code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _UpperCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : Tuple = val def lowercase_ ( lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __UpperCAmelCase : Union[str, Any] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) __UpperCAmelCase : Tuple = value else: __UpperCAmelCase : Tuple = value return new_state_dict def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str=False ): """simple docstring""" __UpperCAmelCase : List[Any] = """""" if is_panoptic: __UpperCAmelCase : List[str] = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase : List[str] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCAmelCase : List[str] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : str = in_proj_weight[:256, :] __UpperCAmelCase : List[Any] = in_proj_bias[:256] __UpperCAmelCase : int = in_proj_weight[256:512, :] __UpperCAmelCase : Optional[Any] = in_proj_bias[256:512] __UpperCAmelCase : Union[str, Any] = in_proj_weight[-256:, :] __UpperCAmelCase : int = in_proj_bias[-256:] def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ): """simple docstring""" __UpperCAmelCase : List[str] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __UpperCAmelCase : Optional[Any] = """resnet101""" if "dc5" in model_name: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = """panoptic""" in model_name if is_panoptic: __UpperCAmelCase : List[Any] = 250 else: __UpperCAmelCase : Any = 91 __UpperCAmelCase : Tuple = """huggingface/label-files""" __UpperCAmelCase : Tuple = """coco-detection-id2label.json""" __UpperCAmelCase : Tuple = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load image processor __UpperCAmelCase : str = """coco_panoptic""" if is_panoptic else """coco_detection""" __UpperCAmelCase : Optional[Any] = ConditionalDetrImageProcessor(format=lowerCAmelCase__ ) # prepare image __UpperCAmelCase : Any = prepare_img() __UpperCAmelCase : Optional[int] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) __UpperCAmelCase : Any = encoding["""pixel_values"""] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub __UpperCAmelCase : Optional[Any] = torch.hub.load("""DeppMeng/ConditionalDETR""" , lowerCAmelCase__ , pretrained=lowerCAmelCase__ ).eval() __UpperCAmelCase : List[str] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __UpperCAmelCase : Optional[Any] = """conditional_detr.""" + src rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = rename_backbone_keys(lowerCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase__ , is_panoptic=lowerCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase : Any = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): __UpperCAmelCase : str = state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : Any = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCAmelCase : Any = state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : str = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: __UpperCAmelCase : Tuple = state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : Dict = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : Any = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : int = ConditionalDetrForSegmentation(lowerCAmelCase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() model.push_to_hub(repo_id=lowerCAmelCase__ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion __UpperCAmelCase : Optional[Any] = conditional_detr(lowerCAmelCase__ ) __UpperCAmelCase : Dict = model(lowerCAmelCase__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _UpperCamelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
254
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[float] , lowerCAmelCase__ : float ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(lowerCAmelCase__ ) ) def lowercase_ ( lowerCAmelCase__ : Sequence[float] , lowerCAmelCase__ : float ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 0.0 for coeff in reversed(lowerCAmelCase__ ): __UpperCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
254
1
from __future__ import annotations import os from typing import Any import requests lowerCamelCase : Any = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCamelCase : Tuple = BASE_URL + """/user""" # https://github.com/settings/tokens lowerCamelCase : Optional[Any] = os.environ.get('''USER_TOKEN''', '''''') def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : Dict = { '''Authorization''': F"token {auth_token}", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_snake_case , headers=_snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __lowerCAmelCase ( snake_case__ ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def __lowerCAmelCase ( snake_case__ ): from transformers.testing_utils import pytest_terminal_summary_main __UpperCamelCase : int = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
298
0
from __future__ import annotations import math import random from typing import Any class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ) -> None: A : list[Any] = [] A : int = 0 A : int = 0 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> bool: return self.head == self.tail def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Any ) -> None: self.data.append(__lowerCamelCase ) A : List[Any] = self.tail + 1 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: A : Dict = self.data[self.head] A : List[str] = self.head + 1 return ret def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: return self.tail - self.head def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> None: print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , __lowerCamelCase : Any ) -> None: A : int = data A : MyNode | None = None A : MyNode | None = None A : int = 1 def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: return self.data def SCREAMING_SNAKE_CASE__ ( self : str ) -> MyNode | None: return self.left def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> MyNode | None: return self.right def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: return self.height def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Any ) -> None: A : Dict = data def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : MyNode | None ) -> None: A : Tuple = node def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : MyNode | None ) -> None: A : Tuple = node def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int ) -> None: A : List[str] = height def UpperCAmelCase ( _lowerCamelCase ): if node is None: return 0 return node.get_height() def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if a > b: return a return b def UpperCAmelCase ( _lowerCamelCase ): print("left rotation node:" , node.get_data() ) A : Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCamelCase ) A : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) A : Union[str, Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCamelCase ) return ret def UpperCAmelCase ( _lowerCamelCase ): print("right rotation node:" , node.get_data() ) A : Tuple = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCamelCase ) A : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) A : int = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCamelCase ) return ret def UpperCAmelCase ( _lowerCamelCase ): A : Any = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCamelCase ) ) return right_rotation(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase ): A : Dict = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCamelCase ) ) return left_rotation(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if node is None: return MyNode(_lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected A : int = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child A : Union[str, Any] = right_rotation(_lowerCamelCase ) else: A : Union[str, Any] = lr_rotation(_lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: A : Any = node.get_right() assert right_child is not None if data < right_child.get_data(): A : List[str] = rl_rotation(_lowerCamelCase ) else: A : List[str] = left_rotation(_lowerCamelCase ) A : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) return node def UpperCAmelCase ( _lowerCamelCase ): while True: A : Any = root.get_right() if right_child is None: break A : Union[str, Any] = right_child return root.get_data() def UpperCAmelCase ( _lowerCamelCase ): while True: A : Optional[Any] = root.get_left() if left_child is None: break A : Optional[Any] = left_child return root.get_data() def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Dict = root.get_left() A : str = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: A : int = get_left_most(_lowerCamelCase ) root.set_data(_lowerCamelCase ) root.set_right(del_node(_lowerCamelCase , _lowerCamelCase ) ) elif left_child is not None: A : Optional[int] = left_child elif right_child is not None: A : List[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(_lowerCamelCase , _lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCamelCase , _lowerCamelCase ) ) if get_height(_lowerCamelCase ) - get_height(_lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): A : Tuple = left_rotation(_lowerCamelCase ) else: A : Optional[Any] = rl_rotation(_lowerCamelCase ) elif get_height(_lowerCamelCase ) - get_height(_lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): A : Dict = right_rotation(_lowerCamelCase ) else: A : List[Any] = lr_rotation(_lowerCamelCase ) A : Dict = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCamelCase ) return root class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] ) -> None: A : MyNode | None = None def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: return get_height(self.root ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Any ) -> None: print("insert:" + str(__lowerCamelCase ) ) A : Optional[int] = insert_node(self.root , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : Any ) -> None: print("delete:" + str(__lowerCamelCase ) ) if self.root is None: print("Tree is empty!" ) return A : List[str] = del_node(self.root , __lowerCamelCase ) def __str__( self : int , ) -> str: # a level traversale, gives a more intuitive look on the tree A : List[str] = "" A : Optional[Any] = MyQueue() q.push(self.root ) A : List[str] = self.get_height() if layer == 0: return output A : Optional[int] = 0 while not q.is_empty(): A : str = q.pop() A : Union[str, Any] = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__lowerCamelCase ) q.push(__lowerCamelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space A : Optional[int] = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , __lowerCamelCase ) - 1: A : int = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() __SCREAMING_SNAKE_CASE = AVLtree() __SCREAMING_SNAKE_CASE = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
366
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase ( _lowerCamelCase ): A : Any = [] for line in lines: A : List[str] = re.sub(R"#.*" , "" , _lowerCamelCase ) # remove comments if line: filtered_lines.append(_lowerCamelCase ) A : str = "\n".join(_lowerCamelCase ) # Make a hash from all this code A : Any = full_str.encode("utf-8" ) return shaaaa(_lowerCamelCase ).hexdigest() # get importable module names and hash for caching __SCREAMING_SNAKE_CASE = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __SCREAMING_SNAKE_CASE = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __SCREAMING_SNAKE_CASE = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __SCREAMING_SNAKE_CASE = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
256
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = 0 @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(lowerCAmelCase__) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE_: Any = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(lowerCAmelCase__) , 0) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Any = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 20) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE_: Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def _SCREAMING_SNAKE_CASE ( self : int): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(lowerCAmelCase__ , "vocab.txt")) SCREAMING_SNAKE_CASE_: Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase__ , tokenizer_type="bert" , use_fast=lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(lowerCAmelCase__ , "vocab.json")) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(lowerCAmelCase__ , "merges.txt")) SCREAMING_SNAKE_CASE_: Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase__ , tokenizer_type="gpt2" , use_fast=lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Dict): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(lowerCAmelCase__ , "vocab.txt")) SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ , tokenizer_type="bert") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(lowerCAmelCase__ , "vocab.json")) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(lowerCAmelCase__ , "merges.txt")) SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained(lowerCAmelCase__ , tokenizer_type="gpt2") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): with pytest.raises(lowerCAmelCase__): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx") @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Any): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE_: Any = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased") self.assertIsInstance(lowerCAmelCase__ , (BertTokenizer, BertTokenizerFast)) if isinstance(lowerCAmelCase__ , lowerCAmelCase__): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowerCAmelCase__) else: self.assertEqual(tokenizer.do_lower_case , lowerCAmelCase__) self.assertEqual(tokenizer.model_max_length , 512) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : List[str]): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowerCAmelCase__ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists") def _SCREAMING_SNAKE_CASE ( self : int): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE_: str = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE_: Dict = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowerCAmelCase__) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Optional[int]): self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=lowerCAmelCase__) , lowerCAmelCase__) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased") , lowerCAmelCase__) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = """Hello, world. How are you?""" SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.tokenize(lowerCAmelCase__) self.assertEqual("[UNK]" , tokens[0]) SCREAMING_SNAKE_CASE_: Optional[int] = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = tokenizer.tokenize(lowerCAmelCase__) self.assertEqual("[UNK]" , tokens[0]) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config") self.assertEqual(type(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(tokenizer.model_max_length , 512) self.assertEqual(tokenizer.vocab_size , 3_0000) self.assertEqual(tokenizer.unk_token , "[UNK]") self.assertEqual(tokenizer.padding_side , "right") self.assertEqual(tokenizer.truncation_side , "right") def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 12) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("ctrl") # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE_: Tuple = get_tokenizer_config("bert-base-cased") SCREAMING_SNAKE_CASE_: Tuple = config.pop("_commit_hash" , lowerCAmelCase__) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowerCAmelCase__ , {"do_lower_case": False}) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE_: Union[str, Any] = get_tokenizer_config(lowerCAmelCase__) self.assertDictEqual(lowerCAmelCase__ , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE_: List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = get_tokenizer_config(lowerCAmelCase__) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer") def _SCREAMING_SNAKE_CASE ( self : Any): try: AutoConfig.register("custom" , lowerCAmelCase__) AutoTokenizer.register(lowerCAmelCase__ , slow_tokenizer_class=lowerCAmelCase__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__): AutoTokenizer.register(lowerCAmelCase__ , slow_tokenizer_class=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = CustomTokenizer.from_pretrained(lowerCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Optional[int]): try: AutoConfig.register("custom" , lowerCAmelCase__) # Can register in two steps AutoTokenizer.register(lowerCAmelCase__ , slow_tokenizer_class=lowerCAmelCase__) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(lowerCAmelCase__ , fast_tokenizer_class=lowerCAmelCase__) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowerCAmelCase__ , slow_tokenizer_class=lowerCAmelCase__ , fast_tokenizer_class=lowerCAmelCase__) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__): AutoTokenizer.register(lowerCAmelCase__ , fast_tokenizer_class=lowerCAmelCase__) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_: int = BertTokenizerFast.from_pretrained(lowerCAmelCase__) bert_tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = CustomTokenizerFast.from_pretrained(lowerCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained(lowerCAmelCase__ , use_fast=lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase__) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast") # Test we can also load the slow version SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase__ , use_fast=lowerCAmelCase__) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ , use_fast=lowerCAmelCase__) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer") self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer") @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : str): class __lowercase ( UpperCamelCase__ ): """simple docstring""" _UpperCAmelCase : Tuple = False class __lowercase ( UpperCamelCase__ ): """simple docstring""" _UpperCAmelCase : List[Any] = NewTokenizer _UpperCAmelCase : Any = False try: AutoConfig.register("custom" , lowerCAmelCase__) AutoTokenizer.register(lowerCAmelCase__ , slow_tokenizer_class=lowerCAmelCase__) AutoTokenizer.register(lowerCAmelCase__ , fast_tokenizer_class=lowerCAmelCase__) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_: Dict = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) SCREAMING_SNAKE_CASE_: Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=lowerCAmelCase__) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_: List[str] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase__) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) SCREAMING_SNAKE_CASE_: Any = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase__ , use_fast=lowerCAmelCase__) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_: Dict = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase__) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertTrue(tokenizer.special_attribute_present) SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCAmelCase__ , use_fast=lowerCAmelCase__) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=lowerCAmelCase__) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") # Test we can also load the slow version SCREAMING_SNAKE_CASE_: Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=lowerCAmelCase__ , use_fast=lowerCAmelCase__) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") def _SCREAMING_SNAKE_CASE ( self : str): with self.assertRaisesRegex( lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier"): SCREAMING_SNAKE_CASE_: Any = AutoTokenizer.from_pretrained("bert-base") def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): with self.assertRaisesRegex( lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): SCREAMING_SNAKE_CASE_: Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase__ , revision="aaaaaa") def _SCREAMING_SNAKE_CASE ( self : Tuple): # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE_: Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
13
from __future__ import annotations import math lowerCamelCase : Optional[int] = '2020.9.26' lowerCamelCase : int = 'xcodz-dot, cclaus, dhruvmanila' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float]: if not all(isinstance(lowercase ,(float, int) ) for val in locals().values() ): snake_case : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(lowercase ) snake_case : List[str] = ((x * distance) / (z + distance)) * scale snake_case : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float, float]: if not isinstance(lowercase ,lowercase ): raise TypeError("""Axis must be a str""" ) snake_case : Tuple = locals() del input_variables["axis"] if not all(isinstance(lowercase ,(float, int) ) for val in input_variables.values() ): snake_case : int = ( """Input values except axis must either be float or int: """ f"""{list(input_variables.values() )}""" ) raise TypeError(lowercase ) snake_case : int = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case : str = x * math.cos(lowercase ) - y * math.sin(lowercase ) snake_case : List[Any] = y * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = z elif axis == "x": snake_case : Optional[Any] = y * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Optional[int] = z * math.cos(lowercase ) + y * math.sin(lowercase ) snake_case : Optional[int] = x elif axis == "y": snake_case : List[str] = x * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Tuple = z * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
124
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : int = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = False ): lowercase_ :List[str] = scheduler lowercase_ :Optional[Any] = optimizers if isinstance(UpperCamelCase_ , (list, tuple) ) else [optimizers] lowercase_ :Tuple = split_batches lowercase_ :str = step_with_optimizer lowercase_ :int = GradientState() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowercase_ :Optional[Any] = AcceleratorState().num_processes for _ in range(UpperCamelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_last_lr() def UpperCamelCase ( self ): return self.scheduler.state_dict() def UpperCamelCase ( self , UpperCamelCase_ ): self.scheduler.load_state_dict(UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_lr() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.scheduler.print_lr(*UpperCamelCase_ , **UpperCamelCase_ )
252
1
"""simple docstring""" from __future__ import annotations from collections import deque class _A : """simple docstring""" def __init__( self : str , __UpperCAmelCase : list[str]): a : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []}) for keyword in keywords: self.add_keyword(__UpperCAmelCase) self.set_fail_transitions() def __snake_case ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : str): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __snake_case ( self : str , __UpperCAmelCase : str): a : Dict = 0 for character in keyword: a : Any = self.find_next_state(__UpperCAmelCase , __UpperCAmelCase) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], }) self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) a : Tuple = len(self.adlist) - 1 else: a : Tuple = next_state self.adlist[current_state]["output"].append(__UpperCAmelCase) def __snake_case ( self : Optional[Any]): a : deque = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCAmelCase) a : Optional[Any] = 0 while q: a : Optional[int] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCAmelCase) a : List[str] = self.adlist[r]["fail_state"] while ( self.find_next_state(__UpperCAmelCase , self.adlist[child]["value"]) is None and state != 0 ): a : Optional[int] = self.adlist[state]["fail_state"] a : Dict = self.find_next_state( __UpperCAmelCase , self.adlist[child]["value"]) if self.adlist[child]["fail_state"] is None: a : Optional[int] = 0 a : Union[str, Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def __snake_case ( self : List[Any] , __UpperCAmelCase : str): a : dict = {} # returns a dict with keywords and list of its occurrences a : Any = 0 for i in range(len(__UpperCAmelCase)): while ( self.find_next_state(__UpperCAmelCase , string[i]) is None and current_state != 0 ): a : Any = self.adlist[current_state]["fail_state"] a : str = self.find_next_state(__UpperCAmelCase , string[i]) if next_state is None: a : Dict = 0 else: a : Optional[int] = next_state for key in self.adlist[current_state]["output"]: if key not in result: a : List[str] = [] result[key].append(i - len(__UpperCAmelCase) + 1) return result if __name__ == "__main__": import doctest doctest.testmod()
40
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __A ={'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _snake_case ( a__ ): lowerCAmelCase :torch.FloatTensor class _snake_case ( a__ , a__ ): @register_to_config def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 3 , _lowerCamelCase = ("DownEncoderBlock2D",) , _lowerCamelCase = ("UpDecoderBlock2D",) , _lowerCamelCase = (64,) , _lowerCamelCase = 1 , _lowerCamelCase = "silu" , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 256 , _lowerCamelCase = 32 , _lowerCamelCase = None , _lowerCamelCase = 0.18215 , _lowerCamelCase = "group" , ): super().__init__() # pass init params to Encoder UpperCAmelCase__ : str = Encoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , down_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , double_z=_lowerCamelCase , ) UpperCAmelCase__ : Optional[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ : Any = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1) UpperCAmelCase__ : Optional[int] = VectorQuantizer(_lowerCamelCase , _lowerCamelCase , beta=0.25 , remap=_lowerCamelCase , sane_index_shape=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1) # pass init params to Decoder UpperCAmelCase__ : str = Decoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , up_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , norm_type=_lowerCamelCase , ) @apply_forward_hook def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = True): UpperCAmelCase__ : Union[str, Any] = self.encoder(_lowerCamelCase) UpperCAmelCase__ : str = self.quant_conv(_lowerCamelCase) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCamelCase) @apply_forward_hook def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True): # also go through quantization layer if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.quantize(_lowerCamelCase) else: UpperCAmelCase__ : Union[str, Any] = h UpperCAmelCase__ : Any = self.post_quant_conv(_lowerCamelCase) UpperCAmelCase__ : Any = self.decoder(_lowerCamelCase , quant if self.config.norm_type == """spatial""" else None) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = True): UpperCAmelCase__ : Dict = sample UpperCAmelCase__ : Dict = self.encode(_lowerCamelCase).latents UpperCAmelCase__ : List[str] = self.decode(_lowerCamelCase).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase)
283
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = StableDiffusionSAGPipeline __UpperCAmelCase : Dict = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : Optional[int] = False def _lowercase ( self : Any ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=3_2, ) __lowercase = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=UpperCAmelCase__, set_alpha_to_one=UpperCAmelCase__, ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) __lowercase = CLIPTextModel(UpperCAmelCase__ ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowercase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int]=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): __lowercase = torch.manual_seed(UpperCAmelCase__ ) else: __lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def _lowercase ( self : Tuple ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : int ): __lowercase = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) __lowercase = sag_pipe.to(UpperCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "." __lowercase = torch.manual_seed(0 ) __lowercase = sag_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=2_0, output_type="np" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _lowercase ( self : Union[str, Any] ): __lowercase = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) __lowercase = sag_pipe.to(UpperCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "." __lowercase = torch.manual_seed(0 ) __lowercase = sag_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=2_0, output_type="np" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _lowercase ( self : int ): __lowercase = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) __lowercase = sag_pipe.to(UpperCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "." __lowercase = torch.manual_seed(0 ) __lowercase = sag_pipe( [prompt], width=7_6_8, height=5_1_2, generator=UpperCAmelCase__, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=2_0, output_type="np", ) __lowercase = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
17
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
import random def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = a[left_index] __a = left_index + 1 for j in range(left_index + 1 , _UpperCAmelCase ): if a[j] < pivot: __a , __a = a[i], a[j] i += 1 __a , __a = a[i - 1], a[left_index] return i - 1 def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if left < right: __a = random.randint(_UpperCAmelCase , right - 1 ) __a , __a = ( a[left], a[pivot], ) # switches the pivot with the left most bound __a = partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) quick_sort_random( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _UpperCAmelCase , pivot_index + 1 , _UpperCAmelCase ) # recursive quicksort to the right of the pivot point def __snake_case ( ): __a = input('''Enter numbers separated by a comma:\n''' ).strip() __a = [int(_UpperCAmelCase ) for item in user_input.split(''',''' )] quick_sort_random(_UpperCAmelCase , 0 , len(_UpperCAmelCase ) ) print(_UpperCAmelCase ) if __name__ == "__main__": main()
131
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :Tuple = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __snake_case :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
1
from __future__ import annotations from cmath import sqrt def lowercase__ ( __snake_case : int , __snake_case : int , __snake_case : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) UpperCAmelCase_ : str = b * b - 4 * a * c UpperCAmelCase_ : Optional[int] = (-b + sqrt(a__ )) / (2 * a) UpperCAmelCase_ : Optional[Any] = (-b - sqrt(a__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
29
"""simple docstring""" def lowercase ( a__ : float , a__ : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
256
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case__ : """simple docstring""" __lowerCAmelCase :int __lowerCAmelCase :TreeNode | None = None __lowerCAmelCase :TreeNode | None = None _lowercase : List[Any] =namedtuple("CoinsDistribResult", "moves excess") def lowerCAmelCase_ ( _lowercase : TreeNode | None) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(_lowercase : TreeNode | None) -> int: if node is None: return 0 return count_nodes(node.left) + count_nodes(node.right) + 1 def count_coins(_lowercase : TreeNode | None) -> int: if node is None: return 0 return count_coins(node.left) + count_coins(node.right) + node.data if count_nodes(_lowercase) != count_coins(_lowercase): raise ValueError("""The nodes number should be same as the number of coins""") # Main calculation def get_distrib(_lowercase : TreeNode | None) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1) a__ , a__ : Any = get_distrib(node.left) a__ , a__ : Any = get_distrib(node.right) a__ : Optional[int] = 1 - left_distrib_excess a__ : int = 1 - right_distrib_excess a__ : Dict = ( left_distrib_moves + right_distrib_moves + abs(_lowercase) + abs(_lowercase) ) a__ : Union[str, Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_lowercase , _lowercase) return get_distrib(_lowercase)[0] if __name__ == "__main__": import doctest doctest.testmod()
266
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : Union[str, Any] =16 _lowercase : Dict =32 def lowerCAmelCase_ ( _lowercase : Accelerator , _lowercase : int = 16 , _lowercase : str = "bert-base-cased") -> Union[str, Any]: """simple docstring""" a__ : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase) a__ : Any = load_dataset("""glue""" , """mrpc""") def tokenize_function(_lowercase : str): # max_length=None => use the model max length (it's actually the default) a__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ : Any = datasets.map( _lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_lowercase) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(_lowercase : Optional[Any]): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""") return tokenizer.pad(_lowercase , padding="""longest""" , return_tensors="""pt""") # Instantiate dataloaders. a__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase) a__ : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Dict) -> int: """simple docstring""" # Initialize accelerator a__ : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : Union[str, Any] = config["""lr"""] a__ : List[str] = int(config["""num_epochs"""]) a__ : List[str] = int(config["""seed"""]) a__ : Tuple = int(config["""batch_size"""]) a__ : int = args.model_name_or_path set_seed(_lowercase) a__ , a__ : int = get_dataloaders(_lowercase , _lowercase , _lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase) # Instantiate optimizer a__ : int = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowercase) if accelerator.state.deepspeed_plugin is not None: a__ : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: a__ : List[str] = 1 a__ : List[Any] = (len(_lowercase) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ : Dict = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: a__ : Dict = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : List[Any] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) # We need to keep track of how many total steps we have iterated over a__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly a__ : Optional[int] = 0 # Now we train the model a__ : Tuple = evaluate.load("""glue""" , """mrpc""") a__ : List[Any] = 0 a__ : Tuple = {} for epoch in range(_lowercase , _lowercase): model.train() for step, batch in enumerate(_lowercase): a__ : Union[str, Any] = model(**_lowercase) a__ : Tuple = outputs.loss a__ : Any = loss / gradient_accumulation_steps accelerator.backward(_lowercase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ : int = 0 for step, batch in enumerate(_lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): a__ : str = model(**_lowercase) a__ : Union[str, Any] = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times a__ , a__ : Optional[int] = accelerator.gather( (predictions, batch["""labels"""])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase) - 1: a__ : Union[str, Any] = predictions[: len(eval_dataloader.dataset) - samples_seen] a__ : Any = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) a__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowercase) a__ : Any = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: a__ : List[str] = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""") , """w""") as f: json.dump(_lowercase , _lowercase) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" a__ : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""") parser.add_argument( """--model_name_or_path""" , type=_lowercase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_lowercase , ) parser.add_argument( """--output_dir""" , type=_lowercase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_lowercase , default=_lowercase , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_lowercase , default=3 , help="""Number of train epochs.""" , ) a__ : Any = parser.parse_args() a__ : Dict = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_lowercase , _lowercase) if __name__ == "__main__": main()
266
1
import enum import shutil import sys UpperCAmelCase, UpperCAmelCase : Union[str, Any] = shutil.get_terminal_size() UpperCAmelCase : Dict = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class __lowercase ( enum.Enum ): """simple docstring""" UpperCamelCase : Any = 0 UpperCamelCase : int = 1 def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any="" ): '''simple docstring''' sys.stdout.write(str(lowerCamelCase__ ) + end ) sys.stdout.flush() def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple="" ): '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' forceWrite("""\r""" ) def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : str ): '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __lowerCamelCase ( ): '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def __lowerCamelCase ( ): '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
252
def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str]=0 ): '''simple docstring''' return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[column] ) def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : List[str]=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCamelCase__ ): for j in range(max(0 , i - 6 ) , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCamelCase__ , lowerCamelCase__ ) # recursion lowerCamelCase = points_counts // 2 lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[:mid] , lowerCamelCase__ ) lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCamelCase = min(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCamelCase__ ) lowerCamelCase = dis_between_closest_in_strip( lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) return min(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = column_based_sort(lowerCamelCase__ , column=0 ) lowerCamelCase = column_based_sort(lowerCamelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase : Dict = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
252
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Dict = BlipImageProcessor() lowerCAmelCase : Optional[Any] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCAmelCase : Dict = BlipaProcessor(snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def lowercase__ ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase : Optional[int] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase : str = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : int = self.get_tokenizer() lowerCAmelCase : List[Any] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = image_processor(snake_case__ , return_tensors="np" ) lowerCAmelCase : Optional[int] = processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : Optional[int] = "lower newer" lowerCAmelCase : int = processor(text=snake_case__ ) lowerCAmelCase : int = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : Optional[int] = self.get_tokenizer() lowerCAmelCase : str = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : List[str] = "lower newer" lowerCAmelCase : List[Any] = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Optional[Any] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Dict = processor.batch_decode(snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : int = "lower newer" lowerCAmelCase : List[Any] = self.prepare_image_inputs() lowerCAmelCase : Any = processor(text=snake_case__ , images=snake_case__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
133
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ = 13 , snake_case__ = 64 , snake_case__ = 2 , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = True , snake_case__ = True , snake_case__ = 128 , snake_case__=[16, 32, 64, 128] , snake_case__ = 7 , snake_case__ = 4 , snake_case__ = 37 , snake_case__ = "gelu" , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 10 , snake_case__ = 0.02 , snake_case__ = 2 , snake_case__ = 1 , snake_case__ = 128 , snake_case__ = [2, 2, 2, 2] , snake_case__ = 2 , snake_case__ = 2 , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : int = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : int = is_training lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : List[str] = encoder_stride lowerCAmelCase : Union[str, Any] = num_attention_outputs lowerCAmelCase : Any = embed_dim lowerCAmelCase : Tuple = embed_dim + 1 lowerCAmelCase : str = resolution lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : Any = hidden_sizes lowerCAmelCase : List[str] = dim lowerCAmelCase : str = mlp_expansion_ratio def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFEfficientFormerModel(config=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = self.type_sequence_label_size lowerCAmelCase : Dict = TFEfficientFormerForImageClassification(snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : str = 1 lowerCAmelCase : Any = TFEfficientFormerForImageClassification(snake_case__ ) lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : str = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = config_and_inputs lowerCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a : Union[str, Any] =( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a : int =False a : Optional[Any] =False a : List[Any] =False a : str =False a : List[Any] =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = TFEfficientFormerModelTester(self ) lowerCAmelCase : Dict = ConfigTester( self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(snake_case__ ) lowerCAmelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCAmelCase : Union[str, Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCAmelCase : Tuple = seq_length * self.model_tester.chunk_length else: lowerCAmelCase : List[str] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCAmelCase : Tuple = outputs.decoder_hidden_states self.asseretIsInstance(snake_case__ , (list, tuple) ) self.assertEqual(len(snake_case__ ) , snake_case__ ) lowerCAmelCase : int = getattr(self.model_tester , "seq_length" , snake_case__ ) lowerCAmelCase : Tuple = getattr(self.model_tester , "decoder_seq_length" , snake_case__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" lowerCAmelCase : Optional[int] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = TFEfficientFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , "seq_length" , snake_case__ ) lowerCAmelCase : Dict = getattr(self.model_tester , "encoder_seq_length" , snake_case__ ) lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , "key_length" , snake_case__ ) lowerCAmelCase : List[str] = getattr(self.model_tester , "chunk_length" , snake_case__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCAmelCase : Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase : int = True lowerCAmelCase : int = False lowerCAmelCase : Dict = True lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : Tuple = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : int = True lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : int = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase : List[str] = model_class(snake_case__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=snake_case__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.assertTrue(outputs_dict is not None ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : List[str] = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : Optional[int] = model(**snake_case__ , training=snake_case__ ) # verify the logits lowerCAmelCase : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Tuple = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Tuple = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : Dict = model(**snake_case__ , training=snake_case__ ) # verify the logits lowerCAmelCase : Optional[int] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Any = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
133
1
def lowercase_( SCREAMING_SNAKE_CASE_ = 4000000 ): '''simple docstring''' lowerCamelCase : Any = [0, 1] lowerCamelCase : Union[str, Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase : Union[str, Any] = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
283
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : str = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : List[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : int = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] )
283
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: List[Any] = batch_size lowercase__: Optional[int] = image_size lowercase__: Dict = num_channels lowercase__: Union[str, Any] = embeddings_size lowercase__: List[str] = hidden_sizes lowercase__: int = depths lowercase__: Union[str, Any] = is_training lowercase__: int = use_labels lowercase__: List[Any] = hidden_act lowercase__: Dict = num_labels lowercase__: Any = scope lowercase__: Dict = len(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: Dict = None if self.use_labels: lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowercase__: str = self.get_config() return config, pixel_values, labels def _snake_case ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = TFResNetModel(config=_UpperCAmelCase ) lowercase__: Tuple = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = self.num_labels lowercase__: int = TFResNetForImageClassification(_UpperCAmelCase ) lowercase__: Tuple = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): lowercase__: Optional[Any] = self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__: str = config_and_inputs lowercase__: Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase :List[Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Any = False _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Optional[Any] = False def _snake_case ( self ): lowercase__: Tuple = TFResNetModelTester(self ) lowercase__: Any = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def _snake_case ( self ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__, lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Union[str, Any] = model_class(_UpperCAmelCase ) lowercase__: Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: str = [*signature.parameters.keys()] lowercase__: Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = model_class(_UpperCAmelCase ) lowercase__: str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__: Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__: str = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__, lowercase__: Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__: Dict = layer_type lowercase__: Any = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__: Optional[Any] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _snake_case ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Union[str, Any] = TFResNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> int: lowercase__: Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self ): lowercase__: str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__: int = self.default_image_processor lowercase__: Any = prepare_img() lowercase__: List[Any] = image_processor(images=_UpperCAmelCase , return_tensors='''tf''' ) # forward pass lowercase__: Tuple = model(**_UpperCAmelCase ) # verify the logits lowercase__: Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__: List[Any] = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1e-4 ) )
2
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = '''https://openaipublic.azureedge.net/jukebox/models/''' lowerCamelCase = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def lowerCamelCase_ ( _a ): """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ : Any = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ : Tuple = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ : Any = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ : Dict = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCAmelCase__ : Any = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCAmelCase__ : Union[str, Any] = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase__ : List[str] = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCAmelCase__ : Dict = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def lowerCamelCase_ ( _a , _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : Dict = {} import re lowerCAmelCase__ : Any = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ : Tuple = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ : List[Any] = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ : Optional[Any] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ : List[str] = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ : List[Any] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ : List[str] = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ : Optional[Any] = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ : Dict = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_a ): lowerCAmelCase__ : List[str] = re_encoder_block_conv_in.match(_a ) lowerCAmelCase__ : List[str] = regex_match.groups() lowerCAmelCase__ : Any = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ : List[Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' lowerCAmelCase__ : Optional[int] = re_encoder_block_conv_in.sub(_a , _a ) elif re_encoder_block_resnet.fullmatch(_a ): lowerCAmelCase__ : List[str] = re_encoder_block_resnet.match(_a ) lowerCAmelCase__ : Dict = regex_match.groups() lowerCAmelCase__ : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ : Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ : Optional[Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' lowerCAmelCase__ : Tuple = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase__ : List[Any] = prefix + resnet_block lowerCAmelCase__ : Optional[int] = re_encoder_block_resnet.sub(_a , _a ) elif re_encoder_block_proj_out.fullmatch(_a ): lowerCAmelCase__ : Any = re_encoder_block_proj_out.match(_a ) lowerCAmelCase__ : List[str] = regex_match.groups() lowerCAmelCase__ : Union[str, Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' lowerCAmelCase__ : Optional[int] = re_encoder_block_proj_out.sub(_a , _a ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_a ): lowerCAmelCase__ : int = re_decoder_block_conv_out.match(_a ) lowerCAmelCase__ : Any = regex_match.groups() lowerCAmelCase__ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ : List[str] = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' lowerCAmelCase__ : int = re_decoder_block_conv_out.sub(_a , _a ) elif re_decoder_block_resnet.fullmatch(_a ): lowerCAmelCase__ : str = re_decoder_block_resnet.match(_a ) lowerCAmelCase__ : int = regex_match.groups() lowerCAmelCase__ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ : str = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ : List[Any] = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' lowerCAmelCase__ : Tuple = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase__ : Optional[Any] = prefix + resnet_block lowerCAmelCase__ : Any = re_decoder_block_resnet.sub(_a , _a ) elif re_decoder_block_proj_in.fullmatch(_a ): lowerCAmelCase__ : Union[str, Any] = re_decoder_block_proj_in.match(_a ) lowerCAmelCase__ : List[str] = regex_match.groups() lowerCAmelCase__ : Union[str, Any] = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' lowerCAmelCase__ : int = re_decoder_block_proj_in.sub(_a , _a ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_a ): lowerCAmelCase__ : Dict = re_prior_cond_conv_out.match(_a ) lowerCAmelCase__ : List[str] = regex_match.groups() lowerCAmelCase__ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ : Optional[Any] = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' lowerCAmelCase__ : Union[str, Any] = re_prior_cond_conv_out.sub(_a , _a ) elif re_prior_cond_resnet.fullmatch(_a ): lowerCAmelCase__ : int = re_prior_cond_resnet.match(_a ) lowerCAmelCase__ : List[str] = regex_match.groups() lowerCAmelCase__ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ : Any = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ : Optional[Any] = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' lowerCAmelCase__ : List[str] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase__ : int = prefix + resnet_block lowerCAmelCase__ : Optional[int] = re_prior_cond_resnet.sub(_a , _a ) elif re_prior_cond_proj_in.fullmatch(_a ): lowerCAmelCase__ : str = re_prior_cond_proj_in.match(_a ) lowerCAmelCase__ : Tuple = regex_match.groups() lowerCAmelCase__ : List[Any] = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' lowerCAmelCase__ : Optional[Any] = re_prior_cond_proj_in.sub(_a , _a ) # keep original key else: lowerCAmelCase__ : Optional[int] = original_key lowerCAmelCase__ : Any = replace_key(_a ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: lowerCAmelCase__ : Union[str, Any] = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) lowerCAmelCase__ : Optional[int] = original_key lowerCAmelCase__ : str = original_key lowerCAmelCase__ : Optional[int] = value return new_dict @torch.no_grad() def lowerCamelCase_ ( _a=None , _a=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): lowerCAmelCase__ : List[Any] = requests.get(f'{PREFIX}{file}' , allow_redirects=_a ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=_a ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content ) lowerCAmelCase__ : List[str] = MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCAmelCase__ : int = JukeboxConfig.from_pretrained(_a ) lowerCAmelCase__ : List[Any] = JukeboxModel(_a ) lowerCAmelCase__ : str = [] lowerCAmelCase__ : Optional[Any] = {} for i, dict_name in enumerate(_a ): lowerCAmelCase__ : List[str] = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model'''] lowerCAmelCase__ : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCAmelCase__ : str = old_dic[k] elif k.endswith('''.w''' ): lowerCAmelCase__ : Optional[int] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase__ : Tuple = old_dic[k] else: lowerCAmelCase__ : Dict = old_dic[k] lowerCAmelCase__ : Union[str, Any] = '''vqvae''' if i == 0 else f'priors.{3 - i}' lowerCAmelCase__ : Optional[Any] = fix_jukebox_keys(_a , model.state_dict() , _a , _a ) weight_dict.append(_a ) lowerCAmelCase__ : str = weight_dict.pop(0 ) model.vqvae.load_state_dict(_a ) for i in range(len(_a ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_a ).mkdir(exist_ok=_a ) with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile: json.dump(_a , _a ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) return weight_dict if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) lowerCamelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
131
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase = logging.get_logger(__name__) class _a ( _lowercase): def __init__( self : Optional[int] , *_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
131
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a=1 , __a=0 , __a=2 , __a=512 , __a="cls" , __a=False , __a=True , **__a , ) -> int: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCAmelCase__ = project_dim UpperCAmelCase__ = pooler_fn UpperCAmelCase__ = learn_encoder UpperCAmelCase__ = use_attention_mask class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [r"""pooler""", r"""logit_scale"""] __SCREAMING_SNAKE_CASE = [r"""position_ids""", r"""predictions.decoder.bias"""] __SCREAMING_SNAKE_CASE = """roberta""" __SCREAMING_SNAKE_CASE = RobertaSeriesConfig def __init__(self , __a ) -> str: """simple docstring""" super().__init__(__a ) UpperCAmelCase__ = XLMRobertaModel(__a ) UpperCAmelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase__ = getattr(__a , 'has_pre_transformation' , __a ) if self.has_pre_transformation: UpperCAmelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase__ = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCamelCase__ (self , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.base_model( input_ids=__a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_attentions=__a , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__a , ) if self.has_pre_transformation: UpperCAmelCase__ = outputs['hidden_states'][-2] UpperCAmelCase__ = self.pre_LN(__a ) UpperCAmelCase__ = self.transformation_pre(__a ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCAmelCase__ = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
370
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
0
"""simple docstring""" lowercase_ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowercase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowercase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
266
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[int] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''], model_result['''ss'''] ): __A = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sgugger/tiny-distilbert-classification''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, only_pretrain_model=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, torchscript=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''', '''Cant do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, fpaa=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` __A = None __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''', '''Can\'t do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], fpaa=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, save_to_csv=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(_lowerCamelCase, '''inf_time.csv''' ), train_memory_csv_file=os.path.join(_lowerCamelCase, '''train_mem.csv''' ), inference_memory_csv_file=os.path.join(_lowerCamelCase, '''inf_mem.csv''' ), train_time_csv_file=os.path.join(_lowerCamelCase, '''train_time.csv''' ), env_info_csv_file=os.path.join(_lowerCamelCase, '''env.csv''' ), multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''env.csv''' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCamelCase : List[Any] ): self.assertTrue(hasattr(_lowerCamelCase, '''sequential''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''current''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(_lowerCamelCase, '''log.txt''' ), log_print=_lowerCamelCase, trace_memory_line_by_line=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''log.txt''' ) ).exists() )
266
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Dict: A = """ZinengTang/tvlt-base""" A = tempfile.mkdtemp() def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> str: return TvltImageProcessor.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> Any: return TvltFeatureExtractor.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=lowerCamelCase_ ,feature_extractor=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) A = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor ,lowerCamelCase_ ) self.assertIsInstance(processor.image_processor ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Any: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=lowerCamelCase_ ,feature_extractor=lowerCamelCase_ ) A = np.ones([1_2_0_0_0] ) A = feature_extractor(lowerCamelCase_ ,return_tensors="""np""" ) A = processor(audio=lowerCamelCase_ ,return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase__ ( self ) -> Any: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=lowerCamelCase_ ,feature_extractor=lowerCamelCase_ ) A = np.ones([3, 2_2_4, 2_2_4] ) A = image_processor(lowerCamelCase_ ,return_tensors="""np""" ) A = processor(images=lowerCamelCase_ ,return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase__ ( self ) -> int: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=lowerCamelCase_ ,feature_extractor=lowerCamelCase_ ) A = np.ones([1_2_0_0_0] ) A = np.ones([3, 2_2_4, 2_2_4] ) A = processor(audio=lowerCamelCase_ ,images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def UpperCamelCase__ ( self ) -> int: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=lowerCamelCase_ ,feature_extractor=lowerCamelCase_ ) self.assertListEqual( processor.model_input_names ,image_processor.model_input_names + feature_extractor.model_input_names ,msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" ,)
77
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase =logging.get_logger(__name__) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self ,lowerCamelCase_ = True ,lowerCamelCase_ = None ,lowerCamelCase_ = PILImageResampling.BICUBIC ,lowerCamelCase_ = True ,lowerCamelCase_ = None ,lowerCamelCase_ = True ,lowerCamelCase_ = 1 / 2_5_5 ,lowerCamelCase_ = True ,lowerCamelCase_ = IMAGENET_DEFAULT_MEAN ,lowerCamelCase_ = IMAGENET_DEFAULT_STD ,**lowerCamelCase_ ,) -> None: super().__init__(**lowerCamelCase_ ) A = size if size is not None else {"""shortest_edge""": 2_2_4} A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} A = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = PILImageResampling.BICUBIC ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A = int((2_5_6 / 2_2_4) * size["""shortest_edge"""] ) A = get_resize_output_image_size(lowerCamelCase_ ,size=lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( lowerCamelCase_ ,size=(size_dict["""height"""], size_dict["""width"""]) ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: A = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = ChannelDimension.FIRST ,**lowerCamelCase_ ,) -> BatchFeature: A = do_resize if do_resize is not None else self.do_resize A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ) A = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: A = [self.resize(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_center_crop: A = [self.center_crop(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_rescale: A = [self.rescale(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_normalize: A = [self.normalize(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for image in images] A = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] A = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
77
1
def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis _UpperCAmelCase = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] _UpperCAmelCase = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(snake_case_ , 1 ): if n < _p: # then we have our last prime to check _UpperCAmelCase = primes[:idx] break _UpperCAmelCase , _UpperCAmelCase = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _UpperCAmelCase = False for r in range(snake_case_ ): _UpperCAmelCase = pow(snake_case_ , d * 2**r , snake_case_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _UpperCAmelCase = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
133
def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000 ): '''simple docstring''' _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
133
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( A_ , A_ ): __a = """maskformer-swin""" __a = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any]=224 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : int=96 , _lowerCamelCase : str=[2, 2, 6, 2] , _lowerCamelCase : Union[str, Any]=[3, 6, 12, 24] , _lowerCamelCase : List[str]=7 , _lowerCamelCase : Dict=4.0 , _lowerCamelCase : Tuple=True , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Union[str, Any]=0.0_2 , _lowerCamelCase : int=1e-5 , _lowerCamelCase : List[str]=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): super().__init__(**_lowerCamelCase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(_lowerCamelCase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) _snake_case = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
40
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Optional[int]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : List[str] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Optional[Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Any ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : int ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : Tuple ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : str ): pass def lowercase ( self : Optional[int] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : str ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[int] ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> Tuple: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Optional[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : str ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : Optional[int] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
40
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__(self : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : str=3 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : str=10 , UpperCamelCase : Any=[10, 20, 30, 40] , UpperCamelCase : List[Any]=[1, 1, 2, 1] , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=True , UpperCamelCase : Optional[int]="relu" , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(UpperCamelCase ) def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self : str ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = TFResNetModel(config=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFResNetForImageClassification(UpperCamelCase ) lowercase__ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase (lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase__ : str = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : int = False lowerCAmelCase__ : Optional[int] = False def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = TFResNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ ,lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): lowercase__ = model_class(UpperCamelCase ) lowercase__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ ,lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def UpperCamelCase__ (self : Any ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFResNetModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def _SCREAMING_SNAKE_CASE () -> Dict: """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self : int ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase , return_tensors='''tf''' ) # forward pass lowercase__ = model(**UpperCamelCase ) # verify the logits lowercase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowercase__ = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCamelCase , atol=1E-4 ) )
2
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Tuple= logging.get_logger(__name__) _a : Optional[int]= { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class UpperCamelCase ( __lowerCAmelCase ): UpperCAmelCase : Optional[Any] = "falcon" UpperCAmelCase : Tuple = ["past_key_values"] def __init__(self : List[Any] , _A : List[Any]=6_50_24 , _A : str=45_44 , _A : Any=32 , _A : Any=71 , _A : Union[str, Any]=1E-5 , _A : Dict=0.02 , _A : Optional[Any]=True , _A : str=0.0 , _A : Tuple=0.0 , _A : List[str]=None , _A : str=False , _A : Any=False , _A : List[Any]=True , _A : List[str]=True , _A : List[str]=False , _A : List[Any]=11 , _A : int=11 , **_A : Tuple , ) -> Optional[Any]: __snake_case : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg __snake_case : Optional[Any] = kwargs.pop('n_embed' , lowerCamelCase__) __snake_case : Optional[Any] = hidden_size if n_embed is None else n_embed __snake_case : Any = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : Union[str, Any] = layer_norm_epsilon __snake_case : Optional[int] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Optional[int] = hidden_dropout __snake_case : Dict = attention_dropout __snake_case : Optional[int] = bos_token_id __snake_case : List[Any] = eos_token_id __snake_case : List[str] = num_attention_heads if num_kv_heads is None else num_kv_heads __snake_case : List[Any] = alibi __snake_case : Tuple = new_decoder_architecture __snake_case : Optional[int] = multi_query # Ignored when new_decoder_architecture is True __snake_case : Union[str, Any] = parallel_attn __snake_case : List[str] = bias super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__) @property def _lowercase (self : str) -> List[Any]: return self.hidden_size // self.num_attention_heads @property def _lowercase (self : Dict) -> Optional[Any]: return not self.alibi
357
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _a : int= NewType("DataClass", Any) _a : Dict= NewType("DataClassType", Any) def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def __UpperCAmelCase ( UpperCAmelCase_ : list ) -> Callable[[str], Any]: '''simple docstring''' __snake_case : str = {str(UpperCAmelCase_ ): choice for choice in choices} return lambda UpperCAmelCase_ : str_to_choice.get(UpperCAmelCase_ , UpperCAmelCase_ ) def __UpperCAmelCase ( *, UpperCAmelCase_ : Union[str, List[str]] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Any = dataclasses.MISSING , UpperCAmelCase_ : Callable[[], Any] = dataclasses.MISSING , UpperCAmelCase_ : dict = None , **UpperCAmelCase_ : str , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __snake_case : Optional[Any] = {} if aliases is not None: __snake_case : Optional[int] = aliases if help is not None: __snake_case : Optional[int] = help return dataclasses.field(metadata=UpperCAmelCase_ , default=UpperCAmelCase_ , default_factory=UpperCAmelCase_ , **UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): UpperCAmelCase : Iterable[DataClassType] def __init__(self : Tuple , _A : Union[DataClassType, Iterable[DataClassType]] , **_A : int) -> int: # To make the default appear when using --help if "formatter_class" not in kwargs: __snake_case : Union[str, Any] = ArgumentDefaultsHelpFormatter super().__init__(**_A) if dataclasses.is_dataclass(_A): __snake_case : Optional[int] = [dataclass_types] __snake_case : Dict = list(_A) for dtype in self.dataclass_types: self._add_dataclass_arguments(_A) @staticmethod def _lowercase (_A : ArgumentParser , _A : dataclasses.Field) -> Tuple: __snake_case : Union[str, Any] = f"--{field.name}" __snake_case : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _A): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default') __snake_case : Any = kwargs.pop('aliases' , []) if isinstance(_A , _A): __snake_case : Optional[Any] = [aliases] __snake_case : Tuple = getattr(field.type , '__origin__' , field.type) if origin_type is Union or (hasattr(_A , 'UnionType') and isinstance(_A , types.UnionType)): if str not in field.type.__args__ and ( len(field.type.__args__) != 2 or type(_A) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' f" Problem encountered in field '{field.name}'.") if type(_A) not in field.type.__args__: # filter `str` in Union __snake_case : Tuple = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __snake_case : Optional[int] = getattr(field.type , '__origin__' , field.type) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __snake_case : Optional[Any] = ( field.type.__args__[0] if isinstance(_A , field.type.__args__[1]) else field.type.__args__[1] ) __snake_case : Tuple = getattr(field.type , '__origin__' , field.type) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __snake_case : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , _A) and issubclass(field.type , _A)): if origin_type is Literal: __snake_case : Tuple = field.type.__args__ else: __snake_case : Dict = [x.value for x in field.type] __snake_case : Dict = make_choice_type_function(kwargs['choices']) if field.default is not dataclasses.MISSING: __snake_case : Dict = field.default else: __snake_case : Union[str, Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __snake_case : Tuple = copy(_A) # Hack because type=bool in argparse does not behave as we want. __snake_case : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __snake_case : str = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __snake_case : Any = default # This tells argparse we accept 0 or 1 value after --field_name __snake_case : Dict = '?' # This is the value that will get picked if we do --field_name (without value) __snake_case : List[str] = True elif isclass(_A) and issubclass(_A , _A): __snake_case : str = field.type.__args__[0] __snake_case : Any = '+' if field.default_factory is not dataclasses.MISSING: __snake_case : List[str] = field.default_factory() elif field.default is dataclasses.MISSING: __snake_case : Any = True else: __snake_case : Tuple = field.type if field.default is not dataclasses.MISSING: __snake_case : Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: __snake_case : List[Any] = field.default_factory() else: __snake_case : Union[str, Any] = True parser.add_argument(_A , *_A , **_A) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __snake_case : List[str] = False parser.add_argument(f"--no_{field.name}" , action='store_false' , dest=field.name , **_A) def _lowercase (self : List[Any] , _A : DataClassType) -> Optional[int]: if hasattr(_A , '_argument_group_name'): __snake_case : Union[str, Any] = self.add_argument_group(dtype._argument_group_name) else: __snake_case : int = self try: __snake_case : Dict[str, type] = get_type_hints(_A) except NameError: raise RuntimeError( f"Type resolution failed for {dtype}. Try declaring the class in global scope or " 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)') except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_A): __snake_case : Union[str, Any] = '.'.join(map(_A , sys.version_info[:3])) raise RuntimeError( f"Type resolution failed for {dtype} on Python {python_version}. Try removing " 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.') from ex raise for field in dataclasses.fields(_A): if not field.init: continue __snake_case : Optional[Any] = type_hints[field.name] self._parse_dataclass_field(_A , _A) def _lowercase (self : Union[str, Any] , _A : List[Any]=None , _A : Optional[Any]=False , _A : int=True , _A : List[Any]=None , _A : str=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)): __snake_case : Any = [] if args_filename: args_files.append(Path(_A)) elif look_for_args_file and len(sys.argv): args_files.append(Path(sys.argv[0]).with_suffix('.args')) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __snake_case : int = ArgumentParser() args_file_parser.add_argument(_A , type=_A , action='append') # Use only remaining args for further parsing (remove the args_file_flag) __snake_case , __snake_case : int = args_file_parser.parse_known_args(args=_A) __snake_case : int = vars(_A).get(args_file_flag.lstrip('-') , _A) if cmd_args_file_paths: args_files.extend([Path(_A) for p in cmd_args_file_paths]) __snake_case : Optional[int] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __snake_case : List[str] = file_args + args if args is not None else file_args + sys.argv[1:] __snake_case , __snake_case : Tuple = self.parse_known_args(args=_A) __snake_case : Dict = [] for dtype in self.dataclass_types: __snake_case : List[Any] = {f.name for f in dataclasses.fields(_A) if f.init} __snake_case : List[str] = {k: v for k, v in vars(_A).items() if k in keys} for k in keys: delattr(_A , _A) __snake_case : List[str] = dtype(**_A) outputs.append(_A) if len(namespace.__dict__) > 0: # additional namespace. outputs.append(_A) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}") return (*outputs,) def _lowercase (self : Tuple , _A : Dict[str, Any] , _A : bool = False) -> Tuple[DataClass, ...]: __snake_case : List[Any] = set(args.keys()) __snake_case : Dict = [] for dtype in self.dataclass_types: __snake_case : List[str] = {f.name for f in dataclasses.fields(_A) if f.init} __snake_case : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys()) __snake_case : List[str] = dtype(**_A) outputs.append(_A) if not allow_extra_keys and unused_keys: raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(_A)}") return tuple(_A) def _lowercase (self : int , _A : str , _A : bool = False) -> Tuple[DataClass, ...]: with open(Path(_A) , encoding='utf-8') as open_json_file: __snake_case : int = json.loads(open_json_file.read()) __snake_case : Optional[int] = self.parse_dict(_A , allow_extra_keys=_A) return tuple(_A) def _lowercase (self : List[str] , _A : str , _A : bool = False) -> Tuple[DataClass, ...]: __snake_case : Dict = self.parse_dict(yaml.safe_load(Path(_A).read_text()) , allow_extra_keys=_A) return tuple(_A)
95
0
"""simple docstring""" def lowercase (snake_case__ : int , snake_case__ : int ) -> Optional[Any]: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) lowerCAmelCase = str(bin(UpperCAmelCase_ ) ) binary_number += "0" * shift_amount return binary_number def lowercase (snake_case__ : int , snake_case__ : int ) -> List[str]: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) lowerCAmelCase = str(bin(UpperCAmelCase_ ) )[2:] if shift_amount >= len(UpperCAmelCase_ ): return "0b0" lowerCAmelCase = binary_number[: len(UpperCAmelCase_ ) - shift_amount] return "0b" + shifted_binary_number def lowercase (snake_case__ : int , snake_case__ : int ) -> List[Any]: '''simple docstring''' if number >= 0: # Get binary representation of positive number lowerCAmelCase = """0""" + str(bin(UpperCAmelCase_ ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number lowerCAmelCase = len(bin(UpperCAmelCase_ )[3:] ) # Find 2's complement of number lowerCAmelCase = bin(abs(UpperCAmelCase_ ) - (1 << binary_number_length) )[3:] lowerCAmelCase = ( """1""" + """0""" * (binary_number_length - len(UpperCAmelCase_ )) + binary_number ) if shift_amount >= len(UpperCAmelCase_ ): return "0b" + binary_number[0] * len(UpperCAmelCase_ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(UpperCAmelCase_ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
155
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Optional[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int]=7 , UpperCamelCase: str=3 , UpperCamelCase: int=30 , UpperCamelCase: int=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Tuple=None , UpperCamelCase: Any=True , UpperCamelCase: int=[0.5, 0.5, 0.5] , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[Any]=1 / 2_55 , UpperCamelCase: Tuple=True , ): """simple docstring""" A__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Any , UpperCamelCase: List[str] , UpperCamelCase: int=False ): """simple docstring""" if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["""shortest_edge"""] * h / w ) A__ = self.size["""shortest_edge"""] elif w > h: A__ = self.size["""shortest_edge"""] A__ = int(self.size["""shortest_edge"""] * w / h ) else: A__ = self.size["""shortest_edge"""] A__ = self.size["""shortest_edge"""] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) A__ = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A__ = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" ) A__ = image_processing_a(UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def UpperCamelCase ( self: str ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them A__ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def UpperCamelCase ( self: int ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} A__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ = YolosImageProcessor(format="""coco_panoptic""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
335
0
"""simple docstring""" def _snake_case ( _snake_case : int ): if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" import argparse import copy def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : int = {} with open(_lowerCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase__ : str = [] _list.append([line.split()[1], line.split()[2]] ) lowercase__ : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase__ : Dict = [] _list.append([line.split()[0], line.split()[2]] ) lowercase__ : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' with open(_lowerCAmelCase ) as f: lowercase__ : Union[str, Any] = f.read(1 ) lowercase__ : Union[str, Any] = start_node lowercase__ : int = [] lowercase__ : int = start_node lowercase__ : Optional[Any] = 0 while visiting not in first_solution: lowercase__ : str = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCAmelCase ) and k[0] not in first_solution: lowercase__ : Any = k[1] lowercase__ : Union[str, Any] = k[0] first_solution.append(_lowerCAmelCase ) lowercase__ : Dict = distance_of_first_solution + int(_lowerCAmelCase ) lowercase__ : Tuple = best_node first_solution.append(_lowerCAmelCase ) lowercase__ : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase__ : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = [] for n in solution[1:-1]: lowercase__ : int = solution.index(_lowerCAmelCase ) for kn in solution[1:-1]: lowercase__ : List[Any] = solution.index(_lowerCAmelCase ) if n == kn: continue lowercase__ : Optional[Any] = copy.deepcopy(_lowerCAmelCase ) lowercase__ : Tuple = kn lowercase__ : Dict = n lowercase__ : List[str] = 0 for k in _tmp[:-1]: lowercase__ : Optional[int] = _tmp[_tmp.index(_lowerCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase__ : Optional[Any] = distance + int(i[1] ) _tmp.append(_lowerCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase__ : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowerCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : List[str] = 1 lowercase__ : Optional[int] = first_solution lowercase__ : List[Any] = [] lowercase__ : Optional[int] = distance_of_first_solution lowercase__ : List[str] = solution while count <= iters: lowercase__ : Any = find_neighborhood(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Any = 0 lowercase__ : int = neighborhood[index_of_best_solution] lowercase__ : List[Any] = len(_lowerCAmelCase ) - 1 lowercase__ : List[str] = False while not found: lowercase__ : Optional[Any] = 0 while i < len(_lowerCAmelCase ): if best_solution[i] != solution[i]: lowercase__ : Union[str, Any] = best_solution[i] lowercase__ : Tuple = solution[i] break lowercase__ : str = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase__ : List[str] = True lowercase__ : List[str] = best_solution[:-1] lowercase__ : List[str] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase__ : List[Any] = cost lowercase__ : Tuple = solution else: lowercase__ : Tuple = index_of_best_solution + 1 lowercase__ : Any = neighborhood[index_of_best_solution] if len(_lowerCAmelCase ) >= size: tabu_list.pop(0 ) lowercase__ : List[Any] = count + 1 return best_solution_ever, best_cost def a_ ( _lowerCAmelCase : Tuple=None ): '''simple docstring''' lowercase__ : Tuple = generate_neighbours(args.File ) lowercase__ , lowercase__ : Optional[int] = generate_first_solution( args.File , _lowerCAmelCase ) lowercase__ , lowercase__ : Optional[int] = tabu_search( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
77
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCAmelCase_ : def __init__( self , a ) -> List[str]: if isinstance(a , a ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase__ : Optional[Any] = deepcopy(a ) elif os.path.exists(a ): with io.open(a , 'r' , encoding='utf-8' ) as f: lowercase__ : List[Any] = json.load(a ) else: try: lowercase__ : Optional[int] = baseaa.urlsafe_baadecode(a ).decode('utf-8' ) lowercase__ : List[str] = json.loads(a ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowercase__ : Any = config self.set_stage_and_offload() def _UpperCAmelCase ( self ) -> Dict: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowercase__ : Tuple = self.get_value('zero_optimization.stage' , -1 ) # offload lowercase__ : int = False if self.is_zeroa() or self.is_zeroa(): lowercase__ : str = set(['cpu', 'nvme'] ) lowercase__ : Optional[Any] = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase__ : Optional[Any] = True def _UpperCAmelCase ( self , a ) -> Any: lowercase__ : Dict = self.config # find the config node of interest if it exists lowercase__ : int = ds_key_long.split('.' ) lowercase__ : Dict = nodes.pop() for node in nodes: lowercase__ : Optional[Any] = config.get(a ) if config is None: return None, ds_key return config, ds_key def _UpperCAmelCase ( self , a , a=None ) -> Union[str, Any]: lowercase__ , lowercase__ : Tuple = self.find_config_node(a ) if config is None: return default return config.get(a , a ) def _UpperCAmelCase ( self , a , a=False ) -> Any: lowercase__ : str = self.config # find the config node of interest if it exists lowercase__ : List[Any] = ds_key_long.split('.' ) for node in nodes: lowercase__ : str = config lowercase__ : str = config.get(a ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(a ) def _UpperCAmelCase ( self , a ) -> List[Any]: lowercase__ : Union[str, Any] = self.get_value(a ) return False if value is None else bool(a ) def _UpperCAmelCase ( self , a ) -> Any: lowercase__ : Any = self.get_value(a ) return False if value is None else not bool(a ) def _UpperCAmelCase ( self ) -> Tuple: return self._stage == 2 def _UpperCAmelCase ( self ) -> List[Any]: return self._stage == 3 def _UpperCAmelCase ( self ) -> str: return self._offload class UpperCAmelCase_ : def __init__( self , a ) -> str: lowercase__ : Tuple = engine def _UpperCAmelCase ( self , a , **a ) -> Optional[int]: # runs backpropagation and handles mixed precision self.engine.backward(a , **a ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCAmelCase_ ( _a): def __init__( self , a ) -> Dict: super().__init__(a , device_placement=a , scaler=a ) lowercase__ : Union[str, Any] = hasattr(self.optimizer , 'overflow' ) def _UpperCAmelCase ( self , a=None ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _UpperCAmelCase ( self ) -> Optional[int]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _UpperCAmelCase ( self ) -> Tuple: if self.__has_overflow__: return self.optimizer.overflow return False class UpperCAmelCase_ ( _a): def __init__( self , a , a ) -> Any: super().__init__(a , a ) def _UpperCAmelCase ( self ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCAmelCase_ : def __init__( self , a , a=0.001 , a=0 , **a ) -> Tuple: lowercase__ : List[Any] = params lowercase__ : int = lr lowercase__ : int = weight_decay lowercase__ : Union[str, Any] = kwargs class UpperCAmelCase_ : def __init__( self , a , a=None , a=0 , **a ) -> Tuple: lowercase__ : Dict = optimizer lowercase__ : List[str] = total_num_steps lowercase__ : Optional[int] = warmup_num_steps lowercase__ : List[Any] = kwargs
77
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
183
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[32, 64, 128] , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2"] , _SCREAMING_SNAKE_CASE=[1, 2] , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = patch_norm UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = is_training UpperCamelCase = scope UpperCamelCase = use_labels UpperCamelCase = type_sequence_label_size UpperCamelCase = encoder_stride UpperCamelCase = out_features UpperCamelCase = out_indices def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> str: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = FocalNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = FocalNetBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = FocalNetBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = FocalNetForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FocalNetForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = FocalNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 , has_text_modality=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Tuple: """simple docstring""" return def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self ) -> int: """simple docstring""" pass def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # FocalNet has a different seq_length UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = reshaped_hidden_states[0].shape UpperCamelCase = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = FocalNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class a_ ( unittest.TestCase ): @cached_property def A__ ( self ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.default_image_processor UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class a_ ( lowerCamelCase , unittest.TestCase ): lowercase = (FocalNetBackbone,) if is_torch_available() else () lowercase = FocalNetConfig lowercase = False def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = FocalNetModelTester(self )
183
1
"""simple docstring""" from timeit import timeit __lowercase = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowercase ( A_ )-> bool: '''simple docstring''' a : List[str] = 0 a : Optional[Any] = len(A_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowercase ( A_ )-> bool: '''simple docstring''' a : List[Any] = len(A_ ) // 2 a : Optional[Any] = len(A_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(A_ ) ) def lowercase ( A_ )-> bool: '''simple docstring''' if len(A_ ) <= 2: return True if s[0] == s[len(A_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowercase ( A_ )-> bool: '''simple docstring''' return s == s[::-1] def lowercase ( A_ )-> None: '''simple docstring''' a : Tuple = F'''all({name}(key) is value for key, value in test_data.items())''' a : Union[str, Any] = F'''from __main__ import test_data, {name}''' a : List[str] = 500_000 a : Optional[int] = timeit(stmt=A_ , setup=A_ , number=A_ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
40
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCAmelCase : Tuple = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCAmelCase : List[str] = """document_qa""" UpperCAmelCase : str = AutoProcessor UpperCAmelCase : Optional[int] = VisionEncoderDecoderModel UpperCAmelCase : int = ["""image""", """text"""] UpperCAmelCase : int = ["""text"""] def __init__( self : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") super().__init__(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : "Image" , __UpperCAmelCase : str): a : Any = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a : Union[str, Any] = task_prompt.replace("{user_input}" , __UpperCAmelCase) a : Optional[Any] = self.pre_processor.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors="pt").input_ids a : Any = self.pre_processor(__UpperCAmelCase , return_tensors="pt").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __snake_case ( self : int , __UpperCAmelCase : int): return self.model.generate( inputs["pixel_values"].to(self.device) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCAmelCase , ).sequences def __snake_case ( self : str , __UpperCAmelCase : List[Any]): a : Union[str, Any] = self.pre_processor.batch_decode(__UpperCAmelCase)[0] a : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , "") a : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , "") a : Optional[Any] = re.sub(r"<.*?>" , "" , __UpperCAmelCase , count=1).strip() # remove first task start token a : List[str] = self.pre_processor.tokenajson(__UpperCAmelCase) return sequence["answer"]
40
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = '''ZinengTang/tvlt-base''' SCREAMING_SNAKE_CASE_ : Dict = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : List[Any]): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : List[str]): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : int = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : str = TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , lowercase_) self.assertIsInstance(processor.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = np.ones([12000]) SCREAMING_SNAKE_CASE_ : List[Any] = feature_extractor(lowercase_ , return_tensors='''np''') SCREAMING_SNAKE_CASE_ : Any = processor(audio=lowercase_ , return_tensors='''np''') for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : Dict = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = np.ones([3, 224, 224]) SCREAMING_SNAKE_CASE_ : Dict = image_processor(lowercase_ , return_tensors='''np''') SCREAMING_SNAKE_CASE_ : str = processor(images=lowercase_ , return_tensors='''np''') for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : str = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = np.ones([12000]) SCREAMING_SNAKE_CASE_ : Dict = np.ones([3, 224, 224]) SCREAMING_SNAKE_CASE_ : List[str] = processor(audio=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask''']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : Dict = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
318
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "feature_extractor"] __UpperCamelCase = "TvltImageProcessor" __UpperCamelCase = "TvltFeatureExtractor" def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ): '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''') SCREAMING_SNAKE_CASE_ : Any = None if images is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_) if images_mixed is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_) if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor( lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {} if audio is not None: output_dict.update(lowercase_) if images is not None: output_dict.update(lowercase_) if images_mixed_dict is not None: output_dict.update(lowercase_) return output_dict @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
318
1
from itertools import permutations def __snake_case ( _UpperCAmelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __a = [7, 11, 13, 17] for i, test in enumerate(_UpperCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __snake_case ( _UpperCAmelCase = 10 ): return sum( int(''''''.join(map(_UpperCAmelCase , _UpperCAmelCase ) ) ) for num in permutations(range(_UpperCAmelCase ) ) if is_substring_divisible(_UpperCAmelCase ) ) if __name__ == "__main__": print(f'{solution() = }')
49
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] =size if size is not None else {"shortest_edge": 2_0} a__ : List[str] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} a__ : Tuple =parent a__ : Union[str, Any] =batch_size a__ : List[str] =num_channels a__ : List[Any] =image_size a__ : str =min_resolution a__ : Optional[int] =max_resolution a__ : Tuple =do_resize a__ : Union[str, Any] =size a__ : List[Any] =do_center_crop a__ : List[str] =crop_size a__ : Optional[int] =do_flip_channel_order def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : int = MobileViTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Tuple =MobileViTImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_flip_channel_order" ) ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) a__ : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : Tuple =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : List[Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : Tuple =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : int =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : int =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : List[str] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = 'gptj' _snake_case : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Any , __lowerCAmelCase : int=5_0400 , __lowerCAmelCase : Optional[Any]=2048 , __lowerCAmelCase : Optional[Any]=4096 , __lowerCAmelCase : str=28 , __lowerCAmelCase : str=16 , __lowerCAmelCase : Tuple=64 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict="gelu_new" , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : List[str]=0.0 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Union[str, Any]=1e-5 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : int=5_0256 , __lowerCAmelCase : str=5_0256 , __lowerCAmelCase : Union[str, Any]=False , **__lowerCAmelCase : Tuple , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_inner _UpperCAmelCase = rotary_dim _UpperCAmelCase = activation_function _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase ) class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" , __lowerCAmelCase : List[PatchingSpec] = None , __lowerCAmelCase : bool = False , ): super().__init__(__lowerCAmelCase , task=__lowerCAmelCase , patching_specs=__lowerCAmelCase , use_past=__lowerCAmelCase ) if not getattr(self._config , """pad_token_id""" , __lowerCAmelCase ): # TODO: how to do that better? _UpperCAmelCase = 0 @property def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction="""inputs""" ) _UpperCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: _UpperCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCAmelCase_ ( self : List[str] ): return self._config.n_layer @property def lowerCAmelCase_ ( self : str ): return self._config.n_head def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): _UpperCAmelCase = super(__lowerCAmelCase , self ).generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCAmelCase = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] _UpperCAmelCase = common_inputs["""attention_mask"""] if self.use_past: _UpperCAmelCase = ordered_inputs["""attention_mask"""].dtype _UpperCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase_ ( self : Tuple ): return 13
30
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Dict = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) snake_case_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def A__ ( UpperCAmelCase_ ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCamelCase : Any = model_type_to_module_name(UpperCAmelCase_ ) _UpperCamelCase : List[str] = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(UpperCAmelCase_ , UpperCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCAmelCase_ , '__name__' , UpperCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCamelCase : List[Any] = importlib.import_module('transformers' ) if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ): return getattr(UpperCAmelCase_ , UpperCAmelCase_ ) return None def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , **UpperCAmelCase_ , ): _UpperCamelCase : Optional[Any] = get_file_from_repo( UpperCAmelCase_ , UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , revision=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(UpperCAmelCase_ , encoding='utf-8' ) as reader: return json.load(UpperCAmelCase_ ) class lowercase__ : def __init__( self : Tuple ): '''simple docstring''' raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(lowerCamelCase__ ) def UpperCamelCase_ ( cls : Tuple ,lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : int = kwargs.pop('config' ,lowerCamelCase__ ) _UpperCamelCase : List[Any] = kwargs.pop('trust_remote_code' ,lowerCamelCase__ ) _UpperCamelCase : Tuple = True _UpperCamelCase , _UpperCamelCase : Dict = ImageProcessingMixin.get_image_processor_dict(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : List[Any] = config_dict.get('image_processor_type' ,lowerCamelCase__ ) _UpperCamelCase : Tuple = None if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ): _UpperCamelCase : Optional[int] = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCamelCase : Optional[Any] = config_dict.pop('feature_extractor_type' ,lowerCamelCase__ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _UpperCamelCase : int = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): _UpperCamelCase : List[Any] = config_dict['auto_map']['AutoFeatureExtractor'] _UpperCamelCase : List[str] = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = AutoConfig.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) # It could be in `config.image_processor_type`` _UpperCamelCase : List[Any] = getattr(lowerCamelCase__ ,'image_processor_type' ,lowerCamelCase__ ) if hasattr(lowerCamelCase__ ,'auto_map' ) and "AutoImageProcessor" in config.auto_map: _UpperCamelCase : List[str] = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _UpperCamelCase : Union[str, Any] = image_processor_class_from_name(lowerCamelCase__ ) _UpperCamelCase : str = image_processor_auto_map is not None _UpperCamelCase : Any = image_processor_class is not None or type(lowerCamelCase__ ) in IMAGE_PROCESSOR_MAPPING _UpperCamelCase : Any = resolve_trust_remote_code( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) if has_remote_code and trust_remote_code: _UpperCamelCase : str = get_class_from_dynamic_module( lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = kwargs.pop('code_revision' ,lowerCamelCase__ ) if os.path.isdir(lowerCamelCase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCamelCase__ ) in IMAGE_PROCESSOR_MAPPING: _UpperCamelCase : int = IMAGE_PROCESSOR_MAPPING[type(lowerCamelCase__ )] return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def UpperCamelCase_ ( lowerCamelCase__ : List[str] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(lowerCamelCase__ ,lowerCamelCase__ )
83
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
0
"""simple docstring""" import requests from bsa import BeautifulSoup def _a ( _snake_case = "https://www.worldometers.info/coronavirus" ): """simple docstring""" UpperCAmelCase = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) UpperCAmelCase = soup.findAll("""h1""" ) UpperCAmelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
362
"""simple docstring""" from __future__ import annotations def _a ( _snake_case , _snake_case = None , _snake_case = None ): """simple docstring""" if start is None: UpperCAmelCase = 0 if end is None: UpperCAmelCase = len(_snake_case ) - 1 if start >= end: return UpperCAmelCase = (start + end) // 2 slowsort(_snake_case , _snake_case , _snake_case ) slowsort(_snake_case , mid + 1 , _snake_case ) if sequence[end] < sequence[mid]: UpperCAmelCase , UpperCAmelCase = sequence[mid], sequence[end] slowsort(_snake_case , _snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
234
0
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCamelCase__ ( ) -> Dict: raise RuntimeError('CUDA out of memory.' ) class a ( nn.Module ): def __init__( self : Any ) -> Tuple: super().__init__() lowerCamelCase_ = nn.Linear(3 , 4 ) lowerCamelCase_ = nn.BatchNormad(4 ) lowerCamelCase_ = nn.Linear(4 , 5 ) def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__SCREAMING_SNAKE_CASE ) ) ) class a ( unittest.TestCase ): def UpperCamelCase ( self : List[str] ) -> Any: lowerCamelCase_ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : List[str] ): nonlocal batch_sizes batch_sizes.append(__SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self : Optional[Any] ) -> List[str]: lowerCamelCase_ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): nonlocal batch_sizes batch_sizes.append(__SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCamelCase_ , lowerCamelCase_ = mock_training_loop_function('hello' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : Union[str, Any] ): pass with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self : Tuple ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase ( self : Dict ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : int ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self : Any ) -> Dict: lowerCamelCase_ = torch.cuda.memory_allocated() lowerCamelCase_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = release_memory(__SCREAMING_SNAKE_CASE ) self.assertEqual(torch.cuda.memory_allocated() , __SCREAMING_SNAKE_CASE )
183
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( _lowerCamelCase : Tuple ) -> Dict: # getting number of pixels in the image lowerCamelCase_ , lowerCamelCase_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): lowerCamelCase_ = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image _SCREAMING_SNAKE_CASE : List[Any] = imread('''image_data/lena.jpg''', 1) # convert to its negative _SCREAMING_SNAKE_CASE : List[Any] = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
183
1
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : Any = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _A ( unittest.TestCase ): """simple docstring""" UpperCAmelCase : Union[str, Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase : List[Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __snake_case ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any]): a : List[str] = TextaTextGenerationPipeline(model=_A , tokenizer=_A) return generator, ["Something to write", "Something else"] def __snake_case ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any): a : Dict = generator("Something there") self.assertEqual(_A , [{"generated_text": ANY(_A)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) a : Dict = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=_A) self.assertEqual( _A , [ [{"generated_text": ANY(_A)}, {"generated_text": ANY(_A)}], [{"generated_text": ANY(_A)}, {"generated_text": ANY(_A)}], ] , ) a : List[Any] = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=_A) self.assertEqual( _A , [ [{"generated_text": ANY(_A)}, {"generated_text": ANY(_A)}], [{"generated_text": ANY(_A)}, {"generated_text": ANY(_A)}], ] , ) with self.assertRaises(_A): generator(4) @require_torch def __snake_case ( self : Optional[int]): a : Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility a : str = generator("Something there" , do_sample=_A) self.assertEqual(_A , [{"generated_text": ""}]) a : Tuple = 3 a : int = generator( "Something there" , num_return_sequences=_A , num_beams=_A , ) a : Optional[Any] = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(_A , _A) a : Dict = generator("This is a test" , do_sample=_A , num_return_sequences=2 , return_tensors=_A) self.assertEqual( _A , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) a : List[Any] = generator.model.config.eos_token_id a : Optional[Any] = '<pad>' a : Dict = generator( ["This is a test", "This is a second test"] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def __snake_case ( self : Union[str, Any]): a : Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility a : Tuple = generator("Something there" , do_sample=_A) self.assertEqual(_A , [{"generated_text": ""}])
350
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase = logging.get_logger(__name__) __lowercase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = """longformer""" def __init__( self : List[Any] , __UpperCAmelCase : Union[List[int], int] = 512 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 30522 , __UpperCAmelCase : int = 768 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 3072 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 512 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : float = 1e-12 , __UpperCAmelCase : bool = False , **__UpperCAmelCase : int , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : int = attention_window a : List[str] = sep_token_id a : List[Any] = bos_token_id a : int = eos_token_id a : Union[str, Any] = vocab_size a : Dict = hidden_size a : int = num_hidden_layers a : int = num_attention_heads a : Optional[int] = hidden_act a : Union[str, Any] = intermediate_size a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : str = max_position_embeddings a : Dict = type_vocab_size a : Optional[Any] = initializer_range a : List[Any] = layer_norm_eps a : List[str] = onnx_export class _A ( _a ): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : "PretrainedConfig" , __UpperCAmelCase : str = "default" , __UpperCAmelCase : "List[PatchingSpec]" = None): super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = True @property def __snake_case ( self : int): if self.task == "multiple-choice": a : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ]) @property def __snake_case ( self : Union[str, Any]): a : str = super().outputs if self.task == "default": a : Tuple = {0: "batch"} return outputs @property def __snake_case ( self : Optional[int]): return 1e-4 @property def __snake_case ( self : str): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def __snake_case ( self : List[str] , __UpperCAmelCase : "PreTrainedTokenizerBase" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): a : str = super().generate_dummy_inputs( preprocessor=__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly a : Union[str, Any] = torch.zeros_like(inputs["input_ids"]) # make every second token global a : Dict = 1 return inputs
226
0
def a ( snake_case__: list , snake_case__: list , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' if index == number_of_items: return 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ , index + 1 ) if weights[index] <= max_weight: lowercase_ = values[index] + knapsack( snake_case__ , snake_case__ , snake_case__ , max_weight - weights[index] , index + 1 ) return max(snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
30
def a ( snake_case__: int = 100 ): '''simple docstring''' lowercase_ = (n * (n + 1) // 2) ** 2 lowercase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"{solution() = }")
30
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : List[Any] = logging.get_logger() @dataclass class snake_case : __magic_name__ = 42 __magic_name__ = field(default_factory=UpperCAmelCase ) __magic_name__ = field(default_factory=UpperCAmelCase ) def lowerCamelCase__ ( self : str , A : Any , A : Tensor , A : Tensor ): '''simple docstring''' a : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self : List[Any] , A : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class snake_case : __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 1 __magic_name__ = field(default_factory=UpperCAmelCase ) __magic_name__ = field(default_factory=UpperCAmelCase ) __magic_name__ = True def __call__( self : List[str] , A : Tensor ): '''simple docstring''' a : Any = Tracker(self.dest )(A ).parametrized a : Any = Tracker(self.src )(A ).parametrized a : Union[str, Any] = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) a : Any = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(A )} operations while''' F''' destination module has {len(A )}.''' ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class snake_case ( nn.Module ): def __init__( self : Any , A : nn.Module ): '''simple docstring''' super().__init__() a : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), F'''Unexpected layer name {k}''' a : int = len(A ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) a : Union[str, Any] = nn.ModuleDict(A ) def lowerCamelCase__ ( self : List[str] , A : Tensor ): '''simple docstring''' return get_trunk_forward_outputs( A , out_feat_keys=A , feature_blocks=self._feature_blocks , ) class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : List[Any] , A : str ): '''simple docstring''' a : List[Any] = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Tuple , A : str ): '''simple docstring''' if x not in self: a : str = self.convert_name_to_timm(A ) a : str = partial(lambda: (timm.create_model(A , pretrained=A ).eval(), None) ) else: a : List[str] = super().__getitem__(A ) return val class snake_case ( UpperCAmelCase ): def __getitem__( self : Optional[int] , A : str ): '''simple docstring''' if "seer" in x and "in1k" not in x: a : List[str] = RegNetModel else: a : Optional[int] = RegNetForImageClassification return val def snake_case (A_ :Union[str, Any] , A_ :Dict , A_ :List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: a : List[Any] = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def snake_case (A_ :str , A_ :Callable[[], nn.Module] , A_ :Callable[[], nn.Module] , A_ :RegNetConfig , A_ :Path , A_ :bool = True , ): '''simple docstring''' print(f'''Converting {name}...''' ) with torch.no_grad(): a : int = from_model_func() a : List[str] = our_model_func(A_ ).eval() a : List[Any] = ModuleTransfer(src=A_ , dest=A_ , raise_if_mismatch=A_ ) a : Tuple = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(A_ ) if from_state_dict is not None: a : str = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: a : List[Any] = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] a : Optional[Any] = manually_copy_vissl_head(A_ , our_model.state_dict() , A_ ) our_model.load_state_dict(A_ ) a : Optional[int] = our_model(A_ , output_hidden_states=A_ ) a : List[Any] = ( our_outputs.logits if isinstance(A_ , A_ ) else our_outputs.last_hidden_state ) a : Tuple = from_model(A_ ) a : Dict = from_output[-1] if type(A_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: a : List[Any] = our_outputs.hidden_states[-1] assert torch.allclose(A_ , A_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=A_ , ) a : List[str] = 2_2_4 if 'seer' not in name else 3_8_4 # we can use the convnext one a : Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=A_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=A_ , ) print(f'''Pushed {name}''' ) def snake_case (A_ :Path , A_ :str = None , A_ :bool = True ): '''simple docstring''' a : Union[str, Any] = 'imagenet-1k-id2label.json' a : Dict = 1_0_0_0 a : int = (1, num_labels) a : str = 'huggingface/label-files' a : Dict = num_labels a : Optional[Any] = json.load(open(cached_download(hf_hub_url(A_ , A_ , repo_type='dataset' ) ) , 'r' ) ) a : Optional[int] = {int(A_ ): v for k, v in idalabel.items()} a : int = idalabel a : List[Any] = {v: k for k, v in idalabel.items()} a : int = partial(A_ , num_labels=A_ , idalabel=A_ , labelaid=A_ ) a : List[str] = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } a : Union[str, Any] = NameToOurModelFuncMap() a : str = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(A_ :str , A_ :Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: a : Tuple = torch.hub.load_state_dict_from_url(A_ , model_dir=str(A_ ) , map_location='cpu' ) a : Dict = model_func() # check if we have a head, if yes add it a : List[str] = files['classy_state_dict']['base_model']['model'] a : int = model_state_dict['trunk'] model.load_state_dict(A_ ) return model.eval(), model_state_dict["heads"] # pretrained a : str = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a : List[Any] = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a : Any = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a : Union[str, Any] = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned a : int = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a : Union[str, Any] = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a : int = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a : Tuple = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( A_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , A_ , A_ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( A_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , A_ , A_ , A_ , ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _UpperCamelCase : Dict = parser.parse_args() _UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
360
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
186
0
"""simple docstring""" def snake_case_ ( A_ : str ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(A_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
72
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = old_name if "patch_embed" in old_name: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = old_name.split("." ) if layer == "0": _UpperCAmelCase : List[str] = old_name.replace("0" , "convolution1" ) elif layer == "1": _UpperCAmelCase : Dict = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": _UpperCAmelCase : Tuple = old_name.replace("3" , "convolution2" ) else: _UpperCAmelCase : Tuple = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = R"\b\d{2}\b" if bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) ): _UpperCAmelCase : Optional[int] = re.search(R"\d\.\d\d." , __lowerCAmelCase ).group() else: _UpperCAmelCase : Any = re.search(R"\d\.\d." , __lowerCAmelCase ).group() if int(match[0] ) < 6: _UpperCAmelCase : str = old_name.replace(__lowerCAmelCase , "" ) _UpperCAmelCase : Optional[Any] = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _UpperCAmelCase : Union[str, Any] = "intermediate_stages." + trimmed_name else: _UpperCAmelCase : Tuple = old_name.replace(__lowerCAmelCase , "" ) if int(match[2] ) < num_meta4D_last_stage: _UpperCAmelCase : Any = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: _UpperCAmelCase : List[str] = str(int(match[2] ) - num_meta4D_last_stage ) _UpperCAmelCase : int = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _UpperCAmelCase : Tuple = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: _UpperCAmelCase : int = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: _UpperCAmelCase : Optional[int] = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: _UpperCAmelCase : List[str] = trimmed_name.replace("fc2" , "linear_out" ) _UpperCAmelCase : Optional[Any] = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: _UpperCAmelCase : Union[str, Any] = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _UpperCAmelCase : List[Any] = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _UpperCAmelCase : List[Any] = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: _UpperCAmelCase : Union[str, Any] = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: _UpperCAmelCase : List[Any] = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: _UpperCAmelCase : str = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: _UpperCAmelCase : List[str] = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _UpperCAmelCase : List[Any] = new_name.replace("norm" , "layernorm" ) _UpperCAmelCase : Any = "efficientformer." + new_name else: _UpperCAmelCase : Dict = "efficientformer.encoder." + new_name return new_name def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key in checkpoint.copy().keys(): _UpperCAmelCase : List[Any] = checkpoint.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = val return checkpoint def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = torch.load(__lowerCAmelCase , map_location="cpu" )["model"] _UpperCAmelCase : Dict = EfficientFormerConfig.from_json_file(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(__lowerCAmelCase ) _UpperCAmelCase : Tuple = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _UpperCAmelCase : Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 _UpperCAmelCase : Optional[int] = convert_torch_checkpoint(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() _UpperCAmelCase : Optional[Any] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image _UpperCAmelCase : int = prepare_img() _UpperCAmelCase : List[str] = 256 _UpperCAmelCase : Optional[int] = 224 _UpperCAmelCase : Tuple = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) _UpperCAmelCase : Any = processor(images=__lowerCAmelCase , return_tensors="pt" ).pixel_values # original processing pipeline _UpperCAmelCase : int = Compose( [ Resize(__lowerCAmelCase , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(__lowerCAmelCase ), ToTensor(), Normalize(__lowerCAmelCase , __lowerCAmelCase ), ] ) _UpperCAmelCase : Any = image_transforms(__lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = model(__lowerCAmelCase ) _UpperCAmelCase : Dict = outputs.logits _UpperCAmelCase : Optional[int] = (1, 1_000) if "l1" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowerCAmelCase ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowerCamelCase__ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
234
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _A : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Any = ["pixel_values"] def __init__( self : Union[str, Any] , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BICUBIC , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_5_5 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : bool = True , **A : List[str] , ): super().__init__(**A ) lowerCamelCase__ : str = size if size is not None else {'''shortest_edge''': 2_2_4} lowerCamelCase__ : List[str] = get_size_dict(A , default_to_square=A ) lowerCamelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCamelCase__ : Dict = get_size_dict(A , default_to_square=A , param_name='''crop_size''' ) lowerCamelCase__ : Optional[int] = do_resize lowerCamelCase__ : Optional[int] = size lowerCamelCase__ : List[str] = resample lowerCamelCase__ : Tuple = do_center_crop lowerCamelCase__ : Tuple = crop_size lowerCamelCase__ : List[Any] = do_rescale lowerCamelCase__ : str = rescale_factor lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase__ : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase__ : int = do_convert_rgb def __lowerCamelCase ( self : int , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Any , ): lowerCamelCase__ : Union[str, Any] = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCamelCase__ : Optional[Any] = get_resize_output_image_size(A , size=size['''shortest_edge'''] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def __lowerCamelCase ( self : List[str] , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : str , ): lowerCamelCase__ : Optional[Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def __lowerCamelCase ( self : Optional[Any] , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ): return rescale(A , scale=A , data_format=A , **A ) def __lowerCamelCase ( self : Optional[int] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ): return normalize(A , mean=A , std=A , data_format=A , **A ) def __lowerCamelCase ( self : Optional[Any] , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : int = None , A : bool = None , A : float = None , A : bool = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : bool = None , A : Optional[Union[str, TensorType]] = None , A : Optional[ChannelDimension] = ChannelDimension.FIRST , **A : Optional[int] , ): lowerCamelCase__ : Any = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Any = size if size is not None else self.size lowerCamelCase__ : Union[str, Any] = get_size_dict(A , param_name='''size''' , default_to_square=A ) lowerCamelCase__ : Union[str, Any] = resample if resample is not None else self.resample lowerCamelCase__ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : Any = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : List[str] = get_size_dict(A , param_name='''crop_size''' , default_to_square=A ) lowerCamelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : str = image_std if image_std is not None else self.image_std lowerCamelCase__ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase__ : Dict = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase__ : Any = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. lowerCamelCase__ : Tuple = [to_numpy_array(A ) for image in images] if do_resize: lowerCamelCase__ : Optional[Any] = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: lowerCamelCase__ : List[Any] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: lowerCamelCase__ : Dict = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: lowerCamelCase__ : Dict = [self.normalize(image=A , mean=A , std=A ) for image in images] lowerCamelCase__ : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] lowerCamelCase__ : str = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
355
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _A : List[Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): _UpperCAmelCase : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase : Optional[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCAmelCase : str = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCAmelCase : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __lowerCamelCase ( self : str , A : List[str] , A : Tuple , A : str ) ->List[str]: lowerCamelCase__ : List[Any] = ZeroShotClassificationPipeline( model=A , tokenizer=A , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __lowerCamelCase ( self : List[str] , A : Union[str, Any] , A : Optional[Any] ) ->Union[str, Any]: lowerCamelCase__ : Any = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(A , {'''sequence''': ANY(A ), '''labels''': [ANY(A )], '''scores''': [ANY(A )]} ) # No kwarg lowerCamelCase__ : str = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(A , {'''sequence''': ANY(A ), '''labels''': [ANY(A )], '''scores''': [ANY(A )]} ) lowerCamelCase__ : Dict = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(A , {'''sequence''': ANY(A ), '''labels''': [ANY(A )], '''scores''': [ANY(A )]} ) lowerCamelCase__ : Dict = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( A , {'''sequence''': ANY(A ), '''labels''': [ANY(A ), ANY(A )], '''scores''': [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowerCamelCase__ : Optional[int] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( A , {'''sequence''': ANY(A ), '''labels''': [ANY(A ), ANY(A )], '''scores''': [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowerCamelCase__ : str = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(A , {'''sequence''': ANY(A ), '''labels''': [ANY(A )], '''scores''': [ANY(A )]} ) # https://github.com/huggingface/transformers/issues/13846 lowerCamelCase__ : Optional[int] = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( A , [ {'''sequence''': ANY(A ), '''labels''': [ANY(A ), ANY(A )], '''scores''': [ANY(A ), ANY(A )]} for i in range(1 ) ] , ) lowerCamelCase__ : Any = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( A , [ {'''sequence''': ANY(A ), '''labels''': [ANY(A ), ANY(A )], '''scores''': [ANY(A ), ANY(A )]} for i in range(2 ) ] , ) with self.assertRaises(A ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(A ): classifier(A , candidate_labels='''politics''' ) with self.assertRaises(A ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(A ): classifier('''Who are you voting for in 2020?''' , candidate_labels=A ) with self.assertRaises(A ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(A ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=A , ) self.run_entailment_id(A ) def __lowerCamelCase ( self : Optional[int] , A : Pipeline ) ->Dict: lowerCamelCase__ : str = zero_shot_classifier.model.config lowerCamelCase__ : Optional[int] = config.labelaid lowerCamelCase__ : Tuple = zero_shot_classifier.entailment_id lowerCamelCase__ : Optional[Any] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowerCamelCase__ : Optional[int] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCamelCase__ : List[str] = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCamelCase__ : Optional[Any] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowerCamelCase__ : Tuple = original_labelaid self.assertEqual(A , zero_shot_classifier.entailment_id ) @require_torch def __lowerCamelCase ( self : Any ) ->str: lowerCamelCase__ : Optional[int] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_0_0 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def __lowerCamelCase ( self : List[Any] ) ->Optional[Any]: lowerCamelCase__ : List[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowerCamelCase__ : Dict = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(A ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def __lowerCamelCase ( self : str ) ->List[str]: lowerCamelCase__ : Any = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowerCamelCase__ : Optional[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(A ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def __lowerCamelCase ( self : List[Any] ) ->Optional[Any]: lowerCamelCase__ : int = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowerCamelCase__ : int = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(A ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowerCamelCase__ : Any = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=A , ) self.assertEqual( nested_simplify(A ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[int]: lowerCamelCase__ : List[Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowerCamelCase__ : Dict = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(A ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowerCamelCase__ : Union[str, Any] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=A , ) self.assertEqual( nested_simplify(A ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
265
0
from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): A__ = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(lowercase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> str: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = input_str.split("_" ) UpperCamelCase_ = 0 if use_pascal else 1 UpperCamelCase_ = words[start_index:] UpperCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase_ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
60
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets SCREAMING_SNAKE_CASE :Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ SCREAMING_SNAKE_CASE :Optional[int] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ SCREAMING_SNAKE_CASE :Tuple = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def UpperCAmelCase_ ( self )-> Tuple: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = False , )-> int: UpperCamelCase_ = len(references[0] ) if any(len(_lowercase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase_ = [[refs[i] for refs in references] for i in range(_lowercase )] UpperCamelCase_ = TER( normalized=_lowercase , no_punct=_lowercase , asian_support=_lowercase , case_sensitive=_lowercase , ) UpperCamelCase_ = sb_ter.corpus_score(_lowercase , _lowercase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
60
1
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : Tuple = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowercase__ ( lowercase ): lowercase__ = """efficientnet""" def __init__( self : Optional[Any] ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 600 ,lowerCamelCase__ : float = 2.0 ,lowerCamelCase__ : float = 3.1 ,lowerCamelCase__ : int = 8 ,lowerCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,lowerCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] ,lowerCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] ,lowerCamelCase__ : List[int] = [] ,lowerCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,lowerCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,lowerCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,lowerCamelCase__ : float = 0.2_5 ,lowerCamelCase__ : str = "swish" ,lowerCamelCase__ : int = 2560 ,lowerCamelCase__ : str = "mean" ,lowerCamelCase__ : float = 0.0_2 ,lowerCamelCase__ : float = 0.0_0_1 ,lowerCamelCase__ : float = 0.9_9 ,lowerCamelCase__ : float = 0.5 ,lowerCamelCase__ : float = 0.2 ,**lowerCamelCase__ : List[str] ,): '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = num_channels _UpperCamelCase : str = image_size _UpperCamelCase : List[Any] = width_coefficient _UpperCamelCase : Optional[Any] = depth_coefficient _UpperCamelCase : List[str] = depth_divisor _UpperCamelCase : int = kernel_sizes _UpperCamelCase : Tuple = in_channels _UpperCamelCase : Optional[Any] = out_channels _UpperCamelCase : Dict = depthwise_padding _UpperCamelCase : List[Any] = strides _UpperCamelCase : Tuple = num_block_repeats _UpperCamelCase : Optional[int] = expand_ratios _UpperCamelCase : Any = squeeze_expansion_ratio _UpperCamelCase : Any = hidden_act _UpperCamelCase : List[str] = hidden_dim _UpperCamelCase : List[str] = pooling_type _UpperCamelCase : Dict = initializer_range _UpperCamelCase : List[str] = batch_norm_eps _UpperCamelCase : List[str] = batch_norm_momentum _UpperCamelCase : str = dropout_rate _UpperCamelCase : int = drop_connect_rate _UpperCamelCase : List[str] = sum(lowerCamelCase__ ) * 4 class lowercase__ ( lowercase ): lowercase__ = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return 1E-5
83
import qiskit def a ( _UpperCAmelCase : int , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCAmelCase : Optional[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCAmelCase : str = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": __A =half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
226
0
"""simple docstring""" from datetime import datetime import requests def __A (_SCREAMING_SNAKE_CASE ) ->bytes: """simple docstring""" lowerCAmelCase__ :Optional[Any] = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" lowerCAmelCase__ :int = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(_lowercase ).content if __name__ == "__main__": __A = input("""Enter Video/IGTV url: """).strip() __A = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
363
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __A = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" if rng is None: lowerCAmelCase__ :Dict = random.Random() lowerCAmelCase__ :Tuple = 1 for dim in shape: total_dims *= dim lowerCAmelCase__ :List[Any] = [] for _ in range(_SCREAMING_SNAKE_CASE ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase__ :int = np.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa ).reshape(_SCREAMING_SNAKE_CASE ) return output def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = ids_tensor(_SCREAMING_SNAKE_CASE , vocab_size=2 , rng=_SCREAMING_SNAKE_CASE ) # make sure that at least one token is attended to for each batch lowerCAmelCase__ :Any = 1 return attn_mask @require_flax class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[int] = None __magic_name__ :List[str] = () def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase__ :Union[str, Any] = 2 lowerCAmelCase__ :List[Any] = inputs['input_ids'].shape[-1] // 2 lowerCAmelCase__ :Union[str, Any] = inputs['input_ids'][:max_batch_size, :sequence_length] lowerCAmelCase__ :str = jnp.ones_like(__UpperCAmelCase ) lowerCAmelCase__ :int = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase__ :List[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase__ :Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :int = False lowerCAmelCase__ :List[Any] = max_length lowerCAmelCase__ :List[Any] = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :int = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase__ :List[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = pt_model_class(__UpperCAmelCase ).eval() lowerCAmelCase__ :Dict = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) lowerCAmelCase__ :Union[str, Any] = flax_model.generate(__UpperCAmelCase ).sequences lowerCAmelCase__ :Union[str, Any] = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase__ :Union[str, Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Any = False lowerCAmelCase__ :Any = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Any = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = self._get_input_ids_and_config() lowerCAmelCase__ :int = True lowerCAmelCase__ :Optional[int] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Dict = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[Any] = False lowerCAmelCase__ :Dict = max_length lowerCAmelCase__ :Dict = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Dict = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Any = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :int = False lowerCAmelCase__ :Optional[Any] = max_length lowerCAmelCase__ :Optional[Any] = 2 lowerCAmelCase__ :Optional[int] = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :str = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Tuple = max_length lowerCAmelCase__ :Optional[int] = 0.8 lowerCAmelCase__ :Any = 1_0 lowerCAmelCase__ :List[Any] = 0.3 lowerCAmelCase__ :Tuple = 1 lowerCAmelCase__ :Union[str, Any] = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :Any = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Union[str, Any] = max_length lowerCAmelCase__ :str = 1 lowerCAmelCase__ :Tuple = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = jit(model.generate ) lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self._get_input_ids_and_config() lowerCAmelCase__ :str = max_length lowerCAmelCase__ :Dict = 2 lowerCAmelCase__ :Dict = 1 lowerCAmelCase__ :Optional[int] = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Dict = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Tuple = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Union[str, Any] = False lowerCAmelCase__ :Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :int = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Any = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :Dict = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :int = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :int = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Dict = 2 lowerCAmelCase__ :Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Any = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = jit(model.generate ) lowerCAmelCase__ :int = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) lowerCAmelCase__ :List[str] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCAmelCase__ :Optional[int] = 'Hello world' lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , 'do_samples' ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , 'foo' ): lowerCAmelCase__ :Optional[int] = {'foo': 'bar'} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
254
0
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def UpperCamelCase__ ( lowercase__ : Optional[Any] ): snake_case : List[Any] = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def UpperCamelCase__ ( lowercase__ : List[str] , lowercase__ : int ): snake_case : Dict = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def UpperCamelCase__ ( lowercase__ : Optional[int] ): snake_case : List[str] = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', "stage2.cls_token") ) return token def UpperCamelCase__ ( ): snake_case : Tuple = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def UpperCamelCase__ ( lowercase__ : List[Any] , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): snake_case : Union[str, Any] = '''imagenet-1k-id2label.json''' snake_case : int = 1000 snake_case : Optional[Any] = '''huggingface/label-files''' snake_case : Optional[Any] = num_labels snake_case : Optional[Any] = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type="dataset" ) ) , "r" ) ) snake_case : Optional[int] = {int(lowercase__ ): v for k, v in idalabel.items()} snake_case : Union[str, Any] = idalabel snake_case : int = {v: k for k, v in idalabel.items()} snake_case : List[Any] = CvtConfig(num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": snake_case : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": snake_case : List[str] = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case : List[Any] = [2, 2, 20] snake_case : List[str] = [3, 12, 16] snake_case : Any = [192, 768, 1024] snake_case : Optional[Any] = CvtForImageClassification(lowercase__ ) snake_case : Any = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) snake_case : Union[str, Any] = image_size snake_case : Dict = torch.load(lowercase__ , map_location=torch.device("cpu" ) ) snake_case : Tuple = OrderedDict() snake_case : Union[str, Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case : Union[str, Any] = list_of_state_dict + cls_token(lowercase__ ) snake_case : Optional[Any] = list_of_state_dict + embeddings(lowercase__ ) for cnt in range(config.depth[idx] ): snake_case : Tuple = list_of_state_dict + attention(lowercase__ , lowercase__ ) snake_case : Dict = list_of_state_dict + final() for gg in list_of_state_dict: print(lowercase__ ) for i in range(len(lowercase__ ) ): snake_case : List[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
148
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""MobileViTFeatureExtractor"""] UpperCamelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
186
0
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel snake_case__ = False snake_case__ = True snake_case__ = False if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") snake_case__ = parser.parse_args() snake_case__ = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } snake_case__ = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } snake_case__ = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: snake_case__ = reader.read() snake_case__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): snake_case__ = UNetaDModel(**config) else: snake_case__ = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel snake_case__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) snake_case__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: snake_case__ = config[key] del config[key] snake_case__ = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] snake_case__ = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: snake_case__ = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) snake_case__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue snake_case__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: snake_case__ = param_value snake_case__ = True if not has_changed: snake_case__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
4
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
1
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase__ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": lowerCAmelCase__ = '''hopper-medium-v2''' lowerCAmelCase__ = gym.make(env_name) lowerCAmelCase__ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) lowerCAmelCase__ = env.reset() lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1_000 lowerCAmelCase__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase__ = pipeline(obs, planning_horizon=32) # execute action in environment lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = env.step(denorm_actions) lowerCAmelCase__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase__ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
108
'''simple docstring''' from PIL import Image def __lowerCamelCase ( _lowercase , _lowercase ) -> Image: def brightness(_lowercase ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowercase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 a : Optional[Any] = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
265
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') UpperCamelCase__ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) UpperCamelCase__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) UpperCamelCase__ = BeautifulSoup(res.text, 'html.parser') UpperCamelCase__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f'''https://google.com{link.get("href")}''')
143
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = '▁' UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : int = BigBirdTokenizer __UpperCAmelCase : Optional[int] = BigBirdTokenizerFast __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : List[Any] = True def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" super().setUp() UpperCAmelCase__ = self.tokenizer_class(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "<s>" UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ (self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_4 ) def lowercase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = "I was born in 92000, and this is falsé." UpperCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) UpperCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = "Hello World!" UpperCAmelCase__ = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off UpperCAmelCase__ = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def lowercase_ (self : List[str] ) -> int: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] UpperCAmelCase__ = " ".join(__UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors="pt" , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = BigBirdConfig(attention_type="original_full" ) UpperCAmelCase__ = BigBirdModel(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) UpperCAmelCase__ = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = {"input_ids": [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
143
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py snake_case__ : List[Any] = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' snake_case__ : List[str] = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' snake_case__ : Any = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_( datasets.Metric ): def lowerCamelCase__ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Tuple=False ): lowerCAmelCase : Optional[Any] = compute_bleu( reference_corpus=UpperCamelCase_ , translation_corpus=UpperCamelCase_ , max_order=UpperCamelCase_ , smooth=UpperCamelCase_ ) ((lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
60
"""simple docstring""" def _snake_case ( _snake_case : int ): if not isinstance(_snake_case , _snake_case ): raise TypeError('''only integers accepted as input''' ) else: lowerCAmelCase : List[str] = str(abs(_snake_case ) ) lowerCAmelCase : Optional[Any] = [list(_snake_case ) for char in range(len(_snake_case ) )] for index in range(len(_snake_case ) ): num_transpositions[index].pop(_snake_case ) return max( int(''''''.join(list(_snake_case ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
60
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : int = BarthezTokenizer __lowercase : Tuple = BarthezTokenizerFast __lowercase : int = True __lowercase : Optional[int] = True def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """<pad>""" __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase__) , 1_0_1_1_2_2) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __SCREAMING_SNAKE_CASE = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) __SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): # fmt: off __SCREAMING_SNAKE_CASE = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __SCREAMING_SNAKE_CASE = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase__ , )
355
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1024 ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = [], [] __SCREAMING_SNAKE_CASE = list(zip(UpperCamelCase_ , UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = sorted_examples[0] def is_too_big(UpperCamelCase_ ): return tok(UpperCamelCase_ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __SCREAMING_SNAKE_CASE = new_src + """ """ + src __SCREAMING_SNAKE_CASE = new_tgt + """ """ + tgt if is_too_big(UpperCamelCase_ ) or is_too_big(UpperCamelCase_ ): # cant fit, finalize example finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = src, tgt else: # can fit, keep adding __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) return finished_src, finished_tgt def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = Path(UpperCamelCase_ ) save_path.mkdir(exist_ok=UpperCamelCase_ ) for split in ["train"]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = data_dir / f"{split}.source", data_dir / f"{split}.target" __SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] __SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pack_examples(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(f"packed {split} split from {len(UpperCamelCase_ )} examples -> {len(UpperCamelCase_ )}." ) Path(save_path / f"{split}.source" ).open("""w""" ).write("""\n""".join(UpperCamelCase_ ) ) Path(save_path / f"{split}.target" ).open("""w""" ).write("""\n""".join(UpperCamelCase_ ) ) for split in ["val", "test"]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(UpperCamelCase_ , save_path / f"{split}.source" ) shutil.copyfile(UpperCamelCase_ , save_path / f"{split}.target" ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=UpperCamelCase_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=UpperCamelCase_ , default=128 ) parser.add_argument("""--data_dir""" , type=UpperCamelCase_ ) parser.add_argument("""--save_path""" , type=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
255
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A_ ( pl.LightningModule ): def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): super().__init__() __lowerCamelCase : Optional[int] = model __lowerCamelCase : Optional[int] = 2 __lowerCamelCase : Optional[int] = nn.Linear(self.model.config.hidden_size ,self.num_labels) def lowerCAmelCase ( self : str): pass def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: # load longformer model from model identifier __lowerCamelCase : List[Any] = LongformerModel.from_pretrained(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = LightningModel(lowerCamelCase__ ) __lowerCamelCase : Tuple = torch.load(lowerCamelCase__ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __lowerCamelCase : Union[str, Any] = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": a =argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a =parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
73
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
0
import re def lowerCAmelCase_ ( _lowercase : str) -> list: """simple docstring""" return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_)] def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : Optional[int] = split_input(str_) return "".join( ["""""".join([char.capitalize() for char in sub_str]) for sub_str in string_split]) def lowerCAmelCase_ ( _lowercase : str , _lowercase : bool , _lowercase : str) -> str: """simple docstring""" try: a__ : str = split_input(_lowercase) if upper: a__ : Tuple = """""".join( [ separator.join([char.upper() for char in sub_str]) for sub_str in string_split ]) else: a__ : Tuple = """""".join( [ separator.join([char.lower() for char in sub_str]) for sub_str in string_split ]) return res_str except IndexError: return "not valid string" def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" return to_simple_case(_lowercase) def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" try: a__ : Optional[Any] = to_simple_case(_lowercase) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCAmelCase_ ( _lowercase : str , _lowercase : bool) -> str: """simple docstring""" return to_complex_case(_lowercase , _lowercase , """_""") def lowerCAmelCase_ ( _lowercase : str , _lowercase : bool) -> str: """simple docstring""" return to_complex_case(_lowercase , _lowercase , """-""") if __name__ == "__main__": __import__("doctest").testmod()
266
from __future__ import annotations import math def lowerCAmelCase_ ( _lowercase : float , _lowercase : int) -> float: """simple docstring""" a__ : Union[str, Any] = u for i in range(1 , _lowercase): a__ : Optional[int] = temp * (u - i) return temp def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : Tuple = int(input("""enter the numbers of values: """)) a__ : list[list[float]] = [] for _ in range(_lowercase): y.append([]) for i in range(_lowercase): for j in range(_lowercase): y[i].append(_lowercase) a__ : Optional[Any] = 0 print("""enter the values of parameters in a list: """) a__ : List[Any] = list(map(_lowercase , input().split())) print("""enter the values of corresponding parameters: """) for i in range(_lowercase): a__ : Optional[Any] = float(input()) a__ : Tuple = int(input("""enter the value to interpolate: """)) a__ : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowercase): for j in range(n - i): a__ : int = y[j + 1][i - 1] - y[j][i - 1] a__ : Optional[int] = y[0][0] for i in range(1 , _lowercase): summ += (ucal(_lowercase , _lowercase) * y[0][i]) / math.factorial(_lowercase) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
266
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __snake_case =False __snake_case =True __snake_case =False if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") __snake_case =parser.parse_args() __snake_case ={ """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } __snake_case ={ """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } __snake_case ="""""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: __snake_case =reader.read() __snake_case =json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): __snake_case =UNetaDModel(**config) else: __snake_case =UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel __snake_case =class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __snake_case =dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __snake_case =config[key] del config[key] __snake_case =[k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] __snake_case =[k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: __snake_case =torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) __snake_case ={} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue __snake_case =False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: __snake_case =param_value __snake_case =True if not has_changed: __snake_case =param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
4
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
1
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float , ) -> str: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = MgpstrTokenizer __lowerCamelCase = False __lowerCamelCase = {} __lowerCamelCase = False def __a ( self ) -> Any: '''simple docstring''' super().setUp() # fmt: off snake_case__ : Tuple = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on snake_case__ : int = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) def __a ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : Any = 'tester' snake_case__ : Union[str, Any] = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def __a ( self ) -> Optional[Any]: '''simple docstring''' pass def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = self.get_tokenizers(do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case__ : int = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) snake_case__ : Tuple = tokenizer.encode([special_token] , add_special_tokens=__UpperCamelCase ) self.assertEqual(len(__UpperCamelCase ) , 1 ) snake_case__ : Any = tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) self.assertTrue(special_token not in decoded ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case__ , snake_case__ : Dict = self.get_input_output_texts(__UpperCamelCase ) snake_case__ : int = tokenizer.tokenize(__UpperCamelCase ) snake_case__ : int = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) snake_case__ : Union[str, Any] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertNotEqual(len(__UpperCamelCase ) , 0 ) snake_case__ : Optional[int] = tokenizer.decode(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(text_a.replace(' ' , '' ) , __UpperCamelCase ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def __a ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def __a ( self ) -> str: '''simple docstring''' pass
143
from abc import ABC, abstractmethod from argparse import ArgumentParser class __snake_case ( _lowerCamelCase ): @staticmethod @abstractmethod def __a ( __UpperCamelCase ) -> Dict: '''simple docstring''' raise NotImplementedError() @abstractmethod def __a ( self ) -> Optional[int]: '''simple docstring''' raise NotImplementedError()
143
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[str] = args.log_outputs UpperCamelCase_: List[Any] = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric UpperCamelCase_: List[Any] = load_metric('wer' ) UpperCamelCase_: Any = load_metric('cer' ) # compute metrics UpperCamelCase_: str = wer.compute(references=result['target'] , predictions=result['prediction'] ) UpperCamelCase_: Optional[Any] = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results UpperCamelCase_: Optional[Any] = F'''WER: {wer_result}\nCER: {cer_result}''' print(UpperCAmelCase__ ) with open(F'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(UpperCAmelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase_: str = F'''log_{dataset_id}_predictions.txt''' UpperCamelCase_: Tuple = F'''log_{dataset_id}_targets.txt''' with open(UpperCAmelCase__ , 'w' ) as p, open(UpperCAmelCase__ , 'w' ) as t: # mapping function to write output def write_to_file(UpperCAmelCase__ , UpperCAmelCase__ ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(UpperCAmelCase__ , with_indices=UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: List[str] = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase_: Dict = re.sub(UpperCAmelCase__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase_: str = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: UpperCamelCase_: Any = ' '.join(text.split(UpperCAmelCase__ ) ) return text def snake_case (UpperCAmelCase__ ) -> Optional[int]: # load dataset UpperCamelCase_: Optional[Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=UpperCAmelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase_: int = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase_: Optional[int] = feature_extractor.sampling_rate # resample audio UpperCamelCase_: List[Any] = dataset.cast_column('audio' , Audio(sampling_rate=UpperCAmelCase__ ) ) # load eval pipeline if args.device is None: UpperCamelCase_: Dict = 0 if torch.cuda.is_available() else -1 UpperCamelCase_: List[str] = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCamelCase_: Any = prediction['text'] UpperCamelCase_: Union[str, Any] = normalize_text(batch['sentence'] ) return batch # run inference on all examples UpperCamelCase_: str = dataset.map(UpperCAmelCase__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A_ : List[str] = parser.parse_args() main(args)
292
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: Optional[int] = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_lowerCamelCase ).to(_lowerCamelCase ) UpperCamelCase_: Dict = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase_: Dict = tokenizer('Hello there' , return_tensors='pt' ).input_ids UpperCamelCase_: Optional[Any] = tokenizer('Hi I am' , return_tensors='pt' ).input_ids UpperCamelCase_: int = model(input_ids.to(_lowerCamelCase ) , labels=labels.to(_lowerCamelCase ) ).loss UpperCamelCase_: Tuple = -(labels.shape[-1] * loss.item()) UpperCamelCase_: Any = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
292
1
"""simple docstring""" A: Union[str, Any] = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) A: Optional[int] = frozenset(["prompt", "negative_prompt"]) A: Union[str, Any] = frozenset([]) A: Optional[Any] = frozenset(["image"]) A: str = frozenset( [ "image", "height", "width", "guidance_scale", ] ) A: Dict = frozenset(["image"]) A: Dict = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) A: Tuple = frozenset(["prompt", "image", "negative_prompt"]) A: List[Any] = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) A: Optional[Any] = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) A: List[Any] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) A: Union[str, Any] = frozenset(["image", "mask_image"]) A: Dict = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) A: List[str] = frozenset(["example_image", "image", "mask_image"]) A: Any = frozenset(["class_labels"]) A: Optional[int] = frozenset(["class_labels"]) A: int = frozenset(["batch_size"]) A: Union[str, Any] = frozenset([]) A: Union[str, Any] = frozenset(["batch_size"]) A: int = frozenset([]) A: List[Any] = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) A: Any = frozenset(["prompt", "negative_prompt"]) A: List[str] = frozenset(["input_tokens"]) A: str = frozenset(["input_tokens"])
109
"""simple docstring""" from collections.abc import Sequence def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase : Tuple = 0 if allow_empty_subarrays else float('-inf' ) lowercase : Dict = 0.0 for num in arr: lowercase : str = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase : Optional[Any] = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase: Optional[int] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
255
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Tuple = BarthezTokenizer _SCREAMING_SNAKE_CASE : int = BarthezTokenizerFast _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Tuple = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_UpperCamelCase ) lowerCAmelCase__ = tokenizer def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = '<pad>' lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_UpperCamelCase ) , 10_11_22 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase__ = [0, 57, 30_18, 7_03_07, 91, 2] lowerCAmelCase__ = self.tokenizer( _UpperCamelCase , max_length=len(_UpperCamelCase ) , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCAmelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ = tokenizer.tokenize(_UpperCamelCase ) lowerCAmelCase__ = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase ) lowerCAmelCase__ = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # fmt: off lowerCAmelCase__ = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCAmelCase__ = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_UpperCamelCase , )
122
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Dict = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
1
"""simple docstring""" from manim import * class snake_case ( _lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = Rectangle(height=0.5, width=0.5 ) __A = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) __A = [mem.copy() for i in range(6 )] __A = [mem.copy() for i in range(6 )] __A = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase, buff=0 ) __A = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase, buff=0 ) __A = VGroup(_lowerCamelCase, _lowerCamelCase ).arrange(_lowerCamelCase, buff=0 ) __A = Text('''CPU''', font_size=24 ) __A = Group(_lowerCamelCase, _lowerCamelCase ).arrange(_lowerCamelCase, buff=0.5, aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) __A = [mem.copy() for i in range(1 )] __A = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase, buff=0 ) __A = Text('''GPU''', font_size=24 ) __A = Group(_lowerCamelCase, _lowerCamelCase ).arrange(_lowerCamelCase, buff=0.5, aligned_edge=_lowerCamelCase ) gpu.align_to(_lowerCamelCase, _lowerCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCamelCase ) __A = [mem.copy() for i in range(6 )] __A = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase, buff=0 ) __A = Text('''Model''', font_size=24 ) __A = Group(_lowerCamelCase, _lowerCamelCase ).arrange(_lowerCamelCase, buff=0.5, aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCamelCase, run_time=1 ), Create(_lowerCamelCase, run_time=1 ), Create(_lowerCamelCase, run_time=1 ), ) __A = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.', font_size=24, ) __A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __A = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model', font_size=18, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase, run_time=2.5 ), Write(_lowerCamelCase ), Write(_lowerCamelCase ) ) self.add(_lowerCamelCase ) __A = [] __A = [] __A = [] for i, rect in enumerate(_lowerCamelCase ): __A = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase, opacity=0.7 ) cpu_target.move_to(_lowerCamelCase ) cpu_target.generate_target() __A = 0.46 / 4 __A = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=_lowerCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=_lowerCamelCase, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=_lowerCamelCase, buff=0.0 ) cpu_targs.append(_lowerCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCamelCase ) ) second_animations.append(MoveToTarget(_lowerCamelCase, run_time=1.5 ) ) self.play(*_lowerCamelCase ) self.play(*_lowerCamelCase ) self.wait()
266
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class snake_case : '''simple docstring''' def __init__( self : Optional[int], _lowerCamelCase : Optional[int]=2, _lowerCamelCase : Optional[int]=3, _lowerCamelCase : int=64, _lowerCamelCase : List[str]=None ): '''simple docstring''' __A = np.random.default_rng(_lowerCamelCase ) __A = length __A = rng.normal(size=(length,) ).astype(np.floataa ) __A = a * self.x + b + rng.normal(scale=0.1, size=(length,) ).astype(np.floataa ) def __len__( self : str ): '''simple docstring''' return self.length def __getitem__( self : Dict, _lowerCamelCase : Optional[int] ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : Tuple=0, _lowerCamelCase : Any=0, _lowerCamelCase : Optional[Any]=False ): '''simple docstring''' super().__init__() __A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A = True def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __A = False return x * self.a[0] + self.b[0] class snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : str, _lowerCamelCase : Optional[Any]=0, _lowerCamelCase : Any=0, _lowerCamelCase : List[Any]=False ): '''simple docstring''' super().__init__() __A = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) __A = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) __A = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : List[str]=None ): '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __A = False return x * self.a + self.b def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = 1_6 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __A = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __A = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __A = load_dataset('''csv''' , data_files=__UpperCamelCase ) __A = datasets['''train'''].unique('''label''' ) __A = {v: i for i, v in enumerate(__UpperCamelCase )} def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __A = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) if "label" in examples: __A = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __A = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __A = DataLoader(tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=2 ) __A = DataLoader(tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
266
1
def lowerCamelCase_ ( lowerCAmelCase: list )-> list: def merge(lowerCAmelCase: list , lowerCAmelCase: list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCAmelCase ) <= 1: return collection _snake_case : str = len(lowerCAmelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
260
from __future__ import annotations lowerCAmelCase_ = [] def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int )-> bool: for i in range(len(lowerCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(lowerCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , len(lowerCAmelCase ) ) ): if board[i][j] == 1: return False return True def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int )-> bool: if row >= len(lowerCAmelCase ): solution.append(lowerCAmelCase ) printboard(lowerCAmelCase ) print() return True for i in range(len(lowerCAmelCase ) ): if is_safe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _snake_case : Dict = 1 solve(lowerCAmelCase , row + 1 ) _snake_case : str = 0 return False def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] )-> None: for i in range(len(lowerCAmelCase ) ): for j in range(len(lowerCAmelCase ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) lowerCAmelCase_ = 8 lowerCAmelCase_ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
260
1
from __future__ import annotations __A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" lowerCamelCase__: List[str] =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__a ) ) ] # the reference grid lowerCamelCase__: Optional[int] =1 lowerCamelCase__: int =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__a ) ) ] # the action grid lowerCamelCase__: Dict =init[0] lowerCamelCase__: Dict =init[1] lowerCamelCase__: List[str] =0 lowerCamelCase__: int =g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__: Optional[int] =[[f, g, x, y]] lowerCamelCase__: Tuple =False # flag that is set when search is complete lowerCamelCase__: Union[str, Any] =False # flag set if we can't find expand while not found and not resign: if len(__a ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__: int =cell.pop() lowerCamelCase__: List[str] =next_cell[2] lowerCamelCase__: List[Any] =next_cell[3] lowerCamelCase__: Dict =next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__: Union[str, Any] =True else: for i in range(len(__a ) ): # to try out different valid actions lowerCamelCase__: Any =x + DIRECTIONS[i][0] lowerCamelCase__: List[Any] =y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__: Optional[int] =g + cost lowerCamelCase__: Optional[int] =ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__: int =1 lowerCamelCase__: Any =i lowerCamelCase__: Tuple =[] lowerCamelCase__: Any =goal[0] lowerCamelCase__: Union[str, Any] =goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__: Any =x - DIRECTIONS[action[x][y]][0] lowerCamelCase__: int =y - DIRECTIONS[action[x][y]][1] lowerCamelCase__: Any =xa lowerCamelCase__: int =ya invpath.append([x, y] ) lowerCamelCase__: str =[] for i in range(len(__a ) ): path.append(invpath[len(__a ) - 1 - i] ) return path, action if __name__ == "__main__": __A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __A = [0, 0] # all coordinates are given in format [y,x] __A = [len(grid) - 1, len(grid[0]) - 1] __A = 1 # the cost map which pushes the path closer to the goal __A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __A = 99 __A , __A = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
10
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : Optional[int] = logging.get_logger(__name__) _a : str = {"""vocab_file""": """spiece.model"""} _a : List[str] = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } _a : Any = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class _UpperCAmelCase ( lowerCAmelCase_ ): a : int =VOCAB_FILES_NAMES a : List[Any] =PRETRAINED_VOCAB_FILES_MAP a : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) __lowerCAmelCase = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __lowerCAmelCase = """<|endoftext|>""" if eos_token is None else eos_token __lowerCAmelCase = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __lowerCAmelCase = unk_token if pad_token is None else pad_token __lowerCAmelCase = eos_token if bos_token is None else bos_token else: __lowerCAmelCase = """<pad>""" if pad_token is None else pad_token __lowerCAmelCase = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE,remove_space=__SCREAMING_SNAKE_CASE,keep_accents=__SCREAMING_SNAKE_CASE,bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __lowerCAmelCase = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __lowerCAmelCase = re.compile( f'[{"".join(map(__SCREAMING_SNAKE_CASE,list(range(0,9 ) ) + list(range(11,32 ) ) + list(range(1_27,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]' ) def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.non_printing_characters_re.sub("""""",__SCREAMING_SNAKE_CASE ) # Normalize whitespaces __lowerCAmelCase = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization __lowerCAmelCase = unicodedata.normalize("""NFC""",__SCREAMING_SNAKE_CASE ) return text def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = """""" __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __lowerCAmelCase = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] __lowerCAmelCase = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__SCREAMING_SNAKE_CASE ) + f'{self.bos_token}Bot:' ) return self.encode(text=__SCREAMING_SNAKE_CASE )
46
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Dict =MvpTokenizer a : int =MvpTokenizerFast a : Any =True a : int =filter_roberta_detectors def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase = {"""unk_token""": """<unk>"""} __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file,"""w""",encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,max_length=len(__SCREAMING_SNAKE_CASE ),padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9),batch.input_ids.shape ) self.assertEqual((2, 9),batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Test that special tokens are reset @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""",__SCREAMING_SNAKE_CASE ) self.assertIn("""attention_mask""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""labels""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""decoder_attention_mask""",__SCREAMING_SNAKE_CASE ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(text_target=__SCREAMING_SNAKE_CASE,max_length=32,padding="""max_length""",return_tensors="""pt""" ) self.assertEqual(32,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""],padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape,(2, 10_24) ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization."""] __lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,text_target=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = inputs["""input_ids"""] __lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """A, <mask> AllenNLP sentence.""" __lowerCAmelCase = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ),sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ),sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ),) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
46
1
"""simple docstring""" _snake_case : Optional[int] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
292
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): UpperCamelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Union[str, Any]=0 ): A = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__UpperCamelCase ) ) A = np.random.RandomState(__UpperCamelCase ) A = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCamelCase ( self :Any ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Dict ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Optional[Any] ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Dict ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Optional[Any] ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Union[str, Any] ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self :Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self :Optional[int] ): A = ort.SessionOptions() A = False return options def lowerCamelCase ( self :Dict ): A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = "A fantasy landscape, trending on artstation" A = np.random.RandomState(0 ) A = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) A = output.images A = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) A = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCamelCase ( self :Any ): A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A = init_image.resize((7_68, 5_12) ) A = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = "A fantasy landscape, trending on artstation" A = np.random.RandomState(0 ) A = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) A = output.images A = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) A = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
292
1
def __lowerCamelCase ( lowerCamelCase__ : int = 1000000 ): '''simple docstring''' lowerCamelCase = 1 lowerCamelCase = 1 lowerCamelCase = {1: 1} for inputa in range(2 , lowerCamelCase__ ): lowerCamelCase = 0 lowerCamelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase = counter if counter > pre_counter: lowerCamelCase = inputa lowerCamelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
66
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : str = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : int = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } UpperCAmelCase : str = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : List[str] = ["input_ids", "attention_mask"] UpperCamelCase : List[str] = DistilBertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> Optional[Any]: '''simple docstring''' super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , A ) != do_lower_case or normalizer_state.get("""strip_accents""" , A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A ) != tokenize_chinese_chars ): lowerCamelCase = getattr(A , normalizer_state.pop("""type""" ) ) lowerCamelCase = do_lower_case lowerCamelCase = strip_accents lowerCamelCase = tokenize_chinese_chars lowerCamelCase = normalizer_class(**A ) lowerCamelCase = do_lower_case def __A ( self , A , A=None ) -> Tuple: '''simple docstring''' lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase = self._tokenizer.model.save(A , name=A ) return tuple(A )
66
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
_A = [0, 2, 4, 6, 8] _A = [1, 3, 5, 7, 9] def lowerCamelCase__ ( a__ : int , a__ : int , a__ : list[int] , a__ : int ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCamelCase_ = 0 for digit in range(10 ): UpperCamelCase_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a__ , a__ ) return result UpperCamelCase_ = 0 for digita in range(10 ): UpperCamelCase_ = digita if (remainder + digita) % 2 == 0: UpperCamelCase_ = ODD_DIGITS else: UpperCamelCase_ = EVEN_DIGITS for digita in other_parity_digits: UpperCamelCase_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a__ , a__ , ) return result def lowerCamelCase__ ( a__ : int = 9 ) -> int: UpperCamelCase_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a__ , 0 , [0] * length , a__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
122
1
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
360
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = dataset UpperCAmelCase__ : Union[str, Any] = process UpperCAmelCase__ : List[Any] = params def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = self.dataset[i] UpperCAmelCase__ : Any = self.process(_lowerCamelCase , **self.params ) return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" UpperCAmelCase__ : Tuple = loader UpperCAmelCase__ : int = infer UpperCAmelCase__ : Optional[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Any = loader_batch_size # Internal bookkeeping UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Union[str, Any] = None def __len__(self ): """simple docstring""" return len(self.loader ) def __iter__(self ): """simple docstring""" UpperCAmelCase__ : List[str] = iter(self.loader ) return self def _a (self ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase__ : Optional[int] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase__ : List[str] = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): # Convert ModelOutput to tuple first UpperCAmelCase__ : List[Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCamelCase , _lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : Optional[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase__ : str = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : Tuple = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : Dict = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase__ : Optional[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase__ : Union[str, Any] = self._loader_batch_data.__class__(_lowerCamelCase ) self._loader_batch_index += 1 return result def _a (self ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase__ : str = next(self.iterator ) UpperCAmelCase__ : Union[str, Any] = self.infer(_lowerCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ : List[Any] = processed else: UpperCAmelCase__ : List[str] = list(processed.keys() )[0] UpperCAmelCase__ : List[str] = processed[key] if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : Any = len(_lowerCamelCase ) else: UpperCAmelCase__ : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : Optional[int] = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase__ : List[Any] = processed UpperCAmelCase__ : Optional[int] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" super().__init__(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __iter__(self ): """simple docstring""" UpperCAmelCase__ : Tuple = iter(self.loader ) UpperCAmelCase__ : List[Any] = None return self def _a (self ): """simple docstring""" if self.subiterator is None: UpperCAmelCase__ : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCAmelCase__ : List[str] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase__ : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) UpperCAmelCase__ : List[str] = next(self.subiterator ) return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __iter__(self ): """simple docstring""" UpperCAmelCase__ : str = iter(self.loader ) return self def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : List[Any] = self.loader_batch_item() UpperCAmelCase__ : Dict = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) if is_last: return accumulator while not is_last: UpperCAmelCase__ : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ : Dict = processed else: UpperCAmelCase__ : List[Any] = list(processed.keys() )[0] UpperCAmelCase__ : List[Any] = processed[key] if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : int = len(_lowerCamelCase ) else: UpperCAmelCase__ : List[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : str = observed_batch_size UpperCAmelCase__ : Union[str, Any] = processed UpperCAmelCase__ : List[Any] = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : Union[str, Any] = self.loader_batch_item() UpperCAmelCase__ : int = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) if is_last: return accumulator else: UpperCAmelCase__ : Any = processed UpperCAmelCase__ : Any = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) return accumulator class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = dataset UpperCAmelCase__ : Union[str, Any] = key def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" return self.dataset[i][self.key] class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = dataset UpperCAmelCase__ : Any = keya UpperCAmelCase__ : str = keya def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
166
0
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __A : List[str] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : int , *__UpperCamelCase : str , **__UpperCamelCase : List[Any] )->Optional[int]: super().__init__(*__UpperCamelCase , **__UpperCamelCase ) requires_backends(self , '''decord''' ) self.check_model_type(__UpperCamelCase ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : int=None , __UpperCamelCase : Optional[Any]=None )->Any: _UpperCAmelCase = {} if frame_sampling_rate is not None: _UpperCAmelCase = frame_sampling_rate if num_frames is not None: _UpperCAmelCase = num_frames _UpperCAmelCase = {} if top_k is not None: _UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : int , __UpperCamelCase : Union[str, List[str]] , **__UpperCamelCase : List[str] )->Union[str, Any]: return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str]=None , __UpperCamelCase : List[Any]=1 )->Tuple: if num_frames is None: _UpperCAmelCase = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): _UpperCAmelCase = BytesIO(requests.get(__UpperCamelCase ).content ) _UpperCAmelCase = VideoReader(__UpperCamelCase ) videoreader.seek(0 ) _UpperCAmelCase = 0 _UpperCAmelCase = num_frames * frame_sampling_rate - 1 _UpperCAmelCase = np.linspace(__UpperCamelCase , __UpperCamelCase , num=__UpperCamelCase , dtype=np.intaa ) _UpperCAmelCase = videoreader.get_batch(__UpperCamelCase ).asnumpy() _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=self.framework ) return model_inputs def lowercase__ ( self : List[str] , __UpperCamelCase : str )->Optional[int]: _UpperCAmelCase = self.model(**__UpperCamelCase ) return model_outputs def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int]=5 )->int: if top_k > self.model.config.num_labels: _UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] _UpperCAmelCase , _UpperCAmelCase = probs.topk(__UpperCamelCase ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) _UpperCAmelCase = scores.tolist() _UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCamelCase , __UpperCamelCase )]
260
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __A : List[str] = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
260
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=32 , a__=3 , a__=4 , a__=[10, 20, 30, 40] , a__=[2, 2, 3, 2] , a__=True , a__=True , a__=37 , a__="gelu" , a__=10 , a__=0.0_2 , a__=["stage2", "stage3", "stage4"] , a__=3 , a__=None , ): _lowerCAmelCase : int = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Dict = num_stages _lowerCAmelCase : Dict = hidden_sizes _lowerCAmelCase : Any = depths _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Dict = out_features _lowerCAmelCase : int = num_labels _lowerCAmelCase : List[str] = scope _lowerCAmelCase : Optional[int] = num_stages def __A ( self ): _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def __A ( self ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __A ( self ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=a__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=a__ , loss_ignore_index=255 , num_labels=self.num_labels , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = UperNetForSemanticSegmentation(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Optional[int] = config_and_inputs _lowerCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = (UperNetForSemanticSegmentation,) if is_torch_available() else () _UpperCamelCase : Tuple = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} _UpperCamelCase : List[str] = False _UpperCamelCase : Dict = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Any = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[Any] = False def __A ( self ): _lowerCAmelCase : Any = UperNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) _lowerCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a__ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def __A ( self ): pass @unittest.skip(reason="""UperNet does not have a base model""" ) def __A ( self ): pass @unittest.skip(reason="""UperNet does not have a base model""" ) def __A ( self ): pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __A ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ): pass def __A ( self ): def check_hidden_states_output(a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : List[Any] = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Tuple = True check_hidden_states_output(a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = _config_zero_init(a__ ) _lowerCAmelCase : Optional[Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(config=a__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def __A ( self ): pass @slow def __A ( self ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = UperNetForSemanticSegmentation.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" ,repo_type="""dataset""" ,filename="""ADE_val_00000001.jpg""" ) _lowerCAmelCase : Any = Image.open(_lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _lowerCAmelCase : str = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a__ ) _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : Optional[Any] = processor(images=a__ , return_tensors="""pt""" ).to(a__ ) with torch.no_grad(): _lowerCAmelCase : Any = model(**a__ ) _lowerCAmelCase : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a__ , atol=1e-4 ) ) def __A ( self ): _lowerCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _lowerCAmelCase : Dict = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a__ ) _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : Tuple = processor(images=a__ , return_tensors="""pt""" ).to(a__ ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**a__ ) _lowerCAmelCase : Optional[int] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : Tuple = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a__ , atol=1e-4 ) )
369
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A : def __init__( self , a__ , a__=2 , a__=3 , a__=4 , a__=2 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=36 , a__=3 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=6 , a__=6 , a__=3 , a__=4 , a__=None , a__=1000 , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : str = image_size _lowerCAmelCase : str = patch_size _lowerCAmelCase : str = text_seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Dict = coordinate_size _lowerCAmelCase : Optional[int] = shape_size _lowerCAmelCase : str = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase : Optional[int] = text_seq_length _lowerCAmelCase : Any = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase : Any = self.text_seq_length + self.image_seq_length def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Optional[Any] = bbox[i, j, 3] _lowerCAmelCase : List[str] = bbox[i, j, 1] _lowerCAmelCase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : int = bbox[i, j, 2] _lowerCAmelCase : Optional[int] = bbox[i, j, 0] _lowerCAmelCase : Optional[int] = t _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : int = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = LayoutLMvaModel(config=a__ ) model.to(a__ ) model.eval() # text + image _lowerCAmelCase : Optional[Any] = model(a__ , pixel_values=a__ ) _lowerCAmelCase : Any = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCAmelCase : List[Any] = model(a__ , bbox=a__ , pixel_values=a__ , token_type_ids=a__ ) _lowerCAmelCase : Tuple = model(a__ , bbox=a__ , pixel_values=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCAmelCase : Optional[Any] = model(pixel_values=a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : int = LayoutLMvaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : str = LayoutLMvaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Dict = LayoutLMvaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Any = config_and_inputs _lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False _UpperCamelCase : Any = False _UpperCamelCase : int = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __A ( self , a__ , a__ , a__ , a__ , a__ ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __A ( self ): _lowerCAmelCase : Any = LayoutLMvaModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self , a__ , a__ , a__=False ): _lowerCAmelCase : List[str] = copy.deepcopy(a__ ) if model_class in get_values(a__ ): _lowerCAmelCase : Optional[int] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(a__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a__ ): _lowerCAmelCase : List[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in get_values(a__ ): _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) _lowerCAmelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a__ , ) return inputs_dict def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : int = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def __A ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LayoutLMvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __A ( unittest.TestCase ): @cached_property def __A ( self ): return LayoutLMvaImageProcessor(apply_ocr=a__ ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : Optional[int] = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(a__ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Dict = image_processor(images=a__ , return_tensors="""pt""" ).pixel_values.to(a__ ) _lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2]] ) _lowerCAmelCase : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCAmelCase : str = model( input_ids=input_ids.to(a__ ) , bbox=bbox.to(a__ ) , pixel_values=pixel_values.to(a__ ) , ) # verify the logits _lowerCAmelCase : Optional[int] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-4 ) )
126
0
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase = nn.functional.normalize(SCREAMING_SNAKE_CASE ) lowerCAmelCase = nn.functional.normalize(SCREAMING_SNAKE_CASE ) return torch.mm(SCREAMING_SNAKE_CASE , normalized_text_embeds.t() ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = CLIPConfig _SCREAMING_SNAKE_CASE = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Optional[int]: super().__init__(lowercase ) lowerCAmelCase = CLIPVisionModel(config.vision_config ) lowerCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def _snake_case ( self , lowercase , lowercase ) -> Optional[Any]: lowerCAmelCase = self.vision_model(lowercase )[1] # pooled_output lowerCAmelCase = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() lowerCAmelCase = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() lowerCAmelCase = [] lowerCAmelCase = image_embeds.shape[0] for i in range(lowercase ): lowerCAmelCase = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCAmelCase = special_cos_dist[i][concept_idx] lowerCAmelCase = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) lowerCAmelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCAmelCase = cos_dist[i][concept_idx] lowerCAmelCase = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) lowerCAmelCase = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case ( self , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = self.vision_model(lowercase )[1] # pooled_output lowerCAmelCase = self.visual_projection(lowercase ) lowerCAmelCase = cosine_distance(lowercase , self.special_care_embeds ) lowerCAmelCase = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase = 0.0 lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase = torch.any(special_scores > 0 , dim=1 ) lowerCAmelCase = special_care * 0.01 lowerCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
46
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'imagegpt' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowercase=512 + 1 , lowercase=32 * 32 , lowercase=512 , lowercase=24 , lowercase=8 , lowercase=None , lowercase="quick_gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , **lowercase , ) -> Any: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = scale_attn_by_inverse_layer_idx lowerCAmelCase = reorder_and_upcast_attn lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase , **lowercase ) class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _snake_case ( self , lowercase , lowercase = 1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 32 , lowercase = 32 , ) -> Mapping[str, Any]: lowerCAmelCase = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase ) lowerCAmelCase = dict(preprocessor(images=lowercase , return_tensors=lowercase ) ) return inputs
46
1
"""simple docstring""" import math from collections.abc import Callable def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : Union[str, Any] = xa UpperCAmelCase__ : Optional[Any] = xa while True: if x_n == x_na or function(lowerCAmelCase ) == function(lowerCAmelCase ): raise ZeroDivisionError("""float division by zero, could not find root""" ) UpperCAmelCase__ : Tuple = x_na - ( function(lowerCAmelCase ) / ((function(lowerCAmelCase ) - function(lowerCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCAmelCase__ : List[Any] = x_na UpperCAmelCase__ : List[Any] = x_na def a__ ( lowerCAmelCase ) -> Dict: return math.pow(lowerCAmelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
361
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def a__ ( lowerCAmelCase ) -> Tuple: UpperCAmelCase__ : Optional[int] = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): UpperCAmelCase__ : Dict = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): UpperCAmelCase__ : int = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase__ : Optional[int] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] UpperCAmelCase__ : Union[str, Any] = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(lowerCAmelCase )-1}""" ) if "norm" in key: UpperCAmelCase__ : Optional[Any] = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase__ : int = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] UpperCAmelCase__ : Union[str, Any] = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(lowerCAmelCase )-1}""" ) if "layer_norm1" in key: UpperCAmelCase__ : Any = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: UpperCAmelCase__ : Union[str, Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase__ : int = key[key.find("""block""" ) + len("""block""" )] UpperCAmelCase__ : List[Any] = key.replace(F"""block{idx}""" , F"""block.{int(lowerCAmelCase )-1}""" ) if "attn.q" in key: UpperCAmelCase__ : List[Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: UpperCAmelCase__ : Tuple = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: UpperCAmelCase__ : Union[str, Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: UpperCAmelCase__ : int = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: UpperCAmelCase__ : List[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: UpperCAmelCase__ : Optional[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: UpperCAmelCase__ : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) UpperCAmelCase__ : Optional[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase__ : List[Any] = key[key.find("""linear_c""" ) + len("""linear_c""" )] UpperCAmelCase__ : int = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(lowerCAmelCase )-1}""" ) if "bot_conv" in key: UpperCAmelCase__ : int = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: UpperCAmelCase__ : List[Any] = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: UpperCAmelCase__ : List[Any] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: UpperCAmelCase__ : Optional[Any] = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: UpperCAmelCase__ : List[str] = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: UpperCAmelCase__ : int = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: UpperCAmelCase__ : Union[str, Any] = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): UpperCAmelCase__ : Optional[int] = key.replace("""module.last_layer_depth""" , """head.head""" ) UpperCAmelCase__ : Optional[Any] = value return new_state_dict def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Dict: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase__ : Dict = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) UpperCAmelCase__ : int = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict UpperCAmelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase__ : int = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase__ : int = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase__ : List[Any] = kv_bias[config.hidden_sizes[i] :] def a__ ( ) -> int: UpperCAmelCase__ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ : int = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return image @torch.no_grad() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=None ) -> Union[str, Any]: UpperCAmelCase__ : Any = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCAmelCase__ : Any = GLPNImageProcessor() # prepare image UpperCAmelCase__ : List[str] = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict UpperCAmelCase__ : Tuple = torch.load(lowerCAmelCase , map_location=torch.device("""cpu""" ) ) # rename keys UpperCAmelCase__ : Optional[Any] = rename_keys(lowerCAmelCase ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase , lowerCAmelCase ) # create HuggingFace model and load state dict UpperCAmelCase__ : Union[str, Any] = GLPNForDepthEstimation(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() # forward pass UpperCAmelCase__ : Any = model(lowerCAmelCase ) UpperCAmelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCAmelCase__ : int = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCAmelCase__ : Any = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCAmelCase , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase , lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase , lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase , ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _A = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
166
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __a = logging.get_logger(__name__) __a = {"vocab_file": "spiece.model"} __a = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: Tuple , snake_case: Any , snake_case: Any=False , snake_case: Any=True , snake_case: List[Any]=False , snake_case: Tuple="<s>" , snake_case: List[str]="</s>" , snake_case: Tuple="<unk>" , snake_case: Optional[Any]="<sep>" , snake_case: Any="<pad>" , snake_case: Optional[Any]="<cls>" , snake_case: int="<mask>" , snake_case: List[Any]=["<eop>", "<eod>"] , snake_case: Optional[Dict[str, Any]] = None , **snake_case: int , ) -> None: snake_case_ :Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token snake_case_ :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) snake_case_ :str = 3 snake_case_ :List[Any] = do_lower_case snake_case_ :List[str] = remove_space snake_case_ :str = keep_accents snake_case_ :str = vocab_file snake_case_ :Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) snake_case_ :List[str] = jieba snake_case_ :str = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowerCAmelCase_ ( self: Dict ) -> Tuple: return len(self.sp_model ) def lowerCAmelCase_ ( self: int ) -> Any: snake_case_ :Any = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Dict ) -> Dict: snake_case_ :Optional[Any] = self.__dict__.copy() snake_case_ :Dict = None return state def __setstate__( self: int , snake_case: str ) -> Tuple: snake_case_ :Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ :int = {} snake_case_ :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: Any , snake_case: List[Any] ) -> str: if self.remove_space: snake_case_ :Dict = """ """.join(inputs.strip().split() ) else: snake_case_ :Any = inputs snake_case_ :Optional[Any] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: snake_case_ :Any = unicodedata.normalize("""NFKD""" , snake_case ) snake_case_ :int = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: snake_case_ :Tuple = outputs.lower() return outputs def lowerCAmelCase_ ( self: Optional[int] , snake_case: str ) -> List[str]: snake_case_ :str = self.preprocess_text(snake_case ) snake_case_ :Optional[Any] = self.sp_model.encode(snake_case , out_type=snake_case ) snake_case_ :int = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): snake_case_ :List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ :Any = cur_pieces[1:] else: snake_case_ :Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def lowerCAmelCase_ ( self: int , snake_case: str ) -> Dict: return self.sp_model.PieceToId(snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: int ) -> List[str]: return self.sp_model.IdToPiece(snake_case ) def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: Union[str, Any] ) -> List[Any]: snake_case_ :str = """""".join(snake_case ).replace(snake_case , """ """ ).strip() return out_string def lowerCAmelCase_ ( self: int , snake_case: List[int] , snake_case: Optional[List[int]] = None ) -> List[int]: snake_case_ :Tuple = [self.sep_token_id] snake_case_ :Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase_ ( self: int , snake_case: List[int] , snake_case: Optional[List[int]] = None , snake_case: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def lowerCAmelCase_ ( self: int , snake_case: List[int] , snake_case: Optional[List[int]] = None ) -> List[int]: snake_case_ :List[Any] = [self.sep_token_id] snake_case_ :str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: str , snake_case: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ :List[Any] = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , """wb""" ) as fi: snake_case_ :Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,) def lowerCAmelCase_ ( self: List[str] , *snake_case: str , **snake_case: List[Any] ) -> Tuple: snake_case_ :int = super()._decode(*snake_case , **snake_case ) snake_case_ :Optional[int] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
66
"""simple docstring""" from __future__ import annotations __a = 10 def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = 1 snake_case_ :List[str] = max(_lowercase ) while placement <= max_digit: # declare and initialize empty buckets snake_case_ :list[list] = [[] for _ in range(_lowercase )] # split list_of_ints between the buckets for i in list_of_ints: snake_case_ :Any = int((i / placement) % RADIX ) buckets[tmp].append(_lowercase ) # put each buckets' contents into list_of_ints snake_case_ :Optional[Any] = 0 for b in range(_lowercase ): for i in buckets[b]: snake_case_ :Union[str, Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
66
1
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: """simple docstring""" _enforce_args(_lowerCAmelCase , _lowerCAmelCase ) if n == 0: return 0 A : Optional[Any] = float("""-inf""" ) for i in range(1 , n + 1 ): A : str = max( _lowerCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , _lowerCAmelCase ) ) return max_revue def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" _enforce_args(_lowerCAmelCase , _lowerCAmelCase ) A : str = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: A : str = float("""-inf""" ) for i in range(1 , n + 1 ): A : Tuple = max( _lowerCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _lowerCAmelCase , _lowerCAmelCase ) , ) A : Dict = max_revenue return max_rev[n] def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" _enforce_args(_lowerCAmelCase , _lowerCAmelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] A : List[Any] = 0 for i in range(1 , n + 1 ): A : List[Any] = max_rev[i] for j in range(1 , i + 1 ): A : Union[str, Any] = max(_lowerCAmelCase , prices[j - 1] + max_rev[i - j] ) A : List[str] = max_revenue_i return max_rev[n] def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" if n < 0: A : str = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(_lowerCAmelCase ) if n > len(_lowerCAmelCase ): A : Union[str, Any] = ( """Each integral piece of rod must have a corresponding price. """ f'''Got n = {n} but length of prices = {len(_lowerCAmelCase )}''' ) raise ValueError(_lowerCAmelCase ) def __UpperCamelCase ( ) -> Dict: """simple docstring""" A : Optional[Any] = [6, 10, 12, 15, 20, 23] A : Optional[int] = len(_lowerCAmelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. A : Any = 36 A : str = top_down_cut_rod(_lowerCAmelCase , _lowerCAmelCase ) A : Optional[int] = bottom_up_cut_rod(_lowerCAmelCase , _lowerCAmelCase ) A : str = naive_cut_rod_recursive(_lowerCAmelCase , _lowerCAmelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
115
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : str = tempfile.mkdtemp() # fmt: off A : List[Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A : Optional[int] = dict(zip(lowerCamelCase__, range(len(lowerCamelCase__ ) ) ) ) A : Optional[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A : Union[str, Any] = {"""unk_token""": """<unk>"""} A : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) A : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase__ ) ) A : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } A : List[Any] = os.path.join(self.tmpdirname, lowerCamelCase__ ) with open(self.image_processor_file, """w""", encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return CLIPTokenizer.from_pretrained(self.tmpdirname, pad_token="""!""", **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname, pad_token="""!""", **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): A : str = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] A : Optional[int] = [Image.fromarray(np.moveaxis(lowerCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): A : Optional[Any] = self.get_tokenizer() A : Optional[Any] = self.get_rust_tokenizer() A : Optional[int] = self.get_image_processor() A : List[str] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) A : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase__ ) A : Tuple = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) A : str = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""", eos_token="""(EOS)""" ) A : Tuple = self.get_image_processor(do_normalize=lowerCamelCase__ ) A : Optional[Any] = OwlViTProcessor.from_pretrained( self.tmpdirname, bos_token="""(BOS)""", eos_token="""(EOS)""", do_normalize=lowerCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[Any] = self.get_image_processor() A : str = self.get_tokenizer() A : List[str] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Optional[Any] = self.prepare_image_inputs() A : Optional[Any] = image_processor(lowerCamelCase__, return_tensors="""np""" ) A : Any = processor(images=lowerCamelCase__, return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def _lowerCAmelCase ( self ): A : int = self.get_image_processor() A : Optional[Any] = self.get_tokenizer() A : Optional[int] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = """lower newer""" A : Union[str, Any] = processor(text=lowerCamelCase__, return_tensors="""np""" ) A : str = tokenizer(lowerCamelCase__, return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist(), encoded_processor[key][0].tolist() ) def _lowerCAmelCase ( self ): A : Tuple = self.get_image_processor() A : int = self.get_tokenizer() A : str = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : List[str] = """lower newer""" A : Any = self.prepare_image_inputs() A : Tuple = processor(text=lowerCamelCase__, images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : str = """google/owlvit-base-patch32""" A : Dict = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) A : str = ["""cat""", """nasa badge"""] A : Optional[int] = processor(text=lowerCamelCase__ ) A : Any = 16 self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape, (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : Tuple = """google/owlvit-base-patch32""" A : Any = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) A : int = [["""cat""", """nasa badge"""], ["""person"""]] A : List[Any] = processor(text=lowerCamelCase__ ) A : Dict = 16 A : List[str] = len(lowerCamelCase__ ) A : List[str] = max([len(lowerCamelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape, (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : Dict = """google/owlvit-base-patch32""" A : int = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) A : str = ["""cat""", """nasa badge"""] A : Optional[Any] = processor(text=lowerCamelCase__ ) A : int = 16 A : Optional[Any] = inputs["""input_ids"""] A : Optional[int] = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape, (2, seq_length) ) self.assertListEqual(list(input_ids[0] ), predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ), predicted_ids[1] ) def _lowerCAmelCase ( self ): A : Tuple = self.get_image_processor() A : Dict = self.get_tokenizer() A : Optional[Any] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = self.prepare_image_inputs() A : Optional[Any] = self.prepare_image_inputs() A : List[str] = processor(images=lowerCamelCase__, query_images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : Any = self.get_image_processor() A : Optional[Any] = self.get_tokenizer() A : List[str] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A : Optional[Any] = processor.batch_decode(lowerCamelCase__ ) A : Union[str, Any] = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ )
115
1
"""simple docstring""" from manim import * class __A (snake_case__): '''simple docstring''' def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" snake_case_ = Rectangle(height=0.5 , width=0.5 ) snake_case_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) snake_case_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) snake_case_ = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) snake_case_ = Text("""CPU""" , font_size=24 ) snake_case_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) snake_case_ = [mem.copy() for i in range(1 )] snake_case_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) snake_case_ = Text("""GPU""" , font_size=24 ) snake_case_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase , _lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) snake_case_ = Text("""Model""" , font_size=24 ) snake_case_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase , run_time=1 ) , Create(_lowerCAmelCase , run_time=1 ) , Create(_lowerCAmelCase , run_time=1 ) , ) snake_case_ = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) snake_case_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=2.5 ) , Write(_lowerCAmelCase ) , Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) snake_case_ = [] snake_case_ = [] snake_case_ = [] for i, rect in enumerate(_lowerCAmelCase ): snake_case_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() snake_case_ = 0.46 / 4 snake_case_ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowerCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowerCAmelCase , buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase , run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
347
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =0 @slow def __lowerCamelCase ( self : Dict): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(_lowerCAmelCase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(_lowerCAmelCase) , 0) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 2_0) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoConfig.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) # Check that tokenizer_type ≠ model_type __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowerCAmelCase , 'vocab.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='bert' , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowerCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowerCAmelCase , 'merges.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='gpt2' , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowerCAmelCase , 'vocab.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='bert') self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowerCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowerCAmelCase , 'merges.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='gpt2') self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Any): '''simple docstring''' with pytest.raises(_lowerCAmelCase): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx') @require_tokenizers def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowercase =tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased') self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) if isinstance(_lowerCAmelCase , _lowerCAmelCase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _lowerCAmelCase) else: self.assertEqual(tokenizer.do_lower_case , _lowerCAmelCase) self.assertEqual(tokenizer.model_max_length , 5_1_2) @require_tokenizers def __lowerCamelCase ( self : List[Any]): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowerCAmelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __lowercase =tokenizer_class.from_pretrained('julien-c/herlolip-not-exists') def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =TOKENIZER_MAPPING.values() __lowercase =[] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_lowerCAmelCase) , _lowerCAmelCase) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased') , _lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_lowerCAmelCase) __lowercase ='Hello, world. How are you?' __lowercase =tokenizer.tokenize(_lowerCAmelCase) self.assertEqual('[UNK]' , tokens[0]) __lowercase =AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_lowerCAmelCase) __lowercase =tokenizer.tokenize(_lowerCAmelCase) self.assertEqual('[UNK]' , tokens[0]) @require_tokenizers def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config') self.assertEqual(type(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(tokenizer.model_max_length , 5_1_2) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0) self.assertEqual(tokenizer.unk_token , '[UNK]') self.assertEqual(tokenizer.padding_side , 'right') self.assertEqual(tokenizer.truncation_side , 'right') def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 1_2) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('ctrl') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =get_tokenizer_config('bert-base-cased') __lowercase =config.pop('_commit_hash' , _lowerCAmelCase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowerCAmelCase , {'do_lower_case': False}) # This model does not have a tokenizer_config so we get back an empty dict. __lowercase =get_tokenizer_config(_lowerCAmelCase) self.assertDictEqual(_lowerCAmelCase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =get_tokenizer_config(_lowerCAmelCase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer') def __lowerCamelCase ( self : List[Any]): '''simple docstring''' try: AutoConfig.register('custom' , _lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase): AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) __lowercase =CustomTokenizer.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' try: AutoConfig.register('custom' , _lowerCAmelCase) # Can register in two steps AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase): AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowercase =BertTokenizerFast.from_pretrained(_lowerCAmelCase) bert_tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =CustomTokenizerFast.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' with self.assertRaises(_lowerCAmelCase): __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase): __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') @require_tokenizers def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = False class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('custom' , _lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) # If remote code is not set, the default is to use local __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertTrue(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') def __lowerCamelCase ( self : List[str]): '''simple docstring''' with self.assertRaisesRegex( _lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier'): __lowercase =AutoTokenizer.from_pretrained('bert-base') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , revision='aaaaaa') def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
166
0
"""simple docstring""" import os def _snake_case ( ) -> List[str]: '''simple docstring''' with open(os.path.dirname(_snake_case ) + '/grid.txt' ) as f: _A = [] # noqa: E741 for _ in range(20 ): l.append([int(_snake_case ) for x in f.readline().split()] ) _A = 0 # right for i in range(20 ): for j in range(17 ): _A = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _A = temp # down for i in range(17 ): for j in range(20 ): _A = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _A = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _A = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _A = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _A = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _A = temp return maximum if __name__ == "__main__": print(solution())
355
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _snake_case ( _snake_case : str , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple=None ) -> List[str]: '''simple docstring''' _A = XLNetConfig.from_json_file(_snake_case ) _A = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _A = finetuning_task _A = GLUE_TASKS_NUM_LABELS[finetuning_task] _A = XLNetForSequenceClassification(_snake_case ) elif "squad" in finetuning_task: _A = finetuning_task _A = XLNetForQuestionAnswering(_snake_case ) else: _A = XLNetLMHeadModel(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_snake_case , _snake_case , _snake_case ) # Save pytorch-model _A = os.path.join(_snake_case , _snake_case ) _A = os.path.join(_snake_case , _snake_case ) print(F'''Save PyTorch model to {os.path.abspath(_snake_case )}''' ) torch.save(model.state_dict() , _snake_case ) print(F'''Save configuration file to {os.path.abspath(_snake_case )}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) a = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
271
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( A__ ): __A : str = ["pixel_values"] def __init__( self : Union[str, Any] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : int = 0.9 , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : Union[int, float] = 1 / 2_55 , lowercase_ : bool = True , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Tuple , ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) lowercase__ : str = size if size is not None else {'shortest_edge': 2_24} lowercase__ : List[str] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowercase__ : str = get_size_dict(lowerCamelCase_ , param_name="crop_size" ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = size lowercase__ : List[str] = crop_pct lowercase__ : Union[str, Any] = resample lowercase__ : List[str] = do_center_crop lowercase__ : List[str] = crop_size lowercase__ : List[Any] = do_rescale lowercase__ : List[str] = rescale_factor lowercase__ : Tuple = do_normalize lowercase__ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase ( self : Any , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[float] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ) -> str: lowercase__ : Union[str, Any] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: lowercase__ : Optional[int] = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase__ : Union[str, Any] = int(size["height"] / crop_pct ) else: lowercase__ : Any = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(lowerCamelCase_ ) ) lowercase__ : Tuple = get_resize_output_image_size(lowerCamelCase_ , size=lowerCamelCase_ , default_to_square=lowerCamelCase_ ) else: if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(lowerCamelCase_ , size=size["shortest_edge"] , default_to_square=lowerCamelCase_ ) elif "height" in size and "width" in size: lowercase__ : Union[str, Any] = (size['height'], size['width']) else: raise ValueError("Invalid size for resize: {}".format(lowerCamelCase_ ) ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCamelCase ( self : Any , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> Union[str, Any]: lowercase__ : Tuple = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCamelCase_ , size=(size["height"], size["width"]) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ) -> Any: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCamelCase ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> Tuple: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCamelCase ( self : Any , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : int = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : List[str] , ) -> str: lowercase__ : Dict = do_resize if do_resize is not None else self.do_resize lowercase__ : Union[str, Any] = crop_pct if crop_pct is not None else self.crop_pct lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : List[str] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[Any] = image_std if image_std is not None else self.image_std lowercase__ : int = size if size is not None else self.size lowercase__ : Tuple = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowercase__ : Dict = crop_size if crop_size is not None else self.crop_size lowercase__ : str = get_size_dict(lowerCamelCase_ , param_name="crop_size" ) lowercase__ : Dict = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase__ : List[str] = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowercase__ : Tuple = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , crop_pct=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: lowercase__ : Union[str, Any] = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowercase__ : Optional[Any] = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowercase__ : List[str] = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
87
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""pixel_values"""] def __init__( self :Union[str, Any] , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :int = 0.9 , lowerCamelCase_ :PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :Union[int, float] = 1 / 255 , lowerCamelCase_ :bool = True , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , **lowerCamelCase_ :Tuple , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : str =size if size is not None else {'shortest_edge': 224} lowerCamelCase__ : List[str] =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase__ : str =get_size_dict(lowerCamelCase_ , param_name='crop_size' ) lowerCamelCase__ : Tuple =do_resize lowerCamelCase__ : List[Any] =size lowerCamelCase__ : List[str] =crop_pct lowerCamelCase__ : Union[str, Any] =resample lowerCamelCase__ : List[str] =do_center_crop lowerCamelCase__ : List[str] =crop_size lowerCamelCase__ : List[Any] =do_rescale lowerCamelCase__ : List[str] =rescale_factor lowerCamelCase__ : Tuple =do_normalize lowerCamelCase__ : int =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase__ : List[Any] =image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :Optional[float] = None , lowerCamelCase_ :PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Any , ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowerCamelCase__ : Optional[int] =int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCamelCase__ : Union[str, Any] =int(size['height'] / crop_pct ) else: lowerCamelCase__ : Any =(int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(lowerCamelCase_ ) ) lowerCamelCase__ : Tuple =get_resize_output_image_size(lowerCamelCase_ , size=lowerCamelCase_ , default_to_square=lowerCamelCase_ ) else: if "shortest_edge" in size: lowerCamelCase__ : str =get_resize_output_image_size(lowerCamelCase_ , size=size['shortest_edge'] , default_to_square=lowerCamelCase_ ) elif "height" in size and "width" in size: lowerCamelCase__ : Union[str, Any] =(size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(lowerCamelCase_ ) ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :str , ): """simple docstring""" lowerCamelCase__ : Tuple =get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase_ , size=(size['height'], size['width']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[int, float] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :List[str] , ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Tuple , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :ImageInput , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :int = None , lowerCamelCase_ :PILImageResampling = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :float = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ :List[str] , ): """simple docstring""" lowerCamelCase__ : Dict =do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Union[str, Any] =crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase__ : Tuple =resample if resample is not None else self.resample lowerCamelCase__ : Any =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Optional[int] =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : List[str] =image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : List[Any] =image_std if image_std is not None else self.image_std lowerCamelCase__ : int =size if size is not None else self.size lowerCamelCase__ : Tuple =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Dict =crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : str =get_size_dict(lowerCamelCase_ , param_name='crop_size' ) lowerCamelCase__ : Dict =make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : List[str] =[to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowerCamelCase__ : Tuple =[self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , crop_pct=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: lowerCamelCase__ : Union[str, Any] =[self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : str =[self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCamelCase__ : Optional[Any] =[self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[Any] =[to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCamelCase__ : List[str] ={'pixel_values': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
126
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Any = """▁""" lowerCAmelCase : int = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase : int = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase : Optional[Any] = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off lowerCAmelCase : Union[str, Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = VOCAB_FILES_NAMES _UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase : List[int] = [] _UpperCAmelCase : List[int] = [] def __init__( self : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple="<s>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : List[str]="<s>" , lowerCAmelCase__ : Union[str, Any]="<unk>" , lowerCAmelCase__ : Optional[int]="<pad>" , lowerCAmelCase__ : Dict="<mask>" , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token SCREAMING_SNAKE_CASE_: Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_: int = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: int = len(self.sp_model) SCREAMING_SNAKE_CASE_: Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__) } SCREAMING_SNAKE_CASE_: Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE_: int = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE_: Tuple = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) SCREAMING_SNAKE_CASE_: Optional[Any] = src_lang if src_lang is not None else "en_XX" SCREAMING_SNAKE_CASE_: Union[str, Any] = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE_: Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self : Any): SCREAMING_SNAKE_CASE_: Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_: Optional[int] = None SCREAMING_SNAKE_CASE_: str = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): SCREAMING_SNAKE_CASE_: List[str] = {} SCREAMING_SNAKE_CASE_: List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def _SCREAMING_SNAKE_CASE ( self : Dict): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: int = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = [1] * len(self.prefix_tokens) SCREAMING_SNAKE_CASE_: Optional[int] = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__)) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__)) + ([0] * len(lowerCAmelCase__)) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] , **lowerCAmelCase__ : Optional[Any]): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") SCREAMING_SNAKE_CASE_: str = src_lang SCREAMING_SNAKE_CASE_: Any = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self.convert_tokens_to_ids(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Any = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_: Any = self.sp_model.PieceToId(lowerCAmelCase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Union[str, Any]): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Tuple = "".join(lowerCAmelCase__).replace(lowerCAmelCase__ , " ").strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__ , "wb") as fi: SCREAMING_SNAKE_CASE_: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str = "en_XX" , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "ro_RO" , **lowerCAmelCase__ : Optional[Any] , ): SCREAMING_SNAKE_CASE_: str = src_lang SCREAMING_SNAKE_CASE_: Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.set_src_lang_special_tokens(self.src_lang) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.set_tgt_lang_special_tokens(self.tgt_lang) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: List[str] = [self.eos_token_id, self.cur_lang_code] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[str] = self.lang_code_to_id[lang] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: Optional[Any] = [self.eos_token_id, self.cur_lang_code]
127
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Optional[int] = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = ["""YolosFeatureExtractor"""] lowerCAmelCase : Tuple = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
127
1
import math def A (__A : float , __A : float ) -> float: """simple docstring""" return math.pow(__A , 2 ) - a def A (__A : float ) -> float: """simple docstring""" return 2 * x def A (__A : float ) -> float: """simple docstring""" UpperCAmelCase_ = 2.0 while start <= a: UpperCAmelCase_ = math.pow(__A , 2 ) return start def A (__A : float , __A : int = 9999 , __A : float = 0.00_000_000_000_001 ) -> float: """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) UpperCAmelCase_ = get_initial_point(__A ) for _ in range(__A ): UpperCAmelCase_ = value UpperCAmelCase_ = value - fx(__A , __A ) / fx_derivative(__A ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
51
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _A ( _lowerCAmelCase=32 , _lowerCAmelCase=10 , _lowerCAmelCase=100 , _lowerCAmelCase=1_026 , _lowerCAmelCase=True , _lowerCAmelCase="data/tokenized_stories_train_wikitext103.jbl" , _lowerCAmelCase="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set __lowercase , __lowercase =generate_datasets( _lowerCAmelCase , _lowerCAmelCase , number=_lowerCAmelCase , min_len=1_026 , trim=_lowerCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowercase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __lowercase =load_gpta('gpt2' ).to(_lowerCAmelCase ) print('computing perplexity on objective set' ) __lowercase =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).item() print('perplexity on objective set:' , _lowerCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _A ( _lowerCAmelCase , _lowerCAmelCase=15 , _lowerCAmelCase=128 , _lowerCAmelCase=100 , _lowerCAmelCase="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model __lowercase =GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __lowercase =SecondaryLearner(_lowerCAmelCase ) # Train secondary learner __lowercase =train_secondary_learner( _lowerCAmelCase , _lowerCAmelCase , max_epochs=_lowerCAmelCase , batch_size=_lowerCAmelCase , eval_freq=100 , igf_model_path=_lowerCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=32 , _lowerCAmelCase=1_000 , _lowerCAmelCase=16 , _lowerCAmelCase=1.0 , _lowerCAmelCase=recopy_gpta , _lowerCAmelCase=None , _lowerCAmelCase=10 , _lowerCAmelCase="gpt2_finetuned.pt" , ): """simple docstring""" __lowercase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __lowercase =RandomSampler(_lowerCAmelCase ) __lowercase =DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase ) __lowercase =max_steps // (len(_lowerCAmelCase )) + 1 __lowercase =0 __lowercase =torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase =recopy_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_lowerCAmelCase ) secondary_learner.eval() __lowercase =[] __lowercase =0 __lowercase =[] __lowercase =[] # Compute the performance of the transformer model at the beginning __lowercase =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) test_perps.append(_lowerCAmelCase ) print('Test perplexity, step' , _lowerCAmelCase , ':' , _lowerCAmelCase ) for epoch in range(int(_lowerCAmelCase ) ): for step, example in enumerate(_lowerCAmelCase ): torch.cuda.empty_cache() __lowercase =random.randint(0 , example.size(2 ) - context_len - 1 ) __lowercase =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowercase =model(_lowerCAmelCase , labels=_lowerCAmelCase ) __lowercase =True if secondary_learner is not None: __lowercase =secondary_learner.forward( torch.tensor(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_lowerCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowercase =-1 if predicted_q < threshold: __lowercase =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowercase =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowercase =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowercase =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) test_perps.append(_lowerCAmelCase ) print('Test perplexity, step' , _lowerCAmelCase , ':' , _lowerCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _lowerCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_lowerCAmelCase , default=_lowerCAmelCase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_lowerCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_lowerCAmelCase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_lowerCAmelCase , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1_000 , type=_lowerCAmelCase , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_lowerCAmelCase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_lowerCAmelCase , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_lowerCAmelCase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_lowerCAmelCase , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1_026 , type=_lowerCAmelCase , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_lowerCAmelCase , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_lowerCAmelCase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_lowerCAmelCase , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=_lowerCAmelCase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __lowercase =joblib.load('data/IGF_values.jbl' ) # Train secondary learner __lowercase =training_secondary_learner( _lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __lowercase =GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowercase , __lowercase =generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1_026 , trim=_lowerCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCAmelCase , secondary_learner=_lowerCAmelCase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
166
0
"""simple docstring""" from __future__ import annotations from math import gcd def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase = 2 , lowerCAmelCase = 1 , lowerCAmelCase = 3 , ): '''simple docstring''' # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: return (pow(lowerCAmelCase , 2 ) + step) % modulus for _ in range(lowerCAmelCase ): # These track the position within the cycle detection logic. UpperCAmelCase = seed UpperCAmelCase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCAmelCase = rand_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = rand_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = rand_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCAmelCase = gcd(hare - tortoise , lowerCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCAmelCase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Any = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'{args.num} is probably prime') else: lowerCAmelCase_ : Optional[Any] = args.num // divisor print(F'{args.num} = {divisor} * {quotient}')
357
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
248
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = torch.device('cpu') def lowerCamelCase ( ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = dct.pop(_UpperCamelCase ) __UpperCAmelCase : List[str] = val def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = [] for k in state_dict.keys(): __UpperCAmelCase : int = k if ".pwconv" in k: __UpperCAmelCase : Optional[int] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: __UpperCAmelCase : List[Any] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: __UpperCAmelCase : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: __UpperCAmelCase : int = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: __UpperCAmelCase : str = k_new.split(""".""" ) if ls[2].isdigit(): __UpperCAmelCase : Dict = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __UpperCAmelCase : List[str] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCAmelCase : Optional[int] = 1_0_0_0 __UpperCAmelCase : Optional[int] = """huggingface/label-files""" __UpperCAmelCase : str = """imagenet-1k-id2label.json""" __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Any = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = idalabel __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCAmelCase : Tuple = [3, 3, 6, 4] __UpperCAmelCase : List[Any] = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": __UpperCAmelCase : Optional[int] = [3, 3, 9, 6] __UpperCAmelCase : Tuple = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": __UpperCAmelCase : Dict = [4, 3, 1_0, 5] __UpperCAmelCase : Optional[Any] = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": __UpperCAmelCase : str = [4, 4, 1_2, 6] __UpperCAmelCase : str = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="""cpu""" , check_hash=_UpperCamelCase ) else: __UpperCAmelCase : Dict = torch.load(_UpperCamelCase , map_location="""cpu""" ) __UpperCAmelCase : str = checkpoint __UpperCAmelCase : Union[str, Any] = create_rename_keys(_UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # load HuggingFace model __UpperCAmelCase : int = SwiftFormerForImageClassification(_UpperCamelCase ).eval() hf_model.load_state_dict(_UpperCamelCase ) # prepare test inputs __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) __UpperCAmelCase : Optional[Any] = processor(images=_UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models __UpperCAmelCase : Tuple = get_expected_output(_UpperCamelCase ) __UpperCAmelCase : Dict = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , _UpperCamelCase , atol=1E-3 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') UpperCAmelCase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
115
"""simple docstring""" from importlib import import_module from .logging import get_logger UpperCAmelCase : Any = get_logger(__name__) class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : int=None ): '''simple docstring''' __UpperCAmelCase : Tuple = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase ) ) __UpperCAmelCase : Any = module._original_module if isinstance(UpperCamelCase , _PatchedModuleObj ) else module class lowerCamelCase__ : """simple docstring""" __a = [] def __init__( self : str , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any]=None ): '''simple docstring''' __UpperCAmelCase : int = obj __UpperCAmelCase : Union[str, Any] = target __UpperCAmelCase : List[str] = new __UpperCAmelCase : Optional[int] = target.split(""".""" )[0] __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Union[str, Any] = attrs or [] def __enter__( self : Dict ): '''simple docstring''' *__UpperCAmelCase ,__UpperCAmelCase : str = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(UpperCamelCase ) ): try: __UpperCAmelCase : List[Any] = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __UpperCAmelCase : List[Any] = getattr(self.obj , UpperCamelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(UpperCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , UpperCamelCase , _PatchedModuleObj(UpperCamelCase , attrs=self.attrs ) ) __UpperCAmelCase : int = getattr(self.obj , UpperCamelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(UpperCamelCase , UpperCamelCase , _PatchedModuleObj(getattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , attrs=self.attrs ) ) __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase , UpperCamelCase ) # finally set the target attribute setattr(UpperCamelCase , UpperCamelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __UpperCAmelCase : int = getattr(import_module(""".""".join(UpperCamelCase ) ) , UpperCamelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , UpperCamelCase ) is attr_value: __UpperCAmelCase : Union[str, Any] = getattr(self.obj , UpperCamelCase ) setattr(self.obj , UpperCamelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __UpperCAmelCase : str = globals()["""__builtins__"""][target_attr] setattr(self.obj , UpperCamelCase , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self : str , *UpperCamelCase : Optional[int] ): '''simple docstring''' for attr in list(self.original ): setattr(self.obj , UpperCamelCase , self.original.pop(UpperCamelCase ) ) def lowerCamelCase__ ( self : int ): '''simple docstring''' self.__enter__() self._active_patches.append(self ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
115
1
'''simple docstring''' from manim import * class A ( snake_case_ ): def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : str = Rectangle(height=0.5 , width=0.5 ) A : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A : int = [mem.copy() for i in range(6 )] A : List[Any] = [mem.copy() for i in range(6 )] A : Dict = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) A : List[str] = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) A : int = VGroup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) A : int = Text('''CPU''' , font_size=24 ) A : List[str] = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = [mem.copy() for i in range(1 )] A : Dict = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) A : Union[str, Any] = Text('''GPU''' , font_size=24 ) A : Optional[Any] = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) gpu.align_to(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE ) A : int = [mem.copy() for i in range(6 )] A : int = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) A : Tuple = Text('''Model''' , font_size=24 ) A : Dict = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE , run_time=1 ) , Create(SCREAMING_SNAKE_CASE , run_time=1 ) , Create(SCREAMING_SNAKE_CASE , run_time=1 ) , ) A : Union[str, Any] = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) A : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A : Dict = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(SCREAMING_SNAKE_CASE ) , Write(SCREAMING_SNAKE_CASE ) ) self.add(SCREAMING_SNAKE_CASE ) A : Tuple = [] A : List[str] = [] A : Tuple = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE ): A : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A : int = 0.46 / 4 A : Tuple = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE ) self.play(*SCREAMING_SNAKE_CASE ) self.wait()
356
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" A : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , ) A : Optional[Any] = image.to(self.device ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
311
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase( nn.Module ): '''simple docstring''' def __init__( self: Any, a_: int = 16, a_: int = 88, a_: Optional[int] = None, a_: int = 1, a_: float = 0.0, a_: int = 32, a_: Optional[int] = None, a_: bool = False, a_: Optional[int] = None, a_: Optional[int] = None, a_: str = "geglu", a_: Optional[int] = None, ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=a_, attention_head_dim=a_, in_channels=a_, num_layers=a_, dropout=a_, norm_num_groups=a_, cross_attention_dim=a_, attention_bias=a_, sample_size=a_, num_vector_embeds=a_, activation_fn=a_, num_embeds_ada_norm=a_, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _snake_case : Optional[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _snake_case : str = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _snake_case : Any = [1, 0] def UpperCamelCase_ ( self: Any, a_: Optional[int], a_: Optional[Any], a_: int=None, a_: str=None, a_: List[str]=None, a_: bool = True, ): '''simple docstring''' _snake_case : List[str] = hidden_states _snake_case : Tuple = [] _snake_case : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _snake_case : str = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _snake_case : Any = self.transformer_index_for_condition[i] _snake_case : int = self.transformers[transformer_index]( a_, encoder_hidden_states=a_, timestep=a_, cross_attention_kwargs=a_, return_dict=a_, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _snake_case : List[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _snake_case : List[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=a_ )
64
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) __UpperCAmelCase : Dict = ['''accelerate''', '''launch'''] __UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' __UpperCAmelCase : Dict = '''default_config.yaml''' __UpperCAmelCase : Optional[Any] = config_folder / config_file __UpperCAmelCase : Dict = config_folder / '''_default_config.yaml''' __UpperCAmelCase : Any = Path('''tests/test_configs''' ) @classmethod def __lowercase ( cls : int ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] ,env=os.environ.copy() ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_a ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_a ), self.test_file_path] ,env=os.environ.copy() ) def __lowercase ( self : Optional[int] ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'] ,env=os.environ.copy() ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = '''test-tpu''' __UpperCAmelCase : Any = '''us-central1-a''' __UpperCAmelCase : List[Any] = '''ls''' __UpperCAmelCase : Any = ['''accelerate''', '''tpu-config'''] __UpperCAmelCase : Dict = '''cd /usr/share''' __UpperCAmelCase : Any = '''tests/test_samples/test_command_file.sh''' __UpperCAmelCase : List[Any] = '''Running gcloud compute tpus tpu-vm ssh''' def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_a ,) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_a ,) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] ,return_stdout=_a ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,) def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_a ,) def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" ,_a ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Any = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,)
271
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:List[str] = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( a__ ): '''simple docstring''' __lowerCamelCase : List[Any] = "efficientnet" def __init__( self, lowerCamelCase__ = 3, lowerCamelCase__ = 600, lowerCamelCase__ = 2.0, lowerCamelCase__ = 3.1, lowerCamelCase__ = 8, lowerCamelCase__ = [3, 3, 5, 3, 5, 5, 3], lowerCamelCase__ = [32, 16, 24, 40, 80, 112, 192], lowerCamelCase__ = [16, 24, 40, 80, 112, 192, 320], lowerCamelCase__ = [], lowerCamelCase__ = [1, 2, 2, 2, 1, 2, 1], lowerCamelCase__ = [1, 2, 2, 3, 3, 4, 1], lowerCamelCase__ = [1, 6, 6, 6, 6, 6, 6], lowerCamelCase__ = 0.25, lowerCamelCase__ = "swish", lowerCamelCase__ = 2560, lowerCamelCase__ = "mean", lowerCamelCase__ = 0.02, lowerCamelCase__ = 0.001, lowerCamelCase__ = 0.99, lowerCamelCase__ = 0.5, lowerCamelCase__ = 0.2, **lowerCamelCase__, ): super().__init__(**lowerCamelCase__ ) A : Dict = num_channels A : str = image_size A : Any = width_coefficient A : Any = depth_coefficient A : Any = depth_divisor A : Optional[Any] = kernel_sizes A : Union[str, Any] = in_channels A : List[Any] = out_channels A : Optional[Any] = depthwise_padding A : int = strides A : int = num_block_repeats A : Optional[Any] = expand_ratios A : int = squeeze_expansion_ratio A : Any = hidden_act A : Optional[Any] = hidden_dim A : Union[str, Any] = pooling_type A : Optional[Any] = initializer_range A : Tuple = batch_norm_eps A : Optional[int] = batch_norm_momentum A : Any = dropout_rate A : List[Any] = drop_connect_rate A : int = sum(lowerCamelCase__ ) * 4 class SCREAMING_SNAKE_CASE__ ( a__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = version.parse("1.11" ) @property def _lowerCAmelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowerCAmelCase ( self ): return 1e-5
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : str = tempfile.mkdtemp() A : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] A : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) A : Any = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], """do_convert_rgb""": True, } A : int = os.path.join(self.tmpdirname, lowerCamelCase__ ) with open(self.image_processor_file, """w""", encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): A : Optional[int] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] A : List[Any] = [Image.fromarray(np.moveaxis(lowerCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): A : List[Any] = self.get_tokenizer() A : Dict = self.get_rust_tokenizer() A : List[Any] = self.get_image_processor() A : int = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) A : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase__ ) A : str = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) A : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : str = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[int] = self.get_tokenizer(cls_token="""(CLS)""", sep_token="""(SEP)""" ) A : Optional[int] = self.get_image_processor(do_normalize=lowerCamelCase__ ) A : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token="""(CLS)""", sep_token="""(SEP)""", do_normalize=lowerCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Tuple = self.get_image_processor() A : List[str] = self.get_tokenizer() A : List[str] = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = self.prepare_image_inputs() A : Union[str, Any] = image_processor(lowerCamelCase__, return_tensors="""np""" ) A : str = processor(images=lowerCamelCase__, return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def _lowerCAmelCase ( self ): A : List[str] = self.get_image_processor() A : Tuple = self.get_tokenizer() A : str = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = """Alexandra,T-shirt的价格是15便士。""" A : Optional[Any] = processor(text=lowerCamelCase__ ) A : int = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def _lowerCAmelCase ( self ): A : Dict = self.get_image_processor() A : List[str] = self.get_tokenizer() A : int = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : str = """Alexandra,T-shirt的价格是15便士。""" A : Dict = self.prepare_image_inputs() A : Optional[int] = processor(text=lowerCamelCase__, images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : Union[str, Any] = self.get_image_processor() A : List[str] = self.get_tokenizer() A : List[str] = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A : List[Any] = processor.batch_decode(lowerCamelCase__ ) A : str = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[str] = self.get_image_processor() A : List[str] = self.get_tokenizer() A : Any = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : List[Any] = """Alexandra,T-shirt的价格是15便士。""" A : Optional[Any] = self.prepare_image_inputs() A : str = processor(text=lowerCamelCase__, images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
115
0
_SCREAMING_SNAKE_CASE : Dict = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
127
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__snake_case ) , torch_builtin(__snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(__snake_case ) , gelu_new(__snake_case ) ) ) def a_ ( self ): snake_case = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case = get_activation('''gelu''' ) snake_case = get_activation('''gelu_10''' ) snake_case = torch_builtin(__snake_case ) snake_case = geluaa(__snake_case ) snake_case = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def a_ ( self ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__snake_case ): get_activation('''bogus''' ) with self.assertRaises(__snake_case ): get_activation(__snake_case ) def a_ ( self ): snake_case = get_activation('''gelu''' ) snake_case = 1 snake_case = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__snake_case ): snake_case = acta.a
127
1
"""simple docstring""" from __future__ import annotations from math import pi def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCamelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCamelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCamelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCamelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase = np.expand_dims(test_image, axis=0) __UpperCamelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase = '''Normal''' if result[0][0] == 1: __UpperCamelCase = '''Abnormality detected'''
38
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) a : Optional[Any] = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["""ViTFeatureExtractor"""] a : str = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A__(unittest.TestCase ): """simple docstring""" _A : List[str] = StableDiffusionLDMaDPipeline _A : int = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : str = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Tuple = CLIPTextModel(_lowercase ) a_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Any: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[Any] = torch.manual_seed(_lowercase ) else: a_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> List[Any]: a_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ : Any = self.get_dummy_components() a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : Union[str, Any] = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = self.get_dummy_inputs(_lowercase ) a_ : List[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : Tuple = output.rgb, output.depth a_ : Union[str, Any] = rgb[0, -3:, -3:, -1] a_ : Any = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a_ : Optional[Any] = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) a_ : int = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = self.get_dummy_components() a_ : Optional[int] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : Optional[Any] = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Dict = self.get_dummy_inputs(_lowercase ) a_ : List[str] = 3 * [inputs["""prompt"""]] # forward a_ : Optional[int] = ldmad_pipe(**_lowercase ) a_ , a_ : Any = output.rgb, output.depth a_ : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] a_ : Union[str, Any] = depth_slice_a[0, -3:, -1] a_ : Dict = self.get_dummy_inputs(_lowercase ) a_ : List[str] = 3 * [inputs.pop("""prompt""" )] a_ : List[Any] = ldmad_pipe.tokenizer( _lowercase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , ) a_ : int = text_inputs["""input_ids"""].to(_lowercase ) a_ : Any = ldmad_pipe.text_encoder(_lowercase )[0] a_ : Dict = prompt_embeds # forward a_ : int = ldmad_pipe(**_lowercase ) a_ , a_ : Optional[int] = output.rgb, output.depth a_ : List[str] = rgb_slice_a[0, -3:, -3:, -1] a_ : Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase__ ( self ) -> Dict: a_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ : Dict = self.get_dummy_components() a_ : Any = PNDMScheduler(skip_prk_steps=_lowercase ) a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : str = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = self.get_dummy_inputs(_lowercase ) a_ : int = """french fries""" a_ : Any = ldmad_pipe(**_lowercase , negative_prompt=_lowercase ) a_ , a_ : Optional[Any] = output.rgb, output.depth a_ : Tuple = rgb[0, -3:, -3:, -1] a_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a_ : Optional[int] = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) a_ : Union[str, Any] = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> List[str]: a_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Dict = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) a_ : Tuple = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) a_ : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Any: a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) a_ : str = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Dict = self.get_inputs(_lowercase ) a_ : Optional[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : int = output.rgb, output.depth a_ : str = rgb[0, -3:, -3:, -1].flatten() a_ : Tuple = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) a_ : Optional[int] = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) a_ : Optional[int] = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> str: a_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) a_ : Any = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) a_ : Dict = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[str] = self.get_inputs(_lowercase ) a_ : Union[str, Any] = ldmad_pipe(**_lowercase ) a_ , a_ : str = output.rgb, output.depth a_ : List[str] = 0.4_9_5_5_8_6 a_ : int = 0.3_3_7_9_5_5_1_5 a_ : int = 1_1_2.4_8_5_1_8 a_ : Optional[int] = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[str] = self.get_inputs(_lowercase ) a_ : List[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : List[Any] = output.rgb, output.depth a_ : int = 0.4_1_9_4_1_2_7 a_ : List[str] = 0.3_5_3_7_5_5_8_6 a_ : Optional[int] = 0.5_6_3_8_5_0_2 a_ : str = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
248
0
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : dict ): lowercase_ :int = set() # edges = list of graph's edges lowercase_ :List[Any] = get_edges(__lowerCamelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowercase_ , lowercase_ :Optional[int] = edges.pop() chosen_vertices.add(__lowerCamelCase ) chosen_vertices.add(__lowerCamelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCamelCase ) return chosen_vertices def UpperCAmelCase_ ( __lowerCamelCase : dict ): lowercase_ :Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
147
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a_ ( _lowerCAmelCase ): def __init__( self : Any , lowercase : int , lowercase : Union[str, Any]=13 , lowercase : List[str]=7 , lowercase : List[str]=True , lowercase : int=True , lowercase : Tuple=True , lowercase : int=True , lowercase : List[Any]=99 , lowercase : Optional[int]=32 , lowercase : Dict=5 , lowercase : Optional[int]=4 , lowercase : List[str]=37 , lowercase : Tuple="gelu" , lowercase : List[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : List[str]=512 , lowercase : str=16 , lowercase : Tuple=2 , lowercase : List[Any]=0.02 , lowercase : Dict=False , lowercase : Dict=True , lowercase : int="None" , lowercase : Optional[Any]=3 , lowercase : Dict=4 , lowercase : List[Any]=None , ): """simple docstring""" lowercase_ :int = parent lowercase_ :str = batch_size lowercase_ :Tuple = seq_length lowercase_ :Union[str, Any] = is_training lowercase_ :Dict = use_input_mask lowercase_ :Any = use_token_type_ids lowercase_ :Tuple = use_labels lowercase_ :Dict = vocab_size lowercase_ :Tuple = hidden_size lowercase_ :Union[str, Any] = num_hidden_layers lowercase_ :int = num_attention_heads lowercase_ :List[Any] = intermediate_size lowercase_ :Tuple = hidden_act lowercase_ :str = hidden_dropout_prob lowercase_ :Any = attention_probs_dropout_prob lowercase_ :List[Any] = max_position_embeddings lowercase_ :Union[str, Any] = type_vocab_size lowercase_ :Union[str, Any] = type_sequence_label_size lowercase_ :Any = initializer_range lowercase_ :List[Any] = num_labels lowercase_ :str = num_choices lowercase_ :Optional[Any] = relative_attention lowercase_ :Tuple = position_biased_input lowercase_ :Union[str, Any] = pos_att_type lowercase_ :Tuple = scope def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :Union[str, Any] = None if self.use_input_mask: lowercase_ :int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase_ :List[Any] = None if self.use_token_type_ids: lowercase_ :Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ :str = None lowercase_ :Union[str, Any] = None lowercase_ :List[str] = None if self.use_labels: lowercase_ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ :str = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ :Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Dict = self.get_config() lowercase_ :Optional[Any] = 300 return config def lowercase__ ( self : Optional[Any] , lowercase : Dict ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase__ ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str , lowercase : Optional[Any] , lowercase : Optional[int] ): """simple docstring""" lowercase_ :str = DebertaModel(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[int] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase )[0] lowercase_ :Union[str, Any] = model(lowercase , token_type_ids=lowercase )[0] lowercase_ :Dict = model(lowercase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase__ ( self : Dict , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Dict , lowercase : Dict , lowercase : str , lowercase : Tuple ): """simple docstring""" lowercase_ :Dict = DebertaForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : List[Any] , lowercase : int , lowercase : Dict ): """simple docstring""" lowercase_ :Dict = self.num_labels lowercase_ :int = DebertaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowercase_ :Union[str, Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase ) def lowercase__ ( self : List[Any] , lowercase : List[str] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : int ): """simple docstring""" lowercase_ :List[str] = self.num_labels lowercase_ :Optional[int] = DebertaForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , lowercase : Tuple , lowercase : Any , lowercase : List[Any] , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : List[Any] ): """simple docstring""" lowercase_ :Any = DebertaForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :List[Any] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) :List[str] = config_and_inputs lowercase_ :Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __A = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) __A = True __A = False __A = False __A = False __A = False def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = DebertaModelTester(self ) lowercase_ :str = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase ) def lowercase__ ( self : int ): """simple docstring""" lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase ) def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase ) @slow def lowercase__ ( self : Optional[int] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Tuple = DebertaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def lowercase__ ( self : Dict ): """simple docstring""" pass @slow def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Optional[Any] = DebertaModel.from_pretrained("microsoft/deberta-base" ) lowercase_ :Dict = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowercase_ :Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ :Optional[int] = model(lowercase , attention_mask=lowercase )[0] # compare the actual values for a slice. lowercase_ :List[Any] = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
147
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __UpperCAmelCase ( _lowerCamelCase ): # to overwrite at feature extractactor specific tests __lowercase = None __lowercase = None @property def lowerCamelCase ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'feature_size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'sampling_rate' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'padding_value' ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , processed_features[input_name] ) ) ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def lowerCamelCase ( self , lowerCAmelCase_=False ): """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase_ ): _snake_case = len(input[0] ) for input_slice in input[1:]: if len(lowerCAmelCase_ ) != length: return False return True def _inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1E-3 ): return False return True _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = self.feat_extract_tester.seq_length_diff _snake_case = self.feat_extract_tester.max_seq_length + pad_diff _snake_case = self.feat_extract_tester.min_seq_length _snake_case = self.feat_extract_tester.batch_size _snake_case = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _snake_case = feat_extract.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[-1] ) ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' ) _snake_case = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='max_length' )[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , return_tensors='np' ) _snake_case = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _snake_case = feat_extract.pad(lowerCAmelCase_ , pad_to_multiple_of=10 ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , pad_to_multiple_of=10 ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ , return_tensors='np' , ) _snake_case = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _snake_case = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def lowerCamelCase ( self , lowerCAmelCase_=False ): """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase_ ): _snake_case = len(input[0] ) for input_slice in input[1:]: if len(lowerCAmelCase_ ) != length: return False return True def _inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1E-3 ): return False return True _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) ) _snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) # truncate to smallest with np _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=lowerCAmelCase_ , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) _snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) # truncate to middle _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ , return_tensors='np' , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) _snake_case = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , truncation=lowerCAmelCase_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='longest' , truncation=lowerCAmelCase_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='longest' , truncation=lowerCAmelCase_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='max_length' , truncation=lowerCAmelCase_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _snake_case = 12 _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , ) _snake_case = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _snake_case = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _snake_case = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) def lowerCamelCase ( self ): """simple docstring""" self._check_padding(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_padding(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_truncation(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_truncation(numpify=lowerCAmelCase_ ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = min(lowerCAmelCase_ ) _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='np' ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
42
'''simple docstring''' import argparse from collections import defaultdict import yaml a : str = "docs/source/en/_toctree.yml" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def lowercase ( __magic_name__=False ): '''simple docstring''' with open(__magic_name__ , encoding="utf-8" ) as f: UpperCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCAmelCase : Any = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : str = api_doc[model_idx]["sections"] UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section] UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["sections"] UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase : Any = model_doc UpperCAmelCase : Any = api_doc with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
311
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCAmelCase : def __init__( self :Union[str, Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[Any]=sys.maxsize ): '''simple docstring''' a = """bilinear""" a = max_size a = short_edge_length def __call__( self :Optional[int] , __magic_name__ :Dict ): '''simple docstring''' a = [] for img in imgs: a , a = img.shape[:2] # later: provide list and randomly choose index for resize a = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img a = size * 1.0 / min(__magic_name__ , __magic_name__ ) if h < w: a , a = size, scale * w else: a , a = scale * h, size if max(__magic_name__ , __magic_name__ ) > self.max_size: a = self.max_size * 1.0 / max(__magic_name__ , __magic_name__ ) a = newh * scale a = neww * scale a = int(neww + 0.5 ) a = int(newh + 0.5 ) if img.dtype == np.uinta: a = Image.fromarray(__magic_name__ ) a = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) a = np.asarray(__magic_name__ ) else: a = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw a = nn.functional.interpolate( __magic_name__ , (newh, neww) , mode=self.interp_method , align_corners=__magic_name__ ).squeeze(0 ) img_augs.append(__magic_name__ ) return img_augs class __lowerCAmelCase : def __init__( self :Union[str, Any] , __magic_name__ :str ): '''simple docstring''' a = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) a = cfg.INPUT.FORMAT a = cfg.SIZE_DIVISIBILITY a = cfg.PAD_VALUE a = cfg.INPUT.MAX_SIZE_TEST a = cfg.MODEL.DEVICE a = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a = lambda __magic_name__ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str ): '''simple docstring''' a = tuple(max(__magic_name__ ) for s in zip(*[img.shape for img in images] ) ) a = [im.shape[-2:] for im in images] a = [ nn.functional.pad( __magic_name__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__magic_name__ , __magic_name__ ) ] return torch.stack(__magic_name__ ), torch.tensor(__magic_name__ ) def __call__( self :str , __magic_name__ :str , __magic_name__ :List[Any]=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(__magic_name__ , __magic_name__ ): a = [images] if single_image: assert len(__magic_name__ ) == 1 for i in range(len(__magic_name__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__magic_name__ , images.pop(__magic_name__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __magic_name__ , torch.as_tensor(img_tensorize(images.pop(__magic_name__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge a = torch.tensor([im.shape[:2] for im in images] ) a = self.aug(__magic_name__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic a = [self.normalizer(__magic_name__ ) for x in images] # now pad them to do the following operations a , a = self.pad(__magic_name__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad a = torch.true_divide(__magic_name__ , __magic_name__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __A ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: assert torch.isfinite(__lowerCamelCase ).all(), "Box tensor contains infinite or NaN!" a , a = box_size tensor[:, 0].clamp_(min=0 , max=__lowerCamelCase ) tensor[:, 1].clamp_(min=0 , max=__lowerCamelCase ) tensor[:, 2].clamp_(min=0 , max=__lowerCamelCase ) tensor[:, 3].clamp_(min=0 , max=__lowerCamelCase )
347
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[Any] = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
347
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ (unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=10 , lowercase_=[10, 20, 30, 40] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : Union[str, Any] = embeddings_size UpperCAmelCase_ : str = hidden_sizes UpperCAmelCase_ : List[Any] = depths UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : Tuple = len(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values def UpperCamelCase__ ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = FlaxRegNetModel(config=lowercase_ ) UpperCAmelCase_ : List[str] = model(lowercase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : str = FlaxRegNetForImageClassification(config=lowercase_ ) UpperCAmelCase_ : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = FlaxRegNetModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" return def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(lowercase_ ) UpperCAmelCase_ : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) UpperCAmelCase_ : List[str] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase_ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : int = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ , **lowercase_ ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : Dict = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : int = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( ): UpperCAmelCase_ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class A_ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) UpperCAmelCase_ : str = self.default_image_processor UpperCAmelCase_ : Optional[Any] = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=lowercase_ , return_tensors="np" ) UpperCAmelCase_ : str = model(**lowercase_ ) # verify the logits UpperCAmelCase_ : Tuple = (1, 1000) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase_ : List[str] = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
61
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = list(model.children() )[:-2] __UpperCAmelCase : Tuple = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : Tuple = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : int = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : str = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Union[str, Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : str , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Optional[Any] = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer __UpperCAmelCase : List[str] = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = max_seq_length __UpperCAmelCase : Tuple = transforms def __len__( self : Tuple ): '''simple docstring''' return len(self.data ) def __getitem__( self : int , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Union[str, Any] = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : List[str] = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Any = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : int = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : int = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[int] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> List[str]: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Dict: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
115
0
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , A_ , A_ ) -> Dict: return f'gaussian_noise_s={seed}_shape={"_".join([str(A_ ) for s in shape] )}.npy' def __snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def __snake_case ( self , A_=0 , A_=(4, 4, 64, 64) , A_=False ) -> List[Any]: lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(A_ , A_ ) ) , dtype=A_ ) return image def __snake_case ( self , A_=False , A_="CompVis/stable-diffusion-v1-4" ) -> str: lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase = """bf16""" if fpaa else None lowerCAmelCase, lowerCAmelCase = FlaxUNetaDConditionModel.from_pretrained( A_ , subfolder="""unet""" , dtype=A_ , revision=A_ ) return model, params def __snake_case ( self , A_=0 , A_=(4, 77, 768) , A_=False ) -> List[str]: lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(A_ , A_ ) ) , dtype=A_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def __snake_case ( self , A_ , A_ , A_ ) -> List[str]: lowerCAmelCase, lowerCAmelCase = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=A_ ) lowerCAmelCase = self.get_latents(A_ , fpaa=A_ ) lowerCAmelCase = self.get_encoder_hidden_states(A_ , fpaa=A_ ) lowerCAmelCase = model.apply( {"""params""": params} , A_ , jnp.array(A_ , dtype=jnp.intaa ) , encoder_hidden_states=A_ , ).sample assert sample.shape == latents.shape lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase = jnp.array(A_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(A_ , A_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def __snake_case ( self , A_ , A_ , A_ ) -> Optional[Any]: lowerCAmelCase, lowerCAmelCase = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=A_ ) lowerCAmelCase = self.get_latents(A_ , shape=(4, 4, 96, 96) , fpaa=A_ ) lowerCAmelCase = self.get_encoder_hidden_states(A_ , shape=(4, 77, 1024) , fpaa=A_ ) lowerCAmelCase = model.apply( {"""params""": params} , A_ , jnp.array(A_ , dtype=jnp.intaa ) , encoder_hidden_states=A_ , ).sample assert sample.shape == latents.shape lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase = jnp.array(A_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(A_ , A_ , atol=1e-2 )
368
'''simple docstring''' from __future__ import annotations class __snake_case: '''simple docstring''' def __init__( self , A_ = 0 ) -> Dict: lowerCAmelCase = key def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A_ , A_ ) ) except OSError: return False return True def __snake_case ( self , A_ , A_ ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A_ , A_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
187
0
import tensorflow as tf from ...tf_utils import shape_list class lowercase__ ( tf.keras.layers.Layer ): def __init__( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : Dict ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = d_embed SCREAMING_SNAKE_CASE__ = d_proj SCREAMING_SNAKE_CASE__ = cutoffs + [vocab_size] SCREAMING_SNAKE_CASE__ = [0] + self.cutoffs SCREAMING_SNAKE_CASE__ = div_val SCREAMING_SNAKE_CASE__ = self.cutoffs[0] SCREAMING_SNAKE_CASE__ = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE__ = self.shortlist_size + self.n_clusters SCREAMING_SNAKE_CASE__ = keep_order SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] def A_ ( self : Tuple , UpperCAmelCase_ : List[str] ): if self.n_clusters > 0: SCREAMING_SNAKE_CASE__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=__lowerCamelCase , name='cluster_weight' ) SCREAMING_SNAKE_CASE__ = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=__lowerCamelCase , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: SCREAMING_SNAKE_CASE__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=__lowerCamelCase , name=F'out_projs_._{i}' , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=__lowerCamelCase , name=F'out_layers_._{i}_._weight' , ) SCREAMING_SNAKE_CASE__ = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=__lowerCamelCase , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE__ = self.d_embed // (self.div_val**i) SCREAMING_SNAKE_CASE__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=__lowerCamelCase , name=F'out_projs_._{i}' ) self.out_projs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=__lowerCamelCase , name=F'out_layers_._{i}_._weight' , ) SCREAMING_SNAKE_CASE__ = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=__lowerCamelCase , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def A_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=None ): SCREAMING_SNAKE_CASE__ = x if proj is not None: SCREAMING_SNAKE_CASE__ = tf.einsum('ibd,ed->ibe' , __lowerCamelCase , __lowerCamelCase ) return tf.einsum('ibd,nd->ibn' , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def A_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = shape_list(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tf.range(lp_size[0] , dtype=target.dtype ) SCREAMING_SNAKE_CASE__ = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def A_ ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=False ): SCREAMING_SNAKE_CASE__ = 0 if self.n_clusters == 0: SCREAMING_SNAKE_CASE__ = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: SCREAMING_SNAKE_CASE__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: SCREAMING_SNAKE_CASE__ = shape_list(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: SCREAMING_SNAKE_CASE__ = (target >= l_idx) & (target < r_idx) SCREAMING_SNAKE_CASE__ = tf.where(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: SCREAMING_SNAKE_CASE__ = self.out_layers[0][0][l_idx:r_idx] SCREAMING_SNAKE_CASE__ = self.out_layers[0][1][l_idx:r_idx] else: SCREAMING_SNAKE_CASE__ = self.out_layers[i][0] SCREAMING_SNAKE_CASE__ = self.out_layers[i][1] if i == 0: SCREAMING_SNAKE_CASE__ = tf.concat([cur_W, self.cluster_weight] , 0 ) SCREAMING_SNAKE_CASE__ = tf.concat([cur_b, self.cluster_bias] , 0 ) SCREAMING_SNAKE_CASE__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) SCREAMING_SNAKE_CASE__ = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: SCREAMING_SNAKE_CASE__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) SCREAMING_SNAKE_CASE__ = tf.nn.log_softmax(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.cutoffs[0] + i - 1 # No probability for the head cluster SCREAMING_SNAKE_CASE__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: SCREAMING_SNAKE_CASE__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: SCREAMING_SNAKE_CASE__ = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation='mean' if return_mean else '' ) return out
176
import re import string import numpy as np import datasets UpperCAmelCase_ : Dict = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' UpperCAmelCase_ : Any = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' UpperCAmelCase_ : Tuple = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def _A ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase :str = np.array([re.sub(__lowerCamelCase , """""" , __lowerCamelCase ) for x in predictions] ) UpperCamelCase :Tuple = np.array([re.sub(__lowerCamelCase , """""" , __lowerCamelCase ) for x in references] ) else: UpperCamelCase :Any = np.asarray(__lowerCamelCase ) UpperCamelCase :str = np.asarray(__lowerCamelCase ) if ignore_case: UpperCamelCase :Tuple = np.char.lower(__lowerCamelCase ) UpperCamelCase :Any = np.char.lower(__lowerCamelCase ) if ignore_punctuation: UpperCamelCase :Optional[int] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase :Optional[Any] = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :List[str] = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) if ignore_numbers: UpperCamelCase :Tuple = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase :Dict = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :Tuple = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :int = predictions == references return {"exact_match": np.mean(__lowerCamelCase ) * 100}
38
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" snake_case_ : str = self.task_name.lower() class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[int] = "train" __magic_name__: Optional[int] = "dev" __magic_name__: int = "test" class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: GlueDataTrainingArguments __magic_name__: str __magic_name__: List[InputFeatures] def __init__( self : Tuple , _A : GlueDataTrainingArguments , _A : PreTrainedTokenizerBase , _A : Optional[int] = None , _A : Union[str, Split] = Split.train , _A : Optional[str] = None , ) -> Any: """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _A , ) snake_case_ : Optional[Any] = args snake_case_ : int = glue_processors[args.task_name]() snake_case_ : Dict = glue_output_modes[args.task_name] if isinstance(_A , _A ): try: snake_case_ : int = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file snake_case_ : Dict = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) snake_case_ : Optional[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case_ ,snake_case_ : Union[str, Any] = label_list[2], label_list[1] snake_case_ : Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ : List[Any] = cached_features_file + '.lock' with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: snake_case_ : int = time.time() snake_case_ : Tuple = torch.load(_A ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: snake_case_ : Union[str, Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: snake_case_ : Any = self.processor.get_test_examples(args.data_dir ) else: snake_case_ : Optional[Any] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: snake_case_ : List[Any] = examples[:limit_length] snake_case_ : List[Any] = glue_convert_examples_to_features( _A , _A , max_length=args.max_seq_length , label_list=_A , output_mode=self.output_mode , ) snake_case_ : int = time.time() torch.save(self.features , _A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] , _A : int ) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" return self.label_list
88
import warnings from ..trainer import Trainer from ..utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Any , _A : str=None , **_A : Union[str, Any] ) -> Any: """simple docstring""" warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , _A , ) super().__init__(args=_A , **_A )
88
1
import math import flax.linen as nn import jax.numpy as jnp def lowerCAmelCase_ (lowerCAmelCase__: jnp.ndarray , lowerCAmelCase__: int , lowerCAmelCase__: float = 1 , lowerCAmelCase__: float = 1 , lowerCAmelCase__: float = 1.0e4 , lowerCAmelCase__: bool = False , lowerCAmelCase__: float = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'Embedding dimension {embedding_dim} should be even' UpperCAmelCase_: Tuple = float(embedding_dim // 2 ) UpperCAmelCase_: int = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCAmelCase_: Optional[int] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase__ , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCAmelCase_: Dict = jnp.expand_dims(lowerCAmelCase__ , 1 ) * jnp.expand_dims(lowerCAmelCase__ , 0 ) # scale embeddings UpperCAmelCase_: int = scale * emb if flip_sin_to_cos: UpperCAmelCase_: str = jnp.concatenate([jnp.cos(lowerCAmelCase__ ), jnp.sin(lowerCAmelCase__ )] , axis=1 ) else: UpperCAmelCase_: Union[str, Any] = jnp.concatenate([jnp.sin(lowerCAmelCase__ ), jnp.cos(lowerCAmelCase__ )] , axis=1 ) UpperCAmelCase_: int = jnp.reshape(lowerCAmelCase__ , [jnp.shape(lowerCAmelCase__ )[0], embedding_dim] ) return signal class _a ( nn.Module ): A = 32 A = jnp.floataa @nn.compact def __call__(self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: str = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="""linear_1""" )(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = nn.silu(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="""linear_2""" )(SCREAMING_SNAKE_CASE_ ) return temb class _a ( nn.Module ): A = 32 A = False A = 1 @nn.compact def __call__(self, SCREAMING_SNAKE_CASE_ ) -> str: return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE_, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift )
147
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: int , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: int = hf_hub_url(repo_id=lowerCAmelCase__ , path=lowerCAmelCase__ , revision=lowerCAmelCase__ ) assert url == F'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(lowerCAmelCase__ )}'
147
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , *, __lowercase = 4 , __lowercase = 768 , __lowercase , __lowercase , ) -> str: super().__init__() __UpperCamelCase :Any = nn.Parameter(torch.zeros(__lowercase)) # parameters for additional clip time embeddings __UpperCamelCase :Optional[Any] = nn.Linear(__lowercase , __lowercase) __UpperCamelCase :int = nn.Linear(__lowercase , __lowercase) # parameters for encoder hidden states __UpperCamelCase :Tuple = clip_extra_context_tokens __UpperCamelCase :int = nn.Linear( __lowercase , self.clip_extra_context_tokens * cross_attention_dim) __UpperCamelCase :Union[str, Any] = nn.Linear(__lowercase , __lowercase) __UpperCamelCase :int = nn.LayerNorm(__lowercase) def UpperCamelCase__ ( self , *, __lowercase , __lowercase , __lowercase , __lowercase) -> Tuple: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __UpperCamelCase :str = image_embeddings.shape[0] __UpperCamelCase :int = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) __UpperCamelCase :Any = classifier_free_guidance_embeddings.expand( __lowercase , -1) __UpperCamelCase :List[Any] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __UpperCamelCase :Tuple = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __UpperCamelCase :Dict = self.embedding_proj(__lowercase) __UpperCamelCase :Optional[Any] = self.clip_image_embeddings_project_to_time_embeddings(__lowercase) __UpperCamelCase :Any = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __UpperCamelCase :Tuple = self.clip_extra_context_tokens_proj(__lowercase) __UpperCamelCase :Optional[int] = clip_extra_context_tokens.reshape(__lowercase , -1 , self.clip_extra_context_tokens) __UpperCamelCase :Dict = clip_extra_context_tokens.permute(0 , 2 , 1) __UpperCamelCase :Dict = self.encoder_hidden_states_proj(__lowercase) __UpperCamelCase :Union[str, Any] = self.text_encoder_hidden_states_norm(__lowercase) __UpperCamelCase :str = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
105
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = 0 def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''') self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Dict = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Union[str, Any] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :str = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Union[str, Any] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Optional[Any] = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(__lowercase).to_dict() config_dict.pop('''image_processor_type''') __UpperCamelCase :List[str] = CLIPImageProcessor(**__lowercase) # save in new folder model_config.save_pretrained(__lowercase) config.save_pretrained(__lowercase) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) # make sure private variable is not incorrectly saved __UpperCamelCase :Union[str, Any] = json.loads(config.to_json_string()) self.assertTrue('''_processor_class''' not in dict_as_saved) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with self.assertRaisesRegex( __lowercase , '''clip-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''clip-base''') def UpperCamelCase__ ( self) -> List[Any]: with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :str = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> List[str]: with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCamelCase__ ( self) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''') def UpperCamelCase__ ( self) -> Optional[Any]: try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoImageProcessor.register(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :List[str] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :int = CustomImageProcessor.from_pretrained(__lowercase) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :int = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> List[Any]: class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = True try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # If remote code is not set, the default is to use local __UpperCamelCase :str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(not hasattr(__lowercase , '''is_local''')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
105
1
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __A : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=sys.maxsize ) ->List[Any]: """simple docstring""" snake_case_ = """bilinear""" snake_case_ = max_size snake_case_ = short_edge_length def __call__( self : List[Any] , UpperCAmelCase_ : Dict ) ->int: """simple docstring""" snake_case_ = [] for img in imgs: snake_case_ , snake_case_ = img.shape[:2] # later: provide list and randomly choose index for resize snake_case_ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img snake_case_ = size * 1.0 / min(UpperCAmelCase_ , UpperCAmelCase_ ) if h < w: snake_case_ , snake_case_ = size, scale * w else: snake_case_ , snake_case_ = scale * h, size if max(UpperCAmelCase_ , UpperCAmelCase_ ) > self.max_size: snake_case_ = self.max_size * 1.0 / max(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = newh * scale snake_case_ = neww * scale snake_case_ = int(neww + 0.5 ) snake_case_ = int(newh + 0.5 ) if img.dtype == np.uinta: snake_case_ = Image.fromarray(UpperCAmelCase_ ) snake_case_ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) snake_case_ = np.asarray(UpperCAmelCase_ ) else: snake_case_ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw snake_case_ = nn.functional.interpolate( UpperCAmelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCAmelCase_ ).squeeze(0 ) img_augs.append(UpperCAmelCase_ ) return img_augs class __A : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ) ->Any: """simple docstring""" snake_case_ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) snake_case_ = cfg.INPUT.FORMAT snake_case_ = cfg.SIZE_DIVISIBILITY snake_case_ = cfg.PAD_VALUE snake_case_ = cfg.INPUT.MAX_SIZE_TEST snake_case_ = cfg.MODEL.DEVICE snake_case_ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) snake_case_ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) snake_case_ = lambda UpperCAmelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]: """simple docstring""" snake_case_ = tuple(max(UpperCAmelCase_ ) for s in zip(*[img.shape for img in images] ) ) snake_case_ = [im.shape[-2:] for im in images] snake_case_ = [ nn.functional.pad( UpperCAmelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] return torch.stack(UpperCAmelCase_ ), torch.tensor(UpperCAmelCase_ ) def __call__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=False ) ->Dict: """simple docstring""" with torch.no_grad(): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = [images] if single_image: assert len(UpperCAmelCase_ ) == 1 for i in range(len(UpperCAmelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCAmelCase_ , images.pop(UpperCAmelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCAmelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCAmelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge snake_case_ = torch.tensor([im.shape[:2] for im in images] ) snake_case_ = self.aug(UpperCAmelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic snake_case_ = [self.normalizer(UpperCAmelCase_ ) for x in images] # now pad them to do the following operations snake_case_ , snake_case_ = self.pad(UpperCAmelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad snake_case_ = torch.true_divide(UpperCAmelCase_ , UpperCAmelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: assert torch.isfinite(_SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" snake_case_ , snake_case_ = box_size tensor[:, 0].clamp_(min=0 , max=_SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=_SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=_SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=_SCREAMING_SNAKE_CASE )
347
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __A : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=14 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : Tuple=0.02 , ) ->List[str]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = rotary_dim snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = None snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ) ->Tuple: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowercase: List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = FlaxGPTJModelTester(self ) def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @tooslow def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) snake_case_ = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) snake_case_ = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = False snake_case_ = model.config.eos_token_id snake_case_ = jax.jit(model.generate ) snake_case_ = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @is_pt_flax_cross_test def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) snake_case_ = fx_state with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) snake_case_ = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
347
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A_ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = """van""" def __init__( self , snake_case=224 , snake_case=3 , snake_case=[7, 3, 3, 3] , snake_case=[4, 2, 2, 2] , snake_case=[64, 128, 320, 512] , snake_case=[3, 3, 12, 3] , snake_case=[8, 8, 4, 4] , snake_case="gelu" , snake_case=0.02 , snake_case=1E-6 , snake_case=1E-2 , snake_case=0.0 , snake_case=0.0 , **snake_case , ): super().__init__(**__lowercase ) lowercase = image_size lowercase = num_channels lowercase = patch_sizes lowercase = strides lowercase = hidden_sizes lowercase = depths lowercase = mlp_ratios lowercase = hidden_act lowercase = initializer_range lowercase = layer_norm_eps lowercase = layer_scale_init_value lowercase = drop_path_rate lowercase = dropout_rate
195
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): lowercase__ : List[Any] = True from torch.cuda.amp import autocast lowercase__ : List[Any] = logging.getLogger(__name__) def lowerCamelCase__ ( _A=None , _A=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_A ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCAmelCase_ = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) lowerCAmelCase_ = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) lowerCAmelCase_ = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) lowerCAmelCase_ = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) lowerCAmelCase_ = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) lowerCAmelCase_ = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase_ = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase_ = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None def __call__( self : Optional[int] , __lowercase : List[Dict[str, Union[List[int], torch.Tensor]]] ): """simple docstring""" snake_case_ = [{"input_values": feature["input_values"]} for feature in features] snake_case_ = [{"input_ids": feature["labels"]} for feature in features] snake_case_ = self.processor.pad( __lowercase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) snake_case_ = self.processor.pad( labels=__lowercase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly snake_case_ = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) snake_case_ = labels return batch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def snake_case__ ( self : str , __lowercase : nn.Module , __lowercase : Dict[str, Union[torch.Tensor, Any]] ): """simple docstring""" model.train() snake_case_ = self._prepare_inputs(__lowercase ) if self.use_amp: with autocast(): snake_case_ = self.compute_loss(__lowercase , __lowercase ) else: snake_case_ = self.compute_loss(__lowercase , __lowercase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": snake_case_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case_ = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: snake_case_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__lowercase ).backward() elif self.use_apex: with amp.scale_loss(__lowercase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__lowercase ) else: loss.backward() return loss.detach() def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _A ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: snake_case_ = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) snake_case_ = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer snake_case_ = f"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(_A ): snake_case_ = re.sub(_A , "" , batch["sentence"] ).lower() + " " return batch snake_case_ = train_dataset.map(_A , remove_columns=["sentence"] ) snake_case_ = eval_dataset.map(_A , remove_columns=["sentence"] ) def extract_all_chars(_A ): snake_case_ = " ".join(batch["text"] ) snake_case_ = list(set(_A ) ) return {"vocab": [vocab], "all_text": [all_text]} snake_case_ = train_dataset.map( _A , batched=_A , batch_size=-1 , keep_in_memory=_A , remove_columns=train_dataset.column_names , ) snake_case_ = train_dataset.map( _A , batched=_A , batch_size=-1 , keep_in_memory=_A , remove_columns=eval_dataset.column_names , ) snake_case_ = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) snake_case_ = {v: k for k, v in enumerate(_A )} snake_case_ = vocab_dict[" "] del vocab_dict[" "] snake_case_ = len(_A ) snake_case_ = len(_A ) with open("vocab.json" , "w" ) as vocab_file: json.dump(_A , _A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=_A , return_attention_mask=_A ) snake_case_ = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) snake_case_ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: snake_case_ = min(len(_A ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(_A ) ) if data_args.max_val_samples is not None: snake_case_ = eval_dataset.select(range(data_args.max_val_samples ) ) snake_case_ = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_A ): snake_case_ , snake_case_ = torchaudio.load(batch["path"] ) snake_case_ = resampler(_A ).squeeze().numpy() snake_case_ = 16000 snake_case_ = batch["text"] return batch snake_case_ = train_dataset.map( _A , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) snake_case_ = eval_dataset.map( _A , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_A ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." snake_case_ = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(_A ) return batch snake_case_ = train_dataset.map( _A , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_A , num_proc=data_args.preprocessing_num_workers , ) snake_case_ = eval_dataset.map( _A , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_A , num_proc=data_args.preprocessing_num_workers , ) # Metric snake_case_ = datasets.load_metric("wer" ) def compute_metrics(_A ): snake_case_ = pred.predictions snake_case_ = np.argmax(_A , axis=-1 ) snake_case_ = processor.tokenizer.pad_token_id snake_case_ = processor.batch_decode(_A ) # we do not want to group tokens when computing the metrics snake_case_ = processor.batch_decode(pred.label_ids , group_tokens=_A ) snake_case_ = wer_metric.compute(predictions=_A , references=_A ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator snake_case_ = DataCollatorCTCWithPadding(processor=_A , padding=_A ) # Initialize our Trainer snake_case_ = CTCTrainer( model=_A , data_collator=_A , args=_A , compute_metrics=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case_ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): snake_case_ = model_args.model_name_or_path else: snake_case_ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) snake_case_ = trainer.train(resume_from_checkpoint=_A ) trainer.save_model() snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) snake_case_ = min(_A , len(_A ) ) trainer.log_metrics("train" , _A ) trainer.save_metrics("train" , _A ) trainer.save_state() # Evaluation snake_case_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_val_samples if data_args.max_val_samples is not None else len(_A ) snake_case_ = min(_A , len(_A ) ) trainer.log_metrics("eval" , _A ) trainer.save_metrics("eval" , _A ) return results if __name__ == "__main__": main()
187
0
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' stooge(__lowerCamelCase , 0 , len(__lowerCamelCase ) - 1 ) return arr def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ): '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _UpperCAmelCase , _UpperCAmelCase : Dict =arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _UpperCAmelCase : Tuple =(int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__lowerCamelCase , __lowerCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(__lowerCamelCase , i + t , (__lowerCamelCase) ) # Recursively sort first 2/3 elements stooge(__lowerCamelCase , __lowerCamelCase , (h - t) ) if __name__ == "__main__": lowercase =input('Enter numbers separated by a comma:\n').strip() lowercase =[int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
242
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="glpn" def __init__( self , snake_case=3 , snake_case=4 , snake_case=[2, 2, 2, 2] , snake_case=[8, 4, 2, 1] , snake_case=[3_2, 6_4, 1_6_0, 2_5_6] , snake_case=[7, 3, 3, 3] , snake_case=[4, 2, 2, 2] , snake_case=[1, 2, 5, 8] , snake_case=[4, 4, 4, 4] , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=0.1 , snake_case=1E-6 , snake_case=6_4 , snake_case=1_0 , snake_case=-1 , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__(**snake_case) _UpperCAmelCase : Any =num_channels _UpperCAmelCase : List[str] =num_encoder_blocks _UpperCAmelCase : Optional[Any] =depths _UpperCAmelCase : str =sr_ratios _UpperCAmelCase : Dict =hidden_sizes _UpperCAmelCase : List[str] =patch_sizes _UpperCAmelCase : Any =strides _UpperCAmelCase : List[str] =mlp_ratios _UpperCAmelCase : Dict =num_attention_heads _UpperCAmelCase : List[str] =hidden_act _UpperCAmelCase : int =hidden_dropout_prob _UpperCAmelCase : List[Any] =attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] =initializer_range _UpperCAmelCase : Tuple =drop_path_rate _UpperCAmelCase : str =layer_norm_eps _UpperCAmelCase : Optional[int] =decoder_hidden_size _UpperCAmelCase : List[str] =max_depth _UpperCAmelCase : Dict =head_in_index
242
1