpperCamelCase_ = False else: UpperCamelCase_ = MobileViTVaForImageClassification(_lowerCAmelCase).eval() UpperCamelCase_ = False # remove and rename some keys of load the original model UpperCamelCase_ = checkpoint remove_unused_keys(_lowerCAmelCase) UpperCamelCase_ = create_rename_keys(_lowerCAmelCase , base_model=_lowerCAmelCase) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # load modified state_dict model.load_state_dict(_lowerCAmelCase) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCamelCase_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) UpperCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt") UpperCamelCase_ = model(**_lowerCAmelCase) # verify classification model if task_name.startswith("imagenet"): UpperCamelCase_ = outputs.logits UpperCamelCase_ = logits.argmax(-1).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx]) if task_name.startswith("imagenet1k_256") and config.width_multiplier == 1.0: # expected_logits for base variant UpperCamelCase_ = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01]) assert torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4) Path(_lowerCAmelCase).mkdir(exist_ok=_lowerCAmelCase) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""") model.save_pretrained(_lowerCAmelCase) print(f"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(_lowerCAmelCase) if __name__ == "__main__": UpperCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCAmelCase : Any =parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
128
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging A_ : Optional[Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ = 101 ) -> List[str]: _UpperCAmelCase : Dict = length def __len__( self ) -> Any: return self.length def __getitem__( self ,a_ ) -> int: return i class lowercase : """simple docstring""" def __call__( self ,a_ ) -> Any: return {"input_ids": torch.tensor(a_ ), "labels": torch.tensor(a_ )} class lowercase ( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase : Any = nn.Linear(120 ,80 ) def _snake_case ( self ,a_ ,a_=None ) -> Any: if labels is not None: return torch.tensor(0.0 ,device=input_ids.device ), input_ids else: return input_ids class lowercase ( _lowerCamelCase ): """simple docstring""" @require_torch_neuroncore def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Tuple = f'''--output_dir {output_dir}'''.split() _UpperCAmelCase : Any = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase ( _lowerCamelCase ): """simple docstring""" @require_torch_multi_gpu def _snake_case ( self ) -> str: _UpperCAmelCase : Union[str, Any] = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : str = f'''--output_dir {output_dir}'''.split() _UpperCAmelCase : List[str] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py A_ : str = HfArgumentParser((TrainingArguments,)) A_ : Any = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: A_ : List[Any] = DummyDataset(dataset_length) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = list(range(len(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} A_ : Dict = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) A_ : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ : Any = 2 A_ : int = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ : Union[str, Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ : Any = None
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
__UpperCAmelCase = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCAmelCase = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCAmelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
299
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
1
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> str: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) _SCREAMING_SNAKE_CASE ='' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
114
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "T5Config" class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig
114
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : str = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[str] = "gpt_bigcode" UpperCamelCase : List[Any] = ["past_key_values"] UpperCamelCase : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , A=5_02_57 , A=10_24 , A=7_68 , A=12 , A=12 , A=None , A="gelu_pytorch_tanh" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.02 , A=True , A=True , A=5_02_56 , A=5_02_56 , A=True , A=True , A=True , **A , ) -> List[str]: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = n_positions lowerCamelCase = n_embd lowerCamelCase = n_layer lowerCamelCase = n_head lowerCamelCase = n_inner lowerCamelCase = activation_function lowerCamelCase = resid_pdrop lowerCamelCase = embd_pdrop lowerCamelCase = attn_pdrop lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_range lowerCamelCase = scale_attn_weights lowerCamelCase = use_cache lowerCamelCase = attention_softmax_in_fpaa lowerCamelCase = scale_attention_softmax_in_fpaa lowerCamelCase = multi_query lowerCamelCase = bos_token_id lowerCamelCase = eos_token_id super().__init__(bos_token_id=A , eos_token_id=A , **A )
252
def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str]=0 ): '''simple docstring''' return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[column] ) def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : List[str]=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCamelCase__ ): for j in range(max(0 , i - 6 ) , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCamelCase__ , lowerCamelCase__ ) # recursion lowerCamelCase = points_counts // 2 lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[:mid] , lowerCamelCase__ ) lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCamelCase = min(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCamelCase__ ) lowerCamelCase = dis_between_closest_in_strip( lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) return min(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = column_based_sort(lowerCamelCase__ , column=0 ) lowerCamelCase = column_based_sort(lowerCamelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase : Dict = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
252
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def a_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a_ ( self : List[Any] ) -> Dict: """simple docstring""" A__ = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__lowerCAmelCase ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" A__ = self._create_example_records() A__ = Dataset.from_list(__lowerCAmelCase ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__lowerCAmelCase ): self.assertDictEqual(__lowerCAmelCase , example_records[i] ) def a_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self._create_example_records() A__ = Dataset.from_list(__lowerCAmelCase ) A__ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a_ ( self : Any ) -> Optional[Any]: # checks what happens with missing columns """simple docstring""" A__ = [{"""col_1""": 1}, {"""col_2""": """x"""}] A__ = Dataset.from_list(__lowerCAmelCase ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a_ ( self : int ) -> List[Any]: # checks if the type can be inferred from the second record """simple docstring""" A__ = [{"""col_1""": []}, {"""col_1""": [1, 2]}] A__ = Dataset.from_list(__lowerCAmelCase ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a_ ( self : Union[str, Any] ) -> Any: """simple docstring""" A__ = Dataset.from_list([] ) self.assertEqual(len(__lowerCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
276
import math def __lowerCamelCase ( ) -> None: """simple docstring""" A__ = input("""Enter message: """ ) A__ = int(input(F'Enter key [2-{len(__a ) - 1}]: ' ) ) A__ = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): A__ = encrypt_message(__a , __a ) elif mode.lower().startswith("""d""" ): A__ = decrypt_message(__a , __a ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}' ) def __lowerCamelCase ( __a :int , __a :str ) -> str: """simple docstring""" A__ = [""""""] * key for col in range(__a ): A__ = col while pointer < len(__a ): cipher_text[col] += message[pointer] pointer += key return "".join(__a ) def __lowerCamelCase ( __a :int , __a :str ) -> str: """simple docstring""" A__ = math.ceil(len(__a ) / key ) A__ = key A__ = (num_cols * num_rows) - len(__a ) A__ = [""""""] * num_cols A__ = 0 A__ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): A__ = 0 row += 1 return "".join(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
276
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowercase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
import random def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = a[left_index] __UpperCamelCase :Any = left_index + 1 for j in range(left_index + 1 , SCREAMING_SNAKE_CASE ): if a[j] < pivot: __UpperCamelCase , __UpperCamelCase :str = a[i], a[j] i += 1 __UpperCamelCase , __UpperCamelCase :Optional[int] = a[i - 1], a[left_index] return i - 1 def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if left < right: __UpperCamelCase :int = random.randint(SCREAMING_SNAKE_CASE , right - 1 ) __UpperCamelCase , __UpperCamelCase :List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound __UpperCamelCase :Dict = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) quick_sort_random( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( SCREAMING_SNAKE_CASE , pivot_index + 1 , SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = input('''Enter numbers separated by a comma:\n''' ).strip() __UpperCamelCase :Union[str, Any] = [int(SCREAMING_SNAKE_CASE ) for item in user_input.split(''',''' )] quick_sort_random(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
1
class lowercase : def __init__( self ) -> Any: """simple docstring""" UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] def __UpperCamelCase ( self , A_ , A_ ) -> int: """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCamelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCamelCase = self.__min_dist_top_down_dp(A_ , n - 1 ) UpperCamelCase = self.__min_dist_top_down_dp(m - 1 , A_ ) UpperCamelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCamelCase = 1 + min(A_ , A_ , A_ ) return self.dp[m][n] def __UpperCamelCase ( self , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = worda UpperCamelCase = worda UpperCamelCase = [[-1 for _ in range(len(A_ ) )] for _ in range(len(A_ ) )] return self.__min_dist_top_down_dp(len(A_ ) - 1 , len(A_ ) - 1 ) def __UpperCamelCase ( self , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = worda UpperCamelCase = worda UpperCamelCase = len(A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCamelCase = j elif j == 0: # second string is empty UpperCamelCase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCamelCase = self.dp[i - 1][j - 1] else: UpperCamelCase = self.dp[i][j - 1] UpperCamelCase = self.dp[i - 1][j] UpperCamelCase = self.dp[i - 1][j - 1] UpperCamelCase = 1 + min(A_ , A_ , A_ ) return self.dp[m][n] if __name__ == "__main__": _UpperCAmelCase : Tuple = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() _UpperCAmelCase : Dict = input("Enter the first string: ").strip() _UpperCAmelCase : List[Any] = input("Enter the second string: ").strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
110
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Any = CTRLTokenizer __lowercase : Any = False __lowercase : Union[str, Any] = False def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
110
1
"""simple docstring""" import requests lowercase__ = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : List[str] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(f'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
241
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _lowercase ( __A ,__A ): '''simple docstring''' return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) ) def _lowercase ( __A ,__A ): '''simple docstring''' if dataset.ndim != value_array.ndim: __UpperCamelCase = ( """Wrong input data's dimensions... """ f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(__A ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCamelCase = ( """Wrong input data's shape... """ f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(__A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: __UpperCamelCase = ( """Input data have different datatype... """ f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(__A ) __UpperCamelCase = [] for value in value_array: __UpperCamelCase = euclidean(__A ,dataset[0] ) __UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCamelCase = euclidean(__A ,__A ) if dist > temp_dist: __UpperCamelCase = temp_dist __UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _lowercase ( __A ,__A ): '''simple docstring''' return np.dot(__A ,__A ) / (norm(__A ) * norm(__A )) if __name__ == "__main__": import doctest doctest.testmod()
349
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: __SCREAMING_SNAKE_CASE = None try: import msvcrt except ImportError: __SCREAMING_SNAKE_CASE = None try: import fcntl except ImportError: __SCREAMING_SNAKE_CASE = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __SCREAMING_SNAKE_CASE = OSError # Data # ------------------------------------------------ __SCREAMING_SNAKE_CASE = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] __SCREAMING_SNAKE_CASE = '''3.0.12''' __SCREAMING_SNAKE_CASE = None def lowerCAmelCase_( ) -> int: global _logger _lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = lock_file return None def __str__( self ): _lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = lock return None def __enter__( self ): return self.lock def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): self.lock.release() return None class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ): _lowerCamelCase = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long _lowerCamelCase = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ ) # The path to the lock file. _lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _lowerCamelCase = None # The default timeout value. _lowerCamelCase = timeout # We use this lock primarily for the lock counter. _lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _lowerCamelCase = 0 return None @property def snake_case__ ( self ): return self._lock_file @property def snake_case__ ( self ): return self._timeout @timeout.setter def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = float(lowerCamelCase__ ) return None def snake_case__ ( self ): raise NotImplementedError() def snake_case__ ( self ): raise NotImplementedError() @property def snake_case__ ( self ): return self._lock_file_fd is not None def snake_case__ ( self , lowerCamelCase__=None , lowerCamelCase__=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: _lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _lowerCamelCase = id(self ) _lowerCamelCase = self._lock_file _lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(lowerCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def snake_case__ ( self , lowerCamelCase__=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _lowerCamelCase = id(self ) _lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() _lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): self.acquire() return self def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): self.release() return None def __del__( self ): self.release(force=lowerCamelCase__ ) return None def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = os.path.basename(lowerCamelCase__ ) if len(lowerCamelCase__ ) > max_length and max_length > 0: _lowerCamelCase = os.path.dirname(lowerCamelCase__ ) _lowerCamelCase = str(hash(lowerCamelCase__ ) ) _lowerCamelCase = filename[: max_length - len(lowerCamelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase__ , lowerCamelCase__ ) else: return path class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ): from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) _lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def snake_case__ ( self ): _lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _lowerCamelCase = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase__ ) else: _lowerCamelCase = fd return None def snake_case__ ( self ): _lowerCamelCase = self._lock_file_fd _lowerCamelCase = None msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ): _lowerCamelCase = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC _lowerCamelCase = os.open(self._lock_file , lowerCamelCase__ ) try: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase__ ) else: _lowerCamelCase = fd return None def snake_case__ ( self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _lowerCamelCase = self._lock_file_fd _lowerCamelCase = None fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) os.close(lowerCamelCase__ ) return None class lowerCamelCase_( A__ ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _lowerCamelCase = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: _lowerCamelCase = fd return None def snake_case__ ( self ): os.close(self._lock_file_fd ) _lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __SCREAMING_SNAKE_CASE = None if msvcrt: __SCREAMING_SNAKE_CASE = WindowsFileLock elif fcntl: __SCREAMING_SNAKE_CASE = UnixFileLock else: __SCREAMING_SNAKE_CASE = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
368
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCamelCase_: '''simple docstring''' def __init__( self ): _lowerCamelCase = '''''' _lowerCamelCase = '''''' _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = 2_5_6 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = cva.imread(lowerCamelCase__ , 0 ) _lowerCamelCase = copy.deepcopy(self.img ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label='''x''' ) _lowerCamelCase = np.sum(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): _lowerCamelCase = x[i] / self.k self.sk += prk _lowerCamelCase = (self.L - 1) * self.sk if self.rem != 0: _lowerCamelCase = int(last % last ) _lowerCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase__ ) _lowerCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCamelCase = self.img[j][i] if num != self.last_list[num]: _lowerCamelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def snake_case__ ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def snake_case__ ( self ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __SCREAMING_SNAKE_CASE : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
73
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore a : str = "\nHuman: <<task>>\n\nAssistant: " a : Tuple = "huggingface-tools/default-prompts" a : Dict = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any]="run" ): if prompt_or_repo_id is None: __UpperCAmelCase : Union[str, Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , __lowerCamelCase ) is not None: return prompt_or_repo_id __UpperCAmelCase : List[Any] = cached_file( __lowerCamelCase , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(__lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: return f.read()
114
from math import log from scipy.constants import Boltzmann, physical_constants a : Any = 300 # TEMPERATURE (unit = K) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
114
1
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
355
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
0
'''simple docstring''' A__: List[Any] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
276
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> Optional[int]: '''simple docstring''' _a , _a : List[str] =text, pattern _a , _a : Union[str, Any] =len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCAmelCase ( self :Union[str, Any] ) -> list[int]: '''simple docstring''' # searches pattern in text and returns index positions _a : Union[str, Any] =[] for i in range(self.textLen - self.patLen + 1 ): _a : Any =self.mismatch_in_text(SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE ) else: _a : int =self.match_in_pattern(self.text[mismatch_index] ) _a : List[str] =( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A__: Any = '''ABAABA''' A__: int = '''AB''' A__: Optional[int] = BoyerMooreSearch(text, pattern) A__: Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
276
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase :Dict = logging.get_logger(__name__) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] ): """simple docstring""" try: with open(lowerCAmelCase , 'rb' ) as flax_state_f: __magic_name__ : Optional[int] = from_bytes(lowerCAmelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCAmelCase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __magic_name__ : Dict = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase : x.dtype == jnp.bfloataa , lowerCAmelCase ) ).values() if any(lowerCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __magic_name__ : Dict = jax.tree_util.tree_map( lambda lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase ) __magic_name__ : Any = '''''' __magic_name__ : List[Any] = flatten_dict(lowerCAmelCase , sep='.' ) __magic_name__ : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys __magic_name__ : List[str] = [] __magic_name__ : str = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __magic_name__ : Tuple = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __magic_name__ : Dict = flax_key_tuple_array[:-1] + ['''weight'''] __magic_name__ : Any = jnp.transpose(lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __magic_name__ : Any = flax_key_tuple_array[:-1] + ['''weight'''] __magic_name__ : str = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __magic_name__ : Union[str, Any] = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCAmelCase ): __magic_name__ : Any = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) __magic_name__ : str = '''.'''.join(lowerCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __magic_name__ : int = np.asarray(lowerCAmelCase ) if not isinstance(lowerCAmelCase , np.ndarray ) else flax_tensor __magic_name__ : Tuple = torch.from_numpy(lowerCAmelCase ) # remove from missing keys missing_keys.remove(lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase ) pt_model.load_state_dict(lowerCAmelCase ) # re-transform missing_keys to list __magic_name__ : int = list(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(lowerCAmelCase ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) return pt_model
361
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Any = logging.get_logger(__name__) lowerCAmelCase :int = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = """lxmert""" A_ : int = {} def __init__( self : int , _A : List[Any]=30522 , _A : int=768 , _A : Any=12 , _A : Optional[Any]=9500 , _A : Any=1600 , _A : Tuple=400 , _A : str=3072 , _A : Tuple="gelu" , _A : int=0.1 , _A : List[Any]=0.1 , _A : Dict=512 , _A : Dict=2 , _A : Tuple=0.02 , _A : List[Any]=1E-12 , _A : Optional[Any]=9 , _A : List[Any]=5 , _A : str=5 , _A : int=2048 , _A : Tuple=4 , _A : Tuple=6.67 , _A : Dict=True , _A : str=True , _A : str=True , _A : Dict=True , _A : str=True , _A : int=True , _A : Tuple=True , **_A : int , ) -> str: __magic_name__ : List[Any] = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : Dict = hidden_act __magic_name__ : Optional[Any] = intermediate_size __magic_name__ : str = hidden_dropout_prob __magic_name__ : List[str] = attention_probs_dropout_prob __magic_name__ : Tuple = max_position_embeddings __magic_name__ : Dict = type_vocab_size __magic_name__ : str = initializer_range __magic_name__ : str = layer_norm_eps __magic_name__ : Union[str, Any] = num_qa_labels __magic_name__ : str = num_object_labels __magic_name__ : List[str] = num_attr_labels __magic_name__ : Tuple = l_layers __magic_name__ : List[Any] = x_layers __magic_name__ : Optional[int] = r_layers __magic_name__ : Dict = visual_feat_dim __magic_name__ : Optional[int] = visual_pos_dim __magic_name__ : Optional[int] = visual_loss_normalizer __magic_name__ : int = task_matched __magic_name__ : Dict = task_mask_lm __magic_name__ : List[Any] = task_obj_predict __magic_name__ : str = task_qa __magic_name__ : List[Any] = visual_obj_loss __magic_name__ : Dict = visual_attr_loss __magic_name__ : int = visual_feat_loss __magic_name__ : Tuple = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_A )
275
0
import flax.linen as nn import jax import jax.numpy as jnp class _a ( nn.Module ): _lowercase : int _lowercase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , UpperCamelCase_: int ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = hidden_states.shape lowercase__ = jax.image.resize( UpperCamelCase_ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) lowercase__ = self.conv(UpperCamelCase_ ) return hidden_states class _a ( nn.Module ): _lowercase : int _lowercase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self: Tuple ) -> Dict: """simple docstring""" lowercase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[int] , UpperCamelCase_: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.conv(UpperCamelCase_ ) return hidden_states class _a ( nn.Module ): _lowercase : int _lowercase : int = None _lowercase : float = 0.0 _lowercase : bool = None _lowercase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.in_channels if self.out_channels is None else self.out_channels lowercase__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase__ = nn.Conv( UpperCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase__ = nn.Dense(UpperCamelCase_ , dtype=self.dtype ) lowercase__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase__ = nn.Dropout(self.dropout_prob ) lowercase__ = nn.Conv( UpperCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase__ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase__ = None if use_nin_shortcut: lowercase__ = nn.Conv( UpperCamelCase_ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: str=True ) -> Tuple: """simple docstring""" lowercase__ = hidden_states lowercase__ = self.norma(UpperCamelCase_ ) lowercase__ = nn.swish(UpperCamelCase_ ) lowercase__ = self.conva(UpperCamelCase_ ) lowercase__ = self.time_emb_proj(nn.swish(UpperCamelCase_ ) ) lowercase__ = jnp.expand_dims(jnp.expand_dims(UpperCamelCase_ , 1 ) , 1 ) lowercase__ = hidden_states + temb lowercase__ = self.norma(UpperCamelCase_ ) lowercase__ = nn.swish(UpperCamelCase_ ) lowercase__ = self.dropout(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.conva(UpperCamelCase_ ) if self.conv_shortcut is not None: lowercase__ = self.conv_shortcut(UpperCamelCase_ ) return hidden_states + residual
110
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = credit_card_number lowercase__ = 0 lowercase__ = len(SCREAMING_SNAKE_CASE ) - 2 for i in range(SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit lowercase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ = cc_number[:i] + str(SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(SCREAMING_SNAKE_CASE ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(SCREAMING_SNAKE_CASE ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(SCREAMING_SNAKE_CASE ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
110
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCamelCase ( a , a , a , a , ) -> list[float]: '''simple docstring''' __magic_name__ , __magic_name__ = coefficient_matrix.shape __magic_name__ , __magic_name__ = constant_matrix.shape if rowsa != colsa: __magic_name__ = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(a ) if colsa != 1: __magic_name__ = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(a ) if rowsa != rowsa: __magic_name__ = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(a ) if len(a ) != rowsa: __magic_name__ = ( '''Number of initial values must be equal to number of rows in coefficient ''' F'''matrix but received {len(a )} and {rowsa}''' ) raise ValueError(a ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) __magic_name__ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __magic_name__ , __magic_name__ = table.shape strictly_diagonally_dominant(a ) # Iterates the whole matrix for given number of times for _ in range(a ): __magic_name__ = [] for row in range(a ): __magic_name__ = 0 for col in range(a ): if col == row: __magic_name__ = table[row][col] elif col == cols - 1: __magic_name__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __magic_name__ = (temp + val) / denom new_val.append(a ) __magic_name__ = new_val return [float(a ) for i in new_val] def UpperCamelCase ( a ) -> bool: '''simple docstring''' __magic_name__ , __magic_name__ = table.shape __magic_name__ = True for i in range(0 , a ): __magic_name__ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): __SCREAMING_SNAKE_CASE :List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE :Any = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case__ ( self : Tuple , a__ : Tuple , a__ : int , a__ : int ): __magic_name__ = TextaTextGenerationPipeline(model=a__ , tokenizer=a__ ) return generator, ["Something to write", "Something else"] def snake_case__ ( self : List[str] , a__ : List[Any] , a__ : List[str] ): __magic_name__ = generator('''Something there''' ) self.assertEqual(a__ , [{'''generated_text''': ANY(a__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) __magic_name__ = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], ] , ) __magic_name__ = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], ] , ) with self.assertRaises(a__ ): generator(4 ) @require_torch def snake_case__ ( self : Any ): __magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility __magic_name__ = generator('''Something there''' , do_sample=a__ ) self.assertEqual(a__ , [{'''generated_text''': ''''''}] ) __magic_name__ = 3 __magic_name__ = generator( '''Something there''' , num_return_sequences=a__ , num_beams=a__ , ) __magic_name__ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(a__ , a__ ) __magic_name__ = generator('''This is a test''' , do_sample=a__ , num_return_sequences=2 , return_tensors=a__ ) self.assertEqual( a__ , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) __magic_name__ = generator.model.config.eos_token_id __magic_name__ = '''<pad>''' __magic_name__ = generator( ['''This is a test''', '''This is a second test'''] , do_sample=a__ , num_return_sequences=2 , batch_size=2 , return_tensors=a__ , ) self.assertEqual( a__ , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case__ ( self : int ): __magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility __magic_name__ = generator('''Something there''' , do_sample=a__ ) self.assertEqual(a__ , [{'''generated_text''': ''''''}] )
98
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase : Union[str, Any] = '''Pix2StructImageProcessor''' _UpperCAmelCase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : List[Any] = False super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def __call__( self : str ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False ,SCREAMING_SNAKE_CASE__ : Union[bool, str, TruncationStrategy] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : int = 0 ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None and not self.image_processor.is_vqa: __lowerCamelCase : Tuple = self.tokenizer __lowerCamelCase : Dict = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __lowerCamelCase : List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,max_patches=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) else: # add pixel_values and bbox __lowerCamelCase : List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,max_patches=SCREAMING_SNAKE_CASE__ ,header_text=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is not None and not self.image_processor.is_vqa: __lowerCamelCase : List[Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) if "attention_mask" in text_encoding: __lowerCamelCase : List[Any] = text_encoding.pop('attention_mask') if "input_ids" in text_encoding: __lowerCamelCase : Dict = text_encoding.pop('input_ids') else: __lowerCamelCase : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE__) return encoding_image_processor def lowerCAmelCase ( self : Dict ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : int): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Dict): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
73
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : str , lowercase : Any , lowercase : Tuple=13 , lowercase : Optional[int]=2 , lowercase : int=24 , lowercase : List[str]=16 , lowercase : int=True , lowercase : List[Any]=True , lowercase : str=32 , lowercase : Tuple=5 , lowercase : str=4 , lowercase : Tuple=37 , lowercase : Tuple="gelu" , lowercase : Dict=0.1 , lowercase : Optional[int]=0.1 , lowercase : Dict=10 , lowercase : int=0.02 , lowercase : Optional[Any]=None , lowercase : Dict=2 , lowercase : List[Any]=2 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = patch_size _snake_case = max_length _snake_case = num_mel_bins _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = scope _snake_case = frequency_stride _snake_case = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _snake_case = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _snake_case = (self.max_length - self.patch_size) // self.time_stride + 1 _snake_case = frequency_out_dimension * time_out_dimension _snake_case = num_patches + 2 def A ( self : int ): '''simple docstring''' _snake_case = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, input_values, labels def A ( self : str ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A ( self : Union[str, Any] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = ASTModel(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _UpperCAmelCase : Dict = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) _UpperCAmelCase : Any = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : int = False def A ( self : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : List[Any] , lowercase : int ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = ASTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A ( self : Any ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['input_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) @slow def A ( self : Any ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = ASTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def a_ ( ) -> Tuple: _snake_case = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) _snake_case , _snake_case = torchaudio.load(__lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self : Union[str, Any] ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def A ( self : Dict ): '''simple docstring''' _snake_case = self.default_feature_extractor _snake_case = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(lowercase ) _snake_case = self.default_feature_extractor _snake_case , _snake_case = prepare_audio() _snake_case = audio.squeeze().numpy() _snake_case = feature_extractor(lowercase , sampling_rate=lowercase , return_tensors='pt' ).to(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(**lowercase ) # verify the logits _snake_case = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
130
import random class SCREAMING_SNAKE_CASE__ : '''simple docstring''' @staticmethod def A ( lowercase : str ): '''simple docstring''' _snake_case = [ord(lowercase ) for i in text] _snake_case = [] _snake_case = [] for i in plain: _snake_case = random.randint(1 , 300 ) _snake_case = (i + k) * k cipher.append(lowercase ) key.append(lowercase ) return cipher, key @staticmethod def A ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): _snake_case = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowercase ) ) return "".join(lowercase ) if __name__ == "__main__": _lowerCamelCase , _lowerCamelCase : Optional[int] = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
130
1
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : '''simple docstring''' def __init__( self : Tuple ,_snake_case : List[str] ,_snake_case : List[str]=13 ,_snake_case : Any=30 ,_snake_case : str=2 ,_snake_case : Union[str, Any]=3 ,_snake_case : Dict=True ,_snake_case : Optional[int]=True ,_snake_case : Optional[Any]=32 ,_snake_case : Union[str, Any]=5 ,_snake_case : str=4 ,_snake_case : Dict=37 ,_snake_case : int="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : Union[str, Any]=0.1 ,_snake_case : Optional[int]=10 ,_snake_case : Union[str, Any]=0.02 ,_snake_case : List[str]=None ,_snake_case : Tuple=2 ,) -> Optional[Any]: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : List[str] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : List[Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Union[str, Any] = hidden_act lowercase__ : int = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : List[Any] = type_sequence_label_size lowercase__ : Optional[Any] = initializer_range lowercase__ : List[Any] = scope lowercase__ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : Tuple = (image_size // patch_size) ** 2 lowercase__ : Optional[int] = num_patches + 1 def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Any = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCAmelCase__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : Any ,_snake_case : List[Any] ,_snake_case : Dict ,_snake_case : str ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = ViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : str ,_snake_case : List[str] ,_snake_case : Any ,_snake_case : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = ViTForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : str = 1 lowercase__ : Any = ViTForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : Any ,_snake_case : Any ,_snake_case : Optional[int] ,_snake_case : Tuple ) -> str: """simple docstring""" lowercase__ : Optional[Any] = self.type_sequence_label_size lowercase__ : str = ViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Optional[int] = model(lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : Tuple = ViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Dict = config_and_inputs lowercase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCAmelCase : str = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[str] = False lowerCAmelCase : Optional[int] = False def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = ViTModelTester(self ) lowercase__ : List[Any] = ConfigTester(self ,config_class=lowerCAmelCase__ ,has_text_modality=lowerCAmelCase__ ,hidden_size=37 ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" pass def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ ,nn.Linear ) ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(lowerCAmelCase__ ) lowercase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[Any] = [*signature.parameters.keys()] lowercase__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowerCAmelCase__ ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = ViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __UpperCAmelCase ( ) -> int: lowercase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : str = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(lowerCAmelCase__ ) lowercase__ : Any = self.default_image_processor lowercase__ : List[str] = prepare_img() lowercase__ : Any = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowercase__ : Any = model(**lowerCAmelCase__ ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,lowerCAmelCase__ ) lowercase__ : Optional[Any] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1e-4 ) ) @slow def UpperCAmelCase ( self : str ) -> int: """simple docstring""" lowercase__ : Dict = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(lowerCAmelCase__ ) lowercase__ : List[Any] = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' ,size=480 ) lowercase__ : Tuple = prepare_img() lowercase__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowercase__ : List[Any] = inputs.pixel_values.to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowercase__ : Any = model(lowerCAmelCase__ ,interpolate_pos_encoding=lowerCAmelCase__ ) # verify the logits lowercase__ : Any = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,lowerCAmelCase__ ) lowercase__ : List[Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowerCAmelCase__ ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" lowercase__ : Any = ViTModel.from_pretrained('''facebook/dino-vits8''' ,torch_dtype=torch.floataa ,device_map='''auto''' ) lowercase__ : int = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : int = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowercase__ : int = inputs.pixel_values.to(lowerCAmelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ : Optional[int] = model(lowerCAmelCase__ )
16
'''simple docstring''' import math def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list: """simple docstring""" _UpperCamelCase = end or len(lowercase ) for i in range(lowercase, lowercase ): _UpperCamelCase = i _UpperCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCamelCase = array[temp_index - 1] temp_index -= 1 _UpperCamelCase = temp_index_value return array def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap """simple docstring""" _UpperCamelCase = index _UpperCamelCase = 2 * index + 1 # Left Node _UpperCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCamelCase = right_index if largest != index: _UpperCamelCase , _UpperCamelCase = array[largest], array[index] heapify(lowercase, lowercase, lowercase ) def a__ ( lowercase : list ) -> list: """simple docstring""" _UpperCamelCase = len(lowercase ) for i in range(n // 2, -1, -1 ): heapify(lowercase, lowercase, lowercase ) for i in range(n - 1, 0, -1 ): _UpperCamelCase , _UpperCamelCase = array[0], array[i] heapify(lowercase, 0, lowercase ) return array def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = low _UpperCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCamelCase , _UpperCamelCase = array[j], array[i] i += 1 def a__ ( lowercase : list ) -> list: """simple docstring""" if len(lowercase ) == 0: return array _UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) ) _UpperCamelCase = 16 return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase ) def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 _UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 ) _UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase ) intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase ) _UpperCamelCase = p return insertion_sort(lowercase, lowercase, lowercase ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Any = input('Enter numbers separated by a comma : ').strip() lowercase__ : Any = [float(item) for item in user_input.split(',')] print(sort(unsorted))
324
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : List[Any] = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'vocab_file': 'vocab.txt'} __UpperCamelCase : Tuple = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __UpperCamelCase : Union[str, Any] = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def A ( _lowercase ): with open(_lowercase , '''r''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Union[str, Any]="<cls>" , UpperCamelCase__ : Dict="<pad>" , UpperCamelCase__ : str="<mask>" , UpperCamelCase__ : Any="<eos>" , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_vocab_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE : List[Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE : Union[str, Any] = unk_token SCREAMING_SNAKE_CASE : Any = cls_token SCREAMING_SNAKE_CASE : List[str] = pad_token SCREAMING_SNAKE_CASE : List[str] = mask_token SCREAMING_SNAKE_CASE : Any = eos_token SCREAMING_SNAKE_CASE : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __A ( self : Union[str, Any] , UpperCamelCase__ : int ): '''simple docstring''' return self._id_to_token.get(UpperCamelCase__ , self.unk_token ) def __A ( self : Dict , UpperCamelCase__ : str ): '''simple docstring''' return self._token_to_id.get(UpperCamelCase__ , self._token_to_id.get(self.unk_token ) ) def __A ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : List[Any] ): '''simple docstring''' return text.split() def __A ( self : List[str] , UpperCamelCase__ : Dict=False ): '''simple docstring''' return len(self._id_to_token ) def __A ( self : Optional[Any] ): '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __A ( self : Union[str, Any] , UpperCamelCase__ : str ): '''simple docstring''' return self._token_to_id.get(UpperCamelCase__ , self._token_to_id.get(self.unk_token ) ) def __A ( self : List[str] , UpperCamelCase__ : int ): '''simple docstring''' return self._id_to_token.get(UpperCamelCase__ , self.unk_token ) def __A ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [self.cls_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __A ( self : Union[str, Any] , UpperCamelCase__ : List , UpperCamelCase__ : Optional[List] = None , UpperCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE : List[str] = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCamelCase__ ) + [1] return mask def __A ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = os.path.join(UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __A ( self : Dict ): '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCamelCase__ ) def __A ( self : str , UpperCamelCase__ : Union[List[str], List[AddedToken]] , UpperCamelCase__ : bool = False ): '''simple docstring''' return super()._add_tokens(UpperCamelCase__ , special_tokens=UpperCamelCase__ )
258
1
UpperCamelCase__ = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) UpperCamelCase__ = frozenset(["""prompt""", """negative_prompt"""]) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset(["""image"""]) UpperCamelCase__ = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) UpperCamelCase__ = frozenset(["""image"""]) UpperCamelCase__ = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) UpperCamelCase__ = frozenset(["""prompt""", """image""", """negative_prompt"""]) UpperCamelCase__ = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) UpperCamelCase__ = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) UpperCamelCase__ = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) UpperCamelCase__ = frozenset(["""image""", """mask_image"""]) UpperCamelCase__ = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) UpperCamelCase__ = frozenset(["""example_image""", """image""", """mask_image"""]) UpperCamelCase__ = frozenset(["""class_labels"""]) UpperCamelCase__ = frozenset(["""class_labels"""]) UpperCamelCase__ = frozenset(["""batch_size"""]) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset(["""batch_size"""]) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) UpperCamelCase__ = frozenset(["""prompt""", """negative_prompt"""]) UpperCamelCase__ = frozenset(["""input_tokens"""]) UpperCamelCase__ = frozenset(["""input_tokens"""])
92
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _UpperCamelCase = random.Random() def _lowercase ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): if rng is None: __lowerCAmelCase : Any = global_rng __lowerCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase (unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : str = min_seq_length __lowerCAmelCase : int = max_seq_length __lowerCAmelCase : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase : Any = padding_value __lowerCAmelCase : str = sampling_rate __lowerCAmelCase : Optional[Any] = return_attention_mask __lowerCAmelCase : Optional[Any] = do_normalize __lowerCAmelCase : Optional[Any] = feature_size __lowerCAmelCase : Optional[int] = chunk_length __lowerCAmelCase : Optional[Any] = hop_length def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , A_=False , A_=False ) ->Optional[Any]: '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __lowerCAmelCase : str = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCAmelCase : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCAmelCase : Optional[Any] = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = WhisperFeatureExtractionTester(self ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : List[str] = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __lowerCAmelCase : int = self.feature_extraction_class.from_pretrained(A_ ) __lowerCAmelCase : Dict = feat_extract_first.to_dict() __lowerCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __lowerCAmelCase : Union[str, Any] = feat_extract_first.mel_filters __lowerCAmelCase : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Union[str, Any] = os.path.join(A_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A_ ) __lowerCAmelCase : List[str] = self.feature_extraction_class.from_json_file(A_ ) __lowerCAmelCase : List[str] = feat_extract_first.to_dict() __lowerCAmelCase : Tuple = feat_extract_second.to_dict() __lowerCAmelCase : Any = feat_extract_first.mel_filters __lowerCAmelCase : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowerCAmelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __lowerCAmelCase : Tuple = feature_extractor(A_ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowerCAmelCase : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features __lowerCAmelCase : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched __lowerCAmelCase : Union[str, Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : List[Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowerCAmelCase : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowerCAmelCase : Optional[int] = np.asarray(A_ ) __lowerCAmelCase : Dict = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : Any = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test truncation required __lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __lowerCAmelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] __lowerCAmelCase : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowerCAmelCase : Optional[int] = [np.asarray(A_ ) for speech_input in speech_inputs_truncated] __lowerCAmelCase : Any = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : List[str] = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' import torch __lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : List[Any] = np.random.rand(100 , 32 ).astype(np.floataa ) __lowerCAmelCase : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCAmelCase : Tuple = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowerCAmelCase : int = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : Any = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __lowerCAmelCase : Union[str, Any] = ds.sort('''id''' ).select(range(A_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on __lowerCAmelCase : int = self._load_datasamples(1 ) __lowerCAmelCase : Any = WhisperFeatureExtractor() __lowerCAmelCase : Optional[Any] = feature_extractor(A_ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1e-4 ) ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : str = self._load_datasamples(1 )[0] __lowerCAmelCase : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue __lowerCAmelCase : Union[str, Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1e-3 ) )
275
0
'''simple docstring''' def lowerCAmelCase__ ( ): _A : Optional[int] = 0 for i in range(1 ,1001 ): total += i**i return str(lowerCamelCase )[-10:] if __name__ == "__main__": print(solution())
227
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) a = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size for training."} ) a = field(default=2 , metadata={"help": "Batch size for evaluation."} ) a = field(default=0.1 , metadata={"help": "Value of weight decay."} ) a = field( default=1_0000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) a = field(default=2E-4 , metadata={"help": "Learning rate fo training."} ) a = field(default="cosine" , metadata={"help": "Learning rate."} ) a = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) a = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) a = field( default=a_ , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) a = field(default=5_0000 , metadata={"help": "Maximum number of training steps."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) a = field(default=1 , metadata={"help": "Training seed."} ) a = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) a = field( default=a_ , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) a = field(default=a_ , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field(default=a_ , metadata={"help": "Number of workers used for code evaluation."} ) a = field( default=a_ , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) a = field( default=a_ , metadata={"help": "Sample from the language model's output distribution."} ) a = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) a = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) a = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) a = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) a = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) a = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) a = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) a = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) a = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default=a_ , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) a = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) a = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) a = field( default=10_0000 , metadata={"help": "Number of files to save per JSON output file."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) a = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) a = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) a = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) a = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) a = field( default=a_ , metadata={"help": "If True, near-duplicate samples are removed."} ) a = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) a = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field(default=20_0000 , metadata={"help": "Number of examples to train tokenizer on."} ) a = field( default=3_2768 , metadata={"help": "Number of examples to train the tokenizer on."} ) a = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) a = field(default=a_ , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) a = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) a = field(default=a_ , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) a = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) a = field(default=a_ , metadata={"help": "Push saved tokenizer to the hub."} )
227
1
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case : """simple docstring""" def __init__( self : List[str] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any]=13 ,lowerCamelCase__ : int=30 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Union[str, Any]=3 ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Tuple=32 ,lowerCamelCase__ : Union[str, Any]=5 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : str=37 ,lowerCamelCase__ : Union[str, Any]="gelu" ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : List[str]=10 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=2 ,): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope UpperCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase__ = (image_size // patch_size) ** 2 UpperCAmelCase__ = num_patches + 2 def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Any ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ): UpperCAmelCase__ = DeiTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Any ): UpperCAmelCase__ = DeiTForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = DeiTForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[str] ): UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = DeiTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = DeiTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case__ = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = DeiTModelTester(self ) UpperCAmelCase__ = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def __lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def __lowerCAmelCase ( self : str ): pass def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def __lowerCAmelCase ( self : str ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase__ ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : List[str]=False ): UpperCAmelCase__ = super()._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ,return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowerCAmelCase ( self : List[str] ): if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCAmelCase__ = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ,return_labels=lowerCamelCase__ ) UpperCAmelCase__ = model(**lowerCamelCase__ ).loss loss.backward() def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ = False UpperCAmelCase__ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() UpperCAmelCase__ = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ,return_labels=lowerCamelCase__ ) UpperCAmelCase__ = model(**lowerCamelCase__ ).loss loss.backward() def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase__ ), *get_values(lowerCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): UpperCAmelCase__ = problem_type['title'] UpperCAmelCase__ = problem_type['num_labels'] UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCAmelCase__ = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ,return_labels=lowerCamelCase__ ) if problem_type["num_labels"] > 1: UpperCAmelCase__ = inputs['labels'].unsqueeze(1 ).repeat(1 ,problem_type['num_labels'] ) UpperCAmelCase__ = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase__ ) as warning_list: UpperCAmelCase__ = model(**lowerCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __lowerCAmelCase ( self : int ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = DeiTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def a_ ( ): UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : Tuple ): return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( lowerCamelCase__ ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase__ ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) UpperCAmelCase__ = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' ,torch_dtype=torch.floataa ,device_map='auto' ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ) UpperCAmelCase__ = inputs.pixel_values.to(lowerCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase__ = model(lowerCamelCase__ )
98
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ : Optional[Any] = logging.getLogger() def a_ ( ): UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('-f' ) UpperCAmelCase__ = parser.parse_args() return args.f class snake_case ( __UpperCAmelCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'run_glue_deebert.py' ) with patch.object(lowerCamelCase__ ,'argv' ,lowerCamelCase__ ): UpperCAmelCase__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase__ ,0.6_6_6 ) @slow @require_torch_non_multi_gpu def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCamelCase__ ) UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ ) UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ )
98
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _lowerCamelCase( _a ): lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray class _lowerCamelCase( nn.Module ): lowercase_ : int lowercase_ : Tuple[int] = (16, 32, 96, 2_56) lowercase_ : jnp.dtype = jnp.floataa def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Any = nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) _lowercase : Optional[int] = [] for i in range(len(self.block_out_channels) - 1): _lowercase : List[Any] = self.block_out_channels[i] _lowercase : str = self.block_out_channels[i + 1] _lowercase : Union[str, Any] = nn.Conv( lowerCamelCase, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCamelCase) _lowercase : List[str] = nn.Conv( lowerCamelCase, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCamelCase) _lowercase : Tuple = blocks _lowercase : Optional[Any] = nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, lowerCamelCase) -> int: """simple docstring""" _lowercase : int = self.conv_in(lowerCamelCase) _lowercase : Union[str, Any] = nn.silu(lowerCamelCase) for block in self.blocks: _lowercase : Optional[int] = block(lowerCamelCase) _lowercase : List[Any] = nn.silu(lowerCamelCase) _lowercase : int = self.conv_out(lowerCamelCase) return embedding @flax_register_to_config class _lowerCamelCase( nn.Module, _a, _a ): lowercase_ : int = 32 lowercase_ : int = 4 lowercase_ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase_ : Union[bool, Tuple[bool]] = False lowercase_ : Tuple[int] = (3_20, 6_40, 12_80, 12_80) lowercase_ : int = 2 lowercase_ : Union[int, Tuple[int]] = 8 lowercase_ : Optional[Union[int, Tuple[int]]] = None lowercase_ : int = 12_80 lowercase_ : float = 0.0 lowercase_ : bool = False lowercase_ : jnp.dtype = jnp.floataa lowercase_ : bool = True lowercase_ : int = 0 lowercase_ : str = "rgb" lowercase_ : Tuple[int] = (16, 32, 96, 2_56) def UpperCamelCase ( self, lowerCamelCase) -> FrozenDict: """simple docstring""" _lowercase : Any = (1, self.in_channels, self.sample_size, self.sample_size) _lowercase : Union[str, Any] = jnp.zeros(lowerCamelCase, dtype=jnp.floataa) _lowercase : int = jnp.ones((1,), dtype=jnp.intaa) _lowercase : Dict = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa) _lowercase : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) _lowercase : List[str] = jnp.zeros(lowerCamelCase, dtype=jnp.floataa) _lowercase : str = jax.random.split(lowerCamelCase) _lowercase : Tuple = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)["params"] def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[str] = self.block_out_channels _lowercase : int = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowercase : int = self.num_attention_heads or self.attention_head_dim # input _lowercase : Optional[int] = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time _lowercase : Tuple = FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift) _lowercase : int = FlaxTimestepEmbedding(lowerCamelCase, dtype=self.dtype) _lowercase : Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) _lowercase : Optional[Any] = self.only_cross_attention if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Optional[int] = (only_cross_attention,) * len(self.down_block_types) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = (num_attention_heads,) * len(self.down_block_types) # down _lowercase : List[str] = [] _lowercase : List[str] = [] _lowercase : List[Any] = block_out_channels[0] _lowercase : Union[str, Any] = nn.Conv( lowerCamelCase, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCamelCase) for i, down_block_type in enumerate(self.down_block_types): _lowercase : Optional[int] = output_channel _lowercase : str = block_out_channels[i] _lowercase : Union[str, Any] = i == len(lowerCamelCase) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowercase : List[Any] = FlaxCrossAttnDownBlockaD( in_channels=lowerCamelCase, out_channels=lowerCamelCase, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: _lowercase : str = FlaxDownBlockaD( in_channels=lowerCamelCase, out_channels=lowerCamelCase, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(lowerCamelCase) for _ in range(self.layers_per_block): _lowercase : str = nn.Conv( lowerCamelCase, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCamelCase) if not is_final_block: _lowercase : List[str] = nn.Conv( lowerCamelCase, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCamelCase) _lowercase : Optional[int] = down_blocks _lowercase : Any = controlnet_down_blocks # mid _lowercase : int = block_out_channels[-1] _lowercase : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCamelCase, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) _lowercase : Optional[int] = nn.Conv( lowerCamelCase, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 1.0, lowerCamelCase = True, lowerCamelCase = False, ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" _lowercase : List[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": _lowercase : Tuple = jnp.flip(lowerCamelCase, axis=1) # 1. time if not isinstance(lowerCamelCase, jnp.ndarray): _lowercase : Dict = jnp.array([timesteps], dtype=jnp.intaa) elif isinstance(lowerCamelCase, jnp.ndarray) and len(timesteps.shape) == 0: _lowercase : str = timesteps.astype(dtype=jnp.floataa) _lowercase : str = jnp.expand_dims(lowerCamelCase, 0) _lowercase : Optional[int] = self.time_proj(lowerCamelCase) _lowercase : Optional[int] = self.time_embedding(lowerCamelCase) # 2. pre-process _lowercase : Union[str, Any] = jnp.transpose(lowerCamelCase, (0, 2, 3, 1)) _lowercase : Dict = self.conv_in(lowerCamelCase) _lowercase : Optional[Any] = jnp.transpose(lowerCamelCase, (0, 2, 3, 1)) _lowercase : int = self.controlnet_cond_embedding(lowerCamelCase) sample += controlnet_cond # 3. down _lowercase : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[Any] = down_block(lowerCamelCase, lowerCamelCase, lowerCamelCase, deterministic=not train) else: _lowercase : List[str] = down_block(lowerCamelCase, lowerCamelCase, deterministic=not train) down_block_res_samples += res_samples # 4. mid _lowercase : List[str] = self.mid_block(lowerCamelCase, lowerCamelCase, lowerCamelCase, deterministic=not train) # 5. contronet blocks _lowercase : List[Any] = () for down_block_res_sample, controlnet_block in zip(lowerCamelCase, self.controlnet_down_blocks): _lowercase : Tuple = controlnet_block(lowerCamelCase) controlnet_down_block_res_samples += (down_block_res_sample,) _lowercase : Optional[Any] = controlnet_down_block_res_samples _lowercase : Union[str, Any] = self.controlnet_mid_block(lowerCamelCase) # 6. scaling _lowercase : int = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCamelCase, mid_block_res_sample=lowerCamelCase)
354
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowercase : List[str] = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase) @torch.no_grad() def __call__( self, lowerCamelCase = 1, lowerCamelCase = None, lowerCamelCase = 0.0, lowerCamelCase = 50, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size, lowerCamelCase): _lowercase : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowercase : Union[str, Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _lowercase : str = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowerCamelCase) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _lowercase : Union[str, Any] = self.unet(lowerCamelCase, lowerCamelCase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step( lowerCamelCase, lowerCamelCase, lowerCamelCase, eta=lowerCamelCase, use_clipped_model_output=lowerCamelCase, generator=lowerCamelCase).prev_sample _lowercase : Any = (image / 2 + 0.5).clamp(0, 1) _lowercase : str = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : Optional[int] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase)
84
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : int ): warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
130
1
"""simple docstring""" from __future__ import annotations from random import choice def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] ) -> int: """simple docstring""" return choice(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> int: """simple docstring""" lowerCAmelCase_ : Dict = random_pivot(lowerCAmelCase__ ) # partition based on pivot # linear time lowerCAmelCase_ : Optional[int] = [e for e in lst if e < pivot] lowerCAmelCase_ : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCAmelCase__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCAmelCase__ ) < k - 1: return kth_number(lowerCAmelCase__ , k - len(lowerCAmelCase__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_, lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """maskformer-swin""" _SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_2_4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : Dict=9_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_ : List[Any]=[3, 6, 1_2, 2_4] , SCREAMING_SNAKE_CASE_ : List[str]=7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-5 , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , **SCREAMING_SNAKE_CASE_ : str , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = image_size lowerCAmelCase_ : Optional[Any] = patch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : List[str] = embed_dim lowerCAmelCase_ : Dict = depths lowerCAmelCase_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = num_heads lowerCAmelCase_ : List[str] = window_size lowerCAmelCase_ : Any = mlp_ratio lowerCAmelCase_ : Any = qkv_bias lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Any = use_absolute_embeddings lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : str = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) lowerCAmelCase_ : List[Any] = ['stem'] + [F"stage{idx}" for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
289
1
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: A = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number _lowerCamelCase : int = 701 _lowerCamelCase : Tuple = 10_0000_0000 _lowerCamelCase : List[str] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
258
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" def get_matched_characters(UpperCAmelCase , UpperCAmelCase ) -> str: A = [] A = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): A = int(max(0 , i - limit ) ) A = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCAmelCase ) A = f"""{_stra[0:_stra.index(UpperCAmelCase )]} {_stra[_stra.index(UpperCAmelCase ) + 1:]}""" return "".join(UpperCAmelCase ) # matching characters A = get_matched_characters(UpperCAmelCase , UpperCAmelCase ) A = get_matched_characters(UpperCAmelCase , UpperCAmelCase ) A = len(UpperCAmelCase ) # transposition A = ( len([(ca, ca) for ca, ca in zip(UpperCAmelCase , UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: A = 0.0 else: A = ( 1 / 3 * ( match_count / len(UpperCAmelCase ) + match_count / len(UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters A = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
258
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __snake_case = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""CLIPFeatureExtractor"""] __snake_case = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __snake_case = logging.getLogger(__name__) if __name__ == "__main__": __snake_case = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30522, type=int) __snake_case = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, """rb""") as fp: __snake_case = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") __snake_case = Counter() for tk_ids in data: counter.update(tk_ids) __snake_case = [0] * args.vocab_size for k, v in counter.items(): __snake_case = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
112
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowercase: Tuple = logging.get_logger(__name__) # General docstring _lowercase: str = "RegNetConfig" # Base docstring _lowercase: Union[str, Any] = "facebook/regnet-y-040" _lowercase: Optional[Any] = [1, 1088, 7, 7] # Image classification docstring _lowercase: Dict = "facebook/regnet-y-040" _lowercase: Union[str, Any] = "tabby, tabby cat" _lowercase: str = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 3 , lowerCamelCase_ = 1 , lowerCamelCase_ = 1 , lowerCamelCase_ = "relu" , ): """simple docstring""" super().__init__() a = nn.Convad( lowerCamelCase_ , lowerCamelCase_ , kernel_size=lowerCamelCase_ , stride=lowerCamelCase_ , padding=kernel_size // 2 , groups=lowerCamelCase_ , bias=lowerCamelCase_ , ) a = nn.BatchNormad(lowerCamelCase_ ) a = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.convolution(lowerCamelCase_ ) a = self.normalization(lowerCamelCase_ ) a = self.activation(lowerCamelCase_ ) return hidden_state class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ ): """simple docstring""" super().__init__() a = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) a = config.num_channels def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) a = self.embedder(lowerCamelCase_ ) return hidden_state class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 2 ): """simple docstring""" super().__init__() a = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , stride=lowerCamelCase_ , bias=lowerCamelCase_ ) a = nn.BatchNormad(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.convolution(lowerCamelCase_ ) a = self.normalization(lowerCamelCase_ ) return hidden_state class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" super().__init__() a = nn.AdaptiveAvgPoolad((1, 1) ) a = nn.Sequential( nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ) , nn.Sigmoid() , ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.pooler(lowerCamelCase_ ) a = self.attention(lowerCamelCase_ ) a = hidden_state * attention return hidden_state class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 ): """simple docstring""" super().__init__() a = in_channels != out_channels or stride != 1 a = max(1 , out_channels // config.groups_width ) a = ( RegNetShortCut(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ ) if should_apply_shortcut else nn.Identity() ) a = nn.Sequential( RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ ) , ) a = ACTaFN[config.hidden_act] def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = hidden_state a = self.layer(lowerCamelCase_ ) a = self.shortcut(lowerCamelCase_ ) hidden_state += residual a = self.activation(lowerCamelCase_ ) return hidden_state class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 ): """simple docstring""" super().__init__() a = in_channels != out_channels or stride != 1 a = max(1 , out_channels // config.groups_width ) a = ( RegNetShortCut(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ ) if should_apply_shortcut else nn.Identity() ) a = nn.Sequential( RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act ) , RegNetSELayer(lowerCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ ) , ) a = ACTaFN[config.hidden_act] def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = hidden_state a = self.layer(lowerCamelCase_ ) a = self.shortcut(lowerCamelCase_ ) hidden_state += residual a = self.activation(lowerCamelCase_ ) return hidden_state class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 2 , lowerCamelCase_ = 2 , ): """simple docstring""" super().__init__() a = RegNetXLayer if config.layer_type == "x" else RegNetYLayer a = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , ) , *[layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for _ in range(depth - 1 )] , ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.layers(lowerCamelCase_ ) return hidden_state class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ ): """simple docstring""" super().__init__() a = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) a = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase_ , config.depths[1:] ): self.stages.append(RegNetStage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , depth=lowerCamelCase_ ) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = True ): """simple docstring""" a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a = hidden_states + (hidden_state,) a = stage_module(lowerCamelCase_ ) if output_hidden_states: a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase_ , hidden_states=lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = RegNetConfig __A = "regnet" __A = "pixel_values" __A = True def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" if isinstance(lowerCamelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): a = value _lowercase: str = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowercase: List[Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", lowerCAmelCase, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ ): """simple docstring""" super().__init__(lowerCamelCase_ ) a = config a = RegNetEmbeddings(lowerCamelCase_ ) a = RegNetEncoder(lowerCamelCase_ ) a = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ): """simple docstring""" a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.embedder(lowerCamelCase_ ) a = self.encoder( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) a = encoder_outputs[0] a = self.pooler(lowerCamelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ", lowerCAmelCase, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ ): """simple docstring""" super().__init__(lowerCamelCase_ ) a = config.num_labels a = RegNetModel(lowerCamelCase_ ) # classification head a = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ (self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , ): """simple docstring""" a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet(lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) a = outputs.pooler_output if return_dict else outputs[1] a = self.classifier(lowerCamelCase_ ) a = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a = "single_label_classification" else: a = "multi_label_classification" if self.config.problem_type == "regression": a = MSELoss() if self.num_labels == 1: a = loss_fct(logits.squeeze() , labels.squeeze() ) else: a = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) elif self.config.problem_type == "single_label_classification": a = CrossEntropyLoss() a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a = BCEWithLogitsLoss() a = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: a = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states )
227
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = 42 __A = None def a( A : Optional[Any] , A : Any=0.999 , A : Dict="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a = [] for i in range(A ): a = i / num_diffusion_timesteps a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A ) / alpha_bar_fn(A ) , A ) ) return torch.tensor(A , dtype=torch.floataa ) class _lowercase ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" __A = 1 @register_to_config def __init__(self , lowerCamelCase_ = 1000 , lowerCamelCase_ = 0.0001 , lowerCamelCase_ = 0.02 , lowerCamelCase_ = "linear" , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = True , lowerCamelCase_ = 0 , lowerCamelCase_ = "epsilon" , lowerCamelCase_ = 1.0 , **lowerCamelCase_ , ): """simple docstring""" if kwargs.get("set_alpha_to_one" , lowerCamelCase_ ) is not None: a = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) a = kwargs["set_alpha_to_one"] if trained_betas is not None: a = torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": a = torch.linspace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) a = 1.0 - self.betas a = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. a = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution a = 1.0 # setable values a = None a = torch.from_numpy(np.arange(0 , lowerCamelCase_ ).copy().astype(np.intaa ) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" return sample def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) a = num_inference_steps a = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round().copy().astype(np.intaa ) a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) self.timesteps += self.config.steps_offset def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0.0 , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , ): """simple docstring""" a = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process a = self.alphas_cumprod[timestep] a = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 a = model_output elif self.config.prediction_type == "sample": a = model_output a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output a = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: a = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) def __len__(self ): """simple docstring""" return self.config.num_train_timesteps
227
1
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: while b: __lowerCAmelCase: List[str] = b, a % b return a def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return a if b == 0 else euclidean_gcd_recursive(__SCREAMING_SNAKE_CASE , a % b ) def a__ ( ) -> Tuple: print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
354
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __A = get_logger(__name__) class snake_case : SCREAMING_SNAKE_CASE_ : List[Any] = """dummy_data""" SCREAMING_SNAKE_CASE_ : List[Any] = """datasets""" SCREAMING_SNAKE_CASE_ : Any = False def __init__( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[Version, str] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[List[Callable]] = None , )-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: Tuple = dataset_name __lowerCAmelCase: Optional[Any] = cache_dir __lowerCAmelCase: Optional[int] = use_local_dummy_data __lowerCAmelCase: Optional[Any] = config # download_callbacks take a single url as input __lowerCAmelCase: List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCAmelCase: Union[str, Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCAmelCase: List[str] = str(UpperCamelCase__) # to be downloaded __lowerCAmelCase: Dict = None __lowerCAmelCase: Dict = None @property def lowercase_ ( self : List[str])-> str: '''simple docstring''' if self._dummy_file is None: __lowerCAmelCase: Tuple = self.download_dummy_data() return self._dummy_file @property def lowercase_ ( self : Dict)-> Optional[Any]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join("dummy" , self.version_name) @property def lowercase_ ( self : List[str])-> Any: '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip") def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCAmelCase: str = cached_path( UpperCamelCase__ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase__ , force_extract=UpperCamelCase__) return os.path.join(UpperCamelCase__ , self.dummy_file_name) @property def lowercase_ ( self : Dict)-> List[Any]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def lowercase_ ( self : Optional[Any])-> Tuple: '''simple docstring''' if self._bucket_url is None: __lowerCAmelCase: int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/")) return self._bucket_url @property def lowercase_ ( self : str)-> Optional[int]: '''simple docstring''' if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/").split("/")[:-1]) def lowercase_ ( self : List[Any] , UpperCamelCase__ : int , *UpperCamelCase__ : List[str])-> Optional[int]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCAmelCase: List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCAmelCase: str = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase__ , UpperCamelCase__): return self.create_dummy_data_dict(UpperCamelCase__ , UpperCamelCase__) elif isinstance(UpperCamelCase__ , (list, tuple)): return self.create_dummy_data_list(UpperCamelCase__ , UpperCamelCase__) else: return self.create_dummy_data_single(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Dict , *UpperCamelCase__ : int)-> Dict: '''simple docstring''' return self.download_and_extract(UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any])-> str: '''simple docstring''' return self.download_and_extract(UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : str)-> List[str]: '''simple docstring''' return path def lowercase_ ( self : Optional[Any])-> Any: '''simple docstring''' return {} def lowercase_ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase__ , UpperCamelCase__): for single_url in single_urls: download_callback(UpperCamelCase__) else: __lowerCAmelCase: Union[str, Any] = single_urls download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Dict = [os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(Path(UpperCamelCase__).name)) for x in single_urls] else: __lowerCAmelCase: Any = single_urls __lowerCAmelCase: Optional[int] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(Path(UpperCamelCase__).name)) __lowerCAmelCase: Dict = value # make sure that values are unique if all(isinstance(UpperCamelCase__ , UpperCamelCase__) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique __lowerCAmelCase: Any = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase_ ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any])-> int: '''simple docstring''' __lowerCAmelCase: Tuple = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCAmelCase: Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , UpperCamelCase__)) for url in data_url) __lowerCAmelCase: str = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url) if data_url and (is_tf_records or is_pubmed_records): __lowerCAmelCase: Optional[int] = [data_url[0]] * len(UpperCamelCase__) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCAmelCase: Optional[Any] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(UpperCamelCase__) return dummy_data_list def lowercase_ ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any])-> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCAmelCase: List[Any] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(UpperCamelCase__) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase_ ( self : List[str])-> Dict: '''simple docstring''' pass def lowercase_ ( self : Union[str, Any])-> Tuple: '''simple docstring''' pass def lowercase_ ( self : Dict , UpperCamelCase__ : str)-> int: '''simple docstring''' def _iter_archive_members(UpperCamelCase__ : str): # this preserves the order of the members inside the ZIP archive __lowerCAmelCase: Optional[Any] = Path(self.dummy_file).parent __lowerCAmelCase: Optional[int] = path.relative_to(UpperCamelCase__) with ZipFile(self.local_path_to_dummy_data) as zip_file: __lowerCAmelCase: Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(UpperCamelCase__) __lowerCAmelCase: str = Path(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = _iter_archive_members(UpperCamelCase__) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(UpperCamelCase__).as_posix(), file_path.open("rb") def lowercase_ ( self : str , UpperCamelCase__ : str)-> str: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Dict = [paths] for path in paths: if os.path.isfile(UpperCamelCase__): if os.path.basename(UpperCamelCase__).startswith((".", "__")): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase__): if os.path.basename(UpperCamelCase__).startswith((".", "__")): continue dirnames.sort() for filename in sorted(UpperCamelCase__): if filename.startswith((".", "__")): continue yield os.path.join(UpperCamelCase__ , UpperCamelCase__)
108
0
def a_ ( SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1_000 ): '''simple docstring''' _lowerCamelCase : str =1 _lowerCamelCase : str =0 for divide_by_number in range(lowercase__ , digit + 1 ): _lowerCamelCase : list[int] =[] _lowerCamelCase : int =numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase__ ): _lowerCamelCase : Tuple =len(lowercase__ ) _lowerCamelCase : int =divide_by_number else: has_been_divided.append(lowercase__ ) _lowerCamelCase : Optional[int] =now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
199
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _snake_case ( ) -> Generator[int, None, None]: '''simple docstring''' lowerCAmelCase_ :dict[int, int] = {} lowerCAmelCase_ :int = 2 while True: lowerCAmelCase_ :List[Any] = factor_map.pop(lowercase__ , lowercase__ ) if factor: lowerCAmelCase_ :Optional[int] = factor + prime while x in factor_map: x += factor lowerCAmelCase_ :List[str] = factor else: lowerCAmelCase_ :Optional[int] = prime yield prime prime += 1 def _snake_case ( lowercase__ : float = 1E10 ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = sieve() lowerCAmelCase_ :str = 1 while True: lowerCAmelCase_ :int = next(lowercase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowercase__ ) n += 2 if __name__ == "__main__": print(solution())
84
0
import random def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = a[left_index] A_ : str = left_index + 1 for j in range(left_index + 1 , SCREAMING_SNAKE_CASE ): if a[j] < pivot: A_ , A_ : Any = a[i], a[j] i += 1 A_ , A_ : Dict = a[i - 1], a[left_index] return i - 1 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if left < right: A_ : List[str] = random.randint(SCREAMING_SNAKE_CASE , right - 1 ) A_ , A_ : Dict = ( a[left], a[pivot], ) # switches the pivot with the left most bound A_ : Dict = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) quick_sort_random( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( SCREAMING_SNAKE_CASE , pivot_index + 1 , SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def _SCREAMING_SNAKE_CASE ( ): A_ : Dict = input('''Enter numbers separated by a comma:\n''' ).strip() A_ : Union[str, Any] = [int(SCREAMING_SNAKE_CASE ) for item in user_input.split(''',''' )] quick_sort_random(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
65
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" snake_case = StableDiffusionLDMaDPipeline snake_case = TEXT_TO_IMAGE_PARAMS snake_case = TEXT_TO_IMAGE_BATCH_PARAMS snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self )->str: '''simple docstring''' torch.manual_seed(0 ) A_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A_ : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) A_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : str = CLIPTextModel(_SCREAMING_SNAKE_CASE ) A_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Dict: '''simple docstring''' if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Tuple = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->int: '''simple docstring''' A_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : List[Any] = self.get_dummy_components() A_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) A_ : Dict = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : Tuple = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[Any] = output.rgb, output.depth A_ : List[Any] = rgb[0, -3:, -3:, -1] A_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A_ : Tuple = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) A_ : Union[str, Any] = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[Any] = self.get_dummy_components() A_ : Any = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) A_ : List[str] = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = 3 * [inputs['''prompt''']] # forward A_ : Optional[Any] = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[int] = output.rgb, output.depth A_ : Tuple = rgb_slice_a[0, -3:, -3:, -1] A_ : Optional[Any] = depth_slice_a[0, -3:, -1] A_ : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : Dict = 3 * [inputs.pop('''prompt''' )] A_ : Tuple = ldmad_pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) A_ : Dict = text_inputs['''input_ids'''].to(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = ldmad_pipe.text_encoder(_SCREAMING_SNAKE_CASE )[0] A_ : Optional[int] = prompt_embeds # forward A_ : Optional[int] = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Any = output.rgb, output.depth A_ : Any = rgb_slice_a[0, -3:, -3:, -1] A_ : str = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : List[str] = self.get_dummy_components() A_ : int = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) A_ : int = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) A_ : str = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = '''french fries''' A_ : Optional[Any] = ldmad_pipe(**_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[int] = output.rgb, output.depth A_ : Optional[Any] = rgb[0, -3:, -3:, -1] A_ : int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A_ : int = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) A_ : Any = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="cpu" , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 )->Optional[int]: '''simple docstring''' A_ : Union[str, Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : str = np.random.RandomState(_SCREAMING_SNAKE_CASE ).standard_normal((1, 4, 64, 64) ) A_ : int = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) A_ : int = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->str: '''simple docstring''' A_ : List[str] = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) A_ : Optional[Any] = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : int = self.get_inputs(_SCREAMING_SNAKE_CASE ) A_ : Dict = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Union[str, Any] = output.rgb, output.depth A_ : int = rgb[0, -3:, -3:, -1].flatten() A_ : Union[str, Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) A_ : Tuple = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) A_ : Tuple = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="cpu" , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 )->int: '''simple docstring''' A_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Any = np.random.RandomState(_SCREAMING_SNAKE_CASE ).standard_normal((1, 4, 64, 64) ) A_ : str = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->int: '''simple docstring''' A_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.get_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : List[Any] = output.rgb, output.depth A_ : int = 0.4_9_5_5_8_6 A_ : Union[str, Any] = 0.3_3_7_9_5_5_1_5 A_ : Optional[int] = 1_1_2.4_8_5_1_8 A_ : Optional[Any] = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Any = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.get_inputs(_SCREAMING_SNAKE_CASE ) A_ : Tuple = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[Any] = output.rgb, output.depth A_ : Tuple = 0.4_1_9_4_1_2_7 A_ : Union[str, Any] = 0.3_5_3_7_5_5_8_6 A_ : Union[str, Any] = 0.5_6_3_8_5_0_2 A_ : List[Any] = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
65
1
"""simple docstring""" import numpy as np def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = int(np.ceil((x_end - xa) / h ) ) _UpperCAmelCase = np.zeros((n + 1,) ) _UpperCAmelCase = ya _UpperCAmelCase = xa for k in range(lowercase ): _UpperCAmelCase = f(lowercase ,y[k] ) _UpperCAmelCase = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) _UpperCAmelCase = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) _UpperCAmelCase = f(x + h ,y[k] + h * ka ) _UpperCAmelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
289
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: __magic_name__ : str = """ZinengTang/tvlt-base""" __magic_name__ : Optional[int] = tempfile.mkdtemp() def __magic_name__ ( self , **lowerCAmelCase__ ) -> Dict: return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Dict: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> int: __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Dict = self.get_feature_extractor() __magic_name__ : List[str] = TvltProcessor(image_processor=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase__ ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_feature_extractor() __magic_name__ : Optional[int] = TvltProcessor(image_processor=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = np.ones([1_20_00] ) __magic_name__ : List[str] = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : int = processor(audio=lowerCAmelCase__ , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_feature_extractor() __magic_name__ : Dict = TvltProcessor(image_processor=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) __magic_name__ : Dict = np.ones([3, 2_24, 2_24] ) __magic_name__ : Optional[int] = image_processor(lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : Any = processor(images=lowerCAmelCase__ , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : List[str] = self.get_feature_extractor() __magic_name__ : int = TvltProcessor(image_processor=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = np.ones([1_20_00] ) __magic_name__ : Tuple = np.ones([3, 2_24, 2_24] ) __magic_name__ : str = processor(audio=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> int: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : str = self.get_feature_extractor() __magic_name__ : Optional[int] = TvltProcessor(image_processor=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
138
def UpperCamelCase ( _A = 1, _A = 1000 ): """simple docstring""" __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = 0 for divide_by_number in range(_A, digit + 1 ): __magic_name__ : list[int] = [] __magic_name__ : Any = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_A ): __magic_name__ : int = len(_A ) __magic_name__ : Dict = divide_by_number else: has_been_divided.append(_A ) __magic_name__ : Optional[int] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
138
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Tuple = '''switch_transformers''' _A : Tuple = ['''past_key_values'''] _A : int = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : List[str] , lowerCAmelCase__ : Tuple=3_2_1_2_8 , lowerCAmelCase__ : Tuple=7_6_8 , lowerCAmelCase__ : Any=6_4 , lowerCAmelCase__ : Any=2_0_4_8 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : str=8 , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Dict=0.01 , lowerCAmelCase__ : Dict="float32" , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : List[Any]=1_2_8 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=1E-6 , lowerCAmelCase__ : Tuple=0.0_01 , lowerCAmelCase__ : Dict=0.0_01 , lowerCAmelCase__ : Optional[int]=1.0 , lowerCAmelCase__ : Union[str, Any]="relu" , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : List[Any]=1 , **lowerCAmelCase__ : Union[str, Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : str = d_model __SCREAMING_SNAKE_CASE : Tuple = d_kv __SCREAMING_SNAKE_CASE : int = d_ff __SCREAMING_SNAKE_CASE : int = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_layers __SCREAMING_SNAKE_CASE : str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : Optional[int] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : str = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : int = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : List[str] = expert_capacity __SCREAMING_SNAKE_CASE : Optional[int] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __SCREAMING_SNAKE_CASE : Dict = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : Any = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : List[Any] = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Any = dropout_rate __SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : Optional[int] = initializer_factor __SCREAMING_SNAKE_CASE : Dict = feed_forward_proj __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache __SCREAMING_SNAKE_CASE : Optional[int] = add_router_probs __SCREAMING_SNAKE_CASE : Any = router_z_loss_coef __SCREAMING_SNAKE_CASE : Tuple = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Optional[Any] = self.feed_forward_proj.split("""-""" ) __SCREAMING_SNAKE_CASE : Tuple = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == """gated""" if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[str] = """gelu_new""" super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
112
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCamelCase__ : List[Any] = '''base_with_context''' def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Dict ): __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __SCREAMING_SNAKE_CASE : Tuple = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""attention"""] __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: List[str] ): __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __SCREAMING_SNAKE_CASE : Tuple = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""attention"""] __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __SCREAMING_SNAKE_CASE : str = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = ly_weight["""self_attention"""] __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""MultiHeadDotProductAttention_0"""] __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) __SCREAMING_SNAKE_CASE : Any = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) __SCREAMING_SNAKE_CASE : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __SCREAMING_SNAKE_CASE : int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __SCREAMING_SNAKE_CASE : Tuple = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __SCREAMING_SNAKE_CASE : int = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f"{MODEL}/checkpoint_500000", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) UpperCamelCase__ : List[str] = parser.parse_args() main(args)
112
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
39
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel a__: int = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] )->List[str]: return torch.atana(UpperCamelCase__ , UpperCamelCase__ ) / math.pi * 2 def UpperCamelCase__( UpperCamelCase__ : str )->List[Any]: A__ = torch.sin(t * math.pi / 2 ) ** 2 A__ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(UpperCamelCase__ , UpperCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self,__lowerCamelCase ): super().__init__() A__ = DiffusionAttnUnetaD(__lowerCamelCase,n_attn_layers=4 ) A__ = deepcopy(self.diffusion ) A__ = torch.quasirandom.SobolEngine(1,scramble=__lowerCamelCase ) def UpperCamelCase__( UpperCamelCase__ : Optional[Any] )->List[Any]: A__ = MODELS_MAP[model_name]['''url'''] os.system(f"wget {url} ./" ) return f"./{model_name}.ckpt" a__: Union[str, Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } a__: Union[str, Any] = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } a__: str = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } a__: List[str] = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } a__: Dict = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } a__: List[str] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def UpperCamelCase__( UpperCamelCase__ : Optional[Any] )->Optional[Any]: if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(f"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def UpperCamelCase__( UpperCamelCase__ : str )->Any: for key, value in ATTN_MAP.items(): if name.startswith(UpperCamelCase__ ) and not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return name.replace(UpperCamelCase__ , UpperCamelCase__ ) elif name.startswith(UpperCamelCase__ ): return [name.replace(UpperCamelCase__ , UpperCamelCase__ ) for v in value] raise ValueError(f"Attn error with {name}" ) def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=13 )->Optional[Any]: A__ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) A__ = 0 if string.startswith('''net.3.''' ): depth += 1 A__ = string[6:] elif string.startswith('''net.''' ): A__ = string[4:] while string.startswith('''main.7.''' ): depth += 1 A__ = string[7:] if string.startswith('''main.''' ): A__ = string[5:] # mid block if string[:2].isdigit(): A__ = string[:2] A__ = string[2:] else: A__ = string[0] A__ = string[1:] if depth == max_depth: A__ = MID_NUM_TO_LAYER[layer_num] A__ = '''mid_block''' elif depth > 0 and int(UpperCamelCase__ ) < 7: A__ = DOWN_NUM_TO_LAYER[layer_num] A__ = f"down_blocks.{depth}" elif depth > 0 and int(UpperCamelCase__ ) > 7: A__ = UP_NUM_TO_LAYER[layer_num] A__ = f"up_blocks.{max_depth - depth - 1}" elif depth == 0: A__ = DEPTH_0_TO_LAYER[layer_num] A__ = f"up_blocks.{max_depth - 1}" if int(UpperCamelCase__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(f"Naming error with {input_string} and string_left: {string_left}." ) A__ = string_left[1:] if "resnets" in new_layer: A__ = convert_resconv_naming(UpperCamelCase__ ) elif "attentions" in new_layer: A__ = convert_attn_naming(UpperCamelCase__ ) A__ = new_string_left if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = prefix + '''.''' + new_layer + '''.''' + string_left else: A__ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def UpperCamelCase__( UpperCamelCase__ : int )->int: A__ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue A__ = rename(UpperCamelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = transform_conv_attns(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A__ = v return new_state_dict def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] )->Optional[int]: if len(UpperCamelCase__ ) == 1: if len(v.shape ) == 3: # weight A__ = v[:, :, 0] else: # bias A__ = v else: # qkv matrices A__ = v.shape[0] A__ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A__ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A__ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def UpperCamelCase__( UpperCamelCase__ : Tuple )->List[str]: A__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) A__ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"Make sure to provide one of the official model names {MODELS_MAP.keys()}" A__ = download(UpperCamelCase__ ) A__ = MODELS_MAP[model_name]['''sample_rate'''] A__ = MODELS_MAP[model_name]['''sample_size'''] A__ = Object() A__ = sample_size A__ = sample_rate A__ = 0 A__ = UNetaDModel(sample_size=UpperCamelCase__ , sample_rate=UpperCamelCase__ ) A__ = diffusers_model.state_dict() A__ = DiffusionUncond(UpperCamelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=UpperCamelCase__ )['''state_dict'''] ) A__ = orig_model.diffusion_ema.eval() A__ = orig_model.state_dict() A__ = rename_orig_weights(UpperCamelCase__ ) A__ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A__ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(UpperCamelCase__ ) == 0, f"Problem with {renamed_minus_diffusers}" assert all(k.endswith('''kernel''' ) for k in list(UpperCamelCase__ ) ), f"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": A__ = value.squeeze() A__ = value diffusers_model.load_state_dict(UpperCamelCase__ ) A__ = 1_00 A__ = 33 A__ = IPNDMScheduler(num_train_timesteps=UpperCamelCase__ ) A__ = torch.manual_seed(UpperCamelCase__ ) A__ = torch.randn([1, 2, config.sample_size] , generator=UpperCamelCase__ ).to(UpperCamelCase__ ) A__ = torch.linspace(1 , 0 , steps + 1 , device=UpperCamelCase__ )[:-1] A__ = get_crash_schedule(UpperCamelCase__ ) A__ = DanceDiffusionPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) A__ = torch.manual_seed(33 ) A__ = pipe(num_inference_steps=UpperCamelCase__ , generator=UpperCamelCase__ ).audios A__ = sampling.iplms_sample(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {} ) A__ = generated.clamp(-1 , 1 ) A__ = (generated - audio).abs().sum() A__ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , UpperCamelCase__ ) print('''Diff max''' , UpperCamelCase__ ) assert diff_max < 1e-3, f"Diff max: {diff_max} is too much :-/" print(f"Conversion for {model_name} successful!" ) if __name__ == "__main__": a__: Optional[Any] = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') a__: Tuple = parser.parse_args() main(args)
39
1