code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def _snake_case ( lowercase__ : str ) -> int: '''simple docstring''' assert column_title.isupper() lowerCAmelCase_ :Dict = 0 lowerCAmelCase_ :int = len(lowercase__ ) - 1 lowerCAmelCase_ :Optional[Any] = 0 while index >= 0: lowerCAmelCase_ :str = (ord(column_title[index] ) - 6_4) * pow(2_6 , lowercase__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
84
"""simple docstring""" def _snake_case ( lowercase__ : str , lowercase__ : str ) -> int: '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("""String lengths must match!""" ) lowerCAmelCase_ :Optional[int] = 0 for chara, chara in zip(lowercase__ , lowercase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
84
1
"""simple docstring""" def lowerCamelCase (a_ :float , a_ :float) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(100, 0.25) = }""") print(F"""{price_plus_tax(1_25.50, 0.05) = }""")
172
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
172
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase ( __lowercase : Any ,__lowercase : Dict ,__lowercase : List[str] ): '''simple docstring''' A_ : int = OmegaConf.load(lowercase__ ) A_ : int = torch.load(lowercase__ ,map_location='cpu' )['model'] A_ : Union[str, Any] = list(state_dict.keys() ) # extract state_dict for VQVAE A_ : Any = {} A_ : Dict = 'first_stage_model.' for key in keys: if key.startswith(lowercase__ ): A_ : Any = state_dict[key] # extract state_dict for UNetLDM A_ : List[str] = {} A_ : str = 'model.diffusion_model.' for key in keys: if key.startswith(lowercase__ ): A_ : int = state_dict[key] A_ : Dict = config.model.params.first_stage_config.params A_ : Optional[int] = config.model.params.unet_config.params A_ : Dict = VQModel(**lowercase__ ).eval() vqvae.load_state_dict(lowercase__ ) A_ : Dict = UNetLDMModel(**lowercase__ ).eval() unet.load_state_dict(lowercase__ ) A_ : Tuple = DDIMScheduler( timesteps=config.model.params.timesteps ,beta_schedule='scaled_linear' ,beta_start=config.model.params.linear_start ,beta_end=config.model.params.linear_end ,clip_sample=lowercase__ ,) A_ : List[Any] = LDMPipeline(lowercase__ ,lowercase__ ,lowercase__ ) pipeline.save_pretrained(lowercase__ ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) _UpperCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
140
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _lowerCamelCase( lowercase__=None , lowercase__=None ) -> Dict: '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase__ ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''The csv file to plot.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) UpperCamelCase_ : Optional[List[str]] =list_field( default=A_ , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' try: int(lowercase__ ) return True except ValueError: return False def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' try: float(lowercase__ ) return True except ValueError: return False class A : def __init__(self , lowerCAmelCase ): __lowercase= args __lowercase= defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __lowercase= csv.DictReader(lowerCAmelCase ) for row in reader: __lowercase= row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __lowercase= int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __lowercase= float(row['result'] ) def _A (self ): __lowercase, __lowercase= plt.subplots() __lowercase= 'Time usage' if self.args.is_time else 'Memory usage' __lowercase= title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowercase= sorted(set(self.result_dict[model_name]['bsz'] ) ) __lowercase= sorted(set(self.result_dict[model_name]['seq_len'] ) ) __lowercase= self.result_dict[model_name]['result'] ((__lowercase), (__lowercase))= ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase= ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase= np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase , ) else: __lowercase= np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase), (__lowercase))= ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __lowercase= np.asarray(lowerCAmelCase , lowerCAmelCase )[: len(lowerCAmelCase )] plt.scatter( lowerCAmelCase , lowerCAmelCase , label=f'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(lowerCAmelCase , lowerCAmelCase , '--' ) title_str += f' {label_model_name} vs.' __lowercase= title_str[:-4] __lowercase= 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCAmelCase ) plt.xlabel(lowerCAmelCase ) plt.ylabel(lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= HfArgumentParser(lowercase__ ) __lowercase= parser.parse_args_into_dataclasses()[0] __lowercase= Plot(args=lowercase__ ) plot.plot() if __name__ == "__main__": main()
295
0
'''simple docstring''' from maths.prime_factors import prime_factors def __UpperCamelCase ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = F"Input value of [number={number}] must be an integer" raise TypeError(_UpperCAmelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(_UpperCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ : Dict = get_tests_dir("fixtures/dummy-config.json") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : str = 0 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[str] = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Any = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCAmelCase : int = os.path.join(UpperCAmelCase_ , "fake-roberta" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register("custom" , UpperCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register("model" , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register("bert" , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : List[str] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier" ): __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def lowerCamelCase_ ( self : int ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ , revision="aaaaaa" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): __UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): __UpperCAmelCase : int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): __UpperCAmelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''new-model''' try: AutoConfig.register("new-model" , UpperCAmelCase_ ) # If remote code is not set, the default is to use local __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. __UpperCAmelCase : int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub __UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
37
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = RoFormerTokenizer lowerCAmelCase = RoFormerTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _UpperCamelCase ( self ) -> Tuple: super().setUp() def _UpperCamelCase ( self , **a ) -> Optional[int]: return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a ) def _UpperCamelCase ( self , **a ) -> str: return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a ) def _UpperCamelCase ( self ) -> Optional[Any]: snake_case_ = """永和服装饰品有限公司,今天天气非常好""" snake_case_ = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def _UpperCamelCase ( self ) -> Tuple: snake_case_ = self.get_tokenizer() snake_case_ = self.get_chinese_input_output_texts() snake_case_ = tokenizer.tokenize(a ) self.assertListEqual(a , output_text.split() ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_chinese_input_output_texts() snake_case_ = tokenizer.tokenize(a ) self.assertListEqual(a , output_text.split() ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[str]: pass def _UpperCamelCase ( self ) -> List[Any]: pass
178
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : Dict = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[str] = emb.weight.shape UpperCAmelCase : Dict = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer def __lowerCamelCase ( _lowercase , _lowercase=None ) -> List[Any]: UpperCAmelCase : Dict = {} for old_key in state_dict.keys(): UpperCAmelCase : str = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase : int = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: UpperCAmelCase : str = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: UpperCAmelCase : str = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: UpperCAmelCase : Tuple = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: UpperCAmelCase : List[Any] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: UpperCAmelCase : Union[str, Any] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: UpperCAmelCase : str = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: UpperCAmelCase : Optional[int] = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) UpperCAmelCase : str = state_dict[old_key] return new_dict def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = WEIGHTS_NAME ) -> Tuple: UpperCAmelCase : Any = [] UpperCAmelCase : Dict = 0 os.makedirs(_lowercase , exist_ok=_lowercase ) for expert in range(_lowercase ): UpperCAmelCase : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowercase ): UpperCAmelCase : Optional[Any] = torch.load(_lowercase )["""model"""] remove_ignore_keys_(_lowercase ) UpperCAmelCase : List[str] = rename_fairseq_keys(_lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = os.path.join( _lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase )+1:05d}-of-???.bin''' ) ) torch.save(_lowercase , _lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowercase )[0]].dtype ) # Add the last block UpperCAmelCase : Optional[Any] = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase )+1:05d}-of-???.bin''' ) ) UpperCAmelCase : Optional[int] = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowercase ) UpperCAmelCase : Optional[Any] = rename_fairseq_keys(_lowercase , _lowercase ) UpperCAmelCase : int = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowercase ) == 1: UpperCAmelCase : Dict = os.path.join(_lowercase , _lowercase ) torch.save(_lowercase , _lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowercase , _lowercase ) # Otherwise, let's build the index UpperCAmelCase : Optional[int] = {} for idx, shard in enumerate(_lowercase ): UpperCAmelCase : List[str] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowercase ):05d}.bin''' ) UpperCAmelCase : List[str] = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowercase , os.path.join(_lowercase , _lowercase ) ) for key in shard: UpperCAmelCase : Tuple = shard_file # Add the metadata UpperCAmelCase : Any = {"""total_size""": total_size} UpperCAmelCase : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowercase , _lowercase ) , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase : str = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + """\n""" f.write(_lowercase ) return metadata, index if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a : int = parser.parse_args() a , a : Any = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) a : str = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) a : Optional[int] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
265
0
from math import sqrt def UpperCamelCase_( snake_case__: int ) -> bool: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' must been an int and positive" UpperCAmelCase__ = True # 0 and 1 are none primes. if number <= 1: UpperCAmelCase__ = False for divisor in range(2 , int(round(sqrt(snake_case__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCAmelCase__ = False break # precondition assert isinstance(snake_case__ , snake_case__ ), "'status' must been from type bool" return status def UpperCamelCase_( snake_case__: str ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCAmelCase__ = list(range(2 , n + 1 ) ) UpperCAmelCase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCAmelCase__ = 0 # filters actual prime numbers. UpperCAmelCase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: int ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) and (n > 2), "'N' must been an int and > 2" UpperCAmelCase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(snake_case__ ): ans.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) and number >= 0, "'number' must been an int and >= 0" UpperCAmelCase__ = [] # this list will be returns of the function. # potential prime number factors. UpperCAmelCase__ = 2 UpperCAmelCase__ = number if number == 0 or number == 1: ans.append(snake_case__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(snake_case__ ): while quotient != 1: if is_prime(snake_case__ ) and (quotient % factor == 0): ans.append(snake_case__ ) quotient /= factor else: factor += 1 else: ans.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: Optional[Any] ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase__ = 0 # prime factorization of 'number' UpperCAmelCase__ = prime_factorization(snake_case__ ) UpperCAmelCase__ = max(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type int" return ans def UpperCamelCase_( snake_case__: Dict ) -> List[Any]: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase__ = 0 # prime factorization of 'number' UpperCAmelCase__ = prime_factorization(snake_case__ ) UpperCAmelCase__ = min(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type int" return ans def UpperCamelCase_( snake_case__: Optional[Any] ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , snake_case__ ), "compare bust been from type bool" return number % 2 == 0 def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , snake_case__ ), "compare bust been from type bool" return number % 2 != 0 def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Optional[int]: assert ( isinstance(snake_case__ , snake_case__ ) and (number > 2) and is_even(snake_case__ ) ), "'number' must been an int, even and > 2" UpperCAmelCase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCAmelCase__ = get_prime_numbers(snake_case__ ) UpperCAmelCase__ = len(snake_case__ ) # run variable for while-loops. UpperCAmelCase__ = 0 UpperCAmelCase__ = None # exit variable. for break up the loops UpperCAmelCase__ = True while i < len_pn and loop: UpperCAmelCase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCAmelCase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (len(snake_case__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Tuple ) -> Optional[Any]: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase__ = 0 while numbera != 0: UpperCAmelCase__ = numbera % numbera UpperCAmelCase__ = numbera UpperCAmelCase__ = rest # precondition assert isinstance(snake_case__ , snake_case__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[Any] ) -> Optional[int]: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCAmelCase__ = prime_factorization(snake_case__ ) UpperCAmelCase__ = prime_factorization(snake_case__ ) elif numbera == 1 or numbera == 1: UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = max(snake_case__ , snake_case__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCAmelCase__ = prime_fac_a.count(snake_case__ ) UpperCAmelCase__ = prime_fac_a.count(snake_case__ ) for _ in range(max(snake_case__ , snake_case__ ) ): ans *= n else: UpperCAmelCase__ = prime_fac_a.count(snake_case__ ) for _ in range(snake_case__ ): ans *= n done.append(snake_case__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCAmelCase__ = prime_fac_a.count(snake_case__ ) for _ in range(snake_case__ ): ans *= n done.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCamelCase_( snake_case__: Union[str, Any] ) -> List[str]: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'number' must been a positive int" UpperCAmelCase__ = 0 UpperCAmelCase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(snake_case__ ): ans += 1 # precondition assert isinstance(snake_case__ , snake_case__ ) and is_prime( snake_case__ ), "'ans' must been a prime number and from type int" return ans def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple ) -> Tuple: assert ( is_prime(snake_case__ ) and is_prime(snake_case__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCAmelCase__ = p_number_a + 1 # jump to the next number UpperCAmelCase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(snake_case__ ): number += 1 while number < p_number_a: ans.append(snake_case__ ) number += 1 # fetch the next prime number. while not is_prime(snake_case__ ): number += 1 # precondition assert ( isinstance(snake_case__ , snake_case__ ) and ans[0] != p_number_a and ans[len(snake_case__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCamelCase_( snake_case__: Tuple ) -> Any: assert isinstance(snake_case__ , snake_case__ ) and (n >= 1), "'n' must been int and >= 1" UpperCAmelCase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(snake_case__ ) # precondition assert ans[0] == 1 and ans[len(snake_case__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCamelCase_( snake_case__: Any ) -> Optional[int]: assert isinstance(snake_case__ , snake_case__ ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCAmelCase__ = get_divisors(snake_case__ ) # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (divisors[0] == 1) and (divisors[len(snake_case__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCamelCase_( snake_case__: int , snake_case__: Tuple ) -> Optional[int]: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCAmelCase__ = gcd(abs(snake_case__ ) , abs(snake_case__ ) ) # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCamelCase_( snake_case__: Any ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'n' must been a int and >= 0" UpperCAmelCase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCamelCase_( snake_case__: Any ) -> Any: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'n' must been an int and >= 0" UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 # this will be return for _ in range(n - 1 ): UpperCAmelCase__ = ans ans += fiba UpperCAmelCase__ = tmp return ans
335
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
1
from __future__ import annotations from math import pi def lowerCAmelCase ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
169
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """char""" UpperCAmelCase_ = """bpe""" UpperCAmelCase_ = """wp""" _lowerCAmelCase : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = ["""image_processor""", """char_tokenizer"""] UpperCAmelCase_ = """ViTImageProcessor""" UpperCAmelCase_ = """MgpstrTokenizer""" def __init__( self :List[str] , lowerCamelCase :Dict=None , lowerCamelCase :Optional[int]=None , **lowerCamelCase :List[str] ) -> Optional[Any]: UpperCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) UpperCAmelCase__ = kwargs.pop("feature_extractor" ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) UpperCAmelCase__ = tokenizer UpperCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self :Optional[Any] , lowerCamelCase :List[str]=None , lowerCamelCase :Any=None , lowerCamelCase :Optional[Any]=None , **lowerCamelCase :Optional[int] ) -> Union[str, Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: UpperCAmelCase__ = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None: UpperCAmelCase__ = self.char_tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: UpperCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Optional[Any] ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sequences UpperCAmelCase__ = char_preds.size(0 ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "char" ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "bpe" ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "wp" ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i in range(lowerCamelCase ): UpperCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCAmelCase__ = scores.index(max(lowerCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCAmelCase__ = {} UpperCAmelCase__ = final_strs UpperCAmelCase__ = final_scores UpperCAmelCase__ = char_strs UpperCAmelCase__ = bpe_strs UpperCAmelCase__ = wp_strs return out def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int , lowerCamelCase :List[str] ) -> Union[str, Any]: if format == DecodeType.CHARACTER: UpperCAmelCase__ = self.char_decode UpperCAmelCase__ = 1 UpperCAmelCase__ = "[s]" elif format == DecodeType.BPE: UpperCAmelCase__ = self.bpe_decode UpperCAmelCase__ = 2 UpperCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: UpperCAmelCase__ = self.wp_decode UpperCAmelCase__ = 102 UpperCAmelCase__ = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''' ) UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ = pred_logits.size(0 ) UpperCAmelCase__ = pred_logits.size(1 ) UpperCAmelCase__ , UpperCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase , sorted=lowerCamelCase ) UpperCAmelCase__ = preds_index.view(-1 , lowerCamelCase )[:, 1:] UpperCAmelCase__ = decoder(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = torch.nn.functional.softmax(lowerCamelCase , dim=2 ).max(dim=2 ) UpperCAmelCase__ = preds_max_prob[:, 1:] for index in range(lowerCamelCase ): UpperCAmelCase__ = preds_str[index].find(lowerCamelCase ) UpperCAmelCase__ = preds_str[index][:pred_eos] UpperCAmelCase__ = preds_index[index].cpu().tolist() UpperCAmelCase__ = pred_index.index(lowerCamelCase ) if eos_token in pred_index else -1 UpperCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] UpperCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase ) conf_scores.append(lowerCamelCase ) return dec_strs, conf_scores def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int ) -> List[str]: UpperCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase )] return decode_strs def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :Dict ) -> Dict: return self.bpe_tokenizer.batch_decode(lowerCamelCase ) def UpperCAmelCase_ ( self :str , lowerCamelCase :str ) -> Tuple: UpperCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase )] return decode_strs
169
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : List[str]=3_0 , lowerCAmelCase_ : str=4_0_0 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : str=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=1 / 2_5_5 , lowerCAmelCase_ : Union[str, Any]=True , ): """simple docstring""" lowercase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = min_resolution lowercase_ = max_resolution lowercase_ = do_resize lowercase_ = size lowercase_ = do_normalize lowercase_ = image_mean lowercase_ = image_std lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad def _UpperCAmelCase ( self : int): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" if not batched: lowercase_ = image_inputs[0] if isinstance(lowerCAmelCase_ , Image.Image): lowercase_ , lowercase_ = image.size else: lowercase_ , lowercase_ = image.shape[1], image.shape[2] if w < h: lowercase_ = int(self.size["""shortest_edge"""] * h / w) lowercase_ = self.size["""shortest_edge"""] elif w > h: lowercase_ = self.size["""shortest_edge"""] lowercase_ = int(self.size["""shortest_edge"""] * w / h) else: lowercase_ = self.size["""shortest_edge"""] lowercase_ = self.size["""shortest_edge"""] else: lowercase_ = [] for image in image_inputs: lowercase_ , lowercase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) lowercase_ = max(lowerCAmelCase_ , key=lambda lowerCAmelCase_: item[0])[0] lowercase_ = max(lowerCAmelCase_ , key=lambda lowerCAmelCase_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = YolosImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = YolosImageProcessingTester(self) @property def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""")) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""")) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""")) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase_ , """size""")) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3}) self.assertEqual(image_processor.do_pad , lowerCAmelCase_) lowercase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowerCAmelCase_) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4}) self.assertEqual(image_processor.do_pad , lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" pass def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_) lowercase_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) lowercase_ = self.image_processing_class(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , do_rescale=lowerCAmelCase_) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor) # Test whether the method "pad" and calling the image processor return the same tensors lowercase_ = image_processing_a.pad(lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = image_processing_a(lowerCAmelCase_ , return_tensors="""pt""") self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4)) @slow def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: lowercase_ = json.loads(f.read()) lowercase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them lowercase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""") lowercase_ = image_processing(images=lowerCAmelCase_ , annotations=lowerCAmelCase_ , return_tensors="""pt""") # verify pixel values lowercase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase_ , atol=1E-4)) # verify area lowercase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase_)) # verify boxes lowercase_ = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase_ , atol=1E-3)) # verify image_id lowercase_ = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase_)) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase_)) # verify class_labels lowercase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase_)) # verify orig_size lowercase_ = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase_)) # verify size lowercase_ = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase_)) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: lowercase_ = json.loads(f.read()) lowercase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} lowercase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them lowercase_ = YolosImageProcessor(format="""coco_panoptic""") lowercase_ = image_processing(images=lowerCAmelCase_ , annotations=lowerCAmelCase_ , masks_path=lowerCAmelCase_ , return_tensors="""pt""") # verify pixel values lowercase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase_ , atol=1E-4)) # verify area lowercase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase_)) # verify boxes lowercase_ = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase_ , atol=1E-3)) # verify image_id lowercase_ = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase_)) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase_)) # verify class_labels lowercase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase_)) # verify masks lowercase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase_) # verify orig_size lowercase_ = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase_)) # verify size lowercase_ = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase_))
313
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a : List[str]= logging.getLogger() def __UpperCAmelCase ( ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument('-f' ) __snake_case : Union[str, Any] = parser.parse_args() return args.f class UpperCamelCase ( lowercase ): def _lowercase (self : str) -> None: __snake_case : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(_A) def _lowercase (self : Tuple , _A : List[Any]) -> List[str]: __snake_case : str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py') with patch.object(_A , 'argv' , _A): __snake_case : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_A , 0.666) @slow @require_torch_non_multi_gpu def _lowercase (self : Union[str, Any]) -> str: __snake_case : int = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(_A) __snake_case : List[Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(_A) __snake_case : int = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(_A)
172
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : Tuple= logging.get_logger(__name__) _a : str= { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _a : Optional[int]= { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _a : Tuple= {"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : Optional[int] = BlenderbotTokenizer def __init__(self : int , _A : Tuple=None , _A : str=None , _A : Union[str, Any]=None , _A : str="replace" , _A : List[Any]="<s>" , _A : List[Any]="</s>" , _A : Optional[int]="</s>" , _A : List[str]="<s>" , _A : Union[str, Any]="<unk>" , _A : Any="<pad>" , _A : str="<mask>" , _A : Union[str, Any]=False , _A : Optional[Any]=True , **_A : Optional[int] , ) -> int: super().__init__( _A , _A , tokenizer_file=_A , errors=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , trim_offsets=_A , **_A , ) __snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _A) != add_prefix_space: __snake_case : Dict = getattr(_A , pre_tok_state.pop('type')) __snake_case : int = add_prefix_space __snake_case : Optional[int] = pre_tok_class(**_A) __snake_case : str = add_prefix_space __snake_case : Dict = 'post_processor' __snake_case : Optional[int] = getattr(self.backend_tokenizer , _A , _A) if tokenizer_component_instance: __snake_case : Any = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : int = tuple(state['sep']) if "cls" in state: __snake_case : int = tuple(state['cls']) __snake_case : Any = False if state.get('add_prefix_space' , _A) != add_prefix_space: __snake_case : int = add_prefix_space __snake_case : Dict = True if state.get('trim_offsets' , _A) != trim_offsets: __snake_case : int = trim_offsets __snake_case : Dict = True if changes_to_apply: __snake_case : List[str] = getattr(_A , state.pop('type')) __snake_case : Optional[int] = component_class(**_A) setattr(self.backend_tokenizer , _A , _A) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowercase (self : Optional[int]) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def _lowercase (self : Union[str, Any] , _A : List[Any]) -> List[Any]: __snake_case : List[str] = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else value __snake_case : Optional[int] = value def _lowercase (self : Tuple , *_A : int , **_A : Union[str, Any]) -> BatchEncoding: __snake_case : List[str] = kwargs.get('is_split_into_words' , _A) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A) def _lowercase (self : Any , *_A : Union[str, Any] , **_A : Union[str, Any]) -> BatchEncoding: __snake_case : Tuple = kwargs.get('is_split_into_words' , _A) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A) def _lowercase (self : Optional[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: __snake_case : List[str] = self._tokenizer.model.save(_A , name=_A) return tuple(_A) def _lowercase (self : Any , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : List[str] = [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowercase (self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None) -> Tuple: return token_ids_a + [self.eos_token_id] def _lowercase (self : Optional[int] , _A : "Conversation") -> List[int]: __snake_case : str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(_A) __snake_case : Union[str, Any] = ' '.join(_A) __snake_case : List[str] = self.encode(_A) if len(_A) > self.model_max_length: __snake_case : str = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
172
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : jnp.ndarray lowercase : jnp.ndarray class __UpperCamelCase ( nn.Module ): lowercase : int lowercase : Tuple[int] =(16, 32, 96, 2_56) lowercase : jnp.dtype =jnp.floataa def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) lowerCamelCase_ =[] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ =self.block_out_channels[i] lowerCamelCase_ =self.block_out_channels[i + 1] lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCAmelCase ) lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCAmelCase ) lowerCamelCase_ =blocks lowerCamelCase_ =nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.conv_in(lowerCAmelCase ) lowerCamelCase_ =nn.silu(lowerCAmelCase ) for block in self.blocks: lowerCamelCase_ =block(lowerCAmelCase ) lowerCamelCase_ =nn.silu(lowerCAmelCase ) lowerCamelCase_ =self.conv_out(lowerCAmelCase ) return embedding @flax_register_to_config class __UpperCamelCase ( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =32 lowercase : int =4 lowercase : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase : Union[bool, Tuple[bool]] =False lowercase : Tuple[int] =(3_20, 6_40, 12_80, 12_80) lowercase : int =2 lowercase : Union[int, Tuple[int]] =8 lowercase : Optional[Union[int, Tuple[int]]] =None lowercase : int =12_80 lowercase : float =0.0 lowercase : bool =False lowercase : jnp.dtype =jnp.floataa lowercase : bool =True lowercase : int =0 lowercase : str ="rgb" lowercase : Tuple[int] =(16, 32, 96, 2_56) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =(1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ =jnp.zeros(lowerCAmelCase, dtype=jnp.floataa ) lowerCamelCase_ =jnp.ones((1,), dtype=jnp.intaa ) lowerCamelCase_ =jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa ) lowerCamelCase_ =(1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ =jnp.zeros(lowerCAmelCase, dtype=jnp.floataa ) lowerCamelCase_, lowerCamelCase_ =jax.random.split(lowerCAmelCase ) lowerCamelCase_ ={'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )["params"] def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.block_out_channels lowerCamelCase_ =block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ =self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ =nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time lowerCamelCase_ =FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) lowerCamelCase_ =FlaxTimestepEmbedding(lowerCAmelCase, dtype=self.dtype ) lowerCamelCase_ =FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) lowerCamelCase_ =self.only_cross_attention if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =(only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =(num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =block_out_channels[0] lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ =output_channel lowerCamelCase_ =block_out_channels[i] lowerCamelCase_ =i == len(lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ =FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase, out_channels=lowerCAmelCase, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: lowerCamelCase_ =FlaxDownBlockaD( in_channels=lowerCAmelCase, out_channels=lowerCAmelCase, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(lowerCAmelCase ) for _ in range(self.layers_per_block ): lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) if not is_final_block: lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) lowerCamelCase_ =down_blocks lowerCamelCase_ =controlnet_down_blocks # mid lowerCamelCase_ =block_out_channels[-1] lowerCamelCase_ =FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCAmelCase, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 1.0, lowerCAmelCase = True, lowerCAmelCase = False, ): """simple docstring""" lowerCamelCase_ =self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ =jnp.flip(lowerCAmelCase, axis=1 ) # 1. time if not isinstance(lowerCAmelCase, jnp.ndarray ): lowerCamelCase_ =jnp.array([timesteps], dtype=jnp.intaa ) elif isinstance(lowerCAmelCase, jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ =timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ =jnp.expand_dims(lowerCAmelCase, 0 ) lowerCamelCase_ =self.time_proj(lowerCAmelCase ) lowerCamelCase_ =self.time_embedding(lowerCAmelCase ) # 2. pre-process lowerCamelCase_ =jnp.transpose(lowerCAmelCase, (0, 2, 3, 1) ) lowerCamelCase_ =self.conv_in(lowerCAmelCase ) lowerCamelCase_ =jnp.transpose(lowerCAmelCase, (0, 2, 3, 1) ) lowerCamelCase_ =self.controlnet_cond_embedding(lowerCAmelCase ) sample += controlnet_cond # 3. down lowerCamelCase_ =(sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_, lowerCamelCase_ =down_block(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, deterministic=not train ) else: lowerCamelCase_, lowerCamelCase_ =down_block(lowerCAmelCase, lowerCAmelCase, deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ =self.mid_block(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, deterministic=not train ) # 5. contronet blocks lowerCamelCase_ =() for down_block_res_sample, controlnet_block in zip(lowerCAmelCase, self.controlnet_down_blocks ): lowerCamelCase_ =controlnet_block(lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ =controlnet_down_block_res_samples lowerCamelCase_ =self.controlnet_mid_block(lowerCAmelCase ) # 6. scaling lowerCamelCase_ =[sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCAmelCase, mid_block_res_sample=lowerCAmelCase )
6
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
1
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> None: lowerCAmelCase__ : List[str] = num_of_nodes lowerCAmelCase__ : list[list[int]] = [] lowerCAmelCase__ : dict[int, int] = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase__ : Optional[Any] = self.find_component(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: if component_size[u_node] <= component_size[v_node]: lowerCAmelCase__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(__UpperCAmelCase ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase__ : Union[str, Any] = self.find_component(__UpperCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> None: lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase__ : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = edge lowerCAmelCase__ : Union[str, Any] = self.m_component[u] lowerCAmelCase__ : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase__ : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = edge lowerCAmelCase__ : Optional[int] = self.m_component[u] lowerCAmelCase__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase__ : Tuple = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' from maths.prime_factors import prime_factors def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
37
1
import math import random def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCamelCase = 0.02 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(SCREAMING_SNAKE_CASE ): # Forward propagation A_ : Optional[Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? A_ : Any = (expected / 100) - layer_a # Error delta A_ : List[str] = layer_1_error * sigmoid_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input("""Expected value: """)) UpperCamelCase = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
65
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if num <= 0: A_ : Optional[int] = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [True] * (num + 1) A_ : Tuple = [] A_ : Union[str, Any] = 2 A_ : Any = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
65
1
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): A__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _snake_case ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
335
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ", _lowerCamelCase, ) class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = RobertaConfig UpperCAmelCase = "roberta" def __init__( self: Union[str, Any] , UpperCamelCase: Any ): """simple docstring""" super().__init__(UpperCamelCase ) A__ = RobertaEmbeddings(UpperCamelCase ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ", _lowerCamelCase, ) class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = RobertaConfig UpperCAmelCase = "roberta" def __init__( self: Optional[Any] , UpperCamelCase: int ): """simple docstring""" super().__init__(UpperCamelCase ) A__ = config.num_labels A__ = config.num_hidden_layers A__ = DeeRobertaModel(UpperCamelCase ) A__ = nn.Dropout(config.hidden_dropout_prob ) A__ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[int]=None , UpperCamelCase: str=None , UpperCamelCase: str=None , UpperCamelCase: List[str]=None , UpperCamelCase: Dict=None , UpperCamelCase: List[Any]=None , UpperCamelCase: Tuple=None , UpperCamelCase: Optional[int]=-1 , UpperCamelCase: Optional[Any]=False , ): """simple docstring""" A__ = self.num_layers try: A__ = self.roberta( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , position_ids=UpperCamelCase , head_mask=UpperCamelCase , inputs_embeds=UpperCamelCase , ) A__ = outputs[1] A__ = self.dropout(UpperCamelCase ) A__ = self.classifier(UpperCamelCase ) A__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A__ = e.message A__ = e.exit_layer A__ = outputs[0] if not self.training: A__ = entropy(UpperCamelCase ) A__ = [] A__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression A__ = MSELoss() A__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits A__ = [] for highway_exit in outputs[-1]: A__ = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression A__ = MSELoss() A__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: A__ = CrossEntropyLoss() A__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase ) if train_highway: A__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: A__ = (loss,) + outputs if not self.training: A__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
335
1
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1024 , _lowerCamelCase=1024 , _lowerCamelCase=False , **_lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : str = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCamelCase : Optional[int] = SeqaSeqDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , type_path="train" , **_lowerCamelCase ) _lowerCamelCase : Tuple = tok.pad_token_id def get_lens(_lowerCamelCase ): _lowerCamelCase : Tuple = tqdm( DataLoader(_lowerCamelCase , batch_size=512 , num_workers=8 , shuffle=_lowerCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _lowerCamelCase : int = [] for batch in dl: _lowerCamelCase : List[str] = batch["input_ids"].ne(_lowerCamelCase ).sum(1 ).tolist() _lowerCamelCase : Tuple = batch["labels"].ne(_lowerCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_lowerCamelCase , _lowerCamelCase ): max_lens.append(max(_lowerCamelCase , _lowerCamelCase ) ) else: max_lens.extend(_lowerCamelCase ) return max_lens _lowerCamelCase : Optional[Any] = get_lens(_lowerCamelCase ) _lowerCamelCase : Tuple = SeqaSeqDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , type_path="val" , **_lowerCamelCase ) _lowerCamelCase : Optional[Any] = get_lens(_lowerCamelCase ) pickle_save(_lowerCamelCase , train_ds.len_file ) pickle_save(_lowerCamelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a__ : List[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = '''▁''' a__ : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} a__ : List[Any] = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } a__ : Any = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_024, } # fmt: off a__ : Dict = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE : Dict = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.sp_model ) SCREAMING_SNAKE_CASE : Optional[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowerCamelCase ) } SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE : Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE : List[Any] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : List[str] = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) ->Dict: SCREAMING_SNAKE_CASE : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = '''''' SCREAMING_SNAKE_CASE : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[int] = [] else: current_sub_tokens.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->List[str]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : int = src_lang SCREAMING_SNAKE_CASE : Optional[int] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Dict = src_lang SCREAMING_SNAKE_CASE : List[Any] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Dict = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cur_lang_code_id] SCREAMING_SNAKE_CASE : Any = [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : int = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE : int = [self.cur_lang_code_id] SCREAMING_SNAKE_CASE : Tuple = [self.eos_token_id]
313
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
1
def SCREAMING_SNAKE_CASE__ ( __a , __a ): _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__a , __a ) ) ) def SCREAMING_SNAKE_CASE__ ( __a ): if point: if isinstance(__a , __a ): for item in point: if not isinstance(__a , (int, float) ): snake_case_ : int = ( 'Expected a list of numbers as input, found ' f"""{type(__a ).__name__}""" ) raise TypeError(__a ) else: snake_case_ : Optional[int] = f"""Expected a list of numbers as input, found {type(__a ).__name__}""" raise TypeError(__a ) else: raise ValueError('Missing an input' ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__a , __a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
88
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: int = AltDiffusionPipeline __magic_name__: Any = TEXT_TO_IMAGE_PARAMS __magic_name__: Any = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__: Any = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__: Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) snake_case_ : Any = CLIPTextModel(_A ) snake_case_ : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) snake_case_ : Dict = 77 snake_case_ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self : int , _A : Optional[int] , _A : int=0 ) -> Dict: """simple docstring""" if str(_A ).startswith('mps' ): snake_case_ : Union[str, Any] = torch.manual_seed(_A ) else: snake_case_ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) snake_case_ : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase_ ( self : Dict ) -> Any: """simple docstring""" snake_case_ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : Any = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ : Any = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ : Optional[Any] = RobertaSeriesModelWithTransformation(_A ) snake_case_ : Optional[Any] = text_encoder snake_case_ : Optional[Any] = AltDiffusionPipeline(**_A ) snake_case_ : List[Any] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) snake_case_ : Optional[Any] = self.get_dummy_inputs(_A ) snake_case_ : int = 'A photo of an astronaut' snake_case_ : Tuple = alt_pipe(**_A ) snake_case_ : Any = output.images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Any = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : Any = self.get_dummy_components() snake_case_ : List[str] = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) snake_case_ : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ : Tuple = RobertaSeriesModelWithTransformation(_A ) snake_case_ : Any = text_encoder snake_case_ : Tuple = AltDiffusionPipeline(**_A ) snake_case_ : Dict = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) snake_case_ : Dict = self.get_dummy_inputs(_A ) snake_case_ : Tuple = alt_pipe(**_A ) snake_case_ : int = output.images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Optional[int] = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=_A ) snake_case_ : Optional[int] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) snake_case_ : str = 'A painting of a squirrel eating a burger' snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : str = alt_pipe([prompt] , generator=_A , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) snake_case_ : Any = output.images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : Union[str, Any] = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) snake_case_ : Union[str, Any] = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=_A , safety_checker=_A ) snake_case_ : List[str] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) snake_case_ : List[Any] = 'A painting of a squirrel eating a burger' snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[Any] = alt_pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='numpy' ) snake_case_ : Any = output.images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : List[Any] = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
88
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __A( a ): snake_case_ = 42 snake_case_ = 42 class __A( nn.Module ): snake_case_ = 42 snake_case_ = (1_6, 3_2, 9_6, 2_5_6) snake_case_ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __a = [] for i in range(len(self.block_out_channels ) - 1 ): __a = self.block_out_channels[i] __a = self.block_out_channels[i + 1] __a = nn.Conv( _snake_case , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_snake_case ) __a = nn.Conv( _snake_case , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_snake_case ) __a = blocks __a = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _snake_case ) -> int: '''simple docstring''' __a = self.conv_in(_snake_case ) __a = nn.silu(_snake_case ) for block in self.blocks: __a = block(_snake_case ) __a = nn.silu(_snake_case ) __a = self.conv_out(_snake_case ) return embedding @flax_register_to_config class __A( nn.Module , a , a ): snake_case_ = 3_2 snake_case_ = 4 snake_case_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case_ = False snake_case_ = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) snake_case_ = 2 snake_case_ = 8 snake_case_ = None snake_case_ = 1_2_8_0 snake_case_ = 0.0 snake_case_ = False snake_case_ = jnp.floataa snake_case_ = True snake_case_ = 0 snake_case_ = "rgb" snake_case_ = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> FrozenDict: '''simple docstring''' __a = (1, self.in_channels, self.sample_size, self.sample_size) __a = jnp.zeros(_snake_case , dtype=jnp.floataa ) __a = jnp.ones((1,) , dtype=jnp.intaa ) __a = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __a = (1, 3, self.sample_size * 8, self.sample_size * 8) __a = jnp.zeros(_snake_case , dtype=jnp.floataa ) __a , __a = jax.random.split(_snake_case ) __a = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )["params"] def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.block_out_channels __a = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __a = self.num_attention_heads or self.attention_head_dim # input __a = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __a = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __a = FlaxTimestepEmbedding(_snake_case , dtype=self.dtype ) __a = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __a = self.only_cross_attention if isinstance(_snake_case , _snake_case ): __a = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_snake_case , _snake_case ): __a = (num_attention_heads,) * len(self.down_block_types ) # down __a = [] __a = [] __a = block_out_channels[0] __a = nn.Conv( _snake_case , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_snake_case ) for i, down_block_type in enumerate(self.down_block_types ): __a = output_channel __a = block_out_channels[i] __a = i == len(_snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": __a = FlaxCrossAttnDownBlockaD( in_channels=_snake_case , out_channels=_snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __a = FlaxDownBlockaD( in_channels=_snake_case , out_channels=_snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_snake_case ) for _ in range(self.layers_per_block ): __a = nn.Conv( _snake_case , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_snake_case ) if not is_final_block: __a = nn.Conv( _snake_case , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_snake_case ) __a = down_blocks __a = controlnet_down_blocks # mid __a = block_out_channels[-1] __a = FlaxUNetMidBlockaDCrossAttn( in_channels=_snake_case , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __a = nn.Conv( _snake_case , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = 1.0 , _snake_case = True , _snake_case = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' __a = self.controlnet_conditioning_channel_order if channel_order == "bgr": __a = jnp.flip(_snake_case , axis=1 ) # 1. time if not isinstance(_snake_case , jnp.ndarray ): __a = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: __a = timesteps.astype(dtype=jnp.floataa ) __a = jnp.expand_dims(_snake_case , 0 ) __a = self.time_proj(_snake_case ) __a = self.time_embedding(_snake_case ) # 2. pre-process __a = jnp.transpose(_snake_case , (0, 2, 3, 1) ) __a = self.conv_in(_snake_case ) __a = jnp.transpose(_snake_case , (0, 2, 3, 1) ) __a = self.controlnet_cond_embedding(_snake_case ) sample += controlnet_cond # 3. down __a = (sample,) for down_block in self.down_blocks: if isinstance(_snake_case , _snake_case ): __a , __a = down_block(_snake_case , _snake_case , _snake_case , deterministic=not train ) else: __a , __a = down_block(_snake_case , _snake_case , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __a = self.mid_block(_snake_case , _snake_case , _snake_case , deterministic=not train ) # 5. contronet blocks __a = () for down_block_res_sample, controlnet_block in zip(_snake_case , self.controlnet_down_blocks ): __a = controlnet_block(_snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) __a = controlnet_down_block_res_samples __a = self.controlnet_mid_block(_snake_case ) # 6. scaling __a = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_snake_case , mid_block_res_sample=_snake_case )
6
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCamelCase__ = TypeVar("T") class __SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self , __lowerCAmelCase = True ): UpperCamelCase__ = {} # dictionary of lists UpperCamelCase__ = directed def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCAmelCase ) self.adj_list[destination_vertex].append(__lowerCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCAmelCase ) UpperCamelCase__ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__lowerCAmelCase ) UpperCamelCase__ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: UpperCamelCase__ = [destination_vertex] UpperCamelCase__ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCAmelCase ) UpperCamelCase__ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: UpperCamelCase__ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: UpperCamelCase__ = [destination_vertex] UpperCamelCase__ = [] return self def __repr__( self ): return pformat(self.adj_list )
87
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCamelCase__ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCamelCase__ = "UperNetConfig" class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1 , ): super().__init__() UpperCamelCase__ = nn.Convad( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , bias=__lowerCAmelCase , dilation=__lowerCAmelCase , ) UpperCamelCase__ = nn.BatchNormad(__lowerCAmelCase ) UpperCamelCase__ = nn.ReLU() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = self.conv(__lowerCAmelCase ) UpperCamelCase__ = self.batch_norm(__lowerCAmelCase ) UpperCamelCase__ = self.activation(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = [ nn.AdaptiveAvgPoolad(__lowerCAmelCase ), UperNetConvModule(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = input for layer in self.layers: UpperCamelCase__ = layer(__lowerCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = pool_scales UpperCamelCase__ = align_corners UpperCamelCase__ = in_channels UpperCamelCase__ = channels UpperCamelCase__ = [] for i, pool_scale in enumerate(__lowerCAmelCase ): UpperCamelCase__ = UperNetPyramidPoolingBlock(pool_scale=__lowerCAmelCase , in_channels=__lowerCAmelCase , channels=__lowerCAmelCase ) self.blocks.append(__lowerCAmelCase ) self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = [] for ppm in self.blocks: UpperCamelCase__ = ppm(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate( __lowerCAmelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(__lowerCAmelCase ) return ppm_outs class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase__ = in_channels UpperCamelCase__ = config.hidden_size UpperCamelCase__ = False UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase__ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase__ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase__ = nn.ModuleList() UpperCamelCase__ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase__ = UperNetConvModule(__lowerCAmelCase , self.channels , kernel_size=1 ) UpperCamelCase__ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__lowerCAmelCase ) self.fpn_convs.append(__lowerCAmelCase ) UpperCamelCase__ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowerCamelCase ( self ): self.apply(self._init_weights ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = inputs[-1] UpperCamelCase__ = [x] psp_outs.extend(self.psp_modules(__lowerCAmelCase ) ) UpperCamelCase__ = torch.cat(__lowerCAmelCase , dim=1 ) UpperCamelCase__ = self.bottleneck(__lowerCAmelCase ) return output def _lowerCamelCase ( self , __lowerCAmelCase ): # build laterals UpperCamelCase__ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__lowerCAmelCase ) ) # build top-down path UpperCamelCase__ = len(__lowerCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = laterals[i - 1].shape[2:] UpperCamelCase__ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__lowerCAmelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs UpperCamelCase__ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) UpperCamelCase__ = torch.cat(__lowerCAmelCase , dim=1 ) UpperCamelCase__ = self.fpn_bottleneck(__lowerCAmelCase ) UpperCamelCase__ = self.classifier(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 3 , __lowerCAmelCase = 1 ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.auxiliary_in_channels UpperCamelCase__ = config.auxiliary_channels UpperCamelCase__ = config.auxiliary_num_convs UpperCamelCase__ = config.auxiliary_concat_input UpperCamelCase__ = in_index UpperCamelCase__ = (kernel_size // 2) * dilation UpperCamelCase__ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) if self.num_convs == 0: UpperCamelCase__ = nn.Identity() else: UpperCamelCase__ = nn.Sequential(*__lowerCAmelCase ) if self.concat_input: UpperCamelCase__ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=kernel_size // 2 ) UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowerCamelCase ( self ): self.apply(self._init_weights ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self , __lowerCAmelCase ): # just take the relevant feature maps UpperCamelCase__ = encoder_hidden_states[self.in_index] UpperCamelCase__ = self.convs(__lowerCAmelCase ) if self.concat_input: UpperCamelCase__ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase__ = self.classifier(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Any = UperNetConfig snake_case : List[Any] = """pixel_values""" snake_case : Optional[Any] = True def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCamelCase ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=False ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = value UpperCamelCase__ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCamelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , _a , ) class __SCREAMING_SNAKE_CASE ( _a ): def __init__( self , __lowerCAmelCase ): super().__init__(__lowerCAmelCase ) UpperCamelCase__ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase__ = UperNetHead(__lowerCAmelCase , in_channels=self.backbone.channels ) UpperCamelCase__ = UperNetFCNHead(__lowerCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def _lowerCamelCase ( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): UpperCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase__ = self.backbone.forward_with_filtered_kwargs( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , output_attentions=__lowerCAmelCase ) UpperCamelCase__ = outputs.feature_maps UpperCamelCase__ = self.decode_head(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate(__lowerCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) UpperCamelCase__ = None if self.auxiliary_head is not None: UpperCamelCase__ = self.auxiliary_head(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate( __lowerCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) UpperCamelCase__ = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss UpperCamelCase__ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase__ = (logits,) + outputs[1:] else: UpperCamelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
87
1
from collections.abc import Generator def lowerCAmelCase_ ( ) -> Generator[int, None, None]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = 0, 1 while True: UpperCAmelCase__ , UpperCAmelCase__ = b, a + b yield b def lowerCAmelCase_ ( __A = 1_000 ) -> int: '''simple docstring''' UpperCAmelCase__ = 1 UpperCAmelCase__ = fibonacci_generator() while len(str(next(__A ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
65
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor class A ( nn.Module ): def __init__(self : Union[str, Any] , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , __UpperCAmelCase : int=(6_4,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=3_2 , __UpperCAmelCase : str="silu" , __UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = torch.nn.Convad( __UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) # down UpperCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_down_block( __UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) self.down_blocks.append(__UpperCAmelCase ) # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # out UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = 2 * out_channels if double_z else out_channels UpperCAmelCase__ = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = x UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : int ): def custom_forward(*__UpperCAmelCase : Optional[Any] ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase ) else: # down for down_block in self.down_blocks: UpperCAmelCase__ = down_block(__UpperCAmelCase ) # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase ) # post-process UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : List[Any] , __UpperCAmelCase : str=3 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : str=(6_4,) , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Any="group" , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = nn.Convad( __UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) UpperCAmelCase__ = in_channels if norm_type == "spatial" else None # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # up UpperCAmelCase__ = list(reversed(__UpperCAmelCase ) ) UpperCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = reversed_block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_up_block( __UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , ) self.up_blocks.append(__UpperCAmelCase ) UpperCAmelCase__ = output_channel # out if norm_type == "spatial": UpperCAmelCase__ = SpatialNorm(block_out_channels[0] , __UpperCAmelCase ) else: UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=None ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = z UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) UpperCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : str ): def custom_forward(*__UpperCAmelCase : List[str] ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) else: # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = up_block(__UpperCAmelCase , __UpperCAmelCase ) # post-process if latent_embeds is None: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) else: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="random" , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Union[str, Any]=True ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = n_e UpperCAmelCase__ = vq_embed_dim UpperCAmelCase__ = beta UpperCAmelCase__ = legacy UpperCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase__ = self.used.shape[0] UpperCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase__ = self.re_embed UpperCAmelCase__ = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCAmelCase__ = n_e UpperCAmelCase__ = sane_index_shape def lowercase_ (self : str , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) UpperCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase__ = match.argmax(-1 ) UpperCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase__ = self.unknown_index return new.reshape(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase__ = 0 # simply set to zero UpperCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase__ = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 ) UpperCAmelCase__ = self.embedding(__UpperCAmelCase ).view(z.shape ) UpperCAmelCase__ = None UpperCAmelCase__ = None # compute loss for embedding if not self.legacy: UpperCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.remap_to_used(__UpperCAmelCase ) UpperCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if self.remap is not None: UpperCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.unmap_to_all(__UpperCAmelCase ) UpperCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase__ = self.embedding(__UpperCAmelCase ) if shape is not None: UpperCAmelCase__ = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A ( UpperCAmelCase_ ): def __init__(self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str=False ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parameters UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__UpperCAmelCase , 2 , dim=1 ) UpperCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase__ = deterministic UpperCAmelCase__ = torch.exp(0.5 * self.logvar ) UpperCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase__ = UpperCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = randn_tensor( self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase__ = self.mean + self.std * sample return x def lowercase_ (self : str , __UpperCAmelCase : int=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=[1, 2, 3] ) -> Dict: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Optional[Any]: """simple docstring""" return self.mean
65
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=6_4 , _lowerCamelCase=None ): UpperCamelCase_: Tuple = np.random.default_rng(_lowerCamelCase ) UpperCamelCase_: Optional[int] = length UpperCamelCase_: Optional[int] = rng.normal(size=(length,) ).astype(np.floataa ) UpperCamelCase_: List[str] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ): return self.length def __getitem__( self , _lowerCamelCase ): return {"x": self.x[i], "y": self.y[i]} class _lowerCAmelCase( torch.nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=False ): super().__init__() UpperCamelCase_: str = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCamelCase_: Union[str, Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCamelCase_: List[Any] = True def _a ( self , _lowerCamelCase=None ): if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCamelCase_: Dict = False return x * self.a[0] + self.b[0] class _lowerCAmelCase( torch.nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=False ): super().__init__() UpperCamelCase_: Any = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) UpperCamelCase_: Union[str, Any] = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) UpperCamelCase_: Any = True def _a ( self , _lowerCamelCase=None ): if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCamelCase_: List[Any] = False return x * self.a + self.b def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = 1_6 ) -> Optional[Any]: from datasets import load_dataset from transformers import AutoTokenizer UpperCamelCase_: str = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase_: int = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} UpperCamelCase_: List[str] = load_dataset('csv' , data_files=UpperCAmelCase__ ) UpperCamelCase_: List[str] = datasets['train'].unique('label' ) UpperCamelCase_: Any = {v: i for i, v in enumerate(UpperCAmelCase__ )} def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_: Dict = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='max_length' ) if "label" in examples: UpperCamelCase_: Any = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_: int = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. UpperCamelCase_: int = DataLoader(tokenized_datasets['train'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=2 ) UpperCamelCase_: Optional[Any] = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
292
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A_ : Any = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def snake_case () -> Union[str, Any]: UpperCamelCase_: Tuple = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCamelCase_: List[str] = get_sagemaker_input() else: UpperCamelCase_: List[str] = get_cluster_input() return config def snake_case (UpperCAmelCase__=None ) -> Union[str, Any]: if subparsers is not None: UpperCamelCase_: List[Any] = subparsers.add_parser('config' , description=UpperCAmelCase__ ) else: UpperCamelCase_: List[Any] = argparse.ArgumentParser('Accelerate config command' , description=UpperCAmelCase__ ) parser.add_argument( '--config_file' , default=UpperCAmelCase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def snake_case (UpperCAmelCase__ ) -> List[Any]: UpperCamelCase_: Union[str, Any] = get_user_input() if args.config_file is not None: UpperCamelCase_: Tuple = args.config_file else: if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) UpperCamelCase_: Dict = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(UpperCAmelCase__ ) else: config.to_yaml_file(UpperCAmelCase__ ) print(F'''accelerate configuration saved at {config_file}''' ) def snake_case () -> str: UpperCamelCase_: Tuple = config_command_parser() UpperCamelCase_: int = parser.parse_args() config_command(UpperCAmelCase__ ) if __name__ == "__main__": main()
292
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return x if y == 0 else greatest_common_divisor(__lowerCAmelCase , x % y ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return (x * y) // greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase = 20 ): _UpperCAmelCase : List[Any] = 1 for i in range(1 , n + 1 ): _UpperCAmelCase : Dict = lcm(__lowerCAmelCase , __lowerCAmelCase ) return g if __name__ == "__main__": print(F'''{solution() = }''')
370
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : str = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
1
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __lowerCamelCase : '''simple docstring''' a_ : torch.Tensor # [batch_size x 3] a_ : torch.Tensor # [batch_size x 3] a_ : torch.Tensor # [batch_size x 3] a_ : torch.Tensor # [batch_size x 3] a_ : int a_ : int a_ : float a_ : float a_ : Tuple[int] def lowerCamelCase ( self : Optional[Any] ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCamelCase ( self : List[str] ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCamelCase ( self : Dict ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Dict = torch.arange(self.height * self.width ) lowerCAmelCase_ : Union[str, Any] = torch.stack( [ pixel_indices % self.width, torch.div(a_ , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def lowerCamelCase ( self : str ): lowerCAmelCase_ , *lowerCAmelCase_ : List[str] = self.shape lowerCAmelCase_ : Union[str, Any] = int(np.prod(a_ ) ) lowerCAmelCase_ : str = self.get_image_coords() lowerCAmelCase_ : str = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCAmelCase_ : List[Any] = self.get_camera_rays(a_ ) lowerCAmelCase_ : Tuple = rays.view(a_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCamelCase ( self : List[str] , a_ : torch.Tensor ): lowerCAmelCase_ , *lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCAmelCase_ : Any = coords.view(a_ , -1 , 2 ) lowerCAmelCase_ : str = self.resolution() lowerCAmelCase_ : Dict = self.fov() lowerCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 lowerCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) lowerCAmelCase_ : Optional[int] = fracs.view(a_ , -1 , 2 ) lowerCAmelCase_ : Dict = ( self.z.view(a_ , 1 , 3 ) + self.x.view(a_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(a_ , 1 , 3 ) * fracs[:, :, 1:] ) lowerCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=a_ ) lowerCAmelCase_ : str = torch.stack( [ torch.broadcast_to(self.origin.view(a_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(a_ , *a_ , 2 , 3 ) def lowerCamelCase ( self : List[Any] , a_ : int , a_ : int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=a_ , height=a_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( __UpperCamelCase ) -> DifferentiableProjectiveCamera: """simple docstring""" lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Any = [] lowerCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowerCAmelCase_ : Optional[Any] = np.array([np.sin(__UpperCamelCase ), np.cos(__UpperCamelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCAmelCase_ : int = -z * 4 lowerCAmelCase_ : str = np.array([np.cos(__UpperCamelCase ), -np.sin(__UpperCamelCase ), 0.0] ) lowerCAmelCase_ : Tuple = np.cross(__UpperCamelCase , __UpperCamelCase ) origins.append(__UpperCamelCase ) xs.append(__UpperCamelCase ) ys.append(__UpperCamelCase ) zs.append(__UpperCamelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , width=__UpperCamelCase , height=__UpperCamelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__UpperCamelCase )) , )
161
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowercase__ = int(input("""Enter number: """).strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
161
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : def __init__( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Dict=13 , lowercase_ : Optional[int]=30 , lowercase_ : Tuple=2 , lowercase_ : List[str]=3 , lowercase_ : str=True , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=32 , lowercase_ : Optional[int]=2 , lowercase_ : int=4 , lowercase_ : Optional[Any]=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Any=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[str]=3 , lowercase_ : Any=0.6 , lowercase_ : Tuple=None , ) -> List[str]: lowercase__ : Dict = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : List[str] = num_channels lowercase__ : Union[str, Any] = is_training lowercase__ : Optional[int] = use_labels lowercase__ : List[str] = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Optional[int] = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = mask_ratio lowercase__ : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ : Tuple = (image_size // patch_size) ** 2 lowercase__ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __UpperCamelCase ( self : List[str] ) -> Any: lowercase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : int = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : str , lowercase_ : int ) -> Any: lowercase__ : Optional[int] = TFViTMAEModel(config=lowercase_ ) lowercase__ : str = model(lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] ) -> List[Any]: lowercase__ : List[Any] = TFViTMAEForPreTraining(lowercase_ ) lowercase__ : Dict = model(lowercase_ , training=lowercase_ ) # expected sequence length = num_patches lowercase__ : List[str] = (self.image_size // self.patch_size) ** 2 lowercase__ : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ : Tuple = 1 lowercase__ : Union[str, Any] = TFViTMAEForPreTraining(lowercase_ ) lowercase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(lowercase_ , training=lowercase_ ) lowercase__ : Dict = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __UpperCamelCase ( self : Tuple ) -> List[str]: lowercase__ : Any = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) : List[str] = config_and_inputs lowercase__ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : str = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __A : List[Any] = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __A : int = False __A : Optional[int] = False __A : Any = False __A : Union[str, Any] = False def __UpperCamelCase ( self : Tuple ) -> str: lowercase__ : Optional[Any] = TFViTMAEModelTester(self ) lowercase__ : Any = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __UpperCamelCase ( self : Any ) -> Tuple: pass def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , tf.keras.layers.Layer ) ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(lowercase_ ) lowercase__ : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : int = [*signature.parameters.keys()] lowercase__ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> List[str]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def __UpperCamelCase ( self : str ) -> Dict: # make the mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : int = model_class(lowercase_ ) lowercase__ : str = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Dict = model(lowercase_ , noise=lowercase_ ) lowercase__ : Dict = copy.deepcopy(self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase__ : Union[str, Any] = model(**lowercase_ , noise=lowercase_ ) lowercase__ : str = outputs_dict[0].numpy() lowercase__ : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def __UpperCamelCase ( self : Optional[int] ) -> Any: # make the mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowercase_ : Union[str, Any] ): lowercase__ : Dict = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowercase_ ): lowercase__ : Optional[int] = v.numpy() else: lowercase__ : Tuple = np.array(lowercase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ : Dict = model_class(lowercase_ ) lowercase__ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Any = prepare_numpy_arrays(lowercase_ ) lowercase__ : List[Any] = model(lowercase_ , noise=lowercase_ ) lowercase__ : Any = model(**lowercase_ , noise=lowercase_ ) self.assert_outputs_same(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[str] ) -> Tuple: # make masks reproducible np.random.seed(2 ) lowercase__ : Dict = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ : Optional[Any] = tf.constant(lowercase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ : str = tf_noise super().check_pt_tf_models(lowercase_ , lowercase_ , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[Any]: # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowercase_ ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(lowercase_ , lowercase_ ),) if isinstance(lowercase_ , lowercase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowercase_ , "_keras_serializable" , lowercase_ ) } lowercase__ : Dict = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ : List[str] = tf.convert_to_tensor(lowercase_ ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ : str = main_layer_class(lowercase_ ) lowercase__ : Optional[int] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ : Any = tf.keras.Model(lowercase_ , outputs=main_layer(lowercase_ ) ) lowercase__ : Union[str, Any] = model(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Tuple = os.path.join(lowercase_ , "keras_model.h5" ) model.save(lowercase_ ) lowercase__ : Tuple = tf.keras.models.load_model( lowercase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowercase_ , tf.keras.Model ) lowercase__ : Dict = model(lowercase_ ) self.assert_outputs_same(lowercase_ , lowercase_ ) @slow def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : Dict = model_class(lowercase_ ) lowercase__ : Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = model(lowercase_ , noise=lowercase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ : str = outputs.last_hidden_state.numpy() lowercase__ : List[Any] = 0 else: lowercase__ : str = outputs.logits.numpy() lowercase__ : Any = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ , saved_model=lowercase_ ) lowercase__ : Dict = model_class.from_pretrained(lowercase_ ) lowercase__ : Optional[int] = model(lowercase_ , noise=lowercase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ : Optional[Any] = after_outputs["last_hidden_state"].numpy() lowercase__ : str = 0 else: lowercase__ : str = after_outputs["logits"].numpy() lowercase__ : Dict = 0 lowercase__ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : Optional[Any] = model_class(lowercase_ ) lowercase__ : Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Optional[int] = model(lowercase_ , noise=lowercase_ ) lowercase__ : Any = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowercase_ ) lowercase__ : str = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ : Dict = model_class.from_config(model.config ) lowercase__ : Optional[int] = new_model(lowercase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ : Tuple = new_model(lowercase_ , noise=lowercase_ ) self.assert_outputs_same(lowercase_ , lowercase_ ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __UpperCamelCase ( self : Dict ) -> Tuple: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __UpperCamelCase ( self : Dict ) -> List[str]: pass @slow def __UpperCamelCase ( self : Dict ) -> List[Any]: lowercase__ : Tuple = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(lowercase_ ) def lowercase_ ( ): lowercase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : List[str] ) -> str: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowercase__ : int = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = prepare_img() lowercase__ : Optional[int] = image_processor(images=lowercase_ , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ : List[str] = ViTMAEConfig() lowercase__ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ : str = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ : Tuple = model(**lowercase_ , noise=lowercase_ ) # verify the logits lowercase__ : Optional[Any] = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase__ : str = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowercase_ , atol=1E-4 )
87
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class snake_case_ ( unittest.TestCase ): @require_torch def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: lowercase__ : Union[str, Any] = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) lowercase__ : List[str] = load_dataset("ashraq/esc50" ) lowercase__ : List[Any] = dataset["train"]["audio"][-1]["array"] lowercase__ : Dict = audio_classifier(lowercase_ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"score": 0.5_01, "label": "Sound of a dog"}, {"score": 0.4_99, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def __UpperCamelCase ( self : str ) -> Optional[int]: pass @slow @require_torch def __UpperCamelCase ( self : List[str] ) -> int: lowercase__ : Tuple = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog lowercase__ : Union[str, Any] = load_dataset("ashraq/esc50" ) lowercase__ : Tuple = dataset["train"]["audio"][-1]["array"] lowercase__ : List[Any] = audio_classifier(lowercase_ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ] , ) lowercase__ : int = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) lowercase__ : Tuple = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: pass
87
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = GPTSwaTokenizer lowercase = False lowercase = True lowercase = False def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : List[str] = GPTSwaTokenizer(a , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : int , a : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = 'This is a test' lowerCAmelCase__ : List[str] = 'This is a test' return input_text, output_text def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = '<s>' lowerCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(a ) , 2_000 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = GPTSwaTokenizer(a ) lowerCAmelCase__ : List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [465, 287, 265, 631, 842] ) lowerCAmelCase__ : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( a , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase__ : Dict = tokenizer.convert_ids_to_tokens(a ) # fmt: off self.assertListEqual( a , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = GPTSwaTokenizer(a ) lowerCAmelCase__ : int = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase__ : Optional[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(a , a ): self.assertListEqual(tokenizer.encode_fast(a ) , a ) # Test that decode_fast returns the input text for text, token_ids in zip(a , a ): self.assertEqual(tokenizer.decode_fast(a ) , a ) @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase__ : Dict = {'input_ids': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='AI-Sweden/gpt-sw3-126m' , sequences=a , )
307
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
1
"""simple docstring""" def A__ ( UpperCamelCase , UpperCamelCase ): return int((input_a, input_a).count(1 ) != 0 ) def A__ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
292
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( UpperCamelCase = "laptop" ): A = F"https://www.amazon.in/laptop/s?k={product}" A = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } A = BeautifulSoup(requests.get(UpperCamelCase , headers=UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: A = item.ha.text A = "https://www.amazon.in/" + item.ha.a["href"] A = item.find("span" , attrs={"class": "a-offscreen"} ).text try: A = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: A = "Not available" try: A = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: A = "" try: A = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: A = float("nan" ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = " " A = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case : Optional[int] = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
292
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean snake_case__ : Optional[int] = 0 snake_case__ : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case__ : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right snake_case__ : List[str] = tuple[int, int] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = pos_x UpperCAmelCase_ : Optional[int] = pos_y UpperCAmelCase_ : int = (pos_y, pos_x) UpperCAmelCase_ : List[Any] = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : List[str] = g_cost UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : str = self.calculate_heuristic() UpperCAmelCase_ : str = self.g_cost + self.h_cost def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = self.pos_x - self.goal_x UpperCAmelCase_ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): '''simple docstring''' return self.f_cost < other.f_cost class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[str] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) UpperCAmelCase_ : Union[str, Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : Dict = False def _UpperCamelCase ( self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) UpperCAmelCase_ : int = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path UpperCAmelCase_ : Dict = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = [] for action in delta: UpperCAmelCase_ : Optional[int] = parent.pos_x + action[1] UpperCAmelCase_ : Any = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = node UpperCAmelCase_ : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Tuple = current_node.parent path.reverse() return path class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = AStar(snake_case_ , snake_case_ ) UpperCAmelCase_ : Dict = AStar(snake_case_ , snake_case_ ) UpperCAmelCase_ : List[str] = False def _UpperCamelCase ( self ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : Any = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = current_bwd_node UpperCAmelCase_ : Tuple = current_fwd_node UpperCAmelCase_ : Tuple = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path UpperCAmelCase_ : int = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = self.fwd_astar.retrace_path(snake_case_ ) UpperCAmelCase_ : Tuple = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] snake_case__ : List[Any] = (0, 0) snake_case__ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case__ : int = time.time() snake_case__ : str = AStar(init, goal) snake_case__ : Tuple = a_star.search() snake_case__ : List[str] = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') snake_case__ : Optional[int] = time.time() snake_case__ : Optional[Any] = BidirectionalAStar(init, goal) snake_case__ : List[str] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
274
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _UpperCamelCase ( *snake_case_ , **snake_case_ ): '''simple docstring''' pass def _lowerCamelCase ( lowerCamelCase_ : Image ): """simple docstring""" UpperCAmelCase_ : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = DepthEstimationPipeline(model=snake_case_ , image_processor=snake_case_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , snake_case_ ) import datasets UpperCAmelCase_ : Optional[int] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) UpperCAmelCase_ : Union[str, Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , snake_case_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @slow @require_torch def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = 'Intel/dpt-large' UpperCAmelCase_ : Dict = pipeline('depth-estimation' , model=snake_case_ ) UpperCAmelCase_ : Optional[int] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCAmelCase_ : Union[str, Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_62 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
274
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] SCREAMING_SNAKE_CASE = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] SCREAMING_SNAKE_CASE = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE = False @property def _lowerCAmelCase( self ) -> Tuple: return 32 @property def _lowerCAmelCase( self ) -> Union[str, Any]: return 32 @property def _lowerCAmelCase( self ) -> Union[str, Any]: return self.time_input_dim @property def _lowerCAmelCase( self ) -> List[Any]: return self.time_input_dim * 4 @property def _lowerCAmelCase( self ) -> Dict: return 100 @property def _lowerCAmelCase( self ) -> int: torch.manual_seed(0 ) lowercase__ : Union[str, Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowercase__ : str = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def _lowerCAmelCase( self ) -> Tuple: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase( self ) -> Tuple: lowercase__ : int = self.dummy_unet lowercase__ : Optional[Any] = self.dummy_movq lowercase__ : str = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowercase__ : Optional[int] = DDIMScheduler(**__lowerCAmelCase ) lowercase__ : int = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> List[str]: lowercase__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) # create init_image lowercase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : Dict = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : List[Any] = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : List[str] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _lowerCAmelCase( self ) -> Dict: lowercase__ : int = 'cpu' lowercase__ : List[str] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**__lowerCAmelCase ) lowercase__ : str = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase__ : Dict = output.images lowercase__ : str = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase__ : Optional[int] = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : int = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ : Tuple = init_image.resize((512, 512) ) lowercase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase__ : Dict = torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 2_5_5.0 lowercase__ : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase__ : Dict = 'A robot, 4k photo' lowercase__ : Union[str, Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase__ : int = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : Union[str, Any] = pipe_prior( __lowerCAmelCase , image=__lowerCAmelCase , strength=0.8_5 , generator=__lowerCAmelCase , negative_prompt='''''' , ).to_tuple() lowercase__ : Any = pipeline( image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) lowercase__ : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
198
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _snake_case ( unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase_ : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) lowerCAmelCase_ : Dict = ["accelerate", "launch"] lowerCAmelCase_ : Tuple = Path.home() / ".cache/huggingface/accelerate" lowerCAmelCase_ : Tuple = "default_config.yaml" lowerCAmelCase_ : List[Any] = config_folder / config_file lowerCAmelCase_ : Optional[Any] = config_folder / "_default_config.yaml" lowerCAmelCase_ : List[str] = Path("tests/test_configs" ) @classmethod def lowerCAmelCase__ ( cls ) -> Tuple: '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCAmelCase__ ( cls ) -> Tuple: '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=a__ ): execute_subprocess_async( self.base_cmd + ["--config_file", str(a__ ), self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy() ) class _snake_case ( unittest.TestCase ): lowerCAmelCase_ : Tuple = "test-tpu" lowerCAmelCase_ : Optional[int] = "us-central1-a" lowerCAmelCase_ : Optional[int] = "ls" lowerCAmelCase_ : Optional[int] = ["accelerate", "tpu-config"] lowerCAmelCase_ : int = "cd /usr/share" lowerCAmelCase_ : Dict = "tests/test_samples/test_command_file.sh" lowerCAmelCase_ : Optional[int] = "Running gcloud compute tpus tpu-vm ssh" def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=a__ , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , a__ , ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=a__ , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , a__ , ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=a__ ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , a__ , ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=a__ , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , a__ , ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=a__ , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , a__ , ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=a__ , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , a__ , ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=a__ , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , a__ , ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=a__ , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , a__ , ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=a__ , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , a__ , )
92
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"facebook/bart-base": BartForConditionalGeneration} _SCREAMING_SNAKE_CASE : Union[str, Any] = {"facebook/bart-base": BartTokenizer} def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case , default=snake_case , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case , default=snake_case , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case , ) parser.add_argument( "--config_name" , type=snake_case , default=snake_case , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case , default=snake_case , help="Where to store the final ONNX file." ) snake_case_ = parser.parse_args() return args def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str]="cpu" ): '''simple docstring''' snake_case_ = model_dict[model_name].from_pretrained(snake_case ).to(snake_case ) snake_case_ = tokenizer_dict[model_name].from_pretrained(snake_case ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCamelCase_( snake_case : int , snake_case : Tuple , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(snake_case ) ) with torch.no_grad(): snake_case_ = "My friends are cool but they eat too many carbs." snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="pt" ).to(model.device ) snake_case_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case , max_length=snake_case , early_stopping=snake_case , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case , opset_version=1_4 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case , ) logger.info("Model exported to {}".format(snake_case ) ) snake_case_ = remove_dup_initializers(os.path.abspath(snake_case ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case ) ) snake_case_ = onnxruntime.InferenceSession(snake_case ) snake_case_ = ort_sess.run( snake_case , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case ), "max_length": np.array(snake_case ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ , snake_case_ = load_model_tokenizer(args.model_name_or_path , snake_case ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case , snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
92
1
'''simple docstring''' def snake_case ( UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" while second != 0: __A = first & second first ^= second __A = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() a__ : str = int(input("Enter the first number: ").strip()) a__ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f'''{add(first, second) = }''')
161
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> np.ndarray: """simple docstring""" __A = cva.getAffineTransform(UpperCAmelCase , UpperCAmelCase ) return cva.warpAffine(UpperCAmelCase , UpperCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image a__ : str = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value a__ : str = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape a__ , a__ : Optional[int] = gray_img.shape # set different points to rotate image a__ : List[str] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) a__ : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) a__ : int = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) a__ : str = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list a__ : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations a__ : List[str] = plt.figure(1) a__ : Optional[Any] = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
161
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase__ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } lowerCAmelCase__ = { '''facebook/bart-base''': 1_0_2_4, '''facebook/bart-large''': 1_0_2_4, '''facebook/bart-large-mnli''': 1_0_2_4, '''facebook/bart-large-cnn''': 1_0_2_4, '''facebook/bart-large-xsum''': 1_0_2_4, '''yjernite/bart_eli5''': 1_0_2_4, } @lru_cache() def __lowerCamelCase ( ): """simple docstring""" lowercase__ : List[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase__ : Any = bs[:] lowercase__ : int = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase_ ) cs.append(2**8 + n ) n += 1 lowercase__ : Optional[Any] = [chr(lowerCAmelCase_ ) for n in cs] return dict(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : int = set() lowercase__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Tuple = char return pairs class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any]="replace" , SCREAMING_SNAKE_CASE : List[str]="<s>" , SCREAMING_SNAKE_CASE : List[str]="</s>" , SCREAMING_SNAKE_CASE : List[Any]="</s>" , SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE : Dict="<unk>" , SCREAMING_SNAKE_CASE : List[str]="<pad>" , SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , SCREAMING_SNAKE_CASE : Any=False , **SCREAMING_SNAKE_CASE : List[str] , ): lowercase__ : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token lowercase__ : Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token lowercase__ : Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token lowercase__ : Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token lowercase__ : Any = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token lowercase__ : Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding="utf-8" ) as vocab_handle: lowercase__ : Optional[int] = json.load(_UpperCAmelCase ) lowercase__ : List[Any] = {v: k for k, v in self.encoder.items()} lowercase__ : Any = errors # how to handle errors in decoding lowercase__ : Optional[int] = bytes_to_unicode() lowercase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding="utf-8" ) as merges_handle: lowercase__ : str = merges_handle.read().split("\n" )[1:-1] lowercase__ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ : List[str] = {} lowercase__ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : Optional[int] = re.compile(r"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def snake_case ( self : List[Any] ): return len(self.encoder ) def snake_case ( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Dict ): if token in self.cache: return self.cache[token] lowercase__ : Union[str, Any] = tuple(_UpperCAmelCase ) lowercase__ : Union[str, Any] = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: lowercase__ : Tuple = min(_UpperCAmelCase , key=lambda SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ : Tuple = bigram lowercase__ : Optional[int] = [] lowercase__ : Tuple = 0 while i < len(_UpperCAmelCase ): try: lowercase__ : Dict = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Tuple = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : List[str] = tuple(_UpperCAmelCase ) lowercase__ : Dict = new_word if len(_UpperCAmelCase ) == 1: break else: lowercase__ : Optional[Any] = get_pairs(_UpperCAmelCase ) lowercase__ : List[str] = ' '.join(_UpperCAmelCase ) lowercase__ : Tuple = word return word def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): lowercase__ : int = [] for token in re.findall(self.pat , _UpperCAmelCase ): lowercase__ : Union[str, Any] = ''.join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(" " ) ) return bpe_tokens def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : int ): return self.decoder.get(_UpperCAmelCase ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : List[str] = ''.join(_UpperCAmelCase ) lowercase__ : Any = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Optional[int] = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + "\n" ) lowercase__ : Union[str, Any] = 0 with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowercase__ : Optional[Any] = token_index writer.write(" ".join(_UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : str = [self.cls_token_id] lowercase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self : Any , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def snake_case ( self : str , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int=False , **SCREAMING_SNAKE_CASE : int ): lowercase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase__ : str = ' ' + text return (text, kwargs)
369
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__(unittest.TestCase ): """simple docstring""" @property def snake_case ( self : Any ): torch.manual_seed(0 ) lowercase__ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def snake_case ( self : List[str] ): torch.manual_seed(0 ) lowercase__ : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def snake_case ( self : Dict ): torch.manual_seed(0 ) lowercase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): lowercase__ : Any = self.dummy_uncond_unet lowercase__ : Dict = DDIMScheduler() lowercase__ : Optional[Any] = self.dummy_vq_model lowercase__ : Union[str, Any] = LDMPipeline(unet=SCREAMING_SNAKE_CASE , vqvae=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) ldm.to(SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Optional[int] = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" ).images lowercase__ : str = torch.manual_seed(0 ) lowercase__ : List[Any] = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" , return_dict=SCREAMING_SNAKE_CASE )[0] lowercase__ : Any = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : List[Any] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) lowercase__ : Optional[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : int = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Tuple = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type="numpy" ).images lowercase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Optional[Any] = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) lowercase__ : int = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
121
0
import qiskit def a_ ( _A , _A ) -> qiskit.result.counts.Counts: """simple docstring""" snake_case__ = qiskit.Aer.get_backend('aer_simulator' ) snake_case__ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator snake_case__ = qiskit.execute(_A , _A , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_A ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
307
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # A mock response for an HTTP head request to emulate server down __lowerCamelCase = mock.Mock() __lowerCamelCase = 5_00 __lowerCamelCase = {} __lowerCamelCase = HTTPError __lowerCamelCase = {} # Download this model to make sure it's in the cache. __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase_ ) as mock_head: __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self: List[str] ): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[int] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: List[str] ): try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def lowerCAmelCase__ ( self: str ): __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="""test-feature-extractor""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Dict ): CustomFeatureExtractor.register_for_auto_class() __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
365
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A : Optional[Any] = logging.get_logger(__name__) class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[Any] = ['''input_features''', '''is_longer'''] def __init__( self : str , __lowerCAmelCase : Union[str, Any]=64 , __lowerCAmelCase : Optional[Any]=4_80_00 , __lowerCAmelCase : str=4_80 , __lowerCAmelCase : Optional[int]=10 , __lowerCAmelCase : str=10_24 , __lowerCAmelCase : List[str]=0.0 , __lowerCAmelCase : int=False , __lowerCAmelCase : float = 0 , __lowerCAmelCase : float = 1_40_00 , __lowerCAmelCase : int = None , __lowerCAmelCase : str = "fusion" , __lowerCAmelCase : str = "repeatpad" , **__lowerCAmelCase : Optional[int] , ) -> str: """simple docstring""" super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = top_db A__ = truncation A__ = padding A__ = fft_window_size A__ = (fft_window_size >> 1) + 1 A__ = hop_length A__ = max_length_s A__ = max_length_s * sampling_rate A__ = sampling_rate A__ = frequency_min A__ = frequency_max A__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowerCAmelCase , min_frequency=__lowerCAmelCase , max_frequency=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , norm=__lowerCAmelCase , mel_scale="""htk""" , ) A__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowerCAmelCase , min_frequency=__lowerCAmelCase , max_frequency=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def a_ ( self : List[str] ) -> Dict[str, Any]: """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a_ ( self : Union[str, Any] , __lowerCAmelCase : np.array , __lowerCAmelCase : Optional[np.array] = None ) -> np.ndarray: """simple docstring""" A__ = spectrogram( __lowerCAmelCase , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowerCAmelCase , log_mel="""dB""" , ) return log_mel_spectrogram.T def a_ ( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> int: """simple docstring""" A__ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A__ = [0] # randomly choose index for each part A__ = np.random.choice(ranges[0] ) A__ = np.random.choice(ranges[1] ) A__ = np.random.choice(ranges[2] ) A__ = mel[idx_front : idx_front + chunk_frames, :] A__ = mel[idx_middle : idx_middle + chunk_frames, :] A__ = mel[idx_back : idx_back + chunk_frames, :] A__ = torch.tensor(mel[None, None, :] ) A__ = torch.nn.functional.interpolate( __lowerCAmelCase , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) A__ = mel_shrink[0][0].numpy() A__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def a_ ( self : Union[str, Any] , __lowerCAmelCase : np.array , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> np.array: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": A__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A__ = len(__lowerCAmelCase ) - max_length A__ = np.random.randint(0 , overflow + 1 ) A__ = waveform[idx : idx + max_length] A__ = self._np_extract_fbank_features(__lowerCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": A__ = self._np_extract_fbank_features(__lowerCAmelCase , self.mel_filters ) A__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A__ = np.stack([mel, mel, mel, mel] , axis=0 ) A__ = False else: A__ = self._random_mel_fusion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: A__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A__ = int(max_length / len(__lowerCAmelCase ) ) A__ = np.stack(np.tile(__lowerCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A__ = int(max_length / len(__lowerCAmelCase ) ) A__ = np.stack(np.tile(__lowerCAmelCase , __lowerCAmelCase ) ) A__ = np.pad(__lowerCAmelCase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": A__ = self._np_extract_fbank_features(__lowerCAmelCase , self.mel_filters ) A__ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: A__ = self._np_extract_fbank_features(__lowerCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int , __lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCAmelCase : str = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : Optional[int] , ) -> BatchFeature: """simple docstring""" A__ = truncation if truncation is not None else self.truncation A__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A__ = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) A__ = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): A__ = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [np.asarray(__lowerCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. A__ = [ self._get_input_mel(__lowerCAmelCase , max_length if max_length else self.nb_max_samples , __lowerCAmelCase , __lowerCAmelCase ) for waveform in raw_speech ] A__ = [] A__ = [] for mel, longer in padded_inputs: input_mel.append(__lowerCAmelCase ) is_longer.append(__lowerCAmelCase ) if truncation == "fusion" and sum(__lowerCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A__ = np.random.randint(0 , len(__lowerCAmelCase ) ) A__ = True if isinstance(input_mel[0] , __lowerCAmelCase ): A__ = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A__ = [[longer] for longer in is_longer] A__ = {"""input_features""": input_mel, """is_longer""": is_longer} A__ = BatchFeature(__lowerCAmelCase ) if return_tensors is not None: A__ = input_features.convert_to_tensors(__lowerCAmelCase ) return input_features
274
from sklearn.metrics import fa_score import datasets A : Any = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' A : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' A : List[Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def a_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Any="binary" , __lowerCAmelCase : Optional[int]=None ) -> List[Any]: """simple docstring""" A__ = fa_score( __lowerCAmelCase , __lowerCAmelCase , labels=__lowerCAmelCase , pos_label=__lowerCAmelCase , average=__lowerCAmelCase , sample_weight=__lowerCAmelCase ) return {"f1": float(__lowerCAmelCase ) if score.size == 1 else score}
274
1
from __future__ import annotations def A_ ( _lowerCAmelCase ) -> list[int]: return [ord(_lowerCAmelCase ) - 96 for elem in plain] def A_ ( _lowerCAmelCase ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def A_ ( ) -> None: UpperCamelCase : int = encode(input("-> " ).strip().lower() ) print("Encoded: " , _lowerCAmelCase ) print("Decoded:" , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
140
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :List[Any] = 'timm_backbone' def __init__( self , A_=None , A_=3 , A_=True , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Tuple = backbone UpperCamelCase : Dict = num_channels UpperCamelCase : Tuple = features_only UpperCamelCase : Optional[int] = use_pretrained_backbone UpperCamelCase : Dict = True UpperCamelCase : List[str] = out_indices if out_indices is not None else (-1,)
140
1
import os def _a ( ): __lowerCAmelCase = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , "triangle.txt" ) with open(SCREAMING_SNAKE_CASE_ ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [] for line in triangle: __lowerCAmelCase = [] for number in line.strip().split(" " ): numbers_from_line.append(int(SCREAMING_SNAKE_CASE_ ) ) a.append(SCREAMING_SNAKE_CASE_ ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): for j in range(len(a[i] ) ): __lowerCAmelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCAmelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
92
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a__ ( snake_case__ ): _a : List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **_A ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCAmelCase = deprecated_arg[3:] __lowerCAmelCase = not kwargs.pop(_A ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __lowerCAmelCase = kwargs.pop("tpu_name" , self.tpu_name ) __lowerCAmelCase = kwargs.pop("device_idx" , self.device_idx ) __lowerCAmelCase = kwargs.pop("eager_mode" , self.eager_mode ) __lowerCAmelCase = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**_A ) _a : str = field( default=snake_case__ , metadata={"""help""": """Name of TPU"""} , ) _a : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) _a : bool = field(default=snake_case__ , metadata={"""help""": """Benchmark models in eager model."""} ) _a : bool = field( default=snake_case__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) __lowerCAmelCase = None if self.tpu: try: if self.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowerCAmelCase = None return tpu @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __lowerCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.n_gpu > 0
92
1
def __UpperCamelCase ( lowerCAmelCase__ : list[list[int | float]] ): __a : int = len(lowerCAmelCase__ ) __a : Dict = len(matrix[0] ) __a : Union[str, Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) for row in range(lowerCAmelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCAmelCase__ ): __a : Dict = matrix[col][row] / matrix[row][row] for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __a : Optional[int] = True for i in range(row + 1 , lowerCAmelCase__ ): if matrix[i][row] != 0: __a : Any = matrix[i], matrix[row] __a : Union[str, Any] = False break if reduce: rank -= 1 for i in range(lowerCAmelCase__ ): __a : Optional[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
356
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : CommonSchedulerState # setable values _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : Optional[int] = None @classmethod def lowerCAmelCase (cls : int , snake_case_ : CommonSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray ): return cls(common=snake_case_ , init_noise_sigma=snake_case_ , timesteps=snake_case_ ) @dataclass class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : DDPMSchedulerState class UpperCamelCase__ ( __lowercase ,__lowercase ): _SCREAMING_SNAKE_CASE : str = [e.name for e in FlaxKarrasDiffusionSchedulers] _SCREAMING_SNAKE_CASE : jnp.dtype @property def lowerCAmelCase (self : Optional[Any] ): return True @register_to_config def __init__(self : Any , snake_case_ : int = 1_0_0_0 , snake_case_ : float = 0.0001 , snake_case_ : float = 0.02 , snake_case_ : str = "linear" , snake_case_ : Optional[jnp.ndarray] = None , snake_case_ : str = "fixed_small" , snake_case_ : bool = True , snake_case_ : str = "epsilon" , snake_case_ : jnp.dtype = jnp.floataa , ): __a : str = dtype def lowerCAmelCase (self : Any , snake_case_ : Optional[CommonSchedulerState] = None ): if common is None: __a : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __a : int = jnp.array(1.0 , dtype=self.dtype ) __a : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case_ , init_noise_sigma=snake_case_ , timesteps=snake_case_ , ) def lowerCAmelCase (self : Dict , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : Optional[int] = None ): return sample def lowerCAmelCase (self : List[Any] , snake_case_ : DDPMSchedulerState , snake_case_ : int , snake_case_ : Tuple = () ): __a : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __a : Any = (jnp.arange(0 , snake_case_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case_ , timesteps=snake_case_ , ) def lowerCAmelCase (self : List[Any] , snake_case_ : DDPMSchedulerState , snake_case_ : Optional[Any] , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=None ): __a : Optional[Any] = state.common.alphas_cumprod[t] __a : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __a : Optional[int] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __a : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __a : Optional[Any] = jnp.clip(snake_case_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __a : int = jnp.log(jnp.clip(snake_case_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": __a : List[str] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __a : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __a : Any = variance __a : Dict = state.common.betas[t] __a : Any = (predicted_variance + 1) / 2 __a : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase (self : Any , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : int , snake_case_ : jnp.ndarray , snake_case_ : Optional[jax.random.KeyArray] = None , snake_case_ : bool = True , ): __a : int = timestep if key is None: __a : Any = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __a , __a : List[str] = jnp.split(snake_case_ , sample.shape[1] , axis=1 ) else: __a : int = None # 1. compute alphas, betas __a : Optional[int] = state.common.alphas_cumprod[t] __a : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __a : Optional[int] = 1 - alpha_prod_t __a : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __a : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __a : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": __a : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __a : Dict = jnp.clip(snake_case_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : str = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __a : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __a : Optional[int] = jax.random.split(snake_case_ , num=1 ) __a : Union[str, Any] = jax.random.normal(snake_case_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case_ , snake_case_ , predicted_variance=snake_case_ ) ** 0.5) * noise __a : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __a : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case_ , state=snake_case_ ) def lowerCAmelCase (self : List[str] , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , ): return add_noise_common(state.common , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase (self : str , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , ): return get_velocity_common(state.common , snake_case_ , snake_case_ , snake_case_ ) def __len__(self : List[str] ): return self.config.num_train_timesteps
90
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
104
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( a , a ) -> Dict: if "xprophetnet" in prophetnet_checkpoint_path: _A: List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) else: _A: Dict = ProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Tuple = ProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) _A: Optional[int] = ['''key_proj''', '''value_proj''', '''query_proj'''] _A: List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _A: List[str] = key.split('''.''' ) if attributes[0] == "lm_head": _A: Optional[int] = prophet _A: Tuple = prophet_old else: _A: Tuple = prophet.prophetnet _A: Any = prophet_old.model _A: int = False for attribute in attributes: if attribute in mapping: _A: Optional[int] = mapping[attribute] if not hasattr(a , a ) and len(a ) > 0: _A: int = attribute elif hasattr(a , a ): _A: Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _A: Union[str, Any] = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _A: Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _A: str = old_model.bias logger.info(f"""{attribute} is initialized""" ) _A: Dict = True break elif attribute in special_keys and hasattr(a , '''in_proj_weight''' ): _A: Optional[int] = old_model.in_proj_weight.shape[0] // 3 _A: Tuple = getattr(a , a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _A: List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _A: List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _A: int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _A: Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _A: List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _A: int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _A: Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _A: Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _A: List[Any] = True break if attribute.isdigit(): _A: Tuple = model[int(a )] _A: int = old_model[int(a )] else: _A: Union[str, Any] = getattr(a , a ) if old_attribute == "": _A: Union[str, Any] = old_model else: if not hasattr(a , a ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _A: List[Any] = getattr(a , a ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
121
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase: int = logging.get_logger(__name__) _UpperCamelCase: Dict = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'gpt_neox_japanese' def __init__( self : Any, lowerCAmelCase : Tuple=32000, lowerCAmelCase : Any=2560, lowerCAmelCase : Any=32, lowerCAmelCase : Dict=32, lowerCAmelCase : str=4, lowerCAmelCase : Any="gelu", lowerCAmelCase : List[Any]=1.00, lowerCAmelCase : List[Any]=10000, lowerCAmelCase : Optional[int]=2048, lowerCAmelCase : str=0.02, lowerCAmelCase : Union[str, Any]=1e-5, lowerCAmelCase : Optional[Any]=True, lowerCAmelCase : Dict=31996, lowerCAmelCase : Optional[Any]=31999, lowerCAmelCase : Optional[Any]=0.1, lowerCAmelCase : Optional[Any]=0.0, **lowerCAmelCase : Optional[int], ) -> Union[str, Any]: super().__init__(bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) lowercase : str = vocab_size lowercase : List[Any] = max_position_embeddings lowercase : List[str] = hidden_size lowercase : Tuple = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Optional[Any] = intermediate_multiple_size lowercase : List[str] = hidden_act lowercase : Tuple = rotary_pct lowercase : Optional[int] = rotary_emb_base lowercase : Optional[Any] = initializer_range lowercase : Tuple = layer_norm_eps lowercase : Dict = use_cache lowercase : Optional[Any] = attention_dropout lowercase : Dict = hidden_dropout
53
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = StableDiffusionInstructPixaPixPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase ( self : str ) -> str: torch.manual_seed(0 ) lowercase : int = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) lowercase : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) torch.manual_seed(0 ) lowercase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) lowercase : Optional[int] = CLIPTextModel(lowerCAmelCase ) lowercase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : int, lowerCAmelCase : str, lowerCAmelCase : Tuple=0 ) -> Tuple: lowercase : Optional[int] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Any = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : str = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase ( self : Tuple ) -> Optional[Any]: lowercase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : int = self.get_dummy_components() lowercase : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : Union[str, Any] = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Union[str, Any] = sd_pipe(**lowerCAmelCase ).images lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : str = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Optional[Any] ) -> int: lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : Union[str, Any] = self.get_dummy_components() lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : Union[str, Any] = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Any = 'french fries' lowercase : Tuple = sd_pipe(**lowerCAmelCase, negative_prompt=lowerCAmelCase ) lowercase : Optional[Any] = output.images lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : Dict = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Optional[int] ) -> str: lowercase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : str = self.get_dummy_components() lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : str = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_inputs(lowerCAmelCase ) lowercase : int = [inputs['prompt']] * 2 lowercase : Dict = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 lowercase : Optional[int] = torch.from_numpy(lowerCAmelCase ).unsqueeze(0 ).to(lowerCAmelCase ) lowercase : List[Any] = image / 2 + 0.5 lowercase : List[str] = image.permute(0, 3, 1, 2 ) lowercase : List[str] = image.repeat(2, 1, 1, 1 ) lowercase : Dict = sd_pipe(**lowerCAmelCase ).images lowercase : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase : Optional[int] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Union[str, Any] ) -> Any: lowercase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[int] = self.get_dummy_components() lowercase : str = EulerAncestralDiscreteScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear' ) lowercase : Tuple = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : str = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Dict = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Dict = sd_pipe(**lowerCAmelCase ).images lowercase : Tuple = image[0, -3:, -3:, -1] lowercase : Optional[int] = [round(lowerCAmelCase, 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(lowerCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase : List[str] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : List[str] ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase ( self : int ) -> Optional[Any]: lowercase : List[Any] = self.get_dummy_components() lowercase : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : List[str] = VaeImageProcessor(do_resize=lowerCAmelCase, do_normalize=lowerCAmelCase ) lowercase : int = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Dict = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase, input_image_type='pt' ) )[0] lowercase : Optional[Any] = components['vae'] lowercase : str = self.get_dummy_inputs_by_type(lowerCAmelCase, input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase : Optional[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase : Optional[int] = pipe(**lowerCAmelCase )[0] lowercase : int = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase, 1e-4, 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def lowercase ( self : List[str] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str], lowerCAmelCase : int=0 ) -> str: lowercase : Dict = torch.manual_seed(lowerCAmelCase ) lowercase : Optional[Any] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) lowercase : int = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def lowercase ( self : int ) -> str: lowercase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : Optional[Any] = self.get_inputs() lowercase : List[Any] = pipe(**lowerCAmelCase ).images lowercase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : List[str] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase ) lowercase : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : List[Any] = self.get_inputs() lowercase : Tuple = pipe(**lowerCAmelCase ).images lowercase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : str = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Optional[Any] ) -> List[Any]: lowercase : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase ) lowercase : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : Any = self.get_inputs() lowercase : Union[str, Any] = pipe(**lowerCAmelCase ).images lowercase : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : int = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Tuple ) -> Dict: lowercase : Dict = 0 def callback_fn(lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : torch.FloatTensor ) -> None: lowercase : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase : Union[str, Any] = latents[0, -3:, -3:, -1] lowercase : List[str] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase : Union[str, Any] = latents[0, -3:, -3:, -1] lowercase : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase : Union[str, Any] = False lowercase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Optional[int] = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase, callback=lowerCAmelCase, callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Dict = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase : Dict = self.get_inputs() lowercase : List[Any] = pipe(**lowerCAmelCase ) lowercase : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase ( self : Union[str, Any] ) -> Tuple: lowercase : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase : Optional[Any] = inputs['image'].resize((504, 504) ) lowercase : Union[str, Any] = 'timbrooks/instruct-pix2pix' lowercase : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase, safety_checker=lowerCAmelCase, ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : str = pipe(**lowerCAmelCase ) lowercase : int = output.images[0] lowercase : int = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase : Union[str, Any] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
53
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=0.9_99 , UpperCamelCase__ : str="cosine" , ) -> List[str]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCamelCase = [] for i in range(__snake_case ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class __lowerCAmelCase ( _snake_case , _snake_case ): """simple docstring""" snake_case_ = [e.name for e in KarrasDiffusionSchedulers] snake_case_ = 2 @register_to_config def __init__( self , lowerCamelCase__ = 1_000 , lowerCamelCase__ = 0.0_00_85 , lowerCamelCase__ = 0.0_12 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = "linspace" , lowerCamelCase__ = 0 , ) -> Optional[Any]: '''simple docstring''' if trained_betas is not None: __lowerCamelCase = torch.tensor(_UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(_UpperCamelCase ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> List[Any]: '''simple docstring''' if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(_UpperCamelCase ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(_UpperCamelCase ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' __lowerCamelCase = self.index_for_timestep(_UpperCamelCase ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> List[str]: '''simple docstring''' __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , _UpperCamelCase , dtype=_UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , _UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(_UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(_UpperCamelCase , 0 , -step_ratio )).round().copy().astype(_UpperCamelCase ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(_UpperCamelCase ) ).to(_UpperCamelCase ) __lowerCamelCase = np.interp(_UpperCamelCase , np.arange(0 , len(_UpperCamelCase ) ) , _UpperCamelCase ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(_UpperCamelCase ).to(device=_UpperCamelCase ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_UpperCamelCase ).startswith('mps' ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(_UpperCamelCase ).to(_UpperCamelCase , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(_UpperCamelCase ).to(_UpperCamelCase ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(_UpperCamelCase ).to(_UpperCamelCase , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(_UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowercase_ ( self ) -> int: '''simple docstring''' return self.sample is None def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' __lowerCamelCase = self.index_for_timestep(_UpperCamelCase ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(_UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_UpperCamelCase ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(_UpperCamelCase , _UpperCamelCase ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Union[str, Any]: '''simple docstring''' return self.config.num_train_timesteps
90
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
0
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[str]] , __lowerCamelCase : int , ): snake_case : int = len(__lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __lowerCamelCase , __lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : int ): snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , __lowerCamelCase , __lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(__lowerCamelCase ) print("" ) print(len(__lowerCamelCase ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
10
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = ViTImageProcessor if is_vision_available() else None @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = (3, 3_2, 1_2_8) A_ : Tuple = tempfile.mkdtemp() # fmt: off A_ : Dict = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on A_ : Dict = dict(zip(lowercase , range(len(lowercase ) ) ) ) A_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) A_ : int = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 3_2, 'width': 1_2_8}, } A_ : str = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowercase , lowercase ) def lowerCAmelCase_ ( self , **lowercase ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def lowerCAmelCase_ ( self , **lowercase ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) A_ : Optional[Any] = Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) return image_input def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = self.get_tokenizer() A_ : Optional[Any] = self.get_image_processor() A_ : Dict = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase ) processor.save_pretrained(self.tmpdirname ) A_ : Union[str, Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.get_tokenizer() A_ : Union[str, Any] = self.get_image_processor() A_ : Tuple = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase ) processor.save_pretrained(self.tmpdirname ) A_ : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A_ : Dict = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) A_ : str = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = self.get_image_processor() A_ : List[Any] = self.get_tokenizer() A_ : str = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : List[Any] = self.prepare_image_inputs() A_ : Tuple = image_processor(lowercase , return_tensors='np' ) A_ : List[Any] = processor(images=lowercase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : str = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : List[Any] = 'test' A_ : str = processor(text=lowercase ) A_ : str = tokenizer(lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = self.get_image_processor() A_ : Dict = self.get_tokenizer() A_ : Tuple = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : Any = 'test' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[Any] = self.get_tokenizer() A_ : Optional[int] = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] A_ : Any = processor.char_decode(lowercase ) A_ : Optional[int] = tokenizer.batch_decode(lowercase ) A_ : Optional[int] = [seq.replace(' ' , '' ) for seq in decoded_tok] self.assertListEqual(lowercase , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Any = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : int = None A_ : Optional[Any] = self.prepare_image_inputs() A_ : Tuple = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[str] = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : Optional[int] = torch.randn(1 , 2_7 , 3_8 ) A_ : List[Any] = torch.randn(1 , 2_7 , 5_0_2_5_7 ) A_ : Any = torch.randn(1 , 2_7 , 3_0_5_2_2 ) A_ : str = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
140
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _UpperCAmelCase = 2 class UpperCAmelCase : '''simple docstring''' def __init__( self , *, # begin keyword-only arguments lowercase="<s>" , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase=None , ): """simple docstring""" A_ , A_ , A_ , A_ : Tuple = bos, unk, pad, eos A_ : Optional[Any] = [] A_ : Dict = [] A_ : List[Any] = {} A_ : int = self.add_symbol(lowercase ) A_ : Union[str, Any] = self.add_symbol(lowercase ) A_ : Union[str, Any] = self.add_symbol(lowercase ) A_ : Any = self.add_symbol(lowercase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowercase ) A_ : Tuple = len(self.symbols ) def __eq__( self , lowercase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , lowercase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , lowercase ): """simple docstring""" return sym in self.indices @classmethod def lowerCAmelCase_ ( cls , lowercase ): """simple docstring""" A_ : int = cls() d.add_from_file(lowercase ) return d def lowerCAmelCase_ ( self , lowercase , lowercase=1 , lowercase=False ): """simple docstring""" if word in self.indices and not overwrite: A_ : List[Any] = self.indices[word] A_ : List[str] = self.count[idx] + n return idx else: A_ : int = len(self.symbols ) A_ : Optional[Any] = idx self.symbols.append(lowercase ) self.count.append(lowercase ) return idx def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return 0 def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if isinstance(lowercase , lowercase ): try: with open(lowercase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowercase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowercase ) ) return A_ : Any = f.readlines() A_ : List[Any] = self._load_meta(lowercase ) for line in lines[indices_start_line:]: try: A_ , A_ : int = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A_ : Optional[int] = True A_ , A_ : str = line.rsplit(' ' , 1 ) else: A_ : Optional[int] = False A_ : Optional[int] = int(lowercase ) A_ : Tuple = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowercase ) ) self.add_symbol(lowercase , n=lowercase , overwrite=lowercase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def UpperCamelCase ( __lowercase : Any ): '''simple docstring''' A_ : Optional[Any] = dict((re.sub(r'@@$' ,'' ,__lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$' ,'</w>' ,__lowercase ), v) for k, v in d.items() ) A_ : Optional[Any] = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] A_ : Union[str, Any] = d[k] # restore return da def UpperCamelCase ( __lowercase : Any ,__lowercase : str ): '''simple docstring''' if not os.path.exists(__lowercase ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(__lowercase ,exist_ok=__lowercase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models A_ : Optional[Any] = os.path.join(__lowercase ,'checkpoint.pt' ) if not os.path.isfile(__lowercase ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) A_ : Any = torch.load(__lowercase ,map_location='cpu' ) A_ : str = chkpt['cfg']['model'] # dicts A_ : Any = os.path.join(__lowercase ,'dict.txt' ) if not os.path.isfile(__lowercase ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) A_ : Optional[int] = Dictionary.load(__lowercase ) A_ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) A_ : List[Any] = len(__lowercase ) A_ : Tuple = os.path.join(__lowercase ,VOCAB_FILES_NAMES['vocab_file'] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) ) # merges_file (bpecodes) A_ : List[Any] = os.path.join(__lowercase ,'bpecodes' ) if not os.path.isfile(__lowercase ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) A_ : Optional[Any] = os.path.join(__lowercase ,VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowercase ,__lowercase ) # model config A_ : Dict = os.path.join(__lowercase ,'config.json' ) A_ : List[Any] = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) ) # tokenizer config A_ : List[Any] = os.path.join(__lowercase ,__lowercase ) A_ : Dict = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 10_24, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) ) # model A_ : Any = chkpt['model'] # remove unneeded keys A_ : List[Any] = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowercase ,__lowercase ) A_ : int = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A_ : Union[str, Any] = model_state_dict.pop(__lowercase ) else: A_ : str = model_state_dict.pop(__lowercase ) A_ : Optional[int] = BioGptConfig.from_pretrained(__lowercase ) A_ : List[Any] = BioGptForCausalLM(__lowercase ) # check that it loads ok model_new.load_state_dict(__lowercase ) # save A_ : List[str] = os.path.join(__lowercase ,__lowercase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(__lowercase ,__lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
140
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _UpperCamelCase : int = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def snake_case (A_ :Optional[int] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase__ ) def snake_case (A_ :str ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main a : Optional[int] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase__ , id=lowerCAmelCase__ )
359
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(A , 'num_encoder_blocks' ) ) class snake_case : def __init__( self : List[Any] , A : Dict , A : List[Any]=1_3 , A : str=6_4 , A : Union[str, Any]=3 , A : Union[str, Any]=4 , A : Union[str, Any]=[2, 2, 2, 2] , A : List[str]=[8, 4, 2, 1] , A : Optional[Any]=[1_6, 3_2, 6_4, 1_2_8] , A : Optional[Any]=[1, 4, 8, 1_6] , A : Tuple=[1, 2, 4, 8] , A : Optional[Any]=True , A : Any=True , A : Optional[Any]="gelu" , A : Optional[int]=0.1 , A : List[Any]=0.1 , A : List[str]=0.02 , A : List[Any]=3 , A : str=None , ): '''simple docstring''' a : Optional[Any] = parent a : Optional[Any] = batch_size a : Optional[Any] = image_size a : Optional[int] = num_channels a : List[str] = num_encoder_blocks a : Optional[Any] = sr_ratios a : Any = depths a : Any = hidden_sizes a : Union[str, Any] = downsampling_rates a : Any = num_attention_heads a : int = is_training a : Dict = use_labels a : str = hidden_act a : Optional[int] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Optional[Any] = initializer_range a : Dict = num_labels a : Union[str, Any] = scope def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : int = None if self.use_labels: a : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a : str = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , A : str , A : List[Any] , A : List[Any] ): '''simple docstring''' a : Optional[Any] = SegformerModel(config=A ) model.to(A ) model.eval() a : Union[str, Any] = model(A ) a : Optional[int] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCamelCase__ ( self : Optional[int] , A : Union[str, Any] , A : str , A : Optional[Any] ): '''simple docstring''' a : List[Any] = self.num_labels a : Optional[int] = SegformerForSemanticSegmentation(A ) model.to(A ) model.eval() a : str = model(A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a : int = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase__ ( self : Dict , A : Dict , A : Any , A : Optional[Any] ): '''simple docstring''' a : Optional[int] = 1 a : List[Any] = SegformerForSemanticSegmentation(config=A ) model.to(A ) model.eval() a : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(A ) a : Dict = model(A , labels=A ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : str = self.prepare_config_and_inputs() a, a, a : str = config_and_inputs a : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __magic_name__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __magic_name__ = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Union[str, Any] = SegformerModelTester(self ) a : Tuple = SegformerConfigTester(self , config_class=A ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A ) def lowerCamelCase__ ( self : int ): '''simple docstring''' a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A ) @unittest.skip('SegFormer does not use inputs_embeds' ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a, a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Dict = model_class(A ) a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a, a : Any = self.model_tester.prepare_config_and_inputs_for_common() a : Any = True for model_class in self.all_model_classes: a : Optional[Any] = True a : Tuple = False a : int = True a : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(A , A ) ) a : Union[str, Any] = outputs.attentions a : Tuple = sum(self.model_tester.depths ) self.assertEqual(len(A ) , A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a : Tuple = True a : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : str = model(**self._prepare_for_class(A , A ) ) a : Optional[int] = outputs.attentions self.assertEqual(len(A ) , A ) # verify the first attentions (first block, first layer) a : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 a : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a : Tuple = (self.model_tester.image_size // 3_2) ** 2 a : Tuple = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a : str = len(A ) # Check attention is always last and order is fine a : str = True a : Tuple = True a : List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 1 , len(A ) ) a : str = outputs.attentions self.assertEqual(len(A ) , A ) # verify the first attentions (first block, first layer) a : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 a : Optional[int] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCamelCase__ ( self : int ): '''simple docstring''' def check_hidden_states_output(A : Optional[Any] , A : List[str] , A : Union[str, Any] ): a : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Optional[Any] = model(**self._prepare_for_class(A , A ) ) a : Tuple = outputs.hidden_states a : Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(A ) , A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a, a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[str] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : str = True check_hidden_states_output(A , A , A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(A ): continue a : List[Any] = model_class(A ) model.to(A ) model.train() a : Tuple = self._prepare_for_class(A , A , return_labels=A ) a : Any = model(**A ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = SegformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def snake_case (): '''simple docstring''' a : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : int = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Dict = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A ) a : str = prepare_img() a : List[str] = image_processor(images=A , return_tensors='pt' ) a : List[str] = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : Optional[int] = model(A ) a : Any = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , A ) a : str = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Optional[Any] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Optional[Any] = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(A ) a : List[Any] = prepare_img() a : Optional[Any] = image_processor(images=A , return_tensors='pt' ) a : int = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : Optional[Any] = model(A ) a : Tuple = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , A ) a : Optional[Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-1 ) ) @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' a : str = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Optional[int] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A ) a : int = prepare_img() a : Any = image_processor(images=A , return_tensors='pt' ) a : List[Any] = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : str = model(A ) a : str = outputs.logits.detach().cpu() a : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(5_0_0, 3_0_0)] ) a : Dict = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , A ) a : int = image_processor.post_process_semantic_segmentation(outputs=A ) a : Any = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , A )
186
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCAmelCase : Dict = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""") # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase__) pipe.set_progress_bar_config(disable=lowerCamelCase__) lowercase_ = """A painting of a squirrel eating a burger """ lowercase_ = torch.manual_seed(0) lowercase_ = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""").images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__) lowercase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase__) pipe.to(lowerCamelCase__) pipe.set_progress_bar_config(disable=lowerCamelCase__) lowercase_ = generator.manual_seed(0) lowercase_ = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""").images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa) pipe.to(lowerCamelCase__) pipe.set_progress_bar_config(disable=lowerCamelCase__) lowercase_ = """A painting of a squirrel eating a burger """ lowercase_ = torch.manual_seed(0) lowercase_ = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="""numpy""").images lowercase_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
136
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowercase_ ( self ) -> torch.Tensor: '''simple docstring''' __lowerCamelCase = torch.arange(self.height * self.width ) __lowerCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase__ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase , *__lowerCamelCase = self.shape __lowerCamelCase = int(np.prod(lowerCamelCase__ ) ) __lowerCamelCase = self.get_image_coords() __lowerCamelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowerCamelCase = self.get_camera_rays(lowerCamelCase__ ) __lowerCamelCase = rays.view(lowerCamelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowercase_ ( self , lowerCamelCase__ ) -> torch.Tensor: '''simple docstring''' __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCamelCase = coords.view(lowerCamelCase__ , -1 , 2 ) __lowerCamelCase = self.resolution() __lowerCamelCase = self.fov() __lowerCamelCase = (flat.float() / (res - 1)) * 2 - 1 __lowerCamelCase = fracs * torch.tan(fov / 2 ) __lowerCamelCase = fracs.view(lowerCamelCase__ , -1 , 2 ) __lowerCamelCase = ( self.z.view(lowerCamelCase__ , 1 , 3 ) + self.x.view(lowerCamelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCamelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) __lowerCamelCase = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase__ ) __lowerCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCamelCase__ , *lowerCamelCase__ , 2 , 3 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> DifferentiableProjectiveCamera: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __lowerCamelCase = np.array([np.sin(UpperCamelCase__ ), np.cos(UpperCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCamelCase = -z * 4 __lowerCamelCase = np.array([np.cos(UpperCamelCase__ ), -np.sin(UpperCamelCase__ ), 0.0] ) __lowerCamelCase = np.cross(UpperCamelCase__ , UpperCamelCase__ ) origins.append(UpperCamelCase__ ) xs.append(UpperCamelCase__ ) ys.append(UpperCamelCase__ ) zs.append(UpperCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , width=UpperCamelCase__ , height=UpperCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCamelCase__ )) , )
90
0
def snake_case_(_UpperCamelCase ) -> bool: """simple docstring""" _snake_case = [int(_UpperCamelCase ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_UpperCamelCase ) == 4 and all(0 <= int(_UpperCamelCase ) <= 254 for octet in octets ) if __name__ == "__main__": __A = input().strip() __A = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
278
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A = {'''allegro/herbert-base-cased''': 5_14} __A = {} class lowercase_ ( __lowercase ): UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = HerbertTokenizer def __init__( self : Tuple , A__ : str=None , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Optional[int]="<s>" , A__ : Optional[int]="<unk>" , A__ : str="<pad>" , A__ : List[Any]="<mask>" , A__ : Dict="</s>" , **A__ : Optional[int] , ) -> Optional[int]: super().__init__( A__ , A__ , tokenizer_file=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , sep_token=A__ , **A__ , ) def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def UpperCamelCase_ ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
278
1
'''simple docstring''' def lowercase__ ( __lowercase : int ) -> bool: """simple docstring""" if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
53
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def lowercase__ ( __lowercase : SplitDict ) -> int: """simple docstring""" __UpperCamelCase = split_dict._to_yaml_list() assert len(__lowercase ) == len(__lowercase ) __UpperCamelCase = SplitDict._from_yaml_list(__lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __UpperCamelCase = None # the split name of split_dict takes over the name of the split info object __UpperCamelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=__lowercase ), SplitInfo(dataset_name='my_dataset' )] ) def lowercase__ ( __lowercase : Dict ) -> Any: """simple docstring""" __UpperCamelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
53
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict = StableUnCLIPPipeline __lowerCamelCase : int = TEXT_TO_IMAGE_PARAMS __lowerCamelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowerCamelCase : Optional[Any] = False def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =32 UpperCAmelCase : Union[str, Any] =embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase : int =CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=snake_case__ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Dict =PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=snake_case__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Tuple =DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=snake_case__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase : Optional[int] =StableUnCLIPImageNormalizer(embedding_dim=snake_case__ ) UpperCAmelCase : Any =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] =UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case__ , layers_per_block=1 , upcast_attention=snake_case__ , use_linear_projection=snake_case__ , ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] =DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=snake_case__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Dict =AutoencoderKL() UpperCAmelCase : Tuple ={ # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> List[Any]: '''simple docstring''' if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Union[str, Any] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : Any =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : str ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple =torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] =torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=snake_case__ ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase : Optional[int] =StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : int =torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase : int =pipe('''anime turle''' , generator=snake_case__ , output_type='''np''' ) UpperCAmelCase : str =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : List[str] =StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase : str =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Any =pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase : Tuple =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
78
0
from __future__ import annotations def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" lowerCamelCase__: List[Any] =len(__a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __a , __a , ) def lowerCAmelCase_ ( __a ) -> None: """simple docstring""" lowerCamelCase__: list[list[str]] =[] depth_first_search([] , [] , [] , __a , __a ) # Print all the boards for board in boards: for column in board: print(__a ) print("" ) print(len(__a ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = FunnelConfig.from_json_file(a__ ) print(F"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE : Dict = FunnelBaseModel(a__ ) if base_model else FunnelModel(a__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(a__ , a__ , a__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) a__ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
19
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowercase : Optional[int] = ["gpt2"] _lowercase : Union[str, Any] = "gpt2" if is_tf_available(): class lowerCAmelCase__ ( tf.Module ): def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() lowercase_ : int = tokenizer lowercase_ : List[str] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = TFGPTaLMHeadModel.from_config(__SCREAMING_SNAKE_CASE ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = self.tokenizer(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = tokenized['''input_ids'''].to_tensor() lowercase_ : int = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowercase_ : Any = self.model(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''logits'''] return outputs @require_tf @require_keras_nlp class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" super().setUp() lowercase_ : List[str] = [GPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowercase_ : Dict = [TFGPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase_ : Optional[Any] = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowercase_ : Optional[int] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowercase_ : str = tokenizer([test_inputs] , return_tensors='''tf''' ) lowercase_ : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowercase_ : int = python_outputs[key].numpy() lowercase_ : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__SCREAMING_SNAKE_CASE , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase_ : str = tf.function(__SCREAMING_SNAKE_CASE ) for test_inputs in self.test_sentences: lowercase_ : str = tf.constant(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = compiled_tokenizer(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = tf_tokenizer(__SCREAMING_SNAKE_CASE ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase_ : Dict = ModelToSave(tokenizer=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase_ : Union[str, Any] = model.serving(__SCREAMING_SNAKE_CASE ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase_ : Union[str, Any] = Path(__SCREAMING_SNAKE_CASE ) / '''saved.model''' tf.saved_model.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , signatures={'''serving_default''': model.serving} ) lowercase_ : List[str] = tf.saved_model.load(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = loaded_model.signatures['''serving_default'''](__SCREAMING_SNAKE_CASE )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase_ : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase_ : Optional[int] = tf_tokenizer(__SCREAMING_SNAKE_CASE ) # Build model with some sample inputs lowercase_ : Tuple = tf_tokenizer.get_config() lowercase_ : int = TFGPTaTokenizer.from_config(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = model_from_config(__SCREAMING_SNAKE_CASE ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run lowercase_ : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: lowercase_ : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase_ : Dict = tf_tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
93
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=sys.maxsize )->Any: '''simple docstring''' A_ : Dict = '''bilinear''' A_ : Optional[Any] = max_size A_ : Optional[Any] = short_edge_length def __call__( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : str = [] for img in imgs: A_ , A_ : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize A_ : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A_ : int = size * 1.0 / min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if h < w: A_ , A_ : Tuple = size, scale * w else: A_ , A_ : List[str] = scale * h, size if max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > self.max_size: A_ : List[Any] = self.max_size * 1.0 / max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = newh * scale A_ : List[str] = neww * scale A_ : List[Any] = int(neww + 0.5 ) A_ : Tuple = int(newh + 0.5 ) if img.dtype == np.uinta: A_ : List[str] = Image.fromarray(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A_ : Dict = np.asarray(_SCREAMING_SNAKE_CASE ) else: A_ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A_ : List[str] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=_SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(_SCREAMING_SNAKE_CASE ) return img_augs class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Tuple = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A_ : Union[str, Any] = cfg.INPUT.FORMAT A_ : int = cfg.SIZE_DIVISIBILITY A_ : Tuple = cfg.PAD_VALUE A_ : List[Any] = cfg.INPUT.MAX_SIZE_TEST A_ : List[str] = cfg.MODEL.DEVICE A_ : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A_ : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A_ : List[Any] = lambda _SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Any = tuple(max(_SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) A_ : List[Any] = [im.shape[-2:] for im in images] A_ : Any = [ nn.functional.pad( _SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return torch.stack(_SCREAMING_SNAKE_CASE ), torch.tensor(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )->Dict: '''simple docstring''' with torch.no_grad(): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Dict = [images] if single_image: assert len(_SCREAMING_SNAKE_CASE ) == 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_SCREAMING_SNAKE_CASE , images.pop(_SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(_SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A_ : List[str] = torch.tensor([im.shape[:2] for im in images] ) A_ : Union[str, Any] = self.aug(_SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A_ : List[str] = [self.normalizer(_SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations A_ , A_ : Any = self.pad(_SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A_ : str = torch.true_divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert torch.isfinite(SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" A_ , A_ : int = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE )
186
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: return x if y == 0 else greatest_common_divisor(lowercase__ , x % y ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: return (x * y) // greatest_common_divisor(lowercase__ , lowercase__ ) def __lowerCAmelCase ( UpperCamelCase__ = 20 ) -> int: __lowerCamelCase = 1 for i in range(1 , n + 1 ): __lowerCamelCase = lcm(lowercase__ , lowercase__ ) return g if __name__ == "__main__": print(f'{solution() = }')
351
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> str: return "".join(chr(ord(UpperCamelCase__ ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
237
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _A = random.Random() def __UpperCamelCase ( _A , _A=1.0 , _A=None , _A=None ): if rng is None: lowerCAmelCase_ = global_rng lowerCAmelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A ( unittest.TestCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__=7, UpperCamelCase__=400, UpperCamelCase__=2000, UpperCamelCase__=2048, UpperCamelCase__=128, UpperCamelCase__=1, UpperCamelCase__=512, UpperCamelCase__=30, UpperCamelCase__=4_4100, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = min_seq_length lowerCAmelCase_ = max_seq_length lowerCAmelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ = spectrogram_length lowerCAmelCase_ = feature_size lowerCAmelCase_ = num_audio_channels lowerCAmelCase_ = hop_length lowerCAmelCase_ = chunk_length lowerCAmelCase_ = sampling_rate def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=False, UpperCamelCase__=False ): """simple docstring""" def _flatten(UpperCamelCase__ ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: lowerCAmelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowerCAmelCase_ = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = TvltFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCamelCase__, '''spectrogram_length''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''feature_size''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''num_audio_channels''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''hop_length''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''chunk_length''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''sampling_rate''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) lowerCAmelCase_ = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = feat_extract_first.to_dict() lowerCAmelCase_ = feat_extract_second.to_dict() lowerCAmelCase_ = dict_first.pop('''mel_filters''' ) lowerCAmelCase_ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(UpperCamelCase__, UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = os.path.join(UpperCamelCase__, '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) lowerCAmelCase_ = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) lowerCAmelCase_ = feat_extract_first.to_dict() lowerCAmelCase_ = feat_extract_second.to_dict() lowerCAmelCase_ = dict_first.pop('''mel_filters''' ) lowerCAmelCase_ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(UpperCamelCase__, UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] lowerCAmelCase_ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ = feature_extractor(np_speech_inputs[0], return_tensors='''np''', sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowerCAmelCase_ = feature_extractor(UpperCamelCase__, return_tensors='''np''', sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowerCAmelCase_ = feature_extractor( UpperCamelCase__, return_tensors='''np''', sampling_rate=4_4100, mask_audio=UpperCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowerCAmelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase_ = np.asarray(UpperCamelCase__ ) lowerCAmelCase_ = feature_extractor(UpperCamelCase__, return_tensors='''np''', sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech lowerCAmelCase_ = ds.sort('''id''' ).select(range(UpperCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self._load_datasamples(1 ) lowerCAmelCase_ = TvltFeatureExtractor() lowerCAmelCase_ = feature_extractor(UpperCamelCase__, return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape, (1, 1, 192, 128) ) lowerCAmelCase_ = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2], UpperCamelCase__, atol=1E-4 ) )
278
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A ( __UpperCAmelCase ): __snake_case = (UnCLIPScheduler,) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**UpperCamelCase__ ) return config def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__, prev_timestep=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config(variance_type='''learned_range''' ) lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) lowerCAmelCase_ = 0.5 assert scheduler._get_variance(1, predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487, predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999, predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config() lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) lowerCAmelCase_ = scheduler.timesteps lowerCAmelCase_ = self.dummy_model() lowerCAmelCase_ = self.dummy_sample_deter lowerCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowerCAmelCase_ = model(UpperCamelCase__, UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase_ = scheduler.step(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, generator=UpperCamelCase__ ).prev_sample lowerCAmelCase_ = pred_prev_sample lowerCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config() lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowerCAmelCase_ = scheduler.timesteps lowerCAmelCase_ = self.dummy_model() lowerCAmelCase_ = self.dummy_sample_deter lowerCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowerCAmelCase_ = model(UpperCamelCase__, UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowerCAmelCase_ = None else: lowerCAmelCase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase_ = scheduler.step( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, prev_timestep=UpperCamelCase__, generator=UpperCamelCase__ ).prev_sample lowerCAmelCase_ = pred_prev_sample lowerCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass
278
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ): # test for the above condition self.test() def lowerCamelCase__ ( self ): _lowercase : Any = 0 _lowercase : Tuple = False while not completed: if counter == 1: self.reset() _lowercase : Optional[Any] = self.advance() if not self.does_advance(UpperCAmelCase_ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) _lowercase : Optional[Any] = self.update(UpperCAmelCase_ ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super(UpperCAmelCase_ ,self ).__init__() if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _lowercase : int = token_ids _lowercase : str = len(self.token_ids ) _lowercase : List[str] = -1 # the index of the currently fulfilled step _lowercase : Optional[Any] = False def lowerCamelCase__ ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[Any] = False if self.does_advance(UpperCAmelCase_ ): self.fulfilled_idx += 1 _lowercase : Any = True if self.fulfilled_idx == (self.seqlen - 1): _lowercase : int = True _lowercase : Union[str, Any] = completed else: # failed to make progress. _lowercase : Optional[Any] = True self.reset() return stepped, completed, reset def lowerCamelCase__ ( self ): _lowercase : Optional[int] = False _lowercase : List[str] = 0 def lowerCamelCase__ ( self ): return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): _lowercase : Any = PhrasalConstraint(self.token_ids ) if stateful: _lowercase : Dict = self.seqlen _lowercase : Tuple = self.fulfilled_idx _lowercase : Tuple = self.completed return new_constraint class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=True ): _lowercase : Optional[int] = max([len(UpperCAmelCase_ ) for one in nested_token_ids] ) _lowercase : List[Any] = {} for token_ids in nested_token_ids: _lowercase : Union[str, Any] = root for tidx, token_id in enumerate(UpperCAmelCase_ ): if token_id not in level: _lowercase : int = {} _lowercase : str = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f""" {nested_token_ids}.""" ) _lowercase : int = root def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Any = self.trie for current_token in current_seq: _lowercase : Optional[Any] = start[current_token] _lowercase : Any = list(start.keys() ) return next_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : str = self.next_tokens(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) == 0 def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[Any] = list(root.values() ) if len(UpperCAmelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase_ ) for nn in next_nodes] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = self.count_leaves(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) != leaf_count class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super(UpperCAmelCase_ ,self ).__init__() if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _lowercase : str = DisjunctiveTrie(UpperCAmelCase_ ) _lowercase : Optional[Any] = nested_token_ids _lowercase : Optional[Any] = self.trie.max_height _lowercase : Optional[int] = [] _lowercase : int = False def lowerCamelCase__ ( self ): _lowercase : str = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Dict = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : List[str] = False if self.does_advance(UpperCAmelCase_ ): self.current_seq.append(UpperCAmelCase_ ) _lowercase : Union[str, Any] = True else: _lowercase : Optional[int] = True self.reset() _lowercase : List[str] = self.trie.reached_leaf(self.current_seq ) _lowercase : Optional[int] = completed return stepped, completed, reset def lowerCamelCase__ ( self ): _lowercase : Tuple = False _lowercase : Union[str, Any] = [] def lowerCamelCase__ ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): _lowercase : Tuple = DisjunctiveConstraint(self.token_ids ) if stateful: _lowercase : Optional[Any] = self.seqlen _lowercase : Any = self.current_seq _lowercase : Dict = self.completed return new_constraint class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Dict = constraints # max # of steps required to fulfill a given constraint _lowercase : str = max([c.seqlen for c in constraints] ) _lowercase : str = len(UpperCAmelCase_ ) _lowercase : Any = False self.init_state() def lowerCamelCase__ ( self ): _lowercase : List[str] = [] _lowercase : Dict = None _lowercase : List[str] = [constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.constraints] def lowerCamelCase__ ( self ): _lowercase : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__ ( self ): _lowercase : Any = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowercase : Any = constraint.advance() if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) else: _lowercase : List[Any] = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowerCamelCase__ ( self ,UpperCAmelCase_ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowercase : int = self.add(UpperCAmelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) _lowercase : Tuple = False, False if self.completed: _lowercase : Union[str, Any] = True _lowercase : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowercase : List[Any] = self.inprogress_constraint.update(UpperCAmelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) ) _lowercase : List[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowercase : List[Any] = None if len(self.pending_constraints ) == 0: # we're done! _lowercase : int = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase_ ): _lowercase : Dict = pending_constraint.update(UpperCAmelCase_ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(UpperCAmelCase_ ) _lowercase : Tuple = None if not complete and stepped: _lowercase : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowercase : Optional[Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowercase : Any = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__ ( self ,UpperCAmelCase_=True ): _lowercase : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowercase : int = [ constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowercase : Optional[int] = self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) _lowercase : Dict = [constraint.copy() for constraint in self.pending_constraints] return new_state
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
import string def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> str: UpperCamelCase__ : Optional[int] = '''''' for i in sequence: UpperCamelCase__ : int = ord(lowercase_ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Tuple: UpperCamelCase__ : Tuple = string.ascii_letters UpperCamelCase__ : Tuple = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase_ )] if c in letters else c for c in sequence ) def lowerCAmelCase_ ( ) -> str: from timeit import timeit print('''Running performance benchmarks...''' ) UpperCamelCase__ : int = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=lowercase_ )} seconds" ) print(f"> atbash(): {timeit('atbash(printable)' , setup=lowercase_ )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
201
"""simple docstring""" class A_ : """simple docstring""" def __init__( self :List[Any] , lowercase_ :int ) -> None: UpperCAmelCase = size UpperCAmelCase = [0] * size UpperCAmelCase = [0] * size @staticmethod def UpperCAmelCase__ ( lowercase_ :int ) -> int: return index | (index + 1) @staticmethod def UpperCAmelCase__ ( lowercase_ :int ) -> int: return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self :Any , lowercase_ :int , lowercase_ :int ) -> None: UpperCAmelCase = value while index < self.size: UpperCAmelCase = self.get_prev(lowercase_ ) + 1 if current_left_border == index: UpperCAmelCase = value else: UpperCAmelCase = max(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = self.get_next(lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :int , lowercase_ :int ) -> int: right -= 1 # Because of right is exclusive UpperCAmelCase = 0 while left <= right: UpperCAmelCase = self.get_prev(lowercase_ ) if left <= current_left: UpperCAmelCase = max(lowercase_ , self.tree[right] ) UpperCAmelCase = current_left else: UpperCAmelCase = max(lowercase_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
78
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" def is_in_circle(lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> bool: __UpperCAmelCase : Optional[int] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCAmelCase : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCAmelCase__ ) ) # The ratio of the area for circle to square is pi/4. __UpperCAmelCase : Union[str, Any] = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Callable[[float], float] , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : float = 1.0 , ): """simple docstring""" return mean( function_to_integrate(uniform(lowerCAmelCase__ , lowerCAmelCase__ ) ) for _ in range(lowerCAmelCase__ ) ) * (max_value - min_value) def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : float = 1.0 ): """simple docstring""" def identity_function(lowerCAmelCase__ : float ) -> float: return x __UpperCAmelCase : int = area_under_curve_estimator( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" def function_to_integrate(lowerCAmelCase__ : float ) -> float: return sqrt(4.0 - x * x ) __UpperCAmelCase : List[str] = area_under_curve_estimator( lowerCAmelCase__ , lowerCAmelCase__ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'encodec' def __init__( self , lowercase=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , lowercase=24000 , lowercase=1 , lowercase=False , lowercase=None , lowercase=None , lowercase=128 , lowercase=32 , lowercase=1 , lowercase=[8, 5, 4, 2] , lowercase="weight_norm" , lowercase=7 , lowercase=7 , lowercase=3 , lowercase=2 , lowercase=True , lowercase="reflect" , lowercase=2 , lowercase=2 , lowercase=1.0 , lowercase=1024 , lowercase=None , lowercase=True , **lowercase , ) -> Tuple: lowerCamelCase_ = target_bandwidths lowerCamelCase_ = sampling_rate lowerCamelCase_ = audio_channels lowerCamelCase_ = normalize lowerCamelCase_ = chunk_length_s lowerCamelCase_ = overlap lowerCamelCase_ = hidden_size lowerCamelCase_ = num_filters lowerCamelCase_ = num_residual_layers lowerCamelCase_ = upsampling_ratios lowerCamelCase_ = norm_type lowerCamelCase_ = kernel_size lowerCamelCase_ = last_kernel_size lowerCamelCase_ = residual_kernel_size lowerCamelCase_ = dilation_growth_rate lowerCamelCase_ = use_causal_conv lowerCamelCase_ = pad_mode lowerCamelCase_ = compress lowerCamelCase_ = num_lstm_layers lowerCamelCase_ = trim_right_ratio lowerCamelCase_ = codebook_size lowerCamelCase_ = codebook_dim if codebook_dim is not None else hidden_size lowerCamelCase_ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**lowercase ) @property def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def SCREAMING_SNAKE_CASE_( self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
19
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'sentencepiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } SCREAMING_SNAKE_CASE_ = { 'google/rembert': 256, } class a ( __lowercase ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_=False , A_=True , A_=True , A_="[CLS]" , A_="[SEP]" , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , **A_ , ): '''simple docstring''' super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) _UpperCAmelCase : List[str] = do_lower_case _UpperCAmelCase : Any = remove_space _UpperCAmelCase : Optional[Any] = keep_accents _UpperCAmelCase : Tuple = vocab_file _UpperCAmelCase : str = spm.SentencePieceProcessor() self.sp_model.Load(UpperCAmelCase__ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.__dict__.copy() _UpperCAmelCase : Dict = None return state def __setstate__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = d _UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , A_ , A_=False ): '''simple docstring''' _UpperCAmelCase : Tuple = self.sp_model.EncodeAsPieces(UpperCAmelCase__ ) return pieces def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase__ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase__ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = self.sp_model.decode_pieces(UpperCAmelCase__ ) return out_string def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' _UpperCAmelCase : Dict = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , A_ , A_ = None , A_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase__ ): logger.error("Vocabulary path ({}) should be a directory".format(UpperCAmelCase__ ) ) return _UpperCAmelCase : Any = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
361
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be an 'int' type" ) _UpperCAmelCase : List[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
189
0
'''simple docstring''' from __future__ import annotations import time import numpy as np __lowerCAmelCase : Optional[Any] =[8, 5, 9, 7] __lowerCAmelCase : Optional[int] =[ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __lowerCAmelCase : List[Any] =[ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase : def __init__( self :Optional[int] , lowercase_ :list[int] , lowercase_ :list[list[int]] , lowercase_ :list[list[int]] , )-> None: A__ = claim_vector A__ = allocated_resources_table A__ = maximum_claim_table def UpperCAmelCase_ ( self :Union[str, Any] )-> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ ( self :Tuple )-> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ ( self :Dict )-> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowercase_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ ( self :Any )-> dict[int, list[int]]: return {self.__need().index(lowercase_ ): i for i in self.__need()} def UpperCAmelCase_ ( self :Tuple , **lowercase_ :List[str] )-> None: A__ = self.__need() A__ = self.__allocated_resources_table A__ = self.__available_resources() A__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: A__ = False for each_need in need_list: A__ = True for index, need in enumerate(lowercase_ ): if need > available_resources[index]: A__ = False break if execution: A__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A__ = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(lowercase_ ) # update available/freed resources stack A__ = np.array(lowercase_ ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(lowercase_ ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def UpperCAmelCase_ ( self :Optional[Any] )-> Tuple: print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(lowercase_ ) + 1}" + " ".join(F"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(lowercase_ ) + 1}" + " ".join(F"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(lowercase_ ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(lowercase_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
237
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=False ): A__ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: A__ = "" else: A__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( _lowerCamelCase : int ): A__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ): A__ = dct.pop(_lowerCamelCase ) A__ = val def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any]=False ): A__ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_lowerCamelCase , ) A__ = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=3_84 , num_labels=10_00 ) A__ = False # load original model from timm A__ = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) A__ = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "huggingface/label-files" A__ = "imagenet-1k-id2label.json" A__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A__ = ViTHybridModel(_lowerCamelCase ).eval() else: A__ = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor A__ = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) A__ = transform.transforms A__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A__ = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(_lowerCamelCase ).unsqueeze(0 ) A__ = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): A__ = model(_lowerCamelCase ) A__ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: A__ = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: A__ = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
237
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : List[str] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='wavlm' def __init__( self : Union[str, Any] , __a : List[str]=32 , __a : Tuple=7_68 , __a : Union[str, Any]=12 , __a : Optional[Any]=12 , __a : str=30_72 , __a : Dict="gelu" , __a : int=0.1 , __a : List[str]=0.1 , __a : Optional[int]=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.1 , __a : Optional[Any]=0.1 , __a : Any=0.02 , __a : List[Any]=1e-5 , __a : Tuple="group" , __a : Union[str, Any]="gelu" , __a : Any=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a : str=(5, 2, 2, 2, 2, 2, 2) , __a : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __a : List[Any]=False , __a : List[Any]=1_28 , __a : Union[str, Any]=16 , __a : Union[str, Any]=3_20 , __a : Optional[Any]=8_00 , __a : Optional[Any]=False , __a : List[str]=True , __a : str=0.05 , __a : Tuple=10 , __a : str=2 , __a : List[str]=0.0 , __a : Dict=10 , __a : Optional[int]=3_20 , __a : Optional[Any]=2 , __a : int=0.1 , __a : int=1_00 , __a : str=2_56 , __a : List[str]=2_56 , __a : Union[str, Any]=0.1 , __a : Dict="mean" , __a : Tuple=False , __a : Optional[int]=False , __a : List[Any]=2_56 , __a : Optional[int]=(5_12, 5_12, 5_12, 5_12, 15_00) , __a : Optional[Any]=(5, 3, 3, 1, 1) , __a : int=(1, 2, 3, 1, 1) , __a : List[Any]=5_12 , __a : Dict=80 , __a : str=0 , __a : Tuple=1 , __a : Optional[int]=2 , __a : int=False , __a : List[str]=3 , __a : Any=2 , __a : Tuple=3 , __a : Dict=None , **__a : Tuple , ): super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__a ) _a = list(__a ) _a = list(__a ) _a = conv_bias _a = num_buckets _a = max_bucket_distance _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(__a ) _a = list(__a ) _a = list(__a ) _a = xvector_output_dim @property def UpperCamelCase__ ( self : List[str] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
365
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 10 ) -> str: if not isinstance(lowercase , lowercase ) or n < 0: raise ValueError("Invalid input" ) _a = 10**n _a = 2_8433 * (pow(2 , 783_0457 , lowercase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
346
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase = 25_6047 UpperCamelCase = 25_6145 @require_sentencepiece @require_tokenizers class snake_case_ ( lowerCamelCase__ ,unittest.TestCase ): __A : int = NllbTokenizer __A : Optional[Any] = NllbTokenizerFast __A : Any = True __A : Union[str, Any] = True __A : Optional[int] = {} def __UpperCamelCase ( self : Any ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowercase__ : Optional[Any] = NllbTokenizer(__A , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Optional[Any] ) -> int: lowercase__ : Dict = NllbTokenizer(__A , keep_accents=__A ) lowercase__ : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase__ : Tuple = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ : Any = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __UpperCamelCase ( self : str ) -> Tuple: lowercase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__A , **__A ) lowercase__ : int = self.tokenizer_class.from_pretrained(__A , **__A ) lowercase__ : str = tempfile.mkdtemp() lowercase__ : Optional[Any] = tokenizer_r.save_pretrained(__A ) lowercase__ : Dict = tokenizer_p.save_pretrained(__A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowercase__ : List[Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__A , __A ) # Checks everything loads correctly in the same way lowercase__ : Optional[Any] = tokenizer_r.from_pretrained(__A ) lowercase__ : int = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) # Save tokenizer rust, legacy_format=True lowercase__ : int = tempfile.mkdtemp() lowercase__ : List[Any] = tokenizer_r.save_pretrained(__A , legacy_format=__A ) lowercase__ : Union[str, Any] = tokenizer_p.save_pretrained(__A ) # Checks it save with the same files self.assertSequenceEqual(__A , __A ) # Checks everything loads correctly in the same way lowercase__ : Optional[int] = tokenizer_r.from_pretrained(__A ) lowercase__ : List[Any] = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) # Save tokenizer rust, legacy_format=False lowercase__ : Optional[Any] = tempfile.mkdtemp() lowercase__ : Tuple = tokenizer_r.save_pretrained(__A , legacy_format=__A ) lowercase__ : str = tokenizer_p.save_pretrained(__A ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase__ : Any = tokenizer_r.from_pretrained(__A ) lowercase__ : Dict = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: if not self.test_seqaseq: return lowercase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. lowercase__ : Dict = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowercase__ : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowercase__ : int = tokenizer.prepare_seqaseq_batch( src_texts=__A , tgt_texts=__A , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowercase__ : Tuple = tokenizer.prepare_seqaseq_batch( __A , tgt_texts=__A , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowercase__ : Union[str, Any] = tokenizer.prepare_seqaseq_batch( src_texts=__A , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , __A ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: pass def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : Any = [AddedToken("<special>" , lstrip=__A )] lowercase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A ) lowercase__ : Dict = tokenizer_r.encode("Hey this is a <special> token" ) lowercase__ : Any = tokenizer_r.encode("<special>" , add_special_tokens=__A )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A , ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A ) lowercase__ : Union[str, Any] = tokenizer_p.encode("Hey this is a <special> token" ) lowercase__ : Union[str, Any] = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class snake_case_ ( unittest.TestCase ): __A : Tuple = "facebook/nllb-200-distilled-600M" __A : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __A : Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __A : Union[str, Any] = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def __UpperCamelCase ( cls : Optional[int] ) -> int: lowercase__ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) lowercase__ : Tuple = 1 return cls def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def __UpperCamelCase ( self : List[Any] ) -> Dict: lowercase__ : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __A ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: self.assertIn(__A , self.tokenizer.all_special_ids ) # fmt: off lowercase__ : Any = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on lowercase__ : Union[str, Any] = self.tokenizer.decode(__A , skip_special_tokens=__A ) lowercase__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__A ) self.assertEqual(__A , __A ) self.assertNotIn(self.tokenizer.eos_token , __A ) def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Optional[int] = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __A ) lowercase__ : Optional[Any] = 10 lowercase__ : int = self.tokenizer(__A , max_length=__A , truncation=__A ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __A ) self.assertEqual(len(__A ) , __A ) def __UpperCamelCase ( self : List[str] ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def __UpperCamelCase ( self : Dict ) -> str: lowercase__ : Dict = tempfile.mkdtemp() lowercase__ : str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__A ) lowercase__ : Any = NllbTokenizer.from_pretrained(__A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __A ) @require_torch def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__A , truncation=__A , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase__ : Union[str, Any] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(__A , __A ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowercase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __A ) self.assertEqual(__A , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : Optional[Any] = self.tokenizer(self.src_text , padding=__A , truncation=__A , max_length=3 , return_tensors="pt" ) lowercase__ : Union[str, Any] = self.tokenizer( text_target=self.tgt_text , padding=__A , truncation=__A , max_length=10 , return_tensors="pt" ) lowercase__ : Tuple = targets['''input_ids'''] lowercase__ : List[Any] = shift_tokens_right( __A , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Any: lowercase__ : Dict = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(__A ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Tuple: lowercase__ : Tuple = True lowercase__ : int = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) lowercase__ : int = False lowercase__ : Optional[int] = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
87
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters a_ = False a_ = False def a__ ( __lowercase ) -> Dict: return TrainCommand(__lowercase ) class snake_case ( _UpperCamelCase): @staticmethod def a_ ( a__ : ArgumentParser ) -> Optional[int]: '''simple docstring''' _A = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=a__ , required=a__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=a__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=a__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=a__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=a__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=a__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=a__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=a__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=a__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=a__ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=a__ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=a__ , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=a__ , default=1E-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=a__ ) def __init__( self : List[str] , a__ : Namespace ) -> Optional[Any]: '''simple docstring''' _A = logging.get_logger("transformers-cli/training" ) _A = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=a__ ) _A = args.output _A = args.column_label _A = args.column_text _A = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": _A = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""" ) _A = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _A = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""" ) _A = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _A = args.validation_split _A = args.train_batch_size _A = args.valid_batch_size _A = args.learning_rate _A = args.adam_epsilon def a_ ( self : List[str] ) -> Tuple: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def a_ ( self : Optional[int] ) -> str: '''simple docstring''' raise NotImplementedError def a_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
163
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a__ ( __lowercase , __lowercase ) -> Dict: _A = old_name if "patch_embed" in old_name: _A , _A , _A = old_name.split("." ) if layer == "0": _A = old_name.replace("0" , "convolution1" ) elif layer == "1": _A = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": _A = old_name.replace("3" , "convolution2" ) else: _A = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , __lowercase ): _A = R"\b\d{2}\b" if bool(re.search(__lowercase , __lowercase ) ): _A = re.search(R"\d\.\d\d." , __lowercase ).group() else: _A = re.search(R"\d\.\d." , __lowercase ).group() if int(match[0] ) < 6: _A = old_name.replace(__lowercase , "" ) _A = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _A = "intermediate_stages." + trimmed_name else: _A = old_name.replace(__lowercase , "" ) if int(match[2] ) < num_meta4D_last_stage: _A = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: _A = str(int(match[2] ) - num_meta4D_last_stage ) _A = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _A = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: _A = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: _A = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: _A = trimmed_name.replace("fc2" , "linear_out" ) _A = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , __lowercase ): _A = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: _A = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _A = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _A = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: _A = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: _A = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: _A = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: _A = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _A = new_name.replace("norm" , "layernorm" ) _A = "efficientformer." + new_name else: _A = "efficientformer.encoder." + new_name return new_name def a__ ( __lowercase , __lowercase ) -> List[str]: for key in checkpoint.copy().keys(): _A = checkpoint.pop(__lowercase ) _A = val return checkpoint def a__ ( ) -> Dict: _A = "http://images.cocodataset.org/val2017/000000039769.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return image def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> str: _A = torch.load(__lowercase , map_location="cpu" )["model"] _A = EfficientFormerConfig.from_json_file(__lowercase ) _A = EfficientFormerForImageClassificationWithTeacher(__lowercase ) _A = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _A = config.depths[-1] - config.num_metaad_blocks + 1 _A = convert_torch_checkpoint(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) model.eval() _A = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image _A = prepare_img() _A = 256 _A = 224 _A = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) _A = processor(images=__lowercase , return_tensors="pt" ).pixel_values # original processing pipeline _A = Compose( [ Resize(__lowercase , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(__lowercase ), ToTensor(), Normalize(__lowercase , __lowercase ), ] ) _A = image_transforms(__lowercase ).unsqueeze(0 ) assert torch.allclose(__lowercase , __lowercase ) _A = model(__lowercase ) _A = outputs.logits _A = (1, 1000) if "l1" in model_name: _A = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , __lowercase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _A = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , __lowercase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _A = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowercase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=__lowercase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=__lowercase , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) a_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
163
1
"""simple docstring""" import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCAmelCase_ ( snake_case_ : int ) ->Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : Dict =create_tensor(__lowerCamelCase ) lowerCamelCase__ : int =gather(__lowerCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCAmelCase_ ( snake_case_ : List[str] ) ->List[str]: lowerCamelCase__ : List[str] =[state.process_index] lowerCamelCase__ : Dict =gather_object(__lowerCamelCase ) assert len(__lowerCamelCase ) == state.num_processes, f"""{gathered_obj}, {len(__lowerCamelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : str =create_tensor(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =broadcast(__lowerCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCAmelCase_ ( snake_case_ : Dict ) ->List[str]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCamelCase__ : Any =torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase__ : Tuple =torch.arange(state.num_processes ).to(state.device ) lowerCamelCase__ : List[str] =pad_across_processes(__lowerCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCAmelCase_ ( snake_case_ : int ) ->Optional[int]: # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase__ : Tuple =create_tensor(__lowerCamelCase ) lowerCamelCase__ : Dict =reduce(__lowerCamelCase , 'sum' ) lowerCamelCase__ : Optional[int] =torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowerCAmelCase_ ( snake_case_ : List[Any] ) ->int: # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase__ : List[str] =create_tensor(__lowerCamelCase ) lowerCamelCase__ : int =reduce(__lowerCamelCase , 'mean' ) lowerCamelCase__ : List[str] =torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowerCAmelCase_ ( snake_case_ : Dict ) ->Optional[int]: # For xla_spawn (TPUs) main() def lowerCAmelCase_ ( ) ->List[str]: lowerCamelCase__ : List[str] =PartialState() state.print(f"""State: {state}""" ) state.print('testing gather' ) test_gather(__lowerCamelCase ) state.print('testing gather_object' ) test_gather_object(__lowerCamelCase ) state.print('testing broadcast' ) test_broadcast(__lowerCamelCase ) state.print('testing pad_across_processes' ) test_pad_across_processes(__lowerCamelCase ) state.print('testing reduce_sum' ) test_reduce_sum(__lowerCamelCase ) state.print('testing reduce_mean' ) test_reduce_mean(__lowerCamelCase ) if __name__ == "__main__": main()
126
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
0
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = data lowerCAmelCase : Node | None = None lowerCAmelCase : Node | None = None def a__ ( SCREAMING_SNAKE_CASE : Node | None ): # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def a__ ( SCREAMING_SNAKE_CASE : Node | None ): '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def a__ ( SCREAMING_SNAKE_CASE : Node ): '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def a__ ( ): # Main function for testing. '''simple docstring''' lowerCAmelCase : Optional[int] = Node(1 ) lowerCAmelCase : List[Any] = Node(2 ) lowerCAmelCase : int = Node(3 ) lowerCAmelCase : List[Any] = Node(4 ) lowerCAmelCase : List[str] = Node(5 ) lowerCAmelCase : Tuple = Node(6 ) lowerCAmelCase : Optional[int] = Node(7 ) lowerCAmelCase : Tuple = Node(8 ) lowerCAmelCase : Optional[Any] = Node(9 ) print(is_full_binary_tree(SCREAMING_SNAKE_CASE ) ) print(depth_of_tree(SCREAMING_SNAKE_CASE ) ) print("Tree is: " ) display(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
351
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' lowerCAmelCase : str = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: lowerCAmelCase , lowerCAmelCase : Any = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
133
0
import pytest import datasets # Import fixture modules as plugins snake_case_ : Tuple = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def A (__A : Optional[int] , __A : Any ) -> Optional[int]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def A (__A : Optional[Any] ) -> Optional[int]: """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__A ) def A (__A : Optional[int] , __A : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.getbasetemp() / '''cache''' UpperCAmelCase_ = test_hf_cache_home / '''datasets''' UpperCAmelCase_ = test_hf_cache_home / '''metrics''' UpperCAmelCase_ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(__A ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(__A ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(__A ) ) UpperCAmelCase_ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(__A ) ) UpperCAmelCase_ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__A ) ) @pytest.fixture(autouse=__A , scope='''session''' ) def A () -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=__A ) def A (__A : Tuple ) -> str: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , __A ) @pytest.fixture def A (__A : Union[str, Any] ) -> int: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , __A )
51
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __a ( unittest.TestCase , A__ ): def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Dict = load_tool("text-to-speech" ) self.tool.setup() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = self.tool("hey" ) UpperCamelCase__ : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = self.tool("hey" ) UpperCamelCase__ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
189
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase ( _UpperCAmelCase ): _a = 42 _a = 42 class lowercase ( nn.Module ): _a = 42 _a = (1_6, 3_2, 9_6, 2_5_6) _a = jnp.floataa def a__ ( self ): _A : List[str] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _A : Dict = [] for i in range(len(self.block_out_channels ) - 1 ): _A : Dict = self.block_out_channels[i] _A : Tuple = self.block_out_channels[i + 1] _A : Union[str, Any] = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) _A : Union[str, Any] = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) _A : Optional[Any] = blocks _A : Tuple = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a ): _A : List[str] = self.conv_in(_UpperCAmelCase ) _A : Any = nn.silu(_UpperCAmelCase ) for block in self.blocks: _A : int = block(_UpperCAmelCase ) _A : str = nn.silu(_UpperCAmelCase ) _A : int = self.conv_out(_UpperCAmelCase ) return embedding @flax_register_to_config class lowercase ( nn.Module,_UpperCAmelCase,_UpperCAmelCase ): _a = 3_2 _a = 4 _a = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _a = False _a = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _a = 2 _a = 8 _a = None _a = 1_2_8_0 _a = 0.0 _a = False _a = jnp.floataa _a = True _a = 0 _a = "rgb" _a = (1_6, 3_2, 9_6, 2_5_6) def a__ ( self , _a ): # init input tensors _A : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) _A : List[str] = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) _A : Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) _A : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _A : Optional[Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) _A : int = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) _A : Any = jax.random.split(_UpperCAmelCase ) _A : str = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"] def a__ ( self ): _A : int = self.block_out_channels _A : str = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _A : int = self.num_attention_heads or self.attention_head_dim # input _A : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _A : str = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _A : int = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype ) _A : Optional[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _A : int = self.only_cross_attention if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A : Dict = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A : Dict = (num_attention_heads,) * len(self.down_block_types ) # down _A : str = [] _A : Optional[int] = [] _A : Tuple = block_out_channels[0] _A : Union[str, Any] = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): _A : Optional[int] = output_channel _A : Any = block_out_channels[i] _A : Optional[Any] = i == len(_UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": _A : List[str] = FlaxCrossAttnDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _A : str = FlaxDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_UpperCAmelCase ) for _ in range(self.layers_per_block ): _A : Optional[int] = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) if not is_final_block: _A : Optional[int] = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) _A : str = down_blocks _A : Dict = controlnet_down_blocks # mid _A : Optional[Any] = block_out_channels[-1] _A : Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=_UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _A : Any = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a , _a , _a , _a , _a = 1.0 , _a = True , _a = False , ): _A : Any = self.controlnet_conditioning_channel_order if channel_order == "bgr": _A : int = jnp.flip(_UpperCAmelCase , axis=1 ) # 1. time if not isinstance(_UpperCAmelCase , jnp.ndarray ): _A : str = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: _A : Optional[int] = timesteps.astype(dtype=jnp.floataa ) _A : List[str] = jnp.expand_dims(_UpperCAmelCase , 0 ) _A : List[str] = self.time_proj(_UpperCAmelCase ) _A : List[Any] = self.time_embedding(_UpperCAmelCase ) # 2. pre-process _A : int = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) _A : int = self.conv_in(_UpperCAmelCase ) _A : Any = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) _A : Dict = self.controlnet_cond_embedding(_UpperCAmelCase ) sample += controlnet_cond # 3. down _A : Dict = (sample,) for down_block in self.down_blocks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A : List[str] = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) else: _A : List[Any] = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid _A : int = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) # 5. contronet blocks _A : List[Any] = () for down_block_res_sample, controlnet_block in zip(_UpperCAmelCase , self.controlnet_down_blocks ): _A : Tuple = controlnet_block(_UpperCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) _A : Tuple = controlnet_down_block_res_samples _A : Optional[int] = self.controlnet_mid_block(_UpperCAmelCase ) # 6. scaling _A : List[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_UpperCAmelCase , mid_block_res_sample=_UpperCAmelCase )
352
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
0
def snake_case__ ( SCREAMING_SNAKE_CASE_ : list[int] ): '''simple docstring''' lowercase__ : str = len(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if numbers[j] < numbers[i]: lowercase__ , lowercase__ : Any = numbers[j], numbers[i] return numbers if __name__ == "__main__": snake_case_ = input('''Enter numbers separated by a comma:\n''').strip() snake_case_ = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
214
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = {} with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = line.strip() if line: UpperCAmelCase__ = line.split() UpperCAmelCase__ = line_number UpperCAmelCase__ = words[0] UpperCAmelCase__ = value return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' for attribute in key.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = hf_pointer for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = shape_pointer.shape # let's reduce dimension UpperCAmelCase__ = value[0] else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = """.""".join([key, hf_param_name] ) else: UpperCAmelCase__ = key UpperCAmelCase__ = value if """lm_head""" in full_key else value[0] UpperCAmelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): '''simple docstring''' UpperCAmelCase__ = False for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: UpperCAmelCase__ = """weight_g""" elif "weight_v" in name: UpperCAmelCase__ = """weight_v""" elif "bias" in name: UpperCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = """weight""" else: UpperCAmelCase__ = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return is_used return is_used def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase__ = True else: UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase__ = name.split(""".""" ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaConfig() if is_seq_class: UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = idalabel UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) elif is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned or is_seq_class: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" ) UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
346
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = {"""vocab_file""": """spiece.model"""} _lowercase : Union[str, Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 _lowercase : Optional[int] = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } _lowercase : List[Any] = """▁""" class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : int = ["input_ids", "attention_mask"] def __init__( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Tuple="<unk>" , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : Dict=100 , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Dict[str, Any]] = None , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : int , )-> None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase = [F"""<extra_id_{i}>""" for i in range(lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase = len(set(filter(lambda lowerCAmelCase : bool('''extra_id''' in str(lowerCAmelCase ) ) , lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) UpperCAmelCase = legacy UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , extra_ids=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = vocab_file UpperCAmelCase = extra_ids UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) @staticmethod def a__( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , lowerCAmelCase , ) return max_model_length @property def a__( self : Any )-> Optional[Any]: """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def a__( self : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : int , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase )) + [1] return ([0] * len(lowerCAmelCase )) + [1] + ([0] * len(lowerCAmelCase )) + [1] def a__( self : Optional[int] )-> List[Any]: """simple docstring""" return list( set(filter(lambda lowerCAmelCase : bool(re.search(R'''<extra_id_\d+>''' , lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def a__( self : Any )-> Any: """simple docstring""" return [self._convert_token_to_id(lowerCAmelCase ) for token in self.get_sentinel_tokens()] def a__( self : Optional[int] , lowerCAmelCase : List[int] )-> List[int]: """simple docstring""" if len(lowerCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def a__( self : Optional[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a__( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = self._add_eos_if_not_present(lowerCAmelCase ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase = self._add_eos_if_not_present(lowerCAmelCase ) return token_ids_a + token_ids_a def __getstate__( self : str )-> Tuple: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Any , lowerCAmelCase : Dict )-> Any: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Tuple , lowerCAmelCase : "TextInput" , **lowerCAmelCase : Optional[int] )-> List[str]: """simple docstring""" if not self.legacy: UpperCAmelCase = SPIECE_UNDERLINE + text.replace(lowerCAmelCase , ''' ''' ) return super().tokenize(lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple )-> Tuple: """simple docstring""" if not self.legacy: UpperCAmelCase = text.startswith(lowerCAmelCase ) if is_first: UpperCAmelCase = text[1:] UpperCAmelCase = self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(lowerCAmelCase ): UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def a__( self : str , lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" if token.startswith('''<extra_id_''' ): UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , lowerCAmelCase ) UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowerCAmelCase ) def a__( self : Dict , lowerCAmelCase : Tuple )-> Optional[int]: """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCAmelCase = self.sp_model.IdToPiece(lowerCAmelCase ) else: UpperCAmelCase = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def a__( self : Optional[int] , lowerCAmelCase : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
91
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCamelCase__ ( A : str="" ): '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() return os.path.join(A , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> int: """simple docstring""" UpperCAmelCase = torch.rand(12 , dtype=torch.floataa ) - 0.5 UpperCAmelCase = AgentAudio(lowerCAmelCase ) UpperCAmelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCAmelCase ) ) # Ensure that the file contains the same value as the original tensor UpperCAmelCase , UpperCAmelCase = sf.read(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , torch.tensor(lowerCAmelCase ) , atol=1E-4 ) ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = torch.rand(12 , dtype=torch.floataa ) - 0.5 UpperCAmelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCAmelCase , lowerCAmelCase , 16000 ) UpperCAmelCase = AgentAudio(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowerCAmelCase ) @require_vision @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Any: """simple docstring""" UpperCAmelCase = torch.randint(0 , 256 , (64, 64, 3) ) UpperCAmelCase = AgentImage(lowerCAmelCase ) UpperCAmelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase ) ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' UpperCAmelCase = Image.open(lowerCAmelCase ) UpperCAmelCase = AgentImage(lowerCAmelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' UpperCAmelCase = Image.open(lowerCAmelCase ) UpperCAmelCase = AgentImage(lowerCAmelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase ) ) class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = '''Hey!''' UpperCAmelCase = AgentText(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , agent_type.to_string() ) self.assertEqual(lowerCAmelCase , agent_type.to_raw() ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
91
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') __A =list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : lowerCAmelCase :Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) lowerCAmelCase :Optional[str] = field(default=a__ , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCAmelCase :Optional[str] = field(default=a__ , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCAmelCase :Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCAmelCase :int = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) lowerCAmelCase :float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def snake_case__ ( self): UpperCAmelCase__ : int = {} if self.train_dir is not None: UpperCAmelCase__ : int = self.train_dir if self.validation_dir is not None: UpperCAmelCase__ : str = self.validation_dir UpperCAmelCase__ : str = data_files if data_files else None @dataclass class _snake_case : lowerCAmelCase :str = field( default=a__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(a__ )} , ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) lowerCAmelCase :str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase :str = field(default=a__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCAmelCase :bool = field( default=a__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class _snake_case : def __init__( self , _lowerCamelCase=192 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=0.6): UpperCAmelCase__ : Dict = input_size UpperCAmelCase__ : int = mask_patch_size UpperCAmelCase__ : Optional[Any] = model_patch_size UpperCAmelCase__ : Dict = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""") if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""") UpperCAmelCase__ : int = self.input_size // self.mask_patch_size UpperCAmelCase__ : List[Any] = self.mask_patch_size // self.model_patch_size UpperCAmelCase__ : Any = self.rand_size**2 UpperCAmelCase__ : int = int(np.ceil(self.token_count * self.mask_ratio)) def __call__( self): UpperCAmelCase__ : Optional[Any] = np.random.permutation(self.token_count)[: self.mask_count] UpperCAmelCase__ : List[str] = np.zeros(self.token_count , dtype=_lowerCamelCase) UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = mask.reshape((self.rand_size, self.rand_size)) UpperCAmelCase__ : Tuple = mask.repeat(self.scale , axis=0).repeat(self.scale , axis=1) return torch.tensor(mask.flatten()) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Any = torch.stack([example["""pixel_values"""] for example in examples] ) UpperCAmelCase__ : Union[str, Any] = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase__ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCAmelCase__ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase__ : Optional[int] = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase__ ) and data_args.train_val_split > 0.0: UpperCAmelCase__ : Tuple = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCAmelCase__ : Union[str, Any] = split["""train"""] UpperCAmelCase__ : Optional[Any] = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ : Any = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCamelCase__ ) elif model_args.model_name_or_path: UpperCAmelCase__ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: UpperCAmelCase__ : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCamelCase__ , """decoder_type""" ): UpperCAmelCase__ : Tuple = """simmim""" # adapt config UpperCAmelCase__ : Dict = model_args.image_size if model_args.image_size is not None else config.image_size UpperCAmelCase__ : str = model_args.patch_size if model_args.patch_size is not None else config.patch_size UpperCAmelCase__ : List[Any] = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase__ : Tuple = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: UpperCAmelCase__ : str = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: UpperCAmelCase__ : Dict = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } UpperCAmelCase__ : int = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: UpperCAmelCase__ : Any = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCAmelCase__ : Dict = AutoModelForMaskedImageModeling.from_config(UpperCamelCase__ ) if training_args.do_train: UpperCAmelCase__ : str = ds["""train"""].column_names else: UpperCAmelCase__ : Optional[Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCAmelCase__ : Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCAmelCase__ : List[Any] = """image""" elif "img" in column_names: UpperCAmelCase__ : Dict = """img""" else: UpperCAmelCase__ : int = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py UpperCAmelCase__ : Any = Compose( [ Lambda(lambda UpperCamelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator UpperCAmelCase__ : Optional[int] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCamelCase__ ): UpperCAmelCase__ : Any = [transforms(UpperCamelCase__ ) for image in examples[image_column_name]] UpperCAmelCase__ : Dict = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCAmelCase__ : List[Any] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCAmelCase__ : Optional[int] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase__ ) # Initialize our trainer UpperCAmelCase__ : List[str] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: UpperCAmelCase__ : List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ : Any = last_checkpoint UpperCAmelCase__ : Tuple = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase__ : Tuple = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCamelCase__ ) trainer.save_metrics("""eval""" , UpperCamelCase__ ) # Write model card and (optionally) push to hub UpperCAmelCase__ : List[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) if __name__ == "__main__": main()
163
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _UpperCamelCase ( UpperCamelCase__ ): return x + 2 class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : List[str] = """x = 3""" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3}) UpperCAmelCase__ : Optional[int] = """x = y""" UpperCAmelCase__ : Optional[Any] = {"""y""": 5} UpperCAmelCase__ : Dict = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 5, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Any = """y = add_two(x)""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result is None assert "tried to execute add_two" in out.out def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """x = 3""" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """test_dict = {'x': x, 'y': add_two(x)}""" UpperCAmelCase__ : Any = {"""x""": 3} UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}}) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = """x = 3\ny = 5""" UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Dict = """text = f'This is x: {x}.'""" UpperCAmelCase__ : str = {"""x""": 3} UpperCAmelCase__ : Optional[Any] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """text""": """This is x: 3."""}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """if x <= 3:\n y = 2\nelse:\n y = 5""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 2}) UpperCAmelCase__ : Optional[int] = {"""x""": 8} UpperCAmelCase__ : int = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 8, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """test_list = [x, add_two(x)]""" UpperCAmelCase__ : int = {"""x""": 3} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) self.assertListEqual(_lowerCamelCase , [3, 5]) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_list""": [3, 5]}) def snake_case__ ( self): UpperCAmelCase__ : Tuple = """y = x""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 3}) def snake_case__ ( self): UpperCAmelCase__ : List[str] = """test_list = [x, add_two(x)]\ntest_list[1]""" UpperCAmelCase__ : Union[str, Any] = {"""x""": 3} UpperCAmelCase__ : int = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_list""": [3, 5]}) UpperCAmelCase__ : List[str] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" UpperCAmelCase__ : Any = {"""x""": 3} UpperCAmelCase__ : Dict = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}}) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = """x = 0\nfor i in range(3):\n x = i""" UpperCAmelCase__ : str = {} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""range""": range} , state=_lowerCamelCase) assert result == 2 self.assertDictEqual(_lowerCamelCase , {"""x""": 2, """i""": 2})
163
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _SCREAMING_SNAKE_CASE = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __snake_case : Tuple , __snake_case : Dict=7 , __snake_case : int=3 , __snake_case : List[Any]=18 , __snake_case : Optional[Any]=30 , __snake_case : List[Any]=4_00 , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=True , __snake_case : List[str]=True , __snake_case : Dict=None , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 20, """width""": 20} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = size snake_case = do_normalize snake_case = do_convert_rgb snake_case = [5_12, 10_24, 20_48, 40_96] snake_case = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def lowerCAmelCase ( self : Optional[int] )-> str: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase ( self : str )-> List[str]: snake_case = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" snake_case = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Tuple )-> str: snake_case = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase ( self : List[Any] )-> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : str )-> List[str]: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) ) def lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case = self.image_processor_tester.prepare_dummy_image() snake_case = self.image_processing_class(**self.image_processor_dict ) snake_case = 20_48 snake_case = image_processor(__snake_case , return_tensors="""pt""" , max_patches=__snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def lowerCAmelCase ( self : str )-> Optional[Any]: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : str )-> Any: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 snake_case = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__snake_case ): snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches snake_case = """Hello""" snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Union[str, Any] )-> List[str]: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Any )-> List[Any]: snake_case = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case = 3 @property def lowerCAmelCase ( self : Optional[int] )-> str: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : List[str] )-> int: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) ) def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Dict , _lowerCamelCase : CLIPSegForImageSegmentation , _lowerCamelCase : CLIPSegProcessor , _lowerCamelCase : AutoencoderKL , _lowerCamelCase : CLIPTextModel , _lowerCamelCase : CLIPTokenizer , _lowerCamelCase : UNetaDConditionModel , _lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowerCamelCase : StableDiffusionSafetyChecker , _lowerCamelCase : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: _snake_case = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) _snake_case = dict(scheduler.config ) _snake_case = 1 _snake_case = FrozenDict(snake_case__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: _snake_case = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) _snake_case = dict(scheduler.config ) _snake_case = True _snake_case = FrozenDict(snake_case__ ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=snake_case__ , segmentation_processor=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def lowercase ( self : str ): self.enable_attention_slicing(snake_case__ ) def lowercase ( self : List[str] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _snake_case = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase ( self : List[str] ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[Any] , _lowerCamelCase : Union[str, List[str]] , _lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , _lowerCamelCase : str , _lowerCamelCase : int = 512 , _lowerCamelCase : int = 512 , _lowerCamelCase : int = 50 , _lowerCamelCase : float = 7.5 , _lowerCamelCase : Optional[Union[str, List[str]]] = None , _lowerCamelCase : Optional[int] = 1 , _lowerCamelCase : float = 0.0 , _lowerCamelCase : Optional[torch.Generator] = None , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowerCamelCase : int = 1 , **_lowerCamelCase : Optional[int] , ): _snake_case = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) _snake_case = self.segmentation_model(**snake_case__ ) _snake_case = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _snake_case = self.numpy_to_pil(snake_case__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _snake_case = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , )
288
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_=1024 ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = [], [] _UpperCAmelCase = list(zip(snake_case_ , snake_case_ ) ) _UpperCAmelCase , _UpperCAmelCase = sorted_examples[0] def is_too_big(snake_case_ ): return tok(snake_case_ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _UpperCAmelCase = new_src + " " + src _UpperCAmelCase = new_tgt + " " + tgt if is_too_big(snake_case_ ) or is_too_big(snake_case_ ): # cant fit, finalize example finished_src.append(snake_case_ ) finished_tgt.append(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = src, tgt else: # can fit, keep adding _UpperCAmelCase , _UpperCAmelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(snake_case_ ) finished_tgt.append(snake_case_ ) return finished_src, finished_tgt def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = Path(snake_case_ ) save_path.mkdir(exist_ok=snake_case_ ) for split in ["train"]: _UpperCAmelCase , _UpperCAmelCase = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" _UpperCAmelCase = [x.rstrip() for x in Path(snake_case_ ).open().readlines()] _UpperCAmelCase = [x.rstrip() for x in Path(snake_case_ ).open().readlines()] _UpperCAmelCase , _UpperCAmelCase = pack_examples(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) print(f"""packed {split} split from {len(snake_case_ )} examples -> {len(snake_case_ )}.""" ) Path(save_path / f"""{split}.source""" ).open("w" ).write("\n".join(snake_case_ ) ) Path(save_path / f"""{split}.target""" ).open("w" ).write("\n".join(snake_case_ ) ) for split in ["val", "test"]: _UpperCAmelCase , _UpperCAmelCase = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(snake_case_ , save_path / f"""{split}.source""" ) shutil.copyfile(snake_case_ , save_path / f"""{split}.target""" ) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=snake_case_ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=snake_case_ , default=128 ) parser.add_argument("--data_dir" , type=snake_case_ ) parser.add_argument("--save_path" , type=snake_case_ ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(snake_case_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
133
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ShapEImgaImgPipeline lowerCamelCase__ = ['''image'''] lowerCamelCase__ = ['''image'''] lowerCamelCase__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowerCamelCase__ = False @property def __A ( self : Any ) -> Dict: return 32 @property def __A ( self : int ) -> str: return 32 @property def __A ( self : str ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : List[str] ) -> Union[str, Any]: return 8 @property def __A ( self : Dict ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE_ = CLIPVisionModel(__magic_name__ ) return model @property def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = CLIPImageProcessor( crop_size=224 , do_center_crop=__magic_name__ , do_normalize=__magic_name__ , do_resize=__magic_name__ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def __A ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_ = PriorTransformer(**__magic_name__ ) return model @property def __A ( self : Dict ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_ = ShapERenderer(**__magic_name__ ) return model def __A ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.dummy_prior SCREAMING_SNAKE_CASE_ = self.dummy_image_encoder SCREAMING_SNAKE_CASE_ = self.dummy_image_processor SCREAMING_SNAKE_CASE_ = self.dummy_renderer SCREAMING_SNAKE_CASE_ = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_024 , prediction_type="sample" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_ = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def __A ( self : int , __magic_name__ : int , __magic_name__ : int=0 ) -> Tuple: SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith("mps" ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def __A ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "cpu" SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : Optional[Any] ) -> str: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ = torch_device == "cpu" SCREAMING_SNAKE_CASE_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , ) def __A ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(__magic_name__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_ = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_ = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Any ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) SCREAMING_SNAKE_CASE_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) SCREAMING_SNAKE_CASE_ = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) SCREAMING_SNAKE_CASE_ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.Generator(device=__magic_name__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( __magic_name__ , generator=__magic_name__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
305
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCamelCase : Dict = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase__ : Dict = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCAmelCase__ : List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCAmelCase__ : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = ZeroShotClassificationPipeline( model=UpperCamelCase , tokenizer=UpperCamelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase__ (self : Any , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) # No kwarg lowercase__ = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__ = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase__ = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( UpperCamelCase , [ {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} for i in range(1 ) ] , ) lowercase__ = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( UpperCamelCase , [ {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCamelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(UpperCamelCase ): classifier(UpperCamelCase , candidate_labels='''politics''' ) with self.assertRaises(UpperCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(UpperCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=UpperCamelCase ) with self.assertRaises(UpperCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(UpperCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=UpperCamelCase , ) self.run_entailment_id(UpperCamelCase ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : Pipeline ): '''simple docstring''' lowercase__ = zero_shot_classifier.model.config lowercase__ = config.labelaid lowercase__ = zero_shot_classifier.entailment_id lowercase__ = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowercase__ = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__ = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__ = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowercase__ = original_labelaid self.assertEqual(UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowercase__ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowercase__ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
2
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase = result + left + right return input_list def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) <= 1: return input_list UpperCamelCase = list(UpperCamelCase_ ) # iteration for two-way merging UpperCamelCase = 2 while p <= len(UpperCamelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = i + p - 1 UpperCamelCase = (low + high + 1) // 2 UpperCamelCase = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # final merge of last two parts if p * 2 >= len(UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
343
0
"""simple docstring""" from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """dandelin/vilt-b32-finetuned-vqa""" SCREAMING_SNAKE_CASE__ = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) SCREAMING_SNAKE_CASE__ = """image_qa""" SCREAMING_SNAKE_CASE__ = AutoProcessor SCREAMING_SNAKE_CASE__ = AutoModelForVisualQuestionAnswering SCREAMING_SNAKE_CASE__ = ["""image""", """text"""] SCREAMING_SNAKE_CASE__ = ["""text"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""vision"""] ) super().__init__(*__a , **__a ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return self.pre_processor(__a , __a , return_tensors="""pt""" ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): with torch.no_grad(): return self.model(**__a ).logits def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
362
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCamelCase_ = ['''text''', '''image''', '''audio'''] def __magic_name__ ( __a : List[str] ): '''simple docstring''' UpperCamelCase__ = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(__a , __a ): inputs.append(create_inputs(__a ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def __magic_name__ ( __a : List ): '''simple docstring''' UpperCamelCase__ = [] for output in outputs: if isinstance(__a , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__a , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__a , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class __A: """simple docstring""" def UpperCAmelCase_ (self ): self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) UpperCamelCase__ = self.tool.inputs for _input in inputs: if isinstance(_input , SCREAMING_SNAKE_CASE_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCamelCase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ (self ): UpperCamelCase__ = create_inputs(self.tool.inputs ) UpperCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE_ ) # There is a single output if len(self.tool.outputs ) == 1: UpperCamelCase__ = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE_ ) , self.tool.outputs ) def UpperCAmelCase_ (self ): self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = create_inputs(self.tool.inputs ) UpperCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(self.tool.outputs ) ) for output, output_type in zip(SCREAMING_SNAKE_CASE_ , self.tool.outputs ): UpperCamelCase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = create_inputs(self.tool.inputs ) UpperCamelCase__ = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE_ , self.tool.inputs ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(self.tool.outputs ) )
178
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) __UpperCamelCase = Features({"text": Value("string" )} ) __UpperCamelCase = Features({"labels": ClassLabel} ) __UpperCamelCase = "text" __UpperCamelCase = "labels" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Optional[Any]): '''simple docstring''' if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.') if not isinstance(features[self.label_column] , lowercase_): raise ValueError(F'Column {self.label_column} is not a ClassLabel.') SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(self) SCREAMING_SNAKE_CASE_ : Tuple = self.label_schema.copy() SCREAMING_SNAKE_CASE_ : Any = features[self.label_column] SCREAMING_SNAKE_CASE_ : Any = label_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
91
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def _A (__a , __a ) -> Tuple: """simple docstring""" try: with open(__a , '''rb''' ) as flax_state_f: SCREAMING_SNAKE_CASE_ : Optional[int] = from_bytes(__a , flax_state_f.read() ) except UnpicklingError as e: try: with open(__a ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(__a , __a ) def _A (__a , __a ) -> Tuple: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE_ : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda __a : x.dtype == jnp.bfloataa , __a ) ).values() if any(__a ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jax.tree_util.tree_map( lambda __a : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __a ) SCREAMING_SNAKE_CASE_ : int = '''''' SCREAMING_SNAKE_CASE_ : str = flatten_dict(__a , sep='''.''' ) SCREAMING_SNAKE_CASE_ : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE_ : Any = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE_ : Any = flax_key_tuple_array[:-1] + ['''weight'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.transpose(__a , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE_ : Tuple = flax_key_tuple_array[:-1] + ['''weight'''] SCREAMING_SNAKE_CASE_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE_ : Optional[int] = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__a ): SCREAMING_SNAKE_CASE_ : List[str] = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = '''.'''.join(__a ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(__a ) if not isinstance(__a , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.from_numpy(__a ) # remove from missing keys missing_keys.remove(__a ) else: # weight is not expected by PyTorch model unexpected_keys.append(__a ) pt_model.load_state_dict(__a ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE_ : int = list(__a ) if len(__a ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(__a ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
91
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase__ ( _a : List[str] ): snake_case_ : Union[str, Any] = fname.split(os.path.sep )[-1] return re.search(R"^(.*)_\d+\.jpg$" , _a ).groups()[0] class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> str: snake_case_ : Any = file_names snake_case_ : Tuple = image_transform snake_case_ : List[str] = label_to_id def __len__( self ) -> Tuple: return len(self.file_names ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ : List[str] = self.file_names[idx] snake_case_ : List[str] = PIL.Image.open(_SCREAMING_SNAKE_CASE ) snake_case_ : Any = raw_image.convert("RGB" ) if self.image_transform is not None: snake_case_ : Any = self.image_transform(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = extract_label(_SCREAMING_SNAKE_CASE ) if self.label_to_id is not None: snake_case_ : Dict = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase__ ( _a : Tuple , _a : str ): # Initialize accelerator if args.with_tracking: snake_case_ : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: snake_case_ : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Any = config["lr"] snake_case_ : Tuple = int(config["num_epochs"] ) snake_case_ : Any = int(config["seed"] ) snake_case_ : Union[str, Any] = int(config["batch_size"] ) snake_case_ : Any = config["image_size"] if not isinstance(_a , (list, tuple) ): snake_case_ : Optional[int] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": snake_case_ : str = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): snake_case_ : int = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: snake_case_ : List[Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: snake_case_ : Tuple = os.path.split(_a )[-1].split("." )[0] accelerator.init_trackers(_a , _a ) # Grab all the image filenames snake_case_ : Dict = [os.path.join(args.data_dir , _a ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences snake_case_ : Any = [extract_label(_a ) for fname in file_names] snake_case_ : List[Any] = list(set(_a ) ) id_to_label.sort() snake_case_ : Optional[Any] = {lbl: i for i, lbl in enumerate(_a )} # Set the seed before splitting the data. np.random.seed(_a ) torch.manual_seed(_a ) torch.cuda.manual_seed_all(_a ) # Split our filenames between train and validation snake_case_ : Any = np.random.permutation(len(_a ) ) snake_case_ : List[Any] = int(0.8 * len(_a ) ) snake_case_ : str = random_perm[:cut] snake_case_ : int = random_perm[cut:] # For training we use a simple RandomResizedCrop snake_case_ : str = Compose([RandomResizedCrop(_a , scale=(0.5, 1.0) ), ToTensor()] ) snake_case_ : Tuple = PetsDataset( [file_names[i] for i in train_split] , image_transform=_a , label_to_id=_a ) # For evaluation, we use a deterministic Resize snake_case_ : List[str] = Compose([Resize(_a ), ToTensor()] ) snake_case_ : Tuple = PetsDataset([file_names[i] for i in eval_split] , image_transform=_a , label_to_id=_a ) # Instantiate dataloaders. snake_case_ : Tuple = DataLoader(_a , shuffle=_a , batch_size=_a , num_workers=4 ) snake_case_ : Tuple = DataLoader(_a , shuffle=_a , batch_size=_a , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Any = create_model("resnet50d" , pretrained=_a , num_classes=len(_a ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Union[str, Any] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): snake_case_ : Any = False for param in model.get_classifier().parameters(): snake_case_ : Any = True # We normalize the batches of images to be a bit faster. snake_case_ : Any = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) snake_case_ : List[Any] = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer snake_case_ : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler snake_case_ : Union[str, Any] = OneCycleLR(optimizer=_a , max_lr=_a , epochs=_a , steps_per_epoch=len(_a ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = accelerator.prepare( _a , _a , _a , _a , _a ) # We need to keep track of how many total steps we have iterated over snake_case_ : Union[str, Any] = 0 # We also need to keep track of the starting epoch so files are named properly snake_case_ : List[Any] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) snake_case_ : int = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint snake_case_ : str = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) snake_case_ : List[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` snake_case_ : int = os.path.splitext(_a )[0] if "epoch" in training_difference: snake_case_ : Optional[Any] = int(training_difference.replace("epoch_" , "" ) ) + 1 snake_case_ : Any = None else: snake_case_ : List[str] = int(training_difference.replace("step_" , "" ) ) snake_case_ : Union[str, Any] = resume_step // len(_a ) resume_step -= starting_epoch * len(_a ) # Now we train the model for epoch in range(_a , _a ): model.train() if args.with_tracking: snake_case_ : Dict = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step snake_case_ : List[str] = accelerator.skip_first_batches(_a , _a ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader snake_case_ : Optional[int] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case_ : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case_ : Optional[int] = (batch["image"] - mean) / std snake_case_ : str = model(_a ) snake_case_ : List[str] = torch.nn.functional.cross_entropy(_a , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_a , _a ): snake_case_ : int = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: snake_case_ : Optional[int] = os.path.join(args.output_dir , _a ) accelerator.save_state(_a ) model.eval() snake_case_ : Optional[Any] = 0 snake_case_ : List[str] = 0 for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case_ : int = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case_ : Tuple = (batch["image"] - mean) / std with torch.no_grad(): snake_case_ : List[str] = model(_a ) snake_case_ : Optional[int] = outputs.argmax(dim=-1 ) snake_case_ , snake_case_ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["label"]) ) snake_case_ : str = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() snake_case_ : List[str] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { "accuracy": 1_00 * eval_metric, "train_loss": total_loss.item() / len(_a ), "epoch": epoch, } , step=_a , ) if checkpointing_steps == "epoch": snake_case_ : List[str] = F'''epoch_{epoch}''' if args.output_dir is not None: snake_case_ : Optional[int] = os.path.join(args.output_dir , _a ) accelerator.save_state(_a ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase__ ( ): snake_case_ : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=_a , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=_a , default=_a , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=_a , default=_a , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=_a , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_a , default=_a , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_a , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) snake_case_ : Tuple = parser.parse_args() snake_case_ : Any = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 2_24} training_function(_a , _a ) if __name__ == "__main__": main()
36
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase : Any = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=18 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" A : Any = size if size is not None else {'''height''': 20, '''width''': 20} A : List[Any] = parent A : Dict = batch_size A : Optional[Any] = num_channels A : str = image_size A : List[Any] = min_resolution A : Optional[int] = max_resolution A : Union[str, Any] = size A : Tuple = do_normalize A : Tuple = do_convert_rgb A : Union[str, Any] = [512, 1024, 2048, 4096] A : Optional[int] = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __lowerCAmelCase ( self ) -> str: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : str = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' A : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A ( __snake_case , unittest.TestCase ): __magic_name__ = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Optional[int] = PixaStructImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.image_processor_tester.prepare_dummy_image() A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) A : int = 2048 A : Tuple = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1e-3 , rtol=1e-3 ) ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : List[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 A : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE ): A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches A : Any = '''Hello''' A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) A : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : str = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input A : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Dict = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A ( __snake_case , unittest.TestCase ): __magic_name__ = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Union[str, Any] = PixaStructImageProcessingTester(self , num_channels=4 ) A : Optional[Any] = 3 @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : int = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
3
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' ) A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": lowercase : str = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 20_18, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
3
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Dict = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''realm''' def __init__( self : Dict , __magic_name__ : str=30_522 , __magic_name__ : List[str]=768 , __magic_name__ : str=128 , __magic_name__ : List[Any]=12 , __magic_name__ : List[str]=12 , __magic_name__ : List[str]=8 , __magic_name__ : Any=3_072 , __magic_name__ : str="gelu_new" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=512 , __magic_name__ : Tuple=2 , __magic_name__ : int=0.02 , __magic_name__ : Union[str, Any]=1e-12 , __magic_name__ : Union[str, Any]=256 , __magic_name__ : Optional[Any]=10 , __magic_name__ : Optional[int]=1e-3 , __magic_name__ : Dict=5 , __magic_name__ : Dict=320 , __magic_name__ : List[Any]=13_353_718 , __magic_name__ : Optional[Any]=5_000 , __magic_name__ : List[Any]=1 , __magic_name__ : Optional[int]=0 , __magic_name__ : Optional[Any]=2 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) # Common config SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = retriever_proj_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_candidates SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ = span_hidden_size SCREAMING_SNAKE_CASE_ = max_span_width SCREAMING_SNAKE_CASE_ = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ = reader_beam_size SCREAMING_SNAKE_CASE_ = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ = num_block_records SCREAMING_SNAKE_CASE_ = searcher_beam_size
305
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : str = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_text_model''' def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=30_522 , __magic_name__ : Tuple=768 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=1e-12 , __magic_name__ : str=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : Optional[Any]=True , **__magic_name__ : Tuple , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id @classmethod def __A ( cls : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_vision_model''' def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 600 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_560 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(__magic_name__ ) * 4 @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=640 , __magic_name__ : Any=1.0 , __magic_name__ : Dict=0.02 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = AlignTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = AlignVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = temperature_init_value SCREAMING_SNAKE_CASE_ = initializer_range @classmethod def __A ( cls : List[str] , __magic_name__ : AlignTextConfig , __magic_name__ : AlignVisionConfig , **__magic_name__ : Tuple ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
1
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
lowercase__ :List[str] = 6_5521 def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = 1 lowercase = 0 for plain_chr in plain_text: lowercase = (a + ord(lowerCAmelCase__ )) % MOD_ADLER lowercase = (b + a) % MOD_ADLER return (b << 16) | a
97
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ :Optional[int] = logging.get_logger(__name__) lowercase__ :List[Any] = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : List[Any] ='''camembert''' def __init__( self ,A__=3_0_5_2_2 ,A__=7_6_8 ,A__=1_2 ,A__=1_2 ,A__=3_0_7_2 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=1 ,A__=0 ,A__=2 ,A__="absolute" ,A__=True ,A__=None ,**A__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = classifier_dropout class lowercase ( SCREAMING_SNAKE_CASE__ ): @property def A__ ( self): if self.task == "multiple-choice": lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
97
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = 10 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = [1, 2, 3, 4] UpperCamelCase__ :Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase__ :Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase__ :Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCamelCase__ , UpperCamelCase__ :int = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = '''''' UpperCamelCase__ , UpperCamelCase__ :List[str] = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCamelCase__ , UpperCamelCase__ :Tuple = process_story(UpperCamelCase_ ) UpperCamelCase__ :Any = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :str = ['''It was the best of times.'''] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = torch.tensor([1, 2, 3, 4] ) UpperCamelCase__ :Optional[int] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCamelCase__ :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCamelCase__ :Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = 101 UpperCamelCase__ :List[str] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCamelCase__ :Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCamelCase__ :Any = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
97
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCAmelCase ( a_): return (data["data"], data["target"]) def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = XGBRegressor(verbosity=0 , random_state=42) xgb.fit(a_ , a_) # Predict target for test data snake_case_ = xgb.predict(a_) snake_case_ = predictions.reshape(len(a_) , 1) return predictions def __UpperCAmelCase ( ): snake_case_ = fetch_california_housing() snake_case_ , snake_case_ = data_handling(a_) snake_case_ , snake_case_ , snake_case_ , snake_case_ = train_test_split( a_ , a_ , test_size=0.25 , random_state=1) snake_case_ = xgboost(a_ , a_ , a_) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(a_ , a_)}''') print(f'''Mean Square Error : {mean_squared_error(a_ , a_)}''') if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
178
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A ( _lowerCamelCase ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A ( ): '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" _lowerCAmelCase : Optional[int] = [1, 2, 3] with pytest.raises(_lowerCamelCase ): with parallel_backend("unsupported backend" ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=2 ) with pytest.raises(_lowerCamelCase ): with parallel_backend("unsupported backend" ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = [1, 2] _lowerCAmelCase : Tuple = {"a": 1, "b": 2} _lowerCAmelCase : Dict = {"a": [1, 2], "b": [3, 4]} _lowerCAmelCase : Optional[int] = {"a": {"1": 1}, "b": 2} _lowerCAmelCase : List[Any] = {"a": 1, "b": 2, "c": 3, "d": 4} _lowerCAmelCase : List[Any] = [2, 3] _lowerCAmelCase : Any = {"a": 2, "b": 3} _lowerCAmelCase : Any = {"a": [2, 3], "b": [4, 5]} _lowerCAmelCase : List[Any] = {"a": {"1": 2}, "b": 3} _lowerCAmelCase : List[str] = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _snake_case = sys.version_info >= (3, 10) def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = field(default='toto' , metadata={'help': 'help message'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = None class UpperCAmelCase_ ( a): lowerCamelCase__ = 'titi' lowerCamelCase__ = 'toto' class UpperCAmelCase_ ( a): lowerCamelCase__ = 'titi' lowerCamelCase__ = 'toto' lowerCamelCase__ = 42 @dataclass class UpperCAmelCase_ : lowerCamelCase__ = "toto" def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BasicEnum(self.foo) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = "toto" def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = MixedTypeEnum(self.foo) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = None lowerCamelCase__ = field(default=a , metadata={'help': 'help message'}) lowerCamelCase__ = None lowerCamelCase__ = list_field(default=[]) lowerCamelCase__ = list_field(default=[]) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = list_field(default=[]) lowerCamelCase__ = list_field(default=[1, 2, 3]) lowerCamelCase__ = list_field(default=['Hallo', 'Bonjour', 'Hello']) lowerCamelCase__ = list_field(default=[0.1, 0.2, 0.3]) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field() lowerCamelCase__ = field() lowerCamelCase__ = field() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = BasicEnum(self.required_enum) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = field() lowerCamelCase__ = None lowerCamelCase__ = field(default='toto' , metadata={'help': 'help message'}) lowerCamelCase__ = list_field(default=['Hallo', 'Bonjour', 'Hello']) if is_python_no_less_than_3_10: @dataclass class UpperCAmelCase_ : lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = None @dataclass class UpperCAmelCase_ : lowerCamelCase__ = None lowerCamelCase__ = field(default=a , metadata={'help': 'help message'}) lowerCamelCase__ = None lowerCamelCase__ = list_field(default=[]) lowerCamelCase__ = list_field(default=[]) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a, __a): '''simple docstring''' self.assertEqual(len(a._actions), len(b._actions)) for x, y in zip(a._actions, b._actions): _lowerCAmelCase : int = {k: v for k, v in vars(__a).items() if k != "container"} _lowerCAmelCase : Dict = {k: v for k, v in vars(__a).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices", __a) and yy.get("choices", __a): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__a), yy["type"](__a)) del xx["type"], yy["type"] self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = HfArgumentParser(__a) _lowerCAmelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("--foo", type=__a, required=__a) expected.add_argument("--bar", type=__a, required=__a) expected.add_argument("--baz", type=__a, required=__a) expected.add_argument("--flag", type=__a, default=__a, const=__a, nargs="?") self.argparsersEqual(__a, __a) _lowerCAmelCase : int = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((_lowerCAmelCase) , ) : str = parser.parse_args_into_dataclasses(__a, look_for_args_file=__a) self.assertFalse(example.flag) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = HfArgumentParser(__a) _lowerCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("--foo", default=42, type=__a) expected.add_argument("--baz", default="toto", type=__a, help="help message") self.argparsersEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument("--foo", type=__a, default=__a, const=__a, nargs="?") expected.add_argument("--baz", type=__a, default=__a, const=__a, nargs="?") # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz", action="store_false", default=__a, dest="baz") expected.add_argument("--opt", type=__a, default=__a) _lowerCAmelCase : List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__a) for dataclass_type in dataclass_types: _lowerCAmelCase : Any = HfArgumentParser(__a) self.argparsersEqual(__a, __a) _lowerCAmelCase : int = parser.parse_args([]) self.assertEqual(__a, Namespace(foo=__a, baz=__a, opt=__a)) _lowerCAmelCase : int = parser.parse_args(["--foo", "--no_baz"]) self.assertEqual(__a, Namespace(foo=__a, baz=__a, opt=__a)) _lowerCAmelCase : Optional[int] = parser.parse_args(["--foo", "--baz"]) self.assertEqual(__a, Namespace(foo=__a, baz=__a, opt=__a)) _lowerCAmelCase : Dict = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"]) self.assertEqual(__a, Namespace(foo=__a, baz=__a, opt=__a)) _lowerCAmelCase : str = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"]) self.assertEqual(__a, Namespace(foo=__a, baz=__a, opt=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = HfArgumentParser(__a) _lowerCAmelCase : str = argparse.ArgumentParser() expected.add_argument( "--foo", default="toto", choices=["titi", "toto", 42], type=make_choice_type_function(["titi", "toto", 42]), ) self.argparsersEqual(__a, __a) _lowerCAmelCase : str = parser.parse_args([]) self.assertEqual(args.foo, "toto") _lowerCAmelCase : Any = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.toto) _lowerCAmelCase : Optional[int] = parser.parse_args(["--foo", "titi"]) self.assertEqual(args.foo, "titi") _lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses(["--foo", "titi"])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.titi) _lowerCAmelCase : Union[str, Any] = parser.parse_args(["--foo", "42"]) self.assertEqual(args.foo, 42) _lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses(["--foo", "42"])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.fourtytwo) def snake_case__ ( self): '''simple docstring''' @dataclass class UpperCAmelCase_ : lowerCamelCase__ = "toto" _lowerCAmelCase : Tuple = HfArgumentParser(__a) _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( "--foo", default="toto", choices=("titi", "toto", 42), type=make_choice_type_function(["titi", "toto", 42]), ) self.argparsersEqual(__a, __a) _lowerCAmelCase : Any = parser.parse_args([]) self.assertEqual(args.foo, "toto") _lowerCAmelCase : Optional[Any] = parser.parse_args(["--foo", "titi"]) self.assertEqual(args.foo, "titi") _lowerCAmelCase : Optional[int] = parser.parse_args(["--foo", "42"]) self.assertEqual(args.foo, 42) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = HfArgumentParser(__a) _lowerCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("--foo_int", nargs="+", default=[], type=__a) expected.add_argument("--bar_int", nargs="+", default=[1, 2, 3], type=__a) expected.add_argument("--foo_str", nargs="+", default=["Hallo", "Bonjour", "Hello"], type=__a) expected.add_argument("--foo_float", nargs="+", default=[0.1, 0.2, 0.3], type=__a) self.argparsersEqual(__a, __a) _lowerCAmelCase : Optional[Any] = parser.parse_args([]) self.assertEqual( __a, Namespace(foo_int=[], bar_int=[1, 2, 3], foo_str=["Hallo", "Bonjour", "Hello"], foo_float=[0.1, 0.2, 0.3]), ) _lowerCAmelCase : Optional[Any] = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split()) self.assertEqual(__a, Namespace(foo_int=[1], bar_int=[2, 3], foo_str=["a", "b", "c"], foo_float=[0.1, 0.7])) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument("--foo", default=__a, type=__a) expected.add_argument("--bar", default=__a, type=__a, help="help message") expected.add_argument("--baz", default=__a, type=__a) expected.add_argument("--ces", nargs="+", default=[], type=__a) expected.add_argument("--des", nargs="+", default=[], type=__a) _lowerCAmelCase : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__a) for dataclass_type in dataclass_types: _lowerCAmelCase : Tuple = HfArgumentParser(__a) self.argparsersEqual(__a, __a) _lowerCAmelCase : int = parser.parse_args([]) self.assertEqual(__a, Namespace(foo=__a, bar=__a, baz=__a, ces=[], des=[])) _lowerCAmelCase : List[Any] = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split()) self.assertEqual(__a, Namespace(foo=12, bar=3.14, baz="42", ces=["a", "b", "c"], des=[1, 2, 3])) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = HfArgumentParser(__a) _lowerCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("--required_list", nargs="+", type=__a, required=__a) expected.add_argument("--required_str", type=__a, required=__a) expected.add_argument( "--required_enum", type=make_choice_type_function(["titi", "toto"]), choices=["titi", "toto"], required=__a, ) self.argparsersEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser(__a) _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument("--foo", type=__a, required=__a) expected.add_argument( "--required_enum", type=make_choice_type_function(["titi", "toto"]), choices=["titi", "toto"], required=__a, ) expected.add_argument("--opt", type=__a, default=__a) expected.add_argument("--baz", default="toto", type=__a, help="help message") expected.add_argument("--foo_str", nargs="+", default=["Hallo", "Bonjour", "Hello"], type=__a) self.argparsersEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = HfArgumentParser(__a) _lowerCAmelCase : Tuple = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } _lowerCAmelCase : List[str] = parser.parse_dict(__a)[0] _lowerCAmelCase : Optional[int] = BasicExample(**__a) self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = HfArgumentParser(__a) _lowerCAmelCase : Optional[int] = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__a, parser.parse_dict, __a, allow_extra_keys=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = HfArgumentParser(__a) _lowerCAmelCase : Tuple = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Dict = os.path.join(__a, "temp_json") os.mkdir(__a) with open(temp_local_path + ".json", "w+") as f: json.dump(__a, __a) _lowerCAmelCase : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + ".json"))[0] _lowerCAmelCase : str = BasicExample(**__a) self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = HfArgumentParser(__a) _lowerCAmelCase : int = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Any = os.path.join(__a, "temp_yaml") os.mkdir(__a) with open(temp_local_path + ".yaml", "w+") as f: yaml.dump(__a, __a) _lowerCAmelCase : str = parser.parse_yaml_file(Path(temp_local_path + ".yaml"))[0] _lowerCAmelCase : Optional[int] = BasicExample(**__a) self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = HfArgumentParser(__a) self.assertIsNotNone(__a)
36
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( a): def __get__( self, __a, __a=None): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") _lowerCAmelCase : List[Any] = "__cached_" + self.fget.__name__ _lowerCAmelCase : Dict = getattr(__a, __a, __a) if cached is None: _lowerCAmelCase : str = self.fget(__a) setattr(__a, __a, __a) return cached def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def A ( _lowerCamelCase ): '''simple docstring''' if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase , np.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return isinstance(_lowerCamelCase , np.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return _is_numpy(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import torch return isinstance(_lowerCamelCase , torch.Tensor ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import torch return isinstance(_lowerCamelCase , torch.device ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import torch if isinstance(_lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase , torch.dtype ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import tensorflow as tf return isinstance(_lowerCamelCase , tf.Tensor ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase , jnp.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = fields(self) # Safety and consistency checks if not len(__a): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") _lowerCAmelCase : Dict = getattr(self, class_fields[0].name) _lowerCAmelCase : str = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(__a): if isinstance(__a, __a): _lowerCAmelCase : Tuple = first_field.items() _lowerCAmelCase : Dict = True else: try: _lowerCAmelCase : Dict = iter(__a) _lowerCAmelCase : Any = True except TypeError: _lowerCAmelCase : Any = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__a): if ( not isinstance(__a, (list, tuple)) or not len(__a) == 2 or not isinstance(element[0], __a) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowerCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value).") break setattr(self, element[0], element[1]) if element[1] is not None: _lowerCAmelCase : Any = element[1] elif first_field is not None: _lowerCAmelCase : Any = first_field else: for field in class_fields: _lowerCAmelCase : Dict = getattr(self, field.name) if v is not None: _lowerCAmelCase : Union[str, Any] = v def __delitem__( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__( self, __a): '''simple docstring''' if isinstance(__a, __a): _lowerCAmelCase : Optional[int] = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self, __a, __a): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__a, __a) super().__setattr__(__a, __a) def __setitem__( self, __a, __a): '''simple docstring''' super().__setitem__(__a, __a) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__a, __a) def snake_case__ ( self): '''simple docstring''' return tuple(self[k] for k in self.keys()) class UpperCAmelCase_ ( a , a): @classmethod def snake_case__ ( cls, __a): '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}") class UpperCAmelCase_ ( a): lowerCamelCase__ = 'longest' lowerCamelCase__ = 'max_length' lowerCamelCase__ = 'do_not_pad' class UpperCAmelCase_ ( a): lowerCamelCase__ = 'pt' lowerCamelCase__ = 'tf' lowerCamelCase__ = 'np' lowerCamelCase__ = 'jax' class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = context_managers _lowerCAmelCase : Dict = ExitStack() def __enter__( self): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__a) def __exit__( self, *__a, **__a): '''simple docstring''' self.stack.__exit__(*__a, **__a) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = infer_framework(_lowerCamelCase ) if framework == "tf": _lowerCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : str = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = model_class.__name__ _lowerCAmelCase : Optional[Any] = infer_framework(_lowerCamelCase ) if framework == "tf": _lowerCAmelCase : Dict = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( _lowerCamelCase , _lowerCamelCase = "" , _lowerCamelCase = "." ): '''simple docstring''' def _flatten_dict(_lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase="." ): for k, v in d.items(): _lowerCAmelCase : Dict = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase , _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) @contextmanager def A ( _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase , axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase ) else: raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase , _lowerCamelCase ) else: raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase ): '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key, value in auto_map.items(): if isinstance(_lowerCamelCase , (tuple, list) ): _lowerCAmelCase : List[Any] = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: _lowerCAmelCase : Tuple = F"{repo_id}--{value}" return auto_map def A ( _lowerCamelCase ): '''simple docstring''' for base_class in inspect.getmro(_lowerCamelCase ): _lowerCAmelCase : Tuple = base_class.__module__ _lowerCAmelCase : int = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
36
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'luke' def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
330
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Any = DebertaVaTokenizer A__ : Dict = DebertaVaTokenizerFast A__ : Optional[int] = True A__ : int = True def A__ ( self: List[Any] ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : int = DebertaVaTokenizer(lowerCamelCase_ ,unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self: List[Any] ,lowerCamelCase_: Tuple ) -> Dict: UpperCAmelCase_ : Optional[Any] = """this is a test""" UpperCAmelCase_ : Optional[Any] = """this is a test""" return input_text, output_text def A__ ( self: Any ) -> int: UpperCAmelCase_ : Dict = """<pad>""" UpperCAmelCase_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) ,lowerCamelCase_ ) def A__ ( self: Dict ) -> str: UpperCAmelCase_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<pad>""" ) self.assertEqual(vocab_keys[1] ,"""<unk>""" ) self.assertEqual(vocab_keys[-1] ,"""[PAD]""" ) self.assertEqual(len(lowerCamelCase_ ) ,30001 ) def A__ ( self: str ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size ,30000 ) def A__ ( self: Optional[int] ) -> Union[str, Any]: # fmt: off UpperCAmelCase_ : Optional[int] = """ \tHeLLo!how \n Are yoU? """ UpperCAmelCase_ : Optional[int] = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCAmelCase_ : List[Any] = DebertaVaTokenizer(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = DebertaVaTokenizerFast(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self: Optional[int] ) -> Dict: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self: Any ) -> Optional[int]: pass def A__ ( self: Optional[Any] ) -> Optional[int]: # fmt: off UpperCAmelCase_ : Tuple = """I was born in 92000, and this is falsé.""" UpperCAmelCase_ : Optional[int] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCAmelCase_ : Optional[int] = DebertaVaTokenizer(lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = DebertaVaTokenizerFast(lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> List[str]: # fmt: off UpperCAmelCase_ : Dict = """I was born in 92000, and this is falsé.""" UpperCAmelCase_ : Optional[Any] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCAmelCase_ : List[str] = DebertaVaTokenizer(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[str] = DebertaVaTokenizerFast(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Union[str, Any]: # fmt: off UpperCAmelCase_ : Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase_ : Tuple = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCAmelCase_ : int = DebertaVaTokenizer(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : str = DebertaVaTokenizerFast(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: int ) -> int: # fmt: off UpperCAmelCase_ : int = """I was born in 92000, and this is falsé.""" UpperCAmelCase_ : Union[str, Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCAmelCase_ : Any = DebertaVaTokenizer(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : int = DebertaVaTokenizerFast(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Tuple ) -> Tuple: # fmt: off UpperCAmelCase_ : Any = """ \tHeLLo!how \n Are yoU? """ UpperCAmelCase_ : Union[str, Any] = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCAmelCase_ : Tuple = DebertaVaTokenizer(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Any = DebertaVaTokenizerFast(lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,split_by_punct=lowerCamelCase_ ) UpperCAmelCase_ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : int = self.get_rust_tokenizer() UpperCAmelCase_ : Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_rust_tokenizer() UpperCAmelCase_ : Optional[Any] = tokenizer.encode(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : str = """This is a test""" UpperCAmelCase_ : Dict = [13, 1, 4398, 25, 21, 1289] UpperCAmelCase_ : Tuple = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCAmelCase_ : str = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCAmelCase_ : Any = DebertaVaTokenizer(lowerCamelCase_ ,keep_accents=lowerCamelCase_ ) UpperCAmelCase_ : str = DebertaVaTokenizerFast(lowerCamelCase_ ,keep_accents=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : str = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Any = rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Dict = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Dict = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) # fmt: off UpperCAmelCase_ : Optional[int] = """I was born in 92000, and this is falsé.""" UpperCAmelCase_ : Optional[int] = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] UpperCAmelCase_ : Dict = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCAmelCase_ : Union[str, Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCAmelCase_ : Any = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : str = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = DebertaVaTokenizer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode("""sequence builders""" ) UpperCAmelCase_ : Dict = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] ,lowerCamelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] ,lowerCamelCase_ ,) @slow def A__ ( self: Tuple ) -> Dict: # fmt: off UpperCAmelCase_ : Tuple = {"""input_ids""": [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ ,model_name="""microsoft/deberta-v2-xlarge""" ,revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" ,)
59
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[int] = "roformer" def __init__( self: Optional[int] ,lowerCamelCase_: Tuple=50000 ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: List[Any]=768 ,lowerCamelCase_: List[Any]=12 ,lowerCamelCase_: Optional[int]=12 ,lowerCamelCase_: Optional[Any]=3072 ,lowerCamelCase_: int="gelu" ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: Any=1536 ,lowerCamelCase_: str=2 ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-12 ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: Any=False ,lowerCamelCase_: Union[str, Any]=True ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size if embedding_size is None else embedding_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = rotary_value UpperCAmelCase_ : str = use_cache class _snake_case ( __snake_case ): '''simple docstring''' @property def A__ ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase_ : Optional[Any] = {0: """batch""", 1: """sequence"""} UpperCAmelCase_ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
59
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case = logging.get_logger(__name__) @add_end_docstrings(A__ ) class lowercase ( A__ ): """simple docstring""" def __init__( self , **UpperCamelCase_ ): '''simple docstring''' super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(UpperCamelCase_ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' if "text_queries" in kwargs: UpperCamelCase__ :str = kwargs.pop('''text_queries''' ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): UpperCamelCase__ :List[Any] = {'''image''': image, '''candidate_labels''': candidate_labels} else: UpperCamelCase__ :Any = image UpperCamelCase__ :Optional[int] = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = {} if "threshold" in kwargs: UpperCamelCase__ :List[Any] = kwargs['''threshold'''] if "top_k" in kwargs: UpperCamelCase__ :Optional[Any] = kwargs['''top_k'''] return {}, {}, postprocess_params def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = load_image(inputs['''image'''] ) UpperCamelCase__ :Dict = inputs['''candidate_labels'''] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase__ :Optional[Any] = candidate_labels.split(''',''' ) UpperCamelCase__ :Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): UpperCamelCase__ :List[str] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) UpperCamelCase__ :Optional[int] = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = model_inputs.pop('''target_size''' ) UpperCamelCase__ :Optional[int] = model_inputs.pop('''candidate_label''' ) UpperCamelCase__ :List[Any] = model_inputs.pop('''is_last''' ) UpperCamelCase__ :str = self.model(**UpperCamelCase_ ) UpperCamelCase__ :str = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0.1 , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :str = [] for model_output in model_outputs: UpperCamelCase__ :Optional[int] = model_output['''candidate_label'''] UpperCamelCase__ :Union[str, Any] = BaseModelOutput(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): UpperCamelCase__ :Dict = outputs['''scores'''][index].item() UpperCamelCase__ :int = self._get_bounding_box(outputs['''boxes'''][index][0] ) UpperCamelCase__ :Optional[int] = {'''score''': score, '''label''': label, '''box''': box} results.append(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: UpperCamelCase__ :Tuple = results[:top_k] return results def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = box.int().tolist() UpperCamelCase__ :Union[str, Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
97
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a ( __a , __a ) -> Optional[int]: '''simple docstring''' assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a ( __a , __a , __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :Tuple = JsonDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a ( __a , __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase__ :Tuple = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :int = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def a ( __a , __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :int = tmp_path / '''cache''' UpperCamelCase__ :str = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCamelCase__ :Any = features.copy() if features else default_expected_features UpperCamelCase__ :Union[str, Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Any = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCamelCase__ :int = features.copy() UpperCamelCase__ :List[Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Optional[int] = tmp_path / '''cache''' UpperCamelCase__ :Dict = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a ( __a , __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :List[Any] = JsonDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_json_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def a ( __a , __a , __a ) -> Any: '''simple docstring''' if issubclass(__a , __a ): UpperCamelCase__ :Union[str, Any] = jsonl_path elif issubclass(__a , __a ): UpperCamelCase__ :int = [jsonl_path] UpperCamelCase__ :Dict = tmp_path / '''cache''' UpperCamelCase__ :Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :List[str] = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) def a ( __a , __a , __a=("train",) ) -> Optional[Any]: '''simple docstring''' assert isinstance(__a , __a ) for split in splits: UpperCamelCase__ :Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a ( __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = tmp_path / '''cache''' UpperCamelCase__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :str = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a ( __a , __a , __a ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = tmp_path / '''cache''' UpperCamelCase__ :Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Optional[int] = features.copy() if features else default_expected_features UpperCamelCase__ :str = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Dict = JsonDatasetReader({'''train''': jsonl_path} , features=__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a ( __a , __a , __a ) -> str: '''simple docstring''' if split: UpperCamelCase__ :List[str] = {split: jsonl_path} else: UpperCamelCase__ :int = '''train''' UpperCamelCase__ :int = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCamelCase__ :Any = tmp_path / '''cache''' UpperCamelCase__ :Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Any = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a ( __a ) -> Union[str, Any]: '''simple docstring''' return json.load(__a ) def a ( __a ) -> int: '''simple docstring''' return [json.loads(__a ) for line in buffer] class lowercase : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ ).write() buffer.seek(0 ) UpperCamelCase__ :List[Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ ).write() buffer.seek(0 ) UpperCamelCase__ :Optional[int] = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :Union[str, Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :int = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase_ ) == 10 def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' with pytest.raises(UpperCamelCase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' UpperCamelCase__ :Union[str, Any] = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , compression=UpperCamelCase_ ).write() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: UpperCamelCase__ :Dict = f.read() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: UpperCamelCase__ :int = f.read() assert exported_content == original_content
97
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: """simple docstring""" _validate_point(lowercase_ ) _validate_point(lowercase_ ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(lowercase_ , lowercase_ ) ) ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if point: if isinstance(lowercase_ , lowercase_ ): for item in point: if not isinstance(lowercase_ , (int, float) ): A__ = ( """Expected a list of numbers as input, found """ f"""{type(lowercase_ ).__name__}""" ) raise TypeError(lowercase_ ) else: A__ = f"""Expected a list of numbers as input, found {type(lowercase_ ).__name__}""" raise TypeError(lowercase_ ) else: raise ValueError('''Missing an input''' ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" _validate_point(lowercase_ ) _validate_point(lowercase_ ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(lowercase_ , lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
360
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase_ : '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any=14 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Tuple=99 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : int=4 , UpperCAmelCase__ : Optional[Any]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : Union[str, Any]=0.02 , ) ->Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = rotary_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = None A__ = vocab_size - 1 A__ = vocab_size - 1 A__ = vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]) ->Optional[int]: '''simple docstring''' A__ = 20 A__ = model_class_name(UpperCAmelCase__) A__ = model.init_cache(input_ids.shape[0] , UpperCAmelCase__) A__ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''') A__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) A__ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''') A__ = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase__ , ) A__ = model(UpperCAmelCase__) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int) ->Any: '''simple docstring''' A__ = 20 A__ = model_class_name(UpperCAmelCase__) A__ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) A__ = model.init_cache(input_ids.shape[0] , UpperCAmelCase__) A__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) A__ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''') A__ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") @require_flax class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () UpperCAmelCase__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = FlaxGPTJModelTester(self) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' for model_class_name in self.all_model_classes: A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' for model_class_name in self.all_model_classes: A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) @tooslow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''') A__ = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__) A__ = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''') A__ = False A__ = model.config.eos_token_id A__ = jax.jit(model.generate) A__ = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id).sequences A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ = getattr(UpperCAmelCase__ , UpperCAmelCase__) A__ , A__ = pt_inputs['''input_ids'''].shape A__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase__): A__ = 0 A__ = 1 A__ = 0 A__ = 1 A__ = pt_model_class(UpperCAmelCase__).eval() A__ = model_class(UpperCAmelCase__ , dtype=jnp.floataa) A__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase__) A__ = fx_state with torch.no_grad(): A__ = pt_model(**UpperCAmelCase__).to_tuple() A__ = fx_model(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase__) A__ = model_class.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__) A__ = fx_model_loaded(**UpperCAmelCase__).to_tuple() self.assertEqual( len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output_loaded, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ = getattr(UpperCAmelCase__ , UpperCAmelCase__) A__ = pt_model_class(UpperCAmelCase__).eval() A__ = model_class(UpperCAmelCase__ , dtype=jnp.floataa) A__ = load_flax_weights_in_pytorch_model(UpperCAmelCase__ , fx_model.params) A__ , A__ = pt_inputs['''input_ids'''].shape A__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase__): A__ = 0 A__ = 1 A__ = 0 A__ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A__ = pt_model(**UpperCAmelCase__).to_tuple() A__ = fx_model(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase__) A__ = pt_model_class.from_pretrained(UpperCAmelCase__ , from_flax=UpperCAmelCase__) with torch.no_grad(): A__ = pt_model_loaded(**UpperCAmelCase__).to_tuple() self.assertEqual( len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) @tooslow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''') A__ = model(np.ones((1, 1))) self.assertIsNotNone(UpperCAmelCase__)
231
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) A__ = str(bin(_lowerCAmelCase ) )[2:] # remove the leading "0b" A__ = str(bin(_lowerCAmelCase ) )[2:] A__ = max(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCAmelCase ) , b_binary.zfill(_lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
335
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCamelCase__ ( A_ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict: _lowerCAmelCase =parent _lowerCAmelCase =config_class _lowerCAmelCase =has_text_modality _lowerCAmelCase =kwargs _lowerCAmelCase =common_properties def __UpperCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.config_class(**self.inputs_dict ) _lowerCAmelCase =( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(snake_case__ , snake_case__ ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(snake_case__ ): try: setattr(snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual( getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=f'''`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(snake_case__ ): try: _lowerCAmelCase =self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=f'''`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __UpperCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =self.config_class(**self.inputs_dict ) _lowerCAmelCase =json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , snake_case__ ) def __UpperCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase =os.path.join(snake_case__ , """config.json""" ) config_first.to_json_file(snake_case__ ) _lowerCAmelCase =self.config_class.from_json_file(snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __UpperCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(snake_case__ ) _lowerCAmelCase =self.config_class.from_pretrained(snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.config_class(**self.inputs_dict ) _lowerCAmelCase ="test" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase =os.path.join(snake_case__ , snake_case__ ) config_first.save_pretrained(snake_case__ ) _lowerCAmelCase =self.config_class.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __UpperCAmelCase ( self ) -> int: _lowerCAmelCase =self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _lowerCAmelCase =3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __UpperCAmelCase ( self ) -> List[Any]: if self.config_class.is_composition: return _lowerCAmelCase =self.config_class() self.parent.assertIsNotNone(snake_case__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =copy.deepcopy(snake_case__ ) _lowerCAmelCase =self.config_class(**snake_case__ ) _lowerCAmelCase =[] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(snake_case__ , snake_case__ ) != value: wrong_values.append((key, getattr(snake_case__ , snake_case__ ), value) ) if len(snake_case__ ) > 0: _lowerCAmelCase ="\n".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def __UpperCAmelCase ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
360
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowerCamelCase(__UpperCamelCase ) -> List[str]: if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __A = parser.parse_args() __A = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
341
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[str]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = self.vocab_size - 1 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = OpenAIGPTLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTDoubleHeadsModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = OpenAIGPTForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> Any: lowerCamelCase_ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = OpenAIGPTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , n_embd=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Any: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = OpenAIGPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(lowercase ) lowerCamelCase_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase ) # the president is lowerCamelCase_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase_ = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
19
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A_ : '''simple docstring''' @staticmethod def UpperCAmelCase_ ( *lowercase_ : Tuple , **lowercase_ : List[Any] ) -> List[str]: pass @is_pipeline_test @require_vision @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCAmelCase_ ( self : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : str ) -> Union[str, Any]: UpperCAmelCase : str = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) UpperCAmelCase : Dict = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] ) -> Tuple: UpperCAmelCase : Union[str, Any] = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase : Optional[int] = len(lowercase_ ) self.assertGreater(lowercase_ , 0 ) self.assertEqual( lowercase_ , [ { 'score': ANY(lowercase_ ), 'label': ANY(lowercase_ ), 'box': {'xmin': ANY(lowercase_ ), 'ymin': ANY(lowercase_ ), 'xmax': ANY(lowercase_ ), 'ymax': ANY(lowercase_ )}, } for i in range(lowercase_ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def UpperCAmelCase_ ( self : Any ) -> List[str]: pass @require_torch def UpperCAmelCase_ ( self : int ) -> Tuple: UpperCAmelCase : Tuple = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) UpperCAmelCase : List[str] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] , ) UpperCAmelCase : Dict = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] , ) @require_torch @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Tuple = pipeline('zero-shot-object-detection' ) UpperCAmelCase : Any = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] , ) UpperCAmelCase : List[Any] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def UpperCAmelCase_ ( self : Any ) -> str: pass @require_torch @slow def UpperCAmelCase_ ( self : Optional[int] ) -> str: UpperCAmelCase : Any = 0.2 UpperCAmelCase : Dict = pipeline('zero-shot-object-detection' ) UpperCAmelCase : int = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] , ) @require_torch @slow def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: UpperCAmelCase : int = 2 UpperCAmelCase : Union[str, Any] = pipeline('zero-shot-object-detection' ) UpperCAmelCase : int = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] , )
280
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Tuple = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = TextDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = text_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [text_path] UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : Union[str, Any] = {'text': 'string'} UpperCAmelCase : List[Any] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: UpperCAmelCase : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = TextDatasetReader({'train': text_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = TextDatasetReader({'train': text_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : int = {split: text_path} else: UpperCAmelCase : int = 'train' UpperCAmelCase : Any = {'train': text_path, 'test': text_path} UpperCAmelCase : Dict = tmp_path / 'cache' UpperCAmelCase : Any = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
280
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __lowerCamelCase = logging.getLogger() def UpperCamelCase ( ): snake_case : Any = argparse.ArgumentParser() parser.add_argument("-f" ) snake_case : Tuple = parser.parse_args() return args.f class UpperCAmelCase ( A_ ): def _SCREAMING_SNAKE_CASE (self : str ) -> None: '''simple docstring''' snake_case : int = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Optional[int] ) -> str: '''simple docstring''' snake_case : int = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(snake_case__ , "argv" , snake_case__ ): snake_case : List[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case__ , 0.666 ) @slow @require_torch_non_multi_gpu def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(snake_case__ ) snake_case : int = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case__ ) snake_case : int = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case__ )
59
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __lowerCamelCase = TaTokenizerFast __lowerCamelCase = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __lowerCamelCase = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
59
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowercase_ ( unittest.TestCase , A ): """simple docstring""" def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = load_tool("text-classification" ) self.tool.setup() _SCREAMING_SNAKE_CASE = load_tool("text-classification" , remote=__lowerCamelCase ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__lowerCamelCase , "positive" ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__lowerCamelCase , "positive" ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__lowerCamelCase , "positive" ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__lowerCamelCase , "positive" )
111
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
111
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Dict ) -> Optional[int]: _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = 5 # Realm tok _lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowerCAmelCase = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(__snake_case , exist_ok=__snake_case ) _lowerCAmelCase = os.path.join(__snake_case , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(__snake_case , exist_ok=__snake_case ) def lowercase__ ( self : Tuple ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Dict ) -> Optional[Any]: _lowerCAmelCase = RealmConfig(num_block_records=self.num_block_records ) return config def lowercase__ ( self : List[str] ) -> Tuple: _lowerCAmelCase = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def lowercase__ ( self : Union[str, Any] ) -> int: _lowerCAmelCase = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=__snake_case , ) return block_records def lowercase__ ( self : List[str] ) -> Dict: _lowerCAmelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowercase__ ( self : Optional[Any] ) -> int: _lowerCAmelCase = self.get_config() _lowerCAmelCase = self.get_dummy_retriever() _lowerCAmelCase = retriever.tokenizer _lowerCAmelCase = np.array([0, 3] , dtype="""long""" ) _lowerCAmelCase = tokenizer(["""Test question"""] ).input_ids _lowerCAmelCase = tokenizer( ["""the fourth"""] , add_special_tokens=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , ).input_ids _lowerCAmelCase = config.reader_seq_len _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = retriever( __snake_case , __snake_case , answer_ids=__snake_case , max_length=__snake_case , return_tensors="""np""" ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def lowercase__ ( self : List[str] ) -> int: _lowerCAmelCase = self.get_config() _lowerCAmelCase = self.get_dummy_retriever() _lowerCAmelCase = retriever.tokenizer _lowerCAmelCase = np.array([0, 3, 5] , dtype="""long""" ) _lowerCAmelCase = tokenizer(["""Test question"""] ).input_ids _lowerCAmelCase = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , ).input_ids _lowerCAmelCase = config.reader_seq_len _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = retriever( __snake_case , __snake_case , answer_ids=__snake_case , max_length=__snake_case , return_tensors="""np""" ) self.assertEqual([False, True, True] , __snake_case ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __snake_case ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __snake_case ) def lowercase__ ( self : Any ) -> Optional[Any]: _lowerCAmelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path _lowerCAmelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: _lowerCAmelCase = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) _lowerCAmelCase = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
70
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE : Union[str, Any] = 'hf-internal-testing/tiny-random-bert' SCREAMING_SNAKE_CASE : Tuple = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") SCREAMING_SNAKE_CASE : Optional[int] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = cached_file(_UpperCamelCase , _UpperCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) ) with open(os.path.join(_UpperCamelCase , '''refs''' , '''main''' ) ) as f: __snake_case : Union[str, Any] = f.read() self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , '''snapshots''' , _UpperCamelCase , _UpperCamelCase ) ) self.assertTrue(os.path.isfile(_UpperCamelCase ) ) # File is cached at the same place the second time. __snake_case : int = cached_file(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) # Using a specific revision to test the full commit hash. __snake_case : Union[str, Any] = cached_file(_UpperCamelCase , _UpperCamelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , '''snapshots''' , _UpperCamelCase , _UpperCamelCase ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid model identifier''' ): __snake_case : Optional[int] = cached_file('''tiny-random-bert''' , _UpperCamelCase ) with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid git identifier''' ): __snake_case : Tuple = cached_file(_UpperCamelCase , _UpperCamelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCamelCase , '''does not appear to have a file named''' ): __snake_case : Dict = cached_file(_UpperCamelCase , '''conf''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCamelCase , '''does not appear to have a file named''' ): __snake_case : List[str] = cached_file(_UpperCamelCase , '''conf''' ) with open(os.path.join(_UpperCamelCase , '''refs''' , '''main''' ) ) as f: __snake_case : str = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCamelCase , '''.no_exist''' , _UpperCamelCase , '''conf''' ) ) ) __snake_case : Dict = cached_file(_UpperCamelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) __snake_case : List[Any] = cached_file(_UpperCamelCase , '''conf''' , local_files_only=_UpperCamelCase , _raise_exceptions_for_missing_entries=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) __snake_case : Union[str, Any] = mock.Mock() __snake_case : List[Any] = 5_00 __snake_case : List[Any] = {} __snake_case : Union[str, Any] = HTTPError __snake_case : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head: __snake_case : Tuple = cached_file(_UpperCamelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCamelCase , revision='''ahaha''' ) __snake_case : Dict = get_file_from_repo('''bert-base-cased''' , _UpperCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. __snake_case : int = json.loads(open(_UpperCamelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_68 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[int] = Path(_UpperCamelCase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_UpperCamelCase , '''a.txt''' ) , str(_UpperCamelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCamelCase , '''b.txt''' ) )
358
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["image_processor"] lowercase_ = "SamImageProcessor" def __init__(self : Any , UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.image_processor lowerCamelCase__: str =-10 lowerCamelCase__: Tuple =self.image_processor.size["longest_edge"] def __call__(self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->BatchEncoding: '''simple docstring''' lowerCamelCase__: Any =self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # pop arguments that are not used in the foward but used nevertheless lowerCamelCase__: Tuple =encoding_image_processor["original_sizes"] if hasattr(UpperCAmelCase_ , "numpy"): # Checks if Torch or TF tensor lowerCamelCase__: Optional[Any] =original_sizes.numpy() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._check_and_preprocess_points( input_points=UpperCAmelCase_ , input_labels=UpperCAmelCase_ , input_boxes=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =self._normalize_and_convert( UpperCAmelCase_ , UpperCAmelCase_ , input_points=UpperCAmelCase_ , input_labels=UpperCAmelCase_ , input_boxes=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , ) return encoding_image_processor def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple="pt" , ) ->List[str]: '''simple docstring''' if input_points is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): lowerCamelCase__: int =[ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , original_sizes[0]) for point in input_points ] else: lowerCamelCase__: Tuple =[ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , UpperCAmelCase_) for point, original_size in zip(UpperCAmelCase_ , UpperCAmelCase_) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self._pad_points_and_labels(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.array(UpperCAmelCase_) if input_labels is not None: lowerCamelCase__: Tuple =np.array(UpperCAmelCase_) if input_boxes is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =[ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , original_sizes[0] , is_bounding_box=UpperCAmelCase_) for box in input_boxes ] else: lowerCamelCase__: List[Any] =[ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , UpperCAmelCase_ , is_bounding_box=UpperCAmelCase_) for box, original_size in zip(UpperCAmelCase_ , UpperCAmelCase_) ] lowerCamelCase__: Optional[int] =np.array(UpperCAmelCase_) if input_boxes is not None: if return_tensors == "pt": lowerCamelCase__: int =torch.from_numpy(UpperCAmelCase_) # boxes batch size of 1 by default lowerCamelCase__: int =input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowerCamelCase__: Tuple =tf.convert_to_tensor(UpperCAmelCase_) # boxes batch size of 1 by default lowerCamelCase__: Optional[int] =tf.expand_dims(UpperCAmelCase_ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes}) if input_points is not None: if return_tensors == "pt": lowerCamelCase__: Optional[Any] =torch.from_numpy(UpperCAmelCase_) # point batch size of 1 by default lowerCamelCase__: List[str] =input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowerCamelCase__: Tuple =tf.convert_to_tensor(UpperCAmelCase_) # point batch size of 1 by default lowerCamelCase__: Union[str, Any] =tf.expand_dims(UpperCAmelCase_ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({"input_points": input_points}) if input_labels is not None: if return_tensors == "pt": lowerCamelCase__: Optional[int] =torch.from_numpy(UpperCAmelCase_) # point batch size of 1 by default lowerCamelCase__: Dict =input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowerCamelCase__: Union[str, Any] =tf.convert_to_tensor(UpperCAmelCase_) # point batch size of 1 by default lowerCamelCase__: Optional[int] =tf.expand_dims(UpperCAmelCase_ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels}) return encoding_image_processor def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: int =max([point.shape[0] for point in input_points]) lowerCamelCase__: Optional[int] =[] for i, point in enumerate(UpperCAmelCase_): if point.shape[0] != expected_nb_points: lowerCamelCase__: int =np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowerCamelCase__: Dict =np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =processed_input_points return input_points, input_labels def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=False) ->np.ndarray: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str =original_size lowerCamelCase__ , lowerCamelCase__: str =self.image_processor._get_preprocess_shape(UpperCAmelCase_ , longest_edge=UpperCAmelCase_) lowerCamelCase__: Optional[int] =deepcopy(UpperCAmelCase_).astype(UpperCAmelCase_) if is_bounding_box: lowerCamelCase__: Optional[int] =coords.reshape(-1 , 2 , 2) lowerCamelCase__: Any =coords[..., 0] * (new_w / old_w) lowerCamelCase__: Any =coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCamelCase__: str =coords.reshape(-1 , 4) return coords def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=None , ) ->Optional[Any]: '''simple docstring''' if input_points is not None: if hasattr(UpperCAmelCase_ , "numpy"): # Checks for TF or Torch tensor lowerCamelCase__: List[str] =input_points.numpy().tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or not isinstance(input_points[0] , UpperCAmelCase_): raise ValueError("Input points must be a list of list of floating points.") lowerCamelCase__: Dict =[np.array(UpperCAmelCase_) for input_point in input_points] else: lowerCamelCase__: List[str] =None if input_labels is not None: if hasattr(UpperCAmelCase_ , "numpy"): lowerCamelCase__: str =input_labels.numpy().tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or not isinstance(input_labels[0] , UpperCAmelCase_): raise ValueError("Input labels must be a list of list integers.") lowerCamelCase__: Tuple =[np.array(UpperCAmelCase_) for label in input_labels] else: lowerCamelCase__: Optional[Any] =None if input_boxes is not None: if hasattr(UpperCAmelCase_ , "numpy"): lowerCamelCase__: str =input_boxes.numpy().tolist() if ( not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or not isinstance(input_boxes[0] , UpperCAmelCase_) or not isinstance(input_boxes[0][0] , UpperCAmelCase_) ): raise ValueError("Input boxes must be a list of list of list of floating points.") lowerCamelCase__: int =[np.array(UpperCAmelCase_).astype(np.floataa) for box in input_boxes] else: lowerCamelCase__: Any =None return input_points, input_labels, input_boxes @property def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.image_processor.model_input_names return list(dict.fromkeys(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str) ->Tuple: '''simple docstring''' return self.image_processor.post_process_masks(*UpperCAmelCase_ , **UpperCAmelCase_)
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['PerceiverFeatureExtractor'] __lowerCAmelCase = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a ( a__ ): # to overwrite at feature extractactor specific tests snake_case__ = None snake_case__ = None @property def UpperCamelCase__ ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , 'feature_size' ) ) self.assertTrue(hasattr(_snake_case , 'sampling_rate' ) ) self.assertTrue(hasattr(_snake_case , 'padding_value' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCamelCase__ ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1E-3 ): return False return True lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = self.feat_extract_tester.seq_length_diff lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff lowerCAmelCase = self.feat_extract_tester.min_seq_length lowerCAmelCase = self.feat_extract_tester.batch_size lowerCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowerCAmelCase = feat_extract.pad(_snake_case , padding=_snake_case ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='max_length' , max_length=len(speech_inputs[-1] ) ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' ) lowerCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding='max_length' )[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=_snake_case , return_tensors='np' ) lowerCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase = feat_extract.pad(_snake_case , pad_to_multiple_of=10 ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , pad_to_multiple_of=10 ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=_snake_case ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=_snake_case , return_tensors='np' , ) lowerCAmelCase = input_a[input_name] self.assertTrue(all(len(_snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def UpperCamelCase__ ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1E-3 ): return False return True lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=_snake_case ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) ) lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to smallest with np lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=_snake_case , ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to middle lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_snake_case , return_tensors='np' , ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_snake_case ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) lowerCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding='longest' , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding='longest' , truncation=_snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding='max_length' , truncation=_snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase = 12 lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , truncation=_snake_case , ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , ) lowerCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowerCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) def UpperCamelCase__ ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**_snake_case ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**_snake_case ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = min(_snake_case ) lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=_snake_case , truncation=_snake_case , return_tensors='np' ) self.assertIn('attention_mask' , _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
309
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _SCREAMING_SNAKE_CASE ( a ) -> Dict: return getitem, k def _SCREAMING_SNAKE_CASE ( a , a ) -> Union[str, Any]: return setitem, k, v def _SCREAMING_SNAKE_CASE ( a ) -> Optional[int]: return delitem, k def _SCREAMING_SNAKE_CASE ( a , a , *a ) -> str: try: return fun(a , *a ), None except Exception as e: return None, e UpperCAmelCase : str = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) UpperCAmelCase : Any = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] UpperCAmelCase : Union[str, Any] = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] UpperCAmelCase : int = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] UpperCAmelCase : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] UpperCAmelCase : List[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def _SCREAMING_SNAKE_CASE ( a ) -> Dict: __A : List[Any] = HashMap(initial_block_size=4 ) __A : Dict = {} for _, (fun, *args) in enumerate(a ): __A , __A : Optional[int] = _run_operation(a , a , *a ) __A , __A : Union[str, Any] = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def _SCREAMING_SNAKE_CASE ( ) -> str: def is_public(a ) -> bool: return not name.startswith('_' ) __A : Optional[int] = {name for name in dir({} ) if is_public(a )} __A : List[Any] = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
280
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _A( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : List[Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __A : Union[str, Any] = parent __A : Optional[int] = batch_size __A : int = num_channels __A : int = min_resolution __A : Any = max_resolution __A : List[Any] = do_resize __A : List[Any] = size __A : Union[str, Any] = do_normalize __A : Optional[int] = image_mean __A : Optional[int] = image_std __A : int = do_rescale __A : str = rescale_factor __A : Tuple = do_pad def UpperCAmelCase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self , _A , _A=False ): if not batched: __A : List[str] = image_inputs[0] if isinstance(_A , Image.Image ): __A , __A : int = image.size else: __A , __A : Any = image.shape[1], image.shape[2] if w < h: __A : List[Any] = int(self.size['shortest_edge'] * h / w ) __A : List[Any] = self.size['shortest_edge'] elif w > h: __A : Union[str, Any] = self.size['shortest_edge'] __A : str = int(self.size['shortest_edge'] * w / h ) else: __A : Dict = self.size['shortest_edge'] __A : str = self.size['shortest_edge'] else: __A : int = [] for image in image_inputs: __A , __A : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : List[str] = max(_A , key=lambda _A : item[0] )[0] __A : str = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = YolosImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): __A : Dict = YolosImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): __A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _A ) __A : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) __A : str = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : List[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Optional[int] = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processings __A : Tuple = self.image_processing_class(**self.image_processor_dict ) __A : Any = self.image_processing_class(do_resize=_A , do_normalize=_A , do_rescale=_A ) # create random PyTorch tensors __A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __A : Optional[int] = image_processing_a.pad(_A , return_tensors='pt' ) __A : Optional[int] = image_processing_a(_A , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self ): # prepare image and target __A : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __A : Optional[Any] = json.loads(f.read() ) __A : Optional[Any] = {'image_id': 39769, 'annotations': target} # encode them __A : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) __A : List[Any] = image_processing(images=_A , annotations=_A , return_tensors='pt' ) # verify pixel values __A : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Any = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify orig_size __A : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) ) @slow def UpperCAmelCase_ ( self ): # prepare image, target and masks_path __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __A : Tuple = json.loads(f.read() ) __A : Any = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} __A : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __A : Any = YolosImageProcessor(format='coco_panoptic' ) __A : List[Any] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt' ) # verify pixel values __A : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify masks __A : Tuple = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) )
280
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = DPTConfig() if "large" in checkpoint_url: lowerCAmelCase__ = 1024 lowerCAmelCase__ = 4096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = [5, 11, 17, 23] lowerCAmelCase__ = [256, 512, 1024, 1024] lowerCAmelCase__ = (1, 384, 384) if "ade" in checkpoint_url: lowerCAmelCase__ = True lowerCAmelCase__ = 150 lowerCAmelCase__ = 'huggingface/label-files' lowerCAmelCase__ = 'ade20k-id2label.json' lowerCAmelCase__ = json.load(open(cached_download(hf_hub_url(UpperCamelCase_ , UpperCamelCase_ , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} lowerCAmelCase__ = [1, 150, 480, 480] return config, expected_shape def _UpperCamelCase ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase__ = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: lowerCAmelCase__ = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: lowerCAmelCase__ = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: lowerCAmelCase__ = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: lowerCAmelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCAmelCase__ = name.replace('proj' , 'projection' ) if "blocks" in name: lowerCAmelCase__ = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: lowerCAmelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase__ = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: lowerCAmelCase__ = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: lowerCAmelCase__ = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: lowerCAmelCase__ = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: lowerCAmelCase__ = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: lowerCAmelCase__ = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: lowerCAmelCase__ = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: lowerCAmelCase__ = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase__ = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCAmelCase__ = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: lowerCAmelCase__ = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: lowerCAmelCase__ = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: lowerCAmelCase__ = name.replace('conv1' , 'convolution1' ) if "conv2" in name: lowerCAmelCase__ = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase__ = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCAmelCase__ = name.replace('pretrained' , 'dpt' ) if "bn" in name: lowerCAmelCase__ = name.replace('bn' , 'batch_norm' ) if "head" in name: lowerCAmelCase__ = name.replace('head' , 'head.head' ) if "encoder.norm" in name: lowerCAmelCase__ = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: lowerCAmelCase__ = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[: config.hidden_size, :] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = get_dpt_config(UpperCamelCase_ ) # load original state_dict from URL lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(UpperCamelCase_ ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = val # read in qkv matrices read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ ) # load HuggingFace model lowerCAmelCase__ = DPTForSemanticSegmentation(UpperCamelCase_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # Check outputs on an image lowerCAmelCase__ = 480 if 'ade' in checkpoint_url else 384 lowerCAmelCase__ = DPTImageProcessor(size=UpperCamelCase_ ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(UpperCamelCase_ , return_tensors='pt' ) # forward pass lowerCAmelCase__ = model(**UpperCamelCase_ ).logits if 'ade' in checkpoint_url else model(**UpperCamelCase_ ).predicted_depth # Assert logits lowerCAmelCase__ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCamelCase_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , UpperCamelCase_ ) ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=UpperCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=UpperCamelCase_ , ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) __snake_case : str = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
122
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : int = KandinskyVaaInpaintPipeline _SCREAMING_SNAKE_CASE : int = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _SCREAMING_SNAKE_CASE : Optional[Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _SCREAMING_SNAKE_CASE : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _SCREAMING_SNAKE_CASE : Optional[Any] = False @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 1_00 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ = UNetaDConditionModel(**_UpperCamelCase ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=_UpperCamelCase , ) lowerCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(_UpperCamelCase ).startswith('mps' ): lowerCAmelCase__ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase__ = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**_UpperCamelCase ) lowerCAmelCase__ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase__ = np.ones((7_68, 7_68) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 'a hat' lowerCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) lowerCAmelCase__ = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase__ = pipeline( image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
122
1