code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCAmelCase : int = False UpperCAmelCase : int = True UpperCAmelCase : List[Any] = False if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') UpperCAmelCase : Any = parser.parse_args() UpperCAmelCase : Any = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } UpperCAmelCase : int = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } UpperCAmelCase : Optional[Any] = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: UpperCAmelCase : Optional[int] = reader.read() UpperCAmelCase : Union[str, Any] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): UpperCAmelCase : Optional[Any] = UNetaDModel(**config) else: UpperCAmelCase : Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel UpperCAmelCase : int = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCAmelCase : Dict = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCAmelCase : Dict = config[key] del config[key] UpperCAmelCase : List[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] UpperCAmelCase : List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: UpperCAmelCase : List[Any] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) UpperCAmelCase : Tuple = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue UpperCAmelCase : Any = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: UpperCAmelCase : Optional[Any] = param_value UpperCAmelCase : Dict = True if not has_changed: UpperCAmelCase : Optional[int] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
115
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Tuple = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } UpperCAmelCase : str = '▁' class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = BarthezTokenizer def __init__( self : Optional[int] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Union[str, Any]="<s>" , UpperCamelCase : Any="</s>" , UpperCamelCase : Tuple="</s>" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : int="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : int="<mask>" , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Tuple = False if not self.vocab_file else True def lowerCamelCase__ ( self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
115
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCamelCase_ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } lowerCamelCase_ = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' _A = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _A = bs[:] _A = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 _A = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any]="replace" , __UpperCAmelCase : int="<s>" , __UpperCAmelCase : Dict="</s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : List[str]="<unk>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Optional[int]="<mask>" , __UpperCAmelCase : Optional[Any]=False , **__UpperCAmelCase : List[str] , ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: _A = json.load(__UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} _A = errors # how to handle errors in decoding _A = bytes_to_unicode() _A = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: _A = merges_handle.read().split("\n" )[1:-1] _A = [tuple(merge.split() ) for merge in bpe_merges] _A = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _A = {} _A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _A = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : int ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int ): '''simple docstring''' if token in self.cache: return self.cache[token] _A = tuple(__UpperCAmelCase ) _A = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: _A = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__UpperCAmelCase ): try: _A = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__UpperCAmelCase ) _A = new_word if len(__UpperCAmelCase ) == 1: break else: _A = get_pairs(__UpperCAmelCase ) _A = " ".join(__UpperCAmelCase ) _A = word return word def lowerCAmelCase ( self : str , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = [] for token in re.findall(self.pat , __UpperCAmelCase ): _A = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ): '''simple docstring''' return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[int] ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = "".join(__UpperCAmelCase ) _A = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) _A = 0 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _A = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any]=False , **__UpperCAmelCase : str ): '''simple docstring''' _A = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): _A = " " + text return (text, kwargs)
357
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''T5Config''' def __lowercase ( __lowercase , __lowercase , __lowercase ) -> jnp.ndarray: '''simple docstring''' _A = jnp.zeros_like(__lowercase ) _A = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _A = shifted_input_ids.at[:, 0].set(__lowercase ) _A = jnp.where(shifted_input_ids == -100 , __lowercase , __lowercase ) return shifted_input_ids class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig
174
0
'''simple docstring''' def a__ ( a__ ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
267
'''simple docstring''' from __future__ import annotations def a__ ( a__ , a__ , a__ ): """simple docstring""" if len(a__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(a__ ) or left < -len(a__ ) or right >= len(a__ ) or right < -len(a__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __SCREAMING_SNAKE_CASE = (left + right) >> 1 # the middle __SCREAMING_SNAKE_CASE = find_max(a__ , a__ , a__ ) # find max in range[left, mid] __SCREAMING_SNAKE_CASE = find_max(a__ , mid + 1 , a__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
267
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Dict = { "allenai/led-base-16384": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowerCamelCase = bs[:] lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 lowerCamelCase = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' lowerCamelCase = set() lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase = char return pairs class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> Tuple: '''simple docstring''' lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase = json.load(A ) lowerCamelCase = {v: k for k, v in self.encoder.items()} lowerCamelCase = errors # how to handle errors in decoding lowerCamelCase = bytes_to_unicode() lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1] lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase = {} lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __A ( self ) -> Tuple: '''simple docstring''' return len(self.encoder ) def __A ( self ) -> Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , A ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase = tuple(A ) lowerCamelCase = get_pairs(A ) if not pairs: return token while True: lowerCamelCase = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase , lowerCamelCase = bigram lowerCamelCase = [] lowerCamelCase = 0 while i < len(A ): try: lowerCamelCase = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase = tuple(A ) lowerCamelCase = new_word if len(A ) == 1: break else: lowerCamelCase = get_pairs(A ) lowerCamelCase = """ """.join(A ) lowerCamelCase = word return word def __A ( self , A ) -> List[str]: '''simple docstring''' lowerCamelCase = [] for token in re.findall(self.pat , A ): lowerCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def __A ( self , A ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def __A ( self , A ) -> Optional[int]: '''simple docstring''' return self.decoder.get(A ) def __A ( self , A ) -> Tuple: '''simple docstring''' lowerCamelCase = """""".join(A ) lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) lowerCamelCase = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) lowerCamelCase = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase = [self.cls_token_id] lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , A , A = None , A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , A , A=False , **A ) -> List[str]: '''simple docstring''' lowerCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): lowerCamelCase = """ """ + text return (text, kwargs) def __A ( self , A , A = None , A = PaddingStrategy.DO_NOT_PAD , A = None , A = None , ) -> dict: '''simple docstring''' lowerCamelCase = super()._pad( encoded_inputs=A , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: lowerCamelCase = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
66
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Any = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Tuple = "switch_transformers" UpperCamelCase : Tuple = ["past_key_values"] UpperCamelCase : Any = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , A=3_21_28 , A=7_68 , A=64 , A=20_48 , A=64 , A=12 , A=3 , A=12 , A=3 , A=12 , A=8 , A=False , A=0.01 , A="float32" , A=False , A=32 , A=1_28 , A=0.1 , A=1e-6 , A=0.001 , A=0.001 , A=1.0 , A="relu" , A=True , A=False , A=True , A=0 , A=1 , **A , ) -> str: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = d_model lowerCamelCase = d_kv lowerCamelCase = d_ff lowerCamelCase = num_sparse_encoder_layers lowerCamelCase = num_layers lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCamelCase = self.num_layers // self.num_sparse_encoder_layers else: lowerCamelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCamelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCamelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCamelCase = num_heads lowerCamelCase = num_experts lowerCamelCase = expert_capacity lowerCamelCase = router_bias lowerCamelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) lowerCamelCase = router_dtype lowerCamelCase = router_ignore_padding_tokens lowerCamelCase = relative_attention_num_buckets lowerCamelCase = relative_attention_max_distance lowerCamelCase = dropout_rate lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_factor lowerCamelCase = feed_forward_proj lowerCamelCase = use_cache lowerCamelCase = add_router_probs lowerCamelCase = router_z_loss_coef lowerCamelCase = router_aux_loss_coef lowerCamelCase = self.feed_forward_proj.split("""-""" ) lowerCamelCase = act_info[-1] lowerCamelCase = act_info[0] == """gated""" if len(A ) > 1 and act_info[0] != "gated" or len(A ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase = """gelu_new""" super().__init__( pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , **A , )
66
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE (metaclass=lowerCamelCase_ ): """simple docstring""" __a =['torch', 'scipy'] def __init__( self : Any , *__a : List[Any] , **__a : Any ): requires_backends(self , ["torch", "scipy"] ) @classmethod def UpperCamelCase__ ( cls : Any , *__a : Optional[int] , **__a : Optional[int] ): requires_backends(cls , ["torch", "scipy"] ) @classmethod def UpperCamelCase__ ( cls : List[Any] , *__a : Tuple , **__a : Any ): requires_backends(cls , ["torch", "scipy"] )
63
def __lowercase ( __lowerCAmelCase : list[int] ): a__ = [] if len(__lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(__lowerCAmelCase ) ): a__ = nums.pop(0 ) a__ = permute(__lowerCAmelCase ) for perm in permutations: perm.append(__lowerCAmelCase ) result.extend(__lowerCAmelCase ) nums.append(__lowerCAmelCase ) return result def __lowercase ( __lowerCAmelCase : Optional[int] ): def backtrack(__lowerCAmelCase : Any ): if start == len(__lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): a__ , a__ = nums[i], nums[start] backtrack(start + 1 ) a__ , a__ = nums[i], nums[start] # backtrack a__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case : Optional[Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
240
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _lowerCamelCase : Union[str, Any] = object() # For specifying empty leaf dict `{}` _lowerCamelCase : Optional[Any] = object() def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - len(SCREAMING_SNAKE_CASE__ ) + 1 ): SCREAMING_SNAKE_CASE__ : List[str] = [x.match(SCREAMING_SNAKE_CASE__ ) for x, y in zip(SCREAMING_SNAKE_CASE__ , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE__ ): return True return False def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: '''simple docstring''' def replace(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return replacement return val return replace def _a ( ) -> Dict: '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE__ )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = _get_partition_rules() SCREAMING_SNAKE_CASE__ : List[str] = _replacement_rules(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE__ )} SCREAMING_SNAKE_CASE__ : Optional[Any] = {k: replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE__ ) )
356
def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("String lengths must match!" ) SCREAMING_SNAKE_CASE__ : Dict = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
191
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : str = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __snake_case ( UpperCamelCase_ ): _a = '''big_bird''' def __init__( self : List[Any] , A_ : Optional[Any]=5_0_3_5_8 , A_ : List[str]=7_6_8 , A_ : Any=1_2 , A_ : List[Any]=1_2 , A_ : int=3_0_7_2 , A_ : int="gelu_new" , A_ : int=0.1 , A_ : Optional[int]=0.1 , A_ : str=4_0_9_6 , A_ : Optional[int]=2 , A_ : str=0.02 , A_ : Union[str, Any]=1e-12 , A_ : List[str]=True , A_ : Tuple=0 , A_ : Optional[Any]=1 , A_ : Tuple=2 , A_ : Union[str, Any]=6_6 , A_ : Any="block_sparse" , A_ : int=True , A_ : Optional[Any]=False , A_ : List[Any]=6_4 , A_ : Any=3 , A_ : Optional[Any]=None , **A_ : Tuple , ): super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Any = use_cache lowerCAmelCase_ : Optional[int] = rescale_embeddings lowerCAmelCase_ : List[Any] = attention_type lowerCAmelCase_ : Dict = use_bias lowerCAmelCase_ : Tuple = block_size lowerCAmelCase_ : str = num_random_blocks lowerCAmelCase_ : Dict = classifier_dropout class __snake_case ( UpperCamelCase_ ): @property def UpperCAmelCase__ ( self : Dict): if self.task == "multiple-choice": lowerCAmelCase_ : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
103
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __snake_case : def __init__( self : Tuple , A_ : Any , A_ : Tuple=1_3 , A_ : str=7 , A_ : Any=True , A_ : Union[str, Any]=True , A_ : int=False , A_ : int=True , A_ : List[Any]=9_9 , A_ : Dict=6_4 , A_ : int=5 , A_ : List[Any]=4 , A_ : Optional[Any]=6_4 , A_ : str="gelu" , A_ : Union[str, Any]=0.1 , A_ : List[Any]=0.1 , A_ : Any=5_1_2 , A_ : Union[str, Any]=1_6 , A_ : str=2 , A_ : Any=0.02 , A_ : str=3 , A_ : Optional[int]=4 , A_ : int=None , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : List[Any] = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : Union[str, Any] = use_input_mask lowerCAmelCase_ : Tuple = use_token_type_ids lowerCAmelCase_ : List[Any] = use_labels lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : str = num_labels lowerCAmelCase_ : List[str] = num_choices lowerCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self : Dict): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''') def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase_ : int = None if self.use_input_mask: lowerCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase_ : Any = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Dict , A_ : Dict , A_ : int , A_ : Tuple , A_ : List[str] , A_ : str , A_ : List[Any]): lowerCAmelCase_ : int = MPNetModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Any = model(A_ , A_) lowerCAmelCase_ : Union[str, Any] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self : List[str] , A_ : Union[str, Any] , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any): lowerCAmelCase_ : Any = MPNetForQuestionAnswering(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : int = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Tuple , A_ : List[str] , A_ : Optional[Any] , A_ : Dict , A_ : Union[str, Any] , A_ : Tuple): lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : Any = MPNetForSequenceClassification(A_) model.to(A_) model.eval() lowerCAmelCase_ : Dict = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple , A_ : Dict , A_ : Tuple , A_ : Dict , A_ : List[str] , A_ : List[Any]): lowerCAmelCase_ : int = self.num_choices lowerCAmelCase_ : List[str] = MPNetForMultipleChoice(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : int = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : Optional[int] = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Any , A_ : int , A_ : Any , A_ : List[Any] , A_ : Any , A_ : Union[str, Any]): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Tuple = MPNetForTokenClassification(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[int] = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) : Union[str, Any] = config_and_inputs lowerCAmelCase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _a = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = True def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = MPNetModelTester(self) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=A_ , hidden_size=3_7) def UpperCAmelCase__ ( self : Any): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*A_) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*A_) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*A_) @require_torch class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = MPNetModel.from_pretrained('''microsoft/mpnet-base''') lowerCAmelCase_ : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) lowerCAmelCase_ : Union[str, Any] = model(A_)[0] lowerCAmelCase_ : Optional[int] = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , A_) lowerCAmelCase_ : Tuple = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]]) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4))
103
1
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: return "".join(sorted(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[str]: return word_by_signature[signature(__UpperCAmelCase )] __A = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __A = sorted({word.strip().lower() for word in data.splitlines()}) __A = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __A = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__: List[Any] = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE( __A ): """simple docstring""" lowerCamelCase__ = 'levit' def __init__( self : Tuple , __snake_case : Any=224 , __snake_case : Union[str, Any]=3 , __snake_case : Optional[int]=3 , __snake_case : Tuple=2 , __snake_case : List[str]=1 , __snake_case : Dict=16 , __snake_case : Any=[128, 256, 384] , __snake_case : Union[str, Any]=[4, 8, 12] , __snake_case : Optional[int]=[4, 4, 4] , __snake_case : Optional[Any]=[16, 16, 16] , __snake_case : Any=0 , __snake_case : Tuple=[2, 2, 2] , __snake_case : Any=[2, 2, 2] , __snake_case : Union[str, Any]=0.02 , **__snake_case : Union[str, Any] , ) -> Any: super().__init__(**__lowercase ) UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : str = num_channels UpperCAmelCase : Union[str, Any] = kernel_size UpperCAmelCase : int = stride UpperCAmelCase : List[str] = padding UpperCAmelCase : Dict = hidden_sizes UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Tuple = depths UpperCAmelCase : Tuple = key_dim UpperCAmelCase : List[Any] = drop_path_rate UpperCAmelCase : Tuple = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : List[str] = mlp_ratio UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : List[Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE( __A ): """simple docstring""" lowerCamelCase__ = version.parse("""1.11""" ) @property def A ( self : int ) -> Union[str, Any]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A ( self : Any ) -> Any: return 1E-4
23
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _UpperCAmelCase : Union[str, Any] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _UpperCAmelCase : int = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ _UpperCAmelCase : Any = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , ): __lowerCAmelCase = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowerCAmelCase = [[refs[i] for refs in references] for i in range(__lowercase )] __lowerCAmelCase = TER( normalized=__lowercase , no_punct=__lowercase , asian_support=__lowercase , case_sensitive=__lowercase , ) __lowerCAmelCase = sb_ter.corpus_score(__lowercase , __lowercase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
174
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __lowerCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ (__a : Union[tf.Tensor, np.ndarray] ): """simple docstring""" if isinstance(_lowercase , np.ndarray ): return list(tensor.shape ) _a : Any = tf.shape(_lowercase ) if tensor.shape == tf.TensorShape(_lowercase ): return dynamic _a : Tuple = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_lowercase )] def UpperCAmelCase_ (__a : tf.Tensor , __a : Optional[int] = None , __a : Optional[str] = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowercase , name=_lowercase ) def UpperCAmelCase_ (__a : List[Any] , __a : Optional[int] , __a : Tuple , __a : Any=1e-5 , __a : Union[str, Any]=-1 ): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowercase , _lowercase ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _a : Union[str, Any] = tf.nn.moments(_lowercase , axes=[axis] , keepdims=_lowercase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _a : str = [1] * inputs.shape.rank _a : Tuple = shape_list(_lowercase )[axis] _a : Optional[int] = tf.reshape(_lowercase , _lowercase ) _a : Dict = tf.reshape(_lowercase , _lowercase ) # Compute layer normalization using the batch_normalization # function. _a : Optional[int] = tf.nn.batch_normalization( _lowercase , _lowercase , _lowercase , offset=_lowercase , scale=_lowercase , variance_epsilon=_lowercase , ) return outputs def UpperCAmelCase_ (__a : Any , __a : int=0 , __a : Optional[Any]=-1 ): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _a : int = tf.shape(_lowercase ) _a : str = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _a : Optional[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_lowercase , _lowercase ) def UpperCAmelCase_ (__a : tf.Tensor ): """simple docstring""" if not isinstance(_lowercase , tf.Tensor ): _a : Union[str, Any] = tf.convert_to_tensor(_lowercase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _a : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _a : List[str] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _a : Union[str, Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase_ (__a : tf.Tensor , __a : int , __a : str = "input_ids" ): """simple docstring""" tf.debugging.assert_less( _lowercase , tf.cast(_lowercase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(_lowercase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def UpperCAmelCase_ (__a : int , __a : Dict , __a : str ): """simple docstring""" _a : int = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _a : Any = [x for x in data if len(_lowercase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) _a : Any = np.asarray(_lowercase ) _a : List[Any] = 1 _a : Optional[int] = np.array_split(_lowercase , _lowercase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _a : int = np.array_split(_lowercase , _lowercase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_lowercase ): _a : Dict = chunk_data else: _a : Union[str, Any] = data def UpperCAmelCase_ (__a : List[Any] , __a : Optional[int] ): """simple docstring""" if name in group.attrs: _a : int = [n.decode('utf8' ) if hasattr(_lowercase , 'decode' ) else n for n in group.attrs[name]] else: _a : List[str] = [] _a : Dict = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(_lowercase , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" def _expand_single_ad_tensor(__a : Optional[Any] ): if isinstance(_lowercase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_lowercase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _lowercase )
362
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def A_ ( _lowercase ): '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case_ :Union[str, Any] = key.replace("""heads.cmd.mim_head.cls.predictions""", """mmm_image_head""" ) snake_case_ :str = key.replace("""heads.cmd.mlm_head.cls.predictions""", """mmm_text_head""" ) snake_case_ :Optional[Any] = key.replace("""heads.cmd.itm_head.cls""", """itm_head""" ) snake_case_ :Tuple = key.replace("""heads.cmd.itm_head.pooler""", """itm_head.pooler""" ) snake_case_ :int = key.replace("""heads.cmd.clip_head.logit_scale""", """flava.logit_scale""" ) snake_case_ :str = key.replace("""heads.fairseq_mlm.cls.predictions""", """mlm_head""" ) snake_case_ :Tuple = key.replace("""heads.imagenet.mim_head.cls.predictions""", """mim_head""" ) snake_case_ :Optional[int] = key.replace("""mm_text_projection""", """flava.text_to_mm_projection""" ) snake_case_ :List[str] = key.replace("""mm_image_projection""", """flava.image_to_mm_projection""" ) snake_case_ :str = key.replace("""image_encoder.module""", """flava.image_model""" ) snake_case_ :List[Any] = key.replace("""text_encoder.module""", """flava.text_model""" ) snake_case_ :str = key.replace("""mm_encoder.module.encoder.cls_token""", """flava.multimodal_model.cls_token""" ) snake_case_ :Any = key.replace("""mm_encoder.module""", """flava.multimodal_model""" ) snake_case_ :List[str] = key.replace("""text_projection""", """flava.text_projection""" ) snake_case_ :List[str] = key.replace("""image_projection""", """flava.image_projection""" ) snake_case_ :str = value.float() for key, value in codebook_state_dict.items(): snake_case_ :Optional[int] = value return upgrade @torch.no_grad() def A_ ( _lowercase, _lowercase, _lowercase, _lowercase=None ): '''simple docstring''' if config_path is not None: snake_case_ :int = FlavaConfig.from_pretrained(_lowercase ) else: snake_case_ :int = FlavaConfig() snake_case_ :Optional[Any] = FlavaForPreTraining(_lowercase ).eval() snake_case_ :Any = convert_dalle_checkpoint(_lowercase, _lowercase, save_checkpoint=_lowercase ) if os.path.exists(_lowercase ): snake_case_ :List[str] = torch.load(_lowercase, map_location="""cpu""" ) else: snake_case_ :Optional[int] = torch.hub.load_state_dict_from_url(_lowercase, map_location="""cpu""" ) snake_case_ :List[Any] = upgrade_state_dict(_lowercase, _lowercase ) hf_model.load_state_dict(_lowercase ) snake_case_ :Optional[int] = hf_model.state_dict() snake_case_ :int = count_parameters(_lowercase ) snake_case_ :Optional[Any] = count_parameters(_lowercase ) + count_parameters(_lowercase ) assert torch.allclose(_lowercase, _lowercase, atol=1e-3 ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __a = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
66
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __a = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A_ ( _lowercase ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A_ ( _lowercase, _lowercase ): '''simple docstring''' if args.student_type == "roberta": snake_case_ :Tuple = False elif args.student_type == "gpt2": snake_case_ :Union[str, Any] = False def A_ ( _lowercase, _lowercase ): '''simple docstring''' if args.student_type == "roberta": snake_case_ :List[str] = False def A_ ( ): '''simple docstring''' snake_case_ :Union[str, Any] = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""", action="""store_true""", help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""", type=_lowercase, required=_lowercase, help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""", type=_lowercase, required=_lowercase, help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""", ) parser.add_argument( """--student_type""", type=_lowercase, choices=["""distilbert""", """roberta""", """gpt2"""], required=_lowercase, help="""The student type (DistilBERT, RoBERTa).""", ) parser.add_argument("""--student_config""", type=_lowercase, required=_lowercase, help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""", default=_lowercase, type=_lowercase, help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""", choices=["""bert""", """roberta""", """gpt2"""], required=_lowercase, help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""", type=_lowercase, required=_lowercase, help="""The teacher model.""" ) parser.add_argument("""--temperature""", default=2.0, type=_lowercase, help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""", default=0.5, type=_lowercase, help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""", default=0.0, type=_lowercase, help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""", ) parser.add_argument("""--alpha_clm""", default=0.5, type=_lowercase, help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""", default=0.0, type=_lowercase, help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""", default=0.0, type=_lowercase, help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""", action="""store_true""", help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""", default=0.15, type=_lowercase, help="""Proportion of tokens for which we need to make a prediction.""", ) parser.add_argument("""--word_mask""", default=0.8, type=_lowercase, help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""", default=0.1, type=_lowercase, help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""", default=0.1, type=_lowercase, help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""", default=0.7, type=_lowercase, help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""", ) parser.add_argument("""--token_counts""", type=_lowercase, help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""", action="""store_true""", help="""If true, compute the distillation loss only the [MLM] prediction distribution.""", ) parser.add_argument( """--freeze_pos_embs""", action="""store_true""", help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""", ) parser.add_argument( """--freeze_token_type_embds""", action="""store_true""", help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""", ) parser.add_argument("""--n_epoch""", type=_lowercase, default=3, help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""", type=_lowercase, default=5, help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""", action="""store_false""", help="""If true, group sequences that have similar length into the same batch. Default is true.""", ) parser.add_argument( """--gradient_accumulation_steps""", type=_lowercase, default=50, help="""Gradient accumulation for larger training batches.""", ) parser.add_argument("""--warmup_prop""", default=0.05, type=_lowercase, help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""", default=0.0, type=_lowercase, help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""", default=5e-4, type=_lowercase, help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""", default=1e-6, type=_lowercase, help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""", default=5.0, type=_lowercase, help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""", default=0.02, type=_lowercase, help="""Random initialization range.""" ) parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""", ) parser.add_argument( """--fp16_opt_level""", type=_lowercase, default="""O1""", help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ), ) parser.add_argument("""--n_gpu""", type=_lowercase, default=1, help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""", type=_lowercase, default=-1, help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""", type=_lowercase, default=56, help="""Random seed""" ) parser.add_argument("""--log_interval""", type=_lowercase, default=500, help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""", type=_lowercase, default=4000, help="""Checkpoint interval.""" ) snake_case_ :Tuple = parser.parse_args() sanity_checks(_lowercase ) # ARGS # init_gpu_params(_lowercase ) set_seed(_lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path, """parameters.json""" ), """w""" ) as f: json.dump(vars(_lowercase ), _lowercase, indent=4 ) git_log(args.dump_path ) snake_case_, snake_case_, snake_case_ :Any = MODEL_CLASSES[args.student_type] snake_case_, snake_case_, snake_case_ :int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # snake_case_ :Any = teacher_tokenizer_class.from_pretrained(args.teacher_name ) snake_case_ :Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): snake_case_ :Union[str, Any] = tokenizer.all_special_tokens.index(_lowercase ) snake_case_ :Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) snake_case_ :str = special_tok_ids snake_case_ :Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file, """rb""" ) as fp: snake_case_ :str = pickle.load(_lowercase ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts, """rb""" ) as fp: snake_case_ :Optional[Any] = pickle.load(_lowercase ) snake_case_ :Tuple = np.maximum(_lowercase, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): snake_case_ :Optional[int] = 0.0 # do not predict special tokens snake_case_ :int = torch.from_numpy(_lowercase ) else: snake_case_ :List[str] = None snake_case_ :Optional[int] = LmSeqsDataset(params=_lowercase, data=_lowercase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) snake_case_ :List[Any] = student_config_class.from_pretrained(args.student_config ) snake_case_ :Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) snake_case_ :List[str] = student_model_class.from_pretrained(args.student_pretrained_weights, config=_lowercase ) else: snake_case_ :Optional[int] = student_model_class(_lowercase ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # snake_case_ :Dict = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=_lowercase ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_lowercase, _lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_lowercase, _lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() snake_case_ :Optional[int] = Distiller( params=_lowercase, dataset=_lowercase, token_probs=_lowercase, student=_lowercase, teacher=_lowercase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
66
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
1
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _SCREAMING_SNAKE_CASE ( ) -> List[str]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" A__ = [1, 2, 3] with pytest.raises(a_ ): with parallel_backend("unsupported backend" ): map_nested(a_ , a_ , num_proc=2 ) with pytest.raises(a_ ): with parallel_backend("unsupported backend" ): map_nested(a_ , a_ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = [1, 2] A__ = {'''a''': 1, '''b''': 2} A__ = {'''a''': [1, 2], '''b''': [3, 4]} A__ = {'''a''': {'''1''': 1}, '''b''': 2} A__ = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} A__ = [2, 3] A__ = {'''a''': 2, '''b''': 3} A__ = {'''a''': [2, 3], '''b''': [4, 5]} A__ = {'''a''': {'''1''': 2}, '''b''': 3} A__ = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend("spark" ): assert map_nested(a_ , a_ , num_proc=a_ ) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_ ) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_ ) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_ ) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_ ) == expected_map_nested_sa
247
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None class _SCREAMING_SNAKE_CASE( A , A ): SCREAMING_SNAKE_CASE_ : Any = 2 @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = 1_00 ,SCREAMING_SNAKE_CASE__ = 1.0_0_7 ,SCREAMING_SNAKE_CASE__ = 80 ,SCREAMING_SNAKE_CASE__ = 0.0_5 ,SCREAMING_SNAKE_CASE__ = 50 ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sigma_max # setable values __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :np.IntTensor = None __SCREAMING_SNAKE_CASE :torch.FloatTensor = None # sigma(t_i) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> torch.FloatTensor: """simple docstring""" return sample def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = num_inference_steps __SCREAMING_SNAKE_CASE :int = np.arange(0 ,self.num_inference_steps )[::-1].copy() __SCREAMING_SNAKE_CASE :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ,dtype=torch.floataa ,device=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE :List[str] = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE :Optional[int] = self.config.s_noise * randn_tensor(sample.shape ,generator=SCREAMING_SNAKE_CASE__ ).to(sample.device ) __SCREAMING_SNAKE_CASE :List[str] = sigma + gamma * sigma __SCREAMING_SNAKE_CASE :str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE :Tuple = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE :List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE :List[Any] = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE :Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError()
191
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def __UpperCamelCase ( *A_ , **A_ ) -> Any: """simple docstring""" pass def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): __lowercase : Any = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = DepthEstimationPipeline(model=A_ , image_processor=A_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCamelCase ( self , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , A_ ) import datasets UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) UpperCamelCase = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , A_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @slow @require_torch def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 'Intel/dpt-large' UpperCamelCase = pipeline('depth-estimation' , model=A_ ) UpperCamelCase = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCamelCase = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
110
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ = 768 , ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) UpperCamelCase = nn.Parameter(torch.ones(1 , A_ ) ) def __UpperCamelCase ( self , A_ = None , A_ = None , ) -> Any: """simple docstring""" UpperCamelCase = nn.Parameter(self.mean.to(A_ ).to(A_ ) ) UpperCamelCase = nn.Parameter(self.std.to(A_ ).to(A_ ) ) return self def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds * self.std) + self.mean return embeds
110
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : def __init__( self: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: List[str]=13 , UpperCamelCase__: Optional[Any]=7 , UpperCamelCase__: Optional[int]=True , UpperCamelCase__: List[str]=True , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: str=True , UpperCamelCase__: Dict=99 , UpperCamelCase__: Optional[Any]=32 , UpperCamelCase__: Dict=5 , UpperCamelCase__: List[Any]=4 , UpperCamelCase__: Optional[int]=37 , UpperCamelCase__: str="gelu" , UpperCamelCase__: List[Any]=0.1 , UpperCamelCase__: Optional[Any]=0.1 , UpperCamelCase__: Optional[Any]=512 , UpperCamelCase__: Optional[Any]=16 , UpperCamelCase__: str=2 , UpperCamelCase__: Any=0.02 , UpperCamelCase__: Tuple=3 , UpperCamelCase__: Optional[Any]=4 , UpperCamelCase__: Union[str, Any]=None , ): lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : Any = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Tuple = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : int = vocab_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : List[Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : List[Any] = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : str = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[str] = num_choices lowerCamelCase__ : Tuple = scope def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : List[Any] = None if self.use_input_mask: lowerCamelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : str = None if self.use_token_type_ids: lowerCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: str ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Any , UpperCamelCase__: Tuple , UpperCamelCase__: List[str] , UpperCamelCase__: int ): lowerCamelCase__ : Union[str, Any] = NystromformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase__ : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Any = NystromformerForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Optional[Any] = NystromformerForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : int = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : Tuple = NystromformerForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : int = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] ): lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Dict = NystromformerForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : int = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Dict , UpperCamelCase__: Tuple , UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int ): lowerCamelCase__ : Optional[Any] = self.num_choices lowerCamelCase__ : Any = NystromformerForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Optional[Any] = config_and_inputs lowerCamelCase__ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): a = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) a = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) a = False a = False def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Any = NystromformerModelTester(self ) lowerCamelCase__ : Dict = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: List[str] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Any = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: List[str] ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = NystromformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : List[Any] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) lowerCamelCase__ : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ )[0] lowerCamelCase__ : int = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase__ : Any = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[Any] = """the [MASK] of Belgium is Brussels""" lowerCamelCase__ : str = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) lowerCamelCase__ : List[str] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) lowerCamelCase__ : str = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowerCamelCase__ : List[str] = model(encoding.input_ids ).logits lowerCamelCase__ : Optional[Any] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(UpperCamelCase__ ) , """capital""" )
41
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Tuple = """cvt""" def __init__(self : int , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=[7, 3, 3] , UpperCamelCase : str=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Dict=[64, 192, 384] , UpperCamelCase : Dict=[1, 3, 6] , UpperCamelCase : Dict=[1, 2, 10] , UpperCamelCase : Any=[4.0, 4.0, 4.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , UpperCamelCase : int=[0.0, 0.0, 0.1] , UpperCamelCase : Any=[True, True, True] , UpperCamelCase : int=[False, False, True] , UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Optional[int]=[3, 3, 3] , UpperCamelCase : Tuple=[1, 1, 1] , UpperCamelCase : Any=[2, 2, 2] , UpperCamelCase : Dict=[1, 1, 1] , UpperCamelCase : List[str]=[1, 1, 1] , UpperCamelCase : str=0.02 , UpperCamelCase : int=1E-12 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
2
0
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( a__ , unittest.TestCase ): """simple docstring""" A : Tuple = "ssube/stable-diffusion-x4-upscaler-onnx" def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple=0): """simple docstring""" a : Tuple = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(SCREAMING_SNAKE_CASE_)) a : str = torch.manual_seed(SCREAMING_SNAKE_CASE_) a : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) a : Union[str, Any] = self.get_dummy_inputs() a : Optional[int] = pipe(**SCREAMING_SNAKE_CASE_).images a : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) a : Optional[int] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE_) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) a : List[str] = self.get_dummy_inputs() a : int = pipe(**SCREAMING_SNAKE_CASE_).images a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a : Tuple = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) a : Optional[int] = self.get_dummy_inputs() a : Dict = pipe(**SCREAMING_SNAKE_CASE_).images a : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a : List[Any] = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a : str = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) a : Optional[int] = self.get_dummy_inputs() a : List[str] = pipe(**SCREAMING_SNAKE_CASE_).images a : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a : Optional[int] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) a : int = self.get_dummy_inputs() a : List[str] = pipe(**SCREAMING_SNAKE_CASE_).images a : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a : Optional[int] = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = ort.SessionOptions() a : str = False return options def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') a : Any = init_image.resize((1_2_8, 1_2_8)) # using the PNDM scheduler by default a : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) a : Any = 'A fantasy landscape, trending on artstation' a : int = torch.manual_seed(0) a : Optional[int] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) a : Union[str, Any] = output.images a : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a : str = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') a : List[str] = init_image.resize((1_2_8, 1_2_8)) a : List[Any] = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler') a : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) a : Optional[int] = 'A fantasy landscape, trending on artstation' a : List[Any] = torch.manual_seed(0) a : Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) a : Dict = output.images a : Dict = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a : Optional[int] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
365
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = ['''pixel_values'''] def __init__( self : Dict , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : float = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[int, float] = 1 / 255 , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , **__UpperCAmelCase : Any , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = size if size is not None else {"shortest_edge": 384} _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = do_resize _A = size # Default value set here for backwards compatibility where the value in config is None _A = crop_pct if crop_pct is not None else 224 / 256 _A = resample _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : float , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Optional[Any] , ): '''simple docstring''' _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _A = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _A = int(shortest_edge / crop_pct ) _A = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : str , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[int, float] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : int , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : float = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : float = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = do_resize if do_resize is not None else self.do_resize _A = crop_pct if crop_pct is not None else self.crop_pct _A = resample if resample is not None else self.resample _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = size if size is not None else self.size _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _A = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _A = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: _A = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _A = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _A = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _A = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
79
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
'''simple docstring''' def a ( __a , __a ) -> Optional[Any]: '''simple docstring''' _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(__a , __a ) ) ) def a ( __a ) -> List[Any]: '''simple docstring''' if point: if isinstance(__a , __a ): for item in point: if not isinstance(__a , (int, float) ): UpperCamelCase__ :int = ( 'Expected a list of numbers as input, found ' f'''{type(__a ).__name__}''' ) raise TypeError(__a ) else: UpperCamelCase__ :Optional[int] = f'''Expected a list of numbers as input, found {type(__a ).__name__}''' raise TypeError(__a ) else: raise ValueError('''Missing an input''' ) def a ( __a , __a ) -> Dict: '''simple docstring''' _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(__a , __a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' from math import ceil def a ( __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :str = list(range(0 , __a ) ) UpperCamelCase__ :Optional[int] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase__ :Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(__a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__a ) # Missing blocks UpperCamelCase__ :List[str] = [i for i in blocks if i not in device_map_blocks] UpperCamelCase__ :Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(__a ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(__a ) ) def a ( __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Optional[Any] = list(range(__a ) ) UpperCamelCase__ :Any = int(ceil(n_layers / len(__a ) ) ) UpperCamelCase__ :List[Any] = [layers[i : i + n_blocks] for i in range(0 , __a , __a )] return dict(zip(__a , __a ) )
219
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
1
SCREAMING_SNAKE_CASE : Optional[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def UpperCamelCase ( _a ) -> int: '''simple docstring''' lowercase_ :Dict = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution SCREAMING_SNAKE_CASE : list[bool | None] = [None] * 10_000_000 SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = False def UpperCamelCase ( _a ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase_ :List[Any] = chain(next_number(_a ) ) lowercase_ :List[Any] = number_chain while number < 1_0_0_0_0_0_0_0: lowercase_ :Optional[Any] = number_chain number *= 1_0 return number_chain def UpperCamelCase ( _a = 1_0_0_0_0_0_0_0 ) -> int: '''simple docstring''' for i in range(1 , _a ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_a ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
252
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") SCREAMING_SNAKE_CASE : int = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: SCREAMING_SNAKE_CASE : Optional[Any] = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) SCREAMING_SNAKE_CASE : Any = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
252
1
import pprint import requests lowerCAmelCase = 'https://zenquotes.io/api' def _a ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def _a ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": lowerCAmelCase = random_quotes() pprint.pprint(response)
110
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '<<<<<<< This should probably be modified because it mentions: ' lowerCAmelCase = '=======\n>>>>>>>\n' lowerCAmelCase = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _a ( UpperCamelCase__ ): @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> int: """simple docstring""" lowercase__ = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: str , *UpperCamelCase_: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = get_logger('''datasets-cli/converting''' ) lowercase__ = tfds_path lowercase__ = datasets_directory def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(UpperCamelCase_ ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__ = '''''' continue elif "from absl import logging" in out_line: lowercase__ = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__ = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda UpperCamelCase_ : e in out_line , UpperCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase_ ) + '''\n''' ) out_lines.append(UpperCamelCase_ ) out_lines.append(UpperCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__ = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(UpperCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace('''.py''' , '''''' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase_ ) if needs_manual_update: with_manual_update.append(UpperCamelCase_ ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase_ ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(UpperCamelCase_ ) lowercase__ = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(UpperCamelCase_ , UpperCamelCase_ ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
110
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a =HfApi() a ={} # fmt: off a =torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) a =torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) a =torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) a =torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) a =torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) a =torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) a =torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) a =torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) a =torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) a =torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) a =torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) a =torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) a =torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) a =torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) a =torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on a =api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a ="""/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): a =UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a =UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a =torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a =model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
113
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging a =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: __lowerCamelCase : Tuple = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ), F"{len(lowerCamelCase__ )} != {len(lowerCamelCase__ )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) a ={ # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } a ={ # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: try: __lowerCamelCase : List[str] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[int]: if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCamelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = "student" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __lowerCamelCase : int = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(lowerCamelCase__ , lowerCamelCase__ ): AutoTokenizer.from_pretrained(lowerCamelCase__ ).save_pretrained(lowerCamelCase__ ) # purely for convenience __lowerCamelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ).eval() else: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), F"teacher must be a model or string got type {type(lowerCamelCase__ )}" __lowerCamelCase : str = teacher.config.to_diff_dict() try: __lowerCamelCase , __lowerCamelCase : Dict = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __lowerCamelCase : Optional[int] = teacher_e if d is None: __lowerCamelCase : Optional[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __lowerCamelCase , __lowerCamelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __lowerCamelCase , __lowerCamelCase : Any = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __lowerCamelCase : Union[str, Any] = teacher_e if d is None: __lowerCamelCase : Any = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCamelCase__ ) # Copy weights __lowerCamelCase : str = teacher.config_class(**lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(lowerCamelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __lowerCamelCase : Tuple = student.load_state_dict(teacher.state_dict() , strict=lowerCamelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(range(lowerCamelCase__ ) ), list(range(lowerCamelCase__ ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCamelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __lowerCamelCase : List[int] = pick_layers_to_copy(lowerCamelCase__ , lowerCamelCase__ ) if d_layers_to_copy is None: __lowerCamelCase : List[int] = pick_layers_to_copy(lowerCamelCase__ , lowerCamelCase__ ) try: if hasattr( lowerCamelCase__ , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCamelCase__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCamelCase__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCamelCase__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCamelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCamelCase__ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCamelCase__ ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) __lowerCamelCase : Dict = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(lowerCamelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
113
1
from heapq import heappop, heappush import numpy as np def UpperCamelCase( __UpperCamelCase : np.ndarray ,__UpperCamelCase : tuple[int, int] ,__UpperCamelCase : tuple[int, int] ,__UpperCamelCase : bool ,): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = grid.shape lowerCAmelCase_ : int = [-1, 1, 0, 0] lowerCAmelCase_ : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = [(0, source)], set() lowerCAmelCase_ : int = np.full((rows, cols) ,np.inf ) lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Tuple = np.empty((rows, cols) ,dtype=__UpperCamelCase ) lowerCAmelCase_ : Any = None while queue: ((lowerCAmelCase_) , (lowerCAmelCase_)) : Dict = heappop(__UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCAmelCase_ : Any = [] while (x, y) != source: path.append((x, y) ) lowerCAmelCase_ , lowerCAmelCase_ : Any = predecessors[x, y] path.append(__UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__UpperCamelCase ) ): lowerCAmelCase_ , lowerCAmelCase_ : str = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCAmelCase_ : Union[str, Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__UpperCamelCase ,(dist + 1, (nx, ny)) ) lowerCAmelCase_ : Any = dist + 1 lowerCAmelCase_ : Union[str, Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
103
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCamelCase = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : int = SavedModel() lowerCAmelCase__ : int = [] with open(os.path.join(_a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: lowerCAmelCase__ : Optional[int] = json.load(_a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_a )] ) with open(_a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) lowerCAmelCase__ : Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowerCAmelCase__ : List[Any] = sorted(_a ) lowerCAmelCase__ : Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_a ) if strict and len(_a ) > 0: raise Exception(f'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(_a ) > 0: print(f'Found the following incompatible ops for the opset {opset}:' ) print(*_a , sep='''\n''' ) else: print(f'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) lowerCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
211
import math class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any=0 )-> Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Optional[int] = n lowerCAmelCase__ : List[Any] = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowerCAmelCase__ : str = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase__( self : List[Any] )-> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase__ : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )-> str: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case_ : Any = 16 snake_case_ : List[str] = 32 def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = 1_6 ): _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _UpperCamelCase : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase : List[str] = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase : Tuple = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase : int = 1_6 elif accelerator.mixed_precision != "no": _UpperCamelCase : str = 8 else: _UpperCamelCase : str = None return tokenizer.pad( UpperCAmelCase_ , padding='longest' , max_length=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. _UpperCamelCase : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , drop_last=UpperCAmelCase_ ) _UpperCamelCase : List[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): # Initialize accelerator _UpperCamelCase : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : Optional[int] = config['lr'] _UpperCamelCase : Optional[int] = int(config['num_epochs'] ) _UpperCamelCase : Tuple = int(config['seed'] ) _UpperCamelCase : int = int(config['batch_size'] ) _UpperCamelCase : Tuple = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _UpperCamelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCamelCase : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE _UpperCamelCase : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[int] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase : Any = AdamW(params=model.parameters() , lr=UpperCAmelCase_ ) # Instantiate scheduler _UpperCamelCase : str = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Now we train the model for epoch in range(UpperCAmelCase_ ): model.train() for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase_ ) _UpperCamelCase : Tuple = outputs.loss _UpperCamelCase : Any = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase : int = model(**UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) _UpperCamelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , UpperCAmelCase_ ) def A__ ( ): _UpperCamelCase : int = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _UpperCamelCase : int = parser.parse_args() _UpperCamelCase : List[str] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
83
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase_ = True lowerCAmelCase_ = "ml.p3.2xlarge" lowerCAmelCase_ = "accelerate_sagemaker_execution_role" lowerCAmelCase_ = "hf-sm" lowerCAmelCase_ = "us-east-1" lowerCAmelCase_ = 1 lowerCAmelCase_ = "accelerate-sagemaker-1" lowerCAmelCase_ = "1.6" lowerCAmelCase_ = "4.4" lowerCAmelCase_ = "train.py" lowerCAmelCase_ = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] lowerCAmelCase_ = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class __snake_case ( unittest.TestCase ): def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , _lowercase ) assert isinstance(converted_args["""do_train"""] , _lowercase ) assert isinstance(converted_args["""epochs"""] , _lowercase ) assert isinstance(converted_args["""learning_rate"""] , _lowercase ) assert isinstance(converted_args["""max_steps"""] , _lowercase ) with pytest.raises(_lowercase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
219
0
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _A = Lock() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ : Tuple = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ : Optional[int] = min(lowerCAmelCase , lowerCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ : List[str] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ : Optional[Any] = max(lowerCAmelCase , lowerCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase ) def a__ ( lowerCAmelCase ) -> Any: UpperCAmelCase__ : Any = [] UpperCAmelCase__ : str = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ : Dict = Pipe() UpperCAmelCase__ : Any = Pipe() process_array_.append( Process( target=lowerCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ : Optional[Any] = temp_rs UpperCAmelCase__ : int = temp_rr for i in range(1 , len(lowerCAmelCase ) - 1 ): UpperCAmelCase__ : Union[str, Any] = Pipe() UpperCAmelCase__ : Optional[int] = Pipe() process_array_.append( Process( target=lowerCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ : Optional[int] = temp_rs UpperCAmelCase__ : Any = temp_rr process_array_.append( Process( target=lowerCAmelCase , args=( len(lowerCAmelCase ) - 1, arr[len(lowerCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase ) ): UpperCAmelCase__ : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def a__ ( ) -> Tuple: UpperCAmelCase__ : Tuple = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*lowerCAmelCase ) UpperCAmelCase__ : int = odd_even_transposition(lowerCAmelCase ) print("""Sorted List\n""" ) print(*lowerCAmelCase ) if __name__ == "__main__": main()
166
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): """simple docstring""" super().__init__() UpperCAmelCase__ : Tuple = pad_token_id UpperCAmelCase__ : Any = max_length UpperCAmelCase__ : str = vocab UpperCAmelCase__ : Union[str, Any] = merges UpperCAmelCase__ : Tuple = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def _a (cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] UpperCAmelCase__ : Tuple = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def _a (cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def _a (cls , _lowerCamelCase ): """simple docstring""" return cls(**_lowerCamelCase ) def _a (self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" UpperCAmelCase__ : List[str] = self.tf_tokenizer(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCAmelCase__ : Optional[Any] = max_length if max_length is not None else self.max_length if max_length is not None: UpperCAmelCase__ , UpperCAmelCase__ : str = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
166
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __lowerCamelCase ( lowerCamelCase__ : str = "" ): '''simple docstring''' lowerCamelCase = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" lowerCamelCase = BeautifulSoup(requests.get(lowerCamelCase__ ).text , """html.parser""" ) lowerCamelCase = soup.find_all("""td""" , attrs="""titleColumn""" ) lowerCamelCase = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowerCamelCase__ , lowerCamelCase__ ) } def __lowerCamelCase ( lowerCamelCase__ : str = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' lowerCamelCase = get_imdb_top_aaa_movies() with open(lowerCamelCase__ , """w""" , newline="""""" ) as out_file: lowerCamelCase = csv.writer(lowerCamelCase__ ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
252
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase : Optional[Any] = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
1
"""simple docstring""" import string def a_ ( lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = '' for i in sequence: __lowerCAmelCase = ord(lowerCAmelCase_ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def a_ ( lowerCAmelCase_ : Any ): __lowerCAmelCase = string.ascii_letters __lowerCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase_ )] if c in letters else c for c in sequence ) def a_ ( ): from timeit import timeit print('Running performance benchmarks...' ) __lowerCAmelCase = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F"""> atbash_slow(): {timeit("atbash_slow(printable)", setup=lowerCAmelCase_ )} seconds""" ) print(F"""> atbash(): {timeit("atbash(printable)", setup=lowerCAmelCase_ )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
369
_snake_case : List[str] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) _snake_case : List[Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = from_type.lower().strip('s' ) __lowerCAmelCase = to_type.lower().strip('s' ) __lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) __lowerCAmelCase = METRIC_CONVERSION[from_sanitized] __lowerCAmelCase = METRIC_CONVERSION[to_sanitized] __lowerCAmelCase = 1 if from_exponent > to_exponent: __lowerCAmelCase = from_exponent - to_exponent else: __lowerCAmelCase = -(to_exponent - from_exponent) return value * pow(10, lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
207
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE = filter(lambda SCREAMING_SNAKE_CASE_ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase = logging.getLogger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: if metric == "rouge2": SCREAMING_SNAKE_CASE = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": SCREAMING_SNAKE_CASE = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": SCREAMING_SNAKE_CASE = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) SCREAMING_SNAKE_CASE = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , monitor=F'val_{metric}' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , ) class lowerCAmelCase ( pl.Callback ): '''simple docstring''' def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: SCREAMING_SNAKE_CASE = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase__ ) @rank_zero_only def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) SCREAMING_SNAKE_CASE = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results SCREAMING_SNAKE_CASE = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE = od / 'test_results.txt' SCREAMING_SNAKE_CASE = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE = od / F'{type_path}_results/{trainer.global_step:05d}.txt' SCREAMING_SNAKE_CASE = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'a+' ) as writer: for key in sorted(lowerCAmelCase__ ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE = metrics[key] if isinstance(lowerCAmelCase__ , torch.Tensor ): SCREAMING_SNAKE_CASE = val.item() SCREAMING_SNAKE_CASE = F'{key}: {val:.6f}\n' writer.write(lowerCAmelCase__ ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(lowerCAmelCase__ ) @rank_zero_only def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: try: SCREAMING_SNAKE_CASE = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE = count_trainable_parameters(lowerCAmelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase__ , lowerCAmelCase__ , 'test' ) @rank_zero_only def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
113
"""simple docstring""" from __future__ import annotations def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> list[int]: return [ord(SCREAMING_SNAKE_CASE_ ) - 96 for elem in plain] def lowercase (SCREAMING_SNAKE_CASE_ : list[int] ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase () -> None: SCREAMING_SNAKE_CASE = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , SCREAMING_SNAKE_CASE_ ) print('Decoded:' , decode(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main()
113
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : List[Any] ): lowercase__ : Tuple = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) lowercase__ : str = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(SCREAMING_SNAKE_CASE ) from datasets import load_dataset lowercase__ : str = load_dataset("nielsr/rvlcdip-demo" ) lowercase__ : List[Any] = dataset["train"][0]["image"].convert("RGB" ) lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = outputs.logits lowercase__ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Dict = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=SCREAMING_SNAKE_CASE , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
121
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : Optional[int] ): lowercase__ : Dict = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowercase__ : Dict = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Optional[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowercase__ : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowercase__ : int = shift_tokens_right(SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ).logits lowercase__ : Dict = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE , onehot(SCREAMING_SNAKE_CASE , logits.shape[-1] ) ).mean() lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowercase__ : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
121
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model"} lowercase_ = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } lowercase_ = {"bert_for_seq_generation": 512} class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[int] = [] __lowerCamelCase : str = ['input_ids', 'attention_mask'] def __init__(self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A="<::::>" , A = None , **A , ) -> None: """simple docstring""" _a = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sep_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def a__ (self ) -> Optional[int]: """simple docstring""" return self.sp_model.get_piece_size() def a__ (self ) -> Optional[Any]: """simple docstring""" _a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> List[str]: """simple docstring""" _a = self.__dict__.copy() _a = None return state def __setstate__(self , A ) -> Dict: """simple docstring""" _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ (self , A ) -> List[str]: """simple docstring""" return self.sp_model.encode(A , out_type=A ) def a__ (self , A ) -> Union[str, Any]: """simple docstring""" return self.sp_model.piece_to_id(A ) def a__ (self , A ) -> str: """simple docstring""" _a = self.sp_model.IdToPiece(A ) return token def a__ (self , A ) -> List[Any]: """simple docstring""" _a = [] _a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token _a = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
211
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __A ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __lowerCamelCase : bool = None __lowerCamelCase : bool = None class __A ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __lowerCamelCase : int = datasets.Audio() __lowerCamelCase : str = 'audio' __lowerCamelCase : Optional[Any] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : Union[str, Any] = AudioClassification(audio_column='audio' , label_column='label' ) lowercase_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowercase_ = AUDIO_EXTENSIONS
211
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowercase : List[Any] = 10 def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): for i in range(_lowerCAmelCase , _lowerCAmelCase ): if array[i] == target: return i return -1 def UpperCAmelCase_ (_lowerCAmelCase : list[int] , _lowerCAmelCase : int ): __UpperCamelCase : List[Any] = 0 __UpperCamelCase : Union[str, Any] = len(_lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = (left + right) // 3 + 1 __UpperCamelCase : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCamelCase : Any = one_third - 1 elif array[two_third] < target: __UpperCamelCase : List[Any] = two_third + 1 else: __UpperCamelCase : Any = one_third + 1 __UpperCamelCase : Any = two_third - 1 else: return -1 def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): if left < right: if right - left < precision: return lin_search(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : List[Any] = (left + right) // 3 + 1 __UpperCamelCase : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCAmelCase , one_third - 1 , _lowerCAmelCase , _lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCAmelCase , _lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowercase : Optional[int] = input("Enter numbers separated by comma:\n").strip() lowercase : Union[str, Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowercase : List[str] = int(input("Enter the number to be found in the list:\n").strip()) lowercase : Optional[Any] = ite_ternary_search(collection, target) lowercase : Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("Not found")
171
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): # Construct model if openai_config_file == "": __UpperCamelCase : Any = OpenAIGPTConfig() else: __UpperCamelCase : Union[str, Any] = OpenAIGPTConfig.from_json_file(_lowerCAmelCase ) __UpperCamelCase : int = OpenAIGPTModel(_lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __UpperCamelCase : List[str] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __UpperCamelCase : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) lowercase : Tuple = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
171
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =tempfile.mkdtemp() __lowercase =BlipImageProcessor() __lowercase =GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model') __lowercase =BlipaProcessor(_lowerCAmelCase , _lowerCAmelCase) processor.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : Union[str, Any] , **_lowerCAmelCase : List[Any]): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase).tokenizer def __lowerCamelCase ( self : Optional[Any] , **_lowerCAmelCase : Optional[int]): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase).image_processor def __lowerCamelCase ( self : str): '''simple docstring''' shutil.rmtree(self.tmpdirname) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] __lowercase =[Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __lowercase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __lowercase =self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0) __lowercase =BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowerCAmelCase) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =BlipaProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase) __lowercase =self.prepare_image_inputs() __lowercase =image_processor(_lowerCAmelCase , return_tensors='np') __lowercase =processor(images=_lowerCAmelCase , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =BlipaProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase) __lowercase ='lower newer' __lowercase =processor(text=_lowerCAmelCase) __lowercase =tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =BlipaProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase) __lowercase ='lower newer' __lowercase =self.prepare_image_inputs() __lowercase =processor(text=_lowerCAmelCase , images=_lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase): processor() def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =BlipaProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase) __lowercase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase =processor.batch_decode(_lowerCAmelCase) __lowercase =tokenizer.batch_decode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =BlipaProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase) __lowercase ='lower newer' __lowercase =self.prepare_image_inputs() __lowercase =processor(text=_lowerCAmelCase , images=_lowerCAmelCase) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
166
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """umt5""" lowerCAmelCase__ = ["""past_key_values"""] def __init__( self : Optional[int] , _lowerCAmelCase : int=2_5_0_1_1_2 , _lowerCAmelCase : Union[str, Any]=5_1_2 , _lowerCAmelCase : List[Any]=6_4 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : str=3_2 , _lowerCAmelCase : List[str]=1_2_8 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=1e-6 , _lowerCAmelCase : List[Any]=1.0 , _lowerCAmelCase : Union[str, Any]="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : Tuple="T5Tokenizer" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Any=0 , **_lowerCAmelCase : int , ): '''simple docstring''' super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase =vocab_size __lowercase =d_model __lowercase =d_kv __lowercase =d_ff __lowercase =num_layers __lowercase =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase =num_heads __lowercase =relative_attention_num_buckets __lowercase =relative_attention_max_distance __lowercase =dropout_rate __lowercase =layer_norm_epsilon __lowercase =initializer_factor __lowercase =feed_forward_proj __lowercase =use_cache __lowercase =self.feed_forward_proj.split('-') __lowercase =act_info[-1] __lowercase =act_info[0] == 'gated' if len(_lowerCAmelCase) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": __lowercase ='gelu_new' @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.d_model @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.num_heads @property def __lowerCamelCase ( self : int): '''simple docstring''' return self.num_layers class _UpperCamelCase ( A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={ 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase ='past_encoder_sequence + sequence' __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 1_3 @property def __lowerCamelCase ( self : int): '''simple docstring''' return 5e-4
166
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a :List[Any] = logging.get_logger(__name__) __a :Optional[Any] = '▁' __a :int = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __a :Any = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __a :Union[str, Any] = {'vinai/bartpho-syllable': 1024} class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : int = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : str = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : List[Any]="</s>" , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : int="<unk>" , UpperCAmelCase : Optional[Any]="<pad>" , UpperCAmelCase : Tuple="<mask>" , UpperCAmelCase : Optional[Dict[str, Any]] = None , **UpperCAmelCase : Tuple , ): # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token A_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) A_ = vocab_file A_ = monolingual_vocab_file A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A_ = {} A_ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCAmelCase ) not in self.fairseq_tokens_to_ids: A_ = cnt cnt += 1 with open(UpperCAmelCase , "r" , encoding="utf-8" ) as f: for line in f.readlines(): A_ = line.strip().split()[0] A_ = len(self.fairseq_tokens_to_ids ) if str(UpperCAmelCase ) not in self.fairseq_tokens_to_ids: A_ = len(self.fairseq_tokens_to_ids ) A_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ): A_ = self.__dict__.copy() A_ = None A_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , UpperCAmelCase : str ): A_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A_ = {} A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __A ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ = [self.cls_token_id] A_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self : List[str] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def __A ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A ( self : List[Any] ): return len(self.fairseq_ids_to_tokens ) def __A ( self : Tuple ): A_ = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self : Dict , UpperCAmelCase : str ): return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __A ( self : str , UpperCAmelCase : Any ): return self.fairseq_ids_to_tokens[index] def __A ( self : Any , UpperCAmelCase : Any ): A_ = "".join(UpperCAmelCase ).replace(UpperCAmelCase , " " ).strip() return out_string def __A ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: A_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCAmelCase , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
329
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
1
"""simple docstring""" import math def lowercase ( _snake_case : Optional[int] , _snake_case : Union[str, Any] ) ->int: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_snake_case ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. SCREAMING_SNAKE_CASE : Dict = """Enter the base and the power separated by a comma: """ SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = map(int, input(prompt).split(""",""")) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. SCREAMING_SNAKE_CASE : Optional[int] = res(xa, ya) SCREAMING_SNAKE_CASE : Union[str, Any] = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
102
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A__ : Dict = logging.get_logger(__name__) @add_end_docstrings( A__ ,r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ ,) class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Optional[int], lowerCamelCase : GenericTensor ): '''simple docstring''' if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=lowerCamelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def lowercase__ ( self : List[str], lowerCamelCase : GenericTensor ): '''simple docstring''' lowercase__ = self.get_masked_index(lowerCamelCase ) lowercase__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''', self.model.base_model_prefix, F"""No mask_token ({self.tokenizer.mask_token}) found on the input""", ) def lowercase__ ( self : Optional[Any], lowerCamelCase : GenericTensor ): '''simple docstring''' if isinstance(lowerCamelCase, lowerCamelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int]=None, **lowerCamelCase : Dict ): '''simple docstring''' if return_tensors is None: lowercase__ = self.framework lowercase__ = self.tokenizer(lowerCamelCase, return_tensors=lowerCamelCase ) self.ensure_exactly_one_mask_token(lowerCamelCase ) return model_inputs def lowercase__ ( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.model(**lowerCamelCase ) lowercase__ = model_inputs['''input_ids'''] return model_outputs def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Tuple=5, lowerCamelCase : List[Any]=None ): '''simple docstring''' # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowercase__ = target_ids.shape[0] lowercase__ = model_outputs['''input_ids'''][0] lowercase__ = model_outputs['''logits'''] if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase__ = outputs.numpy() lowercase__ = outputs[0, masked_index, :] lowercase__ = stable_softmax(lowerCamelCase, axis=-1 ) if target_ids is not None: lowercase__ = tf.gather_nd(tf.squeeze(lowerCamelCase, 0 ), target_ids.reshape(-1, 1 ) ) lowercase__ = tf.expand_dims(lowerCamelCase, 0 ) lowercase__ = tf.math.top_k(lowerCamelCase, k=lowerCamelCase ) lowercase__ , lowercase__ = topk.values.numpy(), topk.indices.numpy() else: lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=lowerCamelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase__ = outputs[0, masked_index, :] lowercase__ = logits.softmax(dim=-1 ) if target_ids is not None: lowercase__ = probs[..., target_ids] lowercase__ , lowercase__ = probs.topk(lowerCamelCase ) lowercase__ = [] lowercase__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist() ) ): lowercase__ = [] for v, p in zip(_values, _predictions ): # Copy is important since we're going to modify this array in place lowercase__ = input_ids.numpy().copy() if target_ids is not None: lowercase__ = target_ids[p].tolist() lowercase__ = p # Filter padding out: lowercase__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase__ = self.tokenizer.decode(lowerCamelCase, skip_special_tokens=lowerCamelCase ) lowercase__ = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(lowerCamelCase ) result.append(lowerCamelCase ) if single_mask: return result[0] return result def lowercase__ ( self : int, lowerCamelCase : Optional[int], lowerCamelCase : Dict=None ): '''simple docstring''' if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [targets] try: lowercase__ = self.tokenizer.get_vocab() except Exception: lowercase__ = {} lowercase__ = [] for target in targets: lowercase__ = vocab.get(lowerCamelCase, lowerCamelCase ) if id_ is None: lowercase__ = self.tokenizer( lowerCamelCase, add_special_tokens=lowerCamelCase, return_attention_mask=lowerCamelCase, return_token_type_ids=lowerCamelCase, max_length=1, truncation=lowerCamelCase, )['''input_ids'''] if len(lowerCamelCase ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowercase__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) lowercase__ = list(set(lowerCamelCase ) ) if len(lowerCamelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowercase__ = np.array(lowerCamelCase ) return target_ids def lowercase__ ( self : List[str], lowerCamelCase : int=None, lowerCamelCase : Any=None ): '''simple docstring''' lowercase__ = {} if targets is not None: lowercase__ = self.get_target_ids(lowerCamelCase, lowerCamelCase ) lowercase__ = target_ids if top_k is not None: lowercase__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''', self.model.base_model_prefix, '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : List[Any], lowerCamelCase : Optional[Any], *lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = super().__call__(lowerCamelCase, **lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) and len(lowerCamelCase ) == 1: return outputs[0] return outputs
207
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int =CanineTokenizer lowerCamelCase : List[str] =False def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" super().setUp() __lowerCAmelCase : str = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def SCREAMING_SNAKE_CASE ( self : Dict , **lowerCAmelCase : Union[str, Any] ) -> CanineTokenizer: """simple docstring""" __lowerCAmelCase : str = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) __lowerCAmelCase : List[Any] = 10_24 return tokenizer @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.canine_tokenizer __lowerCAmelCase : Any = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __lowerCAmelCase : Optional[Any] = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __lowerCAmelCase : str = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self.canine_tokenizer __lowerCAmelCase : List[str] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __lowerCAmelCase : Dict = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , lowerCAmelCase ) self.assertIn("""attention_mask""" , lowerCAmelCase ) self.assertIn("""token_type_ids""" , lowerCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.canine_tokenizer __lowerCAmelCase : Optional[int] = [ """What's the weater?""", """It's about 25 degrees.""", ] __lowerCAmelCase : Dict = tokenizer( text_target=lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase : List[Any] = tempfile.mkdtemp() __lowerCAmelCase : List[Any] = """ He is very happy, UNwant\u00E9d,running""" __lowerCAmelCase : Dict = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : str = tokenizer.__class__.from_pretrained(lowerCAmelCase ) __lowerCAmelCase : int = after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) shutil.rmtree(lowerCAmelCase ) __lowerCAmelCase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase : List[Any] = tempfile.mkdtemp() __lowerCAmelCase : List[Any] = """ He is very happy, UNwant\u00E9d,running""" __lowerCAmelCase : Union[str, Any] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __lowerCAmelCase : List[str] = chr(0Xe007 ) additional_special_tokens.append(lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __lowerCAmelCase : Optional[int] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Any = tokenizer.__class__.from_pretrained(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertIn(lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCAmelCase : List[str] = tokenizer.__class__.from_pretrained(lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase ,__lowerCAmelCase : Tuple = self.get_clean_sequence(lowerCAmelCase ) # a special token for Canine can be defined as follows: __lowerCAmelCase : Union[str, Any] = 0Xe005 __lowerCAmelCase : str = chr(lowerCAmelCase ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __lowerCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , 1 ) __lowerCAmelCase : Optional[int] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Any = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : List[Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , input_encoded + special_token_id ) __lowerCAmelCase : Tuple = tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : Optional[Any] = chr(0Xe005 ) __lowerCAmelCase : Tuple = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer.tokenize(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , 1 ) self.assertEqual(len(lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase ) self.assertEqual(token_a[0] , lowerCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __lowerCAmelCase : str = 0Xe006 __lowerCAmelCase : Union[str, Any] = chr(lowerCAmelCase ) __lowerCAmelCase : Tuple = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase ) tokenizer.from_pretrained(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" __lowerCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __lowerCAmelCase : List[Any] = json.load(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __lowerCAmelCase : Any = json.load(lowerCAmelCase ) # a special token for Canine can be defined as follows: __lowerCAmelCase : List[Any] = 0Xe006 __lowerCAmelCase : Union[str, Any] = chr(lowerCAmelCase ) __lowerCAmelCase : str = [new_token_a] __lowerCAmelCase : Optional[int] = [new_token_a] with open(os.path.join(lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCAmelCase : List[Any] = tokenizer_class.from_pretrained(lowerCAmelCase , extra_ids=0 ) self.assertIn(lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __lowerCAmelCase : List[str] = 0Xe007 __lowerCAmelCase : Optional[Any] = chr(lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCAmelCase : Union[str, Any] = [AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase )] __lowerCAmelCase : str = tokenizer_class.from_pretrained( lowerCAmelCase , additional_special_tokens=lowerCAmelCase , extra_ids=0 ) self.assertIn(lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : str = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : List[str] = """hello world""" if self.space_between_special_tokens: __lowerCAmelCase : Optional[Any] = """[CLS] hello world [SEP]""" else: __lowerCAmelCase : Union[str, Any] = input __lowerCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer.decode(lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase , [output, output.lower()] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : int = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __lowerCAmelCase : Optional[Any] = """a""" __lowerCAmelCase : List[Any] = ord(lowerCAmelCase ) for attr in attributes_list: setattr(lowerCAmelCase , attr + """_id""" , lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase , attr + """_id""" ) , lowerCAmelCase ) setattr(lowerCAmelCase , attr + """_id""" , lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase , attr + """_id""" ) , lowerCAmelCase ) setattr(lowerCAmelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowerCAmelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowerCAmelCase , """additional_special_tokens_ids""" ) , [] ) __lowerCAmelCase : Union[str, Any] = 0Xe006 __lowerCAmelCase : List[str] = chr(lowerCAmelCase ) setattr(lowerCAmelCase , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" pass
139
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ () -> str: # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase : List[Any] = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase : Any = json.loads(__A ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase : Any = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase : Union[str, Any] = json.loads(__A ) if not mpi_options.get("""sagemaker_mpi_enabled""" , __A ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : str =field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , lowerCAmelCase , ) @cached_property def SCREAMING_SNAKE_CASE ( self : Any ) -> "torch.device": """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase : Optional[Any] = torch.device("""cpu""" ) __lowerCAmelCase : Union[str, Any] = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase : int = smp.local_rank() __lowerCAmelCase : str = torch.device("""cuda""" , lowerCAmelCase ) __lowerCAmelCase : Tuple = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase : List[str] = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase : Tuple = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase : Optional[int] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase : List[Any] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase : Optional[int] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase : List[str] = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase : int = 1 if device.type == "cuda": torch.cuda.set_device(lowerCAmelCase ) return device @property def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" return False
139
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Any = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) UpperCAmelCase__ : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase__ ( a ) -> int: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _A: Tuple = model_type_to_module_name(a ) _A: Tuple = importlib.import_module(f""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A: Any = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def lowerCamelCase__ ( a , a = None , a = False , a = False , a = None , a = None , a = None , a = False , **a , ) -> Tuple: _A: Optional[int] = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Any ): """simple docstring""" raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowerCAmelCase_ ) def __magic_name__ ( cls : Dict , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Optional[int] = kwargs.pop('''config''' , lowerCAmelCase_ ) _A: str = kwargs.pop('''trust_remote_code''' , lowerCAmelCase_ ) _A: List[str] = True _A , _A: Dict = ImageProcessingMixin.get_image_processor_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) _A: int = config_dict.get('''image_processor_type''' , lowerCAmelCase_ ) _A: Union[str, Any] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _A: Any = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _A: Tuple = config_dict.pop('''feature_extractor_type''' , lowerCAmelCase_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _A: List[Any] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _A: Union[str, Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _A: List[str] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Optional[int] = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # It could be in `config.image_processor_type`` _A: Optional[Any] = getattr(lowerCAmelCase_ , '''image_processor_type''' , lowerCAmelCase_ ) if hasattr(lowerCAmelCase_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _A: str = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _A: str = image_processor_class_from_name(lowerCAmelCase_ ) _A: List[Any] = image_processor_auto_map is not None _A: Optional[Any] = image_processor_class is not None or type(lowerCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING _A: Any = resolve_trust_remote_code( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if has_remote_code and trust_remote_code: _A: Optional[Any] = get_class_from_dynamic_module( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) _A: List[Any] = kwargs.pop('''code_revision''' , lowerCAmelCase_ ) if os.path.isdir(lowerCAmelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING: _A: Any = IMAGE_PROCESSOR_MAPPING[type(lowerCAmelCase_ )] return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __magic_name__ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(lowerCAmelCase_ , lowerCAmelCase_ )
121
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = '''swin2sr''' __UpperCamelCase : str = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[str] , lowerCAmelCase_ : int=6_4 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=1_8_0 , lowerCAmelCase_ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : Tuple=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : Any=2.0 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Optional[Any]=1e-5 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : int=1.0 , lowerCAmelCase_ : Any="1conv" , lowerCAmelCase_ : List[str]="pixelshuffle" , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[str] = image_size _A: Any = patch_size _A: Any = num_channels _A: Union[str, Any] = embed_dim _A: int = depths _A: List[Any] = len(lowerCAmelCase_ ) _A: int = num_heads _A: Any = window_size _A: Optional[int] = mlp_ratio _A: int = qkv_bias _A: List[Any] = hidden_dropout_prob _A: List[str] = attention_probs_dropout_prob _A: List[Any] = drop_path_rate _A: Any = hidden_act _A: List[str] = use_absolute_embeddings _A: Tuple = layer_norm_eps _A: str = initializer_range _A: int = upscale _A: int = img_range _A: Optional[Any] = resi_connection _A: int = upsampler
121
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ) -> int: '''simple docstring''' snake_case : Union[str, Any] = '''backbone.''' if is_semantic else '''''' snake_case : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (F'{prefix}cls_token', '''beit.embeddings.cls_token'''), (F'{prefix}patch_embed.proj.weight', '''beit.embeddings.patch_embeddings.projection.weight'''), (F'{prefix}patch_embed.proj.bias', '''beit.embeddings.patch_embeddings.projection.bias'''), (F'{prefix}pos_embed', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ) -> List[str]: '''simple docstring''' for i in range(config.num_hidden_layers ): snake_case : Optional[int] = '''backbone.''' if is_semantic else '''''' # queries, keys and values snake_case : List[Any] = state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight' ) snake_case : Union[str, Any] = state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias' ) snake_case : Dict = state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias' ) snake_case : Any = in_proj_weight[ : config.hidden_size, : ] snake_case : Union[str, Any] = q_bias snake_case : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case : Union[str, Any] = state_dict.pop(F'{prefix}blocks.{i}.gamma_1' ) snake_case : int = state_dict.pop(F'{prefix}blocks.{i}.gamma_2' ) snake_case : List[Any] = gamma_a snake_case : Tuple = gamma_a def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: '''simple docstring''' snake_case : List[str] = dct.pop(UpperCamelCase__ ) snake_case : List[Any] = val def _UpperCamelCase ( ) -> str: '''simple docstring''' snake_case : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case : int = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Any: '''simple docstring''' snake_case : Optional[Any] = False if '''rvlcdip''' in checkpoint_url else True snake_case : List[str] = BeitConfig(use_absolute_position_embeddings=UpperCamelCase__ , use_mask_token=UpperCamelCase__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case : Optional[Any] = 1024 snake_case : Dict = 4096 snake_case : int = 24 snake_case : List[Any] = 16 # labels if "rvlcdip" in checkpoint_url: snake_case : Optional[int] = 16 snake_case : Any = '''huggingface/label-files''' snake_case : str = '''rvlcdip-id2label.json''' snake_case : List[str] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case : str = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} snake_case : int = idalabel snake_case : Dict = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case : List[Any] = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' )['''model'''] snake_case : Any = create_rename_keys(UpperCamelCase__ , has_lm_head=UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , has_lm_head=UpperCamelCase__ ) # load HuggingFace model snake_case : Union[str, Any] = BeitForMaskedImageModeling(UpperCamelCase__ ) if has_lm_head else BeitForImageClassification(UpperCamelCase__ ) model.eval() model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image snake_case : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ ) snake_case : Tuple = prepare_img() snake_case : Dict = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) snake_case : str = encoding['''pixel_values'''] snake_case : str = model(UpperCamelCase__ ) snake_case : Any = outputs.logits # verify logits snake_case : Tuple = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(UpperCamelCase__ ), "Shape of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: if has_lm_head: snake_case : List[str] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: snake_case : Optional[int] = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCamelCase__ , ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) lowercase__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
352
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class snake_case__ ( unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionLDMaDPipeline lowerCamelCase = TEXT_TO_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) snake_case : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) snake_case : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case : int = CLIPTextModel(UpperCamelCase__ ) snake_case : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ) -> Optional[int]: """simple docstring""" if str(UpperCamelCase__ ).startswith('''mps''' ): snake_case : Optional[int] = torch.manual_seed(UpperCamelCase__ ) else: snake_case : Optional[int] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) snake_case : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" snake_case : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case : List[Any] = self.get_dummy_components() snake_case : str = StableDiffusionLDMaDPipeline(**UpperCamelCase__ ) snake_case : Union[str, Any] = ldmad_pipe.to(UpperCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : List[str] = self.get_dummy_inputs(UpperCamelCase__ ) snake_case : Tuple = ldmad_pipe(**UpperCamelCase__ ) snake_case ,snake_case : int = output.rgb, output.depth snake_case : str = rgb[0, -3:, -3:, -1] snake_case : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) snake_case : int = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) snake_case : str = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" snake_case : int = self.get_dummy_components() snake_case : Any = StableDiffusionLDMaDPipeline(**UpperCamelCase__ ) snake_case : Optional[Any] = ldmad_pipe.to(UpperCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : int = self.get_dummy_inputs(UpperCamelCase__ ) snake_case : str = 3 * [inputs['''prompt''']] # forward snake_case : Union[str, Any] = ldmad_pipe(**UpperCamelCase__ ) snake_case ,snake_case : Union[str, Any] = output.rgb, output.depth snake_case : Tuple = rgb_slice_a[0, -3:, -3:, -1] snake_case : List[str] = depth_slice_a[0, -3:, -1] snake_case : int = self.get_dummy_inputs(UpperCamelCase__ ) snake_case : Optional[int] = 3 * [inputs.pop('''prompt''' )] snake_case : Dict = ldmad_pipe.tokenizer( UpperCamelCase__ , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='''pt''' , ) snake_case : Optional[Any] = text_inputs['''input_ids'''].to(UpperCamelCase__ ) snake_case : Any = ldmad_pipe.text_encoder(UpperCamelCase__ )[0] snake_case : Tuple = prompt_embeds # forward snake_case : List[Any] = ldmad_pipe(**UpperCamelCase__ ) snake_case ,snake_case : Dict = output.rgb, output.depth snake_case : Any = rgb_slice_a[0, -3:, -3:, -1] snake_case : Dict = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" snake_case : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case : Dict = self.get_dummy_components() snake_case : List[str] = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) snake_case : Optional[Any] = StableDiffusionLDMaDPipeline(**UpperCamelCase__ ) snake_case : Dict = ldmad_pipe.to(UpperCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Dict = self.get_dummy_inputs(UpperCamelCase__ ) snake_case : str = '''french fries''' snake_case : List[str] = ldmad_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) snake_case ,snake_case : Union[str, Any] = output.rgb, output.depth snake_case : Union[str, Any] = rgb[0, -3:, -3:, -1] snake_case : int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) snake_case : Dict = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) snake_case : Any = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]="cpu" , UpperCamelCase__ : Optional[int]=torch.floataa , UpperCamelCase__ : Union[str, Any]=0 ) -> Any: """simple docstring""" snake_case : Any = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) snake_case : Optional[Any] = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 4, 64, 64) ) snake_case : Any = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) snake_case : List[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) snake_case : Optional[Any] = ldmad_pipe.to(UpperCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Any = self.get_inputs(UpperCamelCase__ ) snake_case : str = ldmad_pipe(**UpperCamelCase__ ) snake_case ,snake_case : List[Any] = output.rgb, output.depth snake_case : Optional[Any] = rgb[0, -3:, -3:, -1].flatten() snake_case : Tuple = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) snake_case : Optional[Any] = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) snake_case : str = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Any="cpu" , UpperCamelCase__ : Optional[int]=torch.floataa , UpperCamelCase__ : Optional[int]=0 ) -> str: """simple docstring""" snake_case : Dict = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) snake_case : Optional[Any] = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 4, 64, 64) ) snake_case : int = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) snake_case : List[str] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(UpperCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Dict = self.get_inputs(UpperCamelCase__ ) snake_case : str = ldmad_pipe(**UpperCamelCase__ ) snake_case ,snake_case : Union[str, Any] = output.rgb, output.depth snake_case : Union[str, Any] = 0.495_586 snake_case : Tuple = 0.33_795_515 snake_case : Dict = 112.48_518 snake_case : Optional[int] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" snake_case : Optional[int] = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(UpperCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : int = self.get_inputs(UpperCamelCase__ ) snake_case : List[Any] = ldmad_pipe(**UpperCamelCase__ ) snake_case ,snake_case : Union[str, Any] = output.rgb, output.depth snake_case : Tuple = 0.4_194_127 snake_case : Optional[Any] = 0.35_375_586 snake_case : Any = 0.5_638_502 snake_case : int = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
83
0
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self ): """simple docstring""" super().__init__() UpperCAmelCase__ : int = nn.Linear(3 , 4 ) UpperCAmelCase__ : List[Any] = nn.BatchNormad(4 ) UpperCAmelCase__ : Tuple = nn.Linear(4 , 5 ) def _a (self , _lowerCamelCase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(_lowerCamelCase ) ) ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_lowerCamelCase , model.state_dict() ) UpperCAmelCase__ : Dict = os.path.join(_lowerCamelCase , """index.json""" ) self.assertTrue(os.path.isfile(_lowerCamelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCAmelCase__ : Tuple = os.path.join(_lowerCamelCase , F"""{key}.dat""" ) self.assertTrue(os.path.isfile(_lowerCamelCase ) ) # TODO: add tests on the fact weights are properly loaded def _a (self ): """simple docstring""" UpperCAmelCase__ : str = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCAmelCase__ : Any = torch.randn(2 , 3 , dtype=_lowerCamelCase ) with TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = offload_weight(_lowerCamelCase , """weight""" , _lowerCamelCase , {} ) UpperCAmelCase__ : str = os.path.join(_lowerCamelCase , """weight.dat""" ) self.assertTrue(os.path.isfile(_lowerCamelCase ) ) self.assertDictEqual(_lowerCamelCase , {"""weight""": {"""shape""": [2, 3], """dtype""": str(_lowerCamelCase ).split(""".""" )[1]}} ) UpperCAmelCase__ : List[str] = load_offloaded_weight(_lowerCamelCase , index["""weight"""] ) self.assertTrue(torch.equal(_lowerCamelCase , _lowerCamelCase ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = ModelForTest() UpperCAmelCase__ : Union[str, Any] = model.state_dict() UpperCAmelCase__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k} UpperCAmelCase__ : Tuple = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = OffloadedWeightsLoader(state_dict=_lowerCamelCase , save_folder=_lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(_lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_lowerCamelCase , weight_map[key] ) ) UpperCAmelCase__ : Any = {k: v for k, v in state_dict.items() if """weight""" in k} UpperCAmelCase__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = OffloadedWeightsLoader(state_dict=_lowerCamelCase , save_folder=_lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(_lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_lowerCamelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_lowerCamelCase , _lowerCamelCase ) # Duplicates are removed UpperCAmelCase__ : Dict = OffloadedWeightsLoader(state_dict=_lowerCamelCase , save_folder=_lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(_lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_lowerCamelCase , weight_map[key] ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} UpperCAmelCase__ : Dict = extract_submodules_state_dict(_lowerCamelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(_lowerCamelCase , {"""a.1""": 0, """a.2""": 2} ) UpperCAmelCase__ : Tuple = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} UpperCAmelCase__ : Optional[int] = extract_submodules_state_dict(_lowerCamelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(_lowerCamelCase , {"""a.1.a""": 0, """a.2.a""": 2} )
171
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptTokenizer SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCAmelCase__ : str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCAmelCase__ : Union[str, Any] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Tuple = """lower newer""" UpperCAmelCase__ : int = """lower newer""" return input_text, output_text def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[str] = """lower""" UpperCAmelCase__ : Optional[Any] = ["""low""", """er</w>"""] UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = tokens + ["""<unk>"""] UpperCAmelCase__ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
171
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ ={ 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" debug_launcher(test_ops.main )
329
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
329
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE_:str = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def __UpperCamelCase ( _lowerCAmelCase = "dhaka" , _lowerCAmelCase = 5 ) -> int: """simple docstring""" A : Optional[int] = min(_lowerCAmelCase , 50 ) # Prevent abuse! A : List[str] = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } A : Union[str, Any] = requests.get("""https://www.google.com/search""" , params=_lowerCAmelCase , headers=_lowerCAmelCase ) A : str = BeautifulSoup(html.text , """html.parser""" ) A : Tuple = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) A : int = json.dumps(_lowerCAmelCase ) A : Optional[Any] = json.loads(_lowerCAmelCase ) A : Tuple = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , _lowerCAmelCase , ) if not matched_google_image_data: return 0 A : str = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(_lowerCAmelCase ) , ) A : Optional[int] = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , _lowerCAmelCase , ) for index, fixed_full_res_image in enumerate(_lowerCAmelCase ): if index >= max_images: return index A : Optional[int] = bytes(_lowerCAmelCase , """ascii""" ).decode( """unicode-escape""" ) A : str = bytes(_lowerCAmelCase , """ascii""" ).decode( """unicode-escape""" ) A : List[Any] = urllib.request.build_opener() A : List[Any] = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(_lowerCAmelCase ) A : Optional[int] = f'''query_{query.replace(" " , "_" )}''' if not os.path.exists(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 _lowerCAmelCase , f'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: SCREAMING_SNAKE_CASE_:Union[str, Any] = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print("""Please provide a search term.""") raise
115
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_:Optional[int] = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[int] = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[Any] = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
115
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_a ) class _snake_case ( _a ): _A : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _A : ClassVar[Features] = Features({'''audio''': Audio()} ) _A : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _A : str = "audio" _A : str = "labels" def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,SCREAMING_SNAKE_CASE__ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE:List[str] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE:List[Any] = self.label_schema.copy() SCREAMING_SNAKE_CASE:Optional[Any] = features[self.label_column] SCREAMING_SNAKE_CASE:Tuple = label_schema return task_template @property def __UpperCamelCase ( self : int ): return { self.audio_column: "audio", self.label_column: "labels", }
139
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging A_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _snake_case ( _a ): def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : CLIPSegForImageSegmentation ,SCREAMING_SNAKE_CASE__ : CLIPSegProcessor ,SCREAMING_SNAKE_CASE__ : AutoencoderKL ,SCREAMING_SNAKE_CASE__ : CLIPTextModel ,SCREAMING_SNAKE_CASE__ : CLIPTokenizer ,SCREAMING_SNAKE_CASE__ : UNetaDConditionModel ,SCREAMING_SNAKE_CASE__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,SCREAMING_SNAKE_CASE__ : StableDiffusionSafetyChecker ,SCREAMING_SNAKE_CASE__ : CLIPImageProcessor ,): super().__init__() if hasattr(scheduler.config ,"steps_offset" ) and scheduler.config.steps_offset != 1: SCREAMING_SNAKE_CASE:Union[str, Any] = ( F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" ,"1.0.0" ,SCREAMING_SNAKE_CASE__ ,standard_warn=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = dict(scheduler.config ) SCREAMING_SNAKE_CASE:Union[str, Any] = 1 SCREAMING_SNAKE_CASE:Dict = FrozenDict(SCREAMING_SNAKE_CASE__ ) if hasattr(scheduler.config ,"skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: SCREAMING_SNAKE_CASE:List[Any] = ( F'''The configuration file of this scheduler: {scheduler} has not set the configuration''' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" ,"1.0.0" ,SCREAMING_SNAKE_CASE__ ,standard_warn=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = dict(scheduler.config ) SCREAMING_SNAKE_CASE:int = True SCREAMING_SNAKE_CASE:Optional[int] = FrozenDict(SCREAMING_SNAKE_CASE__ ) if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=SCREAMING_SNAKE_CASE__ ,segmentation_processor=SCREAMING_SNAKE_CASE__ ,vae=SCREAMING_SNAKE_CASE__ ,text_encoder=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE:Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : str ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) SCREAMING_SNAKE_CASE:str = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCamelCase ( self : Any ): if self.device != torch.device("meta" ) or not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, List[str]] ,SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, PIL.Image.Image] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int = 512 ,SCREAMING_SNAKE_CASE__ : int = 512 ,SCREAMING_SNAKE_CASE__ : int = 50 ,SCREAMING_SNAKE_CASE__ : float = 7.5 ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 1 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ,SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : Dict ,): SCREAMING_SNAKE_CASE:str = self.segmentation_processor( text=[text] ,images=[image] ,padding="max_length" ,return_tensors="pt" ).to(self.device ) SCREAMING_SNAKE_CASE:Union[str, Any] = self.segmentation_model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() SCREAMING_SNAKE_CASE:Optional[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask SCREAMING_SNAKE_CASE:Any = StableDiffusionInpaintPipeline( vae=self.vae ,text_encoder=self.text_encoder ,tokenizer=self.tokenizer ,unet=self.unet ,scheduler=self.scheduler ,safety_checker=self.safety_checker ,feature_extractor=self.feature_extractor ,) return inpainting_pipeline( prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,mask_image=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,width=SCREAMING_SNAKE_CASE__ ,num_inference_steps=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,latents=SCREAMING_SNAKE_CASE__ ,output_type=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=SCREAMING_SNAKE_CASE__ ,)
139
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ : List[str] = logging.get_logger(__name__) class _UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' __UpperCamelCase : Tuple = """maskformer-swin""" __UpperCamelCase : Optional[int] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , snake_case_ : Union[str, Any]=224 , snake_case_ : Optional[int]=4 , snake_case_ : List[str]=3 , snake_case_ : Any=96 , snake_case_ : List[str]=[2, 2, 6, 2] , snake_case_ : Optional[int]=[3, 6, 12, 24] , snake_case_ : str=7 , snake_case_ : Any=4.0 , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[int]=0.0 , snake_case_ : Any=0.0 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[int]="gelu" , snake_case_ : Tuple=False , snake_case_ : Dict=0.02 , snake_case_ : List[Any]=1e-5 , snake_case_ : List[str]=None , snake_case_ : Dict=None , **snake_case_ : Dict , ): super().__init__(**_a ) UpperCamelCase_: Tuple = image_size UpperCamelCase_: Dict = patch_size UpperCamelCase_: int = num_channels UpperCamelCase_: Any = embed_dim UpperCamelCase_: Dict = depths UpperCamelCase_: Tuple = len(_a ) UpperCamelCase_: Optional[int] = num_heads UpperCamelCase_: Optional[int] = window_size UpperCamelCase_: Any = mlp_ratio UpperCamelCase_: Any = qkv_bias UpperCamelCase_: List[str] = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob UpperCamelCase_: Any = drop_path_rate UpperCamelCase_: str = hidden_act UpperCamelCase_: Any = use_absolute_embeddings UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase_: Dict = int(embed_dim * 2 ** (len(_a ) - 1) ) UpperCamelCase_: str = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] UpperCamelCase_: str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
362
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Any = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) UpperCamelCase_: str = load_dataset("""ashraq/esc50""" ) UpperCamelCase_: Optional[int] = dataset["""train"""]["""audio"""][-1]["""array"""] UpperCamelCase_: Optional[int] = audio_classifier(snake_case_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(snake_case_ ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def lowerCAmelCase__ ( self : Optional[Any] ): pass @slow @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[str] = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog UpperCamelCase_: Tuple = load_dataset("""ashraq/esc50""" ) UpperCamelCase_: Optional[int] = dataset["""train"""]["""audio"""][-1]["""array"""] UpperCamelCase_: int = audio_classifier(snake_case_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(snake_case_ ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) UpperCamelCase_: Any = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(snake_case_ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) UpperCamelCase_: Any = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(snake_case_ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def lowerCAmelCase__ ( self : Optional[Any] ): pass
223
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :str = TaConfig.from_json_file(_lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case_ :Optional[Any] = TaForConditionalGeneration(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_lowercase, _lowercase, _lowercase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __a = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
66
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowercase__ ( lowercase ): @require_torch def UpperCamelCase_ ( self : Dict ): '''simple docstring''' # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _UpperCamelCase : Any = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _UpperCamelCase : Dict = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _UpperCamelCase : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _UpperCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase__ ) BertModel.from_pretrained(lowerCamelCase__ ) BertTokenizer.from_pretrained(lowerCamelCase__ ) pipeline(task='fill-mask' ,model=lowerCamelCase__ ) # baseline - just load from_pretrained with normal network _UpperCamelCase : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _UpperCamelCase : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _UpperCamelCase : str = '1' _UpperCamelCase : Union[str, Any] = subprocess.run(lowerCamelCase__ ,env=lowerCamelCase__ ,check=lowerCamelCase__ ,capture_output=lowerCamelCase__ ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' # python one-liner segments # this must be loaded before socket.socket is monkey-patched _UpperCamelCase : Any = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _UpperCamelCase : Any = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _UpperCamelCase : Any = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _UpperCamelCase : List[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase__ ) BertModel.from_pretrained(lowerCamelCase__ ) BertTokenizer.from_pretrained(lowerCamelCase__ ) pipeline(task='fill-mask' ,model=lowerCamelCase__ ) # baseline - just load from_pretrained with normal network _UpperCamelCase : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _UpperCamelCase : List[Any] = self.get_env() _UpperCamelCase : Dict = subprocess.run(lowerCamelCase__ ,env=lowerCamelCase__ ,check=lowerCamelCase__ ,capture_output=lowerCamelCase__ ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _UpperCamelCase : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _UpperCamelCase : str = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _UpperCamelCase : Any = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _UpperCamelCase : Optional[int] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _UpperCamelCase : Optional[Any] = self.get_env() _UpperCamelCase : int = subprocess.run(lowerCamelCase__ ,env=lowerCamelCase__ ,check=lowerCamelCase__ ,capture_output=lowerCamelCase__ ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network _UpperCamelCase : Dict = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _UpperCamelCase : Dict = '1' _UpperCamelCase : Dict = subprocess.run(lowerCamelCase__ ,env=lowerCamelCase__ ,check=lowerCamelCase__ ,capture_output=lowerCamelCase__ ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : int = '\nfrom transformers import pipeline\n ' _UpperCamelCase : str = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _UpperCamelCase : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _UpperCamelCase : Union[str, Any] = self.get_env() _UpperCamelCase : List[Any] = '1' _UpperCamelCase : Tuple = [sys.executable, '-c', '\n'.join([load, mock, run] )] _UpperCamelCase : int = subprocess.run(lowerCamelCase__ ,env=lowerCamelCase__ ,check=lowerCamelCase__ ,capture_output=lowerCamelCase__ ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Optional[int] = '\nfrom transformers import AutoModel\n ' _UpperCamelCase : int = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _UpperCamelCase : Any = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _UpperCamelCase : Optional[Any] = self.get_env() _UpperCamelCase : Optional[int] = subprocess.run(lowerCamelCase__ ,env=lowerCamelCase__ ,check=lowerCamelCase__ ,capture_output=lowerCamelCase__ ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _UpperCamelCase : List[Any] = '1' _UpperCamelCase : Dict = subprocess.run(lowerCamelCase__ ,env=lowerCamelCase__ ,check=lowerCamelCase__ ,capture_output=lowerCamelCase__ ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
83
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] _SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} _SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = '''''' snake_case = 42 snake_case = 42 snake_case = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase_ ) ,UpperCamelCase_ ): snake_case = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase_ ) return decoded def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [] for key in product(UpperCamelCase_ ,repeat=3 ): snake_case = try_key(UpperCamelCase_ ,UpperCamelCase_ ) if encoded is not None: possibles.append(UpperCamelCase_ ) return possibles def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (UpperCamelCase_ = "p059_cipher.txt" ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = Path(UpperCamelCase_ ).parent.joinpath(UpperCamelCase_ ).read_text(encoding='''utf-8''' ) snake_case = [int(UpperCamelCase_ ) for number in data.strip().split(''',''' )] snake_case = filter_valid_chars(UpperCamelCase_ ) for common_word in COMMON_WORDS: snake_case = filter_common_word(UpperCamelCase_ ,UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: break snake_case = possibles[0] return sum(ord(UpperCamelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
362
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'efficientnet' def __init__( self , __snake_case = 3 , __snake_case = 6_0_0 , __snake_case = 2.0 , __snake_case = 3.1 , __snake_case = 8 , __snake_case = [3, 3, 5, 3, 5, 5, 3] , __snake_case = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __snake_case = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __snake_case = [] , __snake_case = [1, 2, 2, 2, 1, 2, 1] , __snake_case = [1, 2, 2, 3, 3, 4, 1] , __snake_case = [1, 6, 6, 6, 6, 6, 6] , __snake_case = 0.25 , __snake_case = "swish" , __snake_case = 2_5_6_0 , __snake_case = "mean" , __snake_case = 0.02 , __snake_case = 0.001 , __snake_case = 0.99 , __snake_case = 0.5 , __snake_case = 0.2 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = num_channels snake_case = image_size snake_case = width_coefficient snake_case = depth_coefficient snake_case = depth_divisor snake_case = kernel_sizes snake_case = in_channels snake_case = out_channels snake_case = depthwise_padding snake_case = strides snake_case = num_block_repeats snake_case = expand_ratios snake_case = squeeze_expansion_ratio snake_case = hidden_act snake_case = hidden_dim snake_case = pooling_type snake_case = initializer_range snake_case = batch_norm_eps snake_case = batch_norm_momentum snake_case = dropout_rate snake_case = drop_connect_rate snake_case = sum(__snake_case ) * 4 class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a_ ( self ): return 1E-5
213
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 7 if "tiny" in model_name: _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 6, 2) _lowerCAmelCase = (3, 6, 12, 24) elif "small" in model_name: _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (3, 6, 12, 24) elif "base" in model_name: _lowerCAmelCase = 128 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (4, 8, 16, 32) _lowerCAmelCase = 12 _lowerCAmelCase = 512 elif "large" in model_name: _lowerCAmelCase = 192 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (6, 12, 24, 48) _lowerCAmelCase = 12 _lowerCAmelCase = 768 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "ade20k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = SwinConfig( embed_dim=SCREAMING_SNAKE_CASE_ , depths=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , window_size=SCREAMING_SNAKE_CASE_ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) _lowerCAmelCase = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE_ , auxiliary_in_channels=SCREAMING_SNAKE_CASE_ , num_labels=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = val def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) _lowerCAmelCase = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[:dim, :] _lowerCAmelCase = in_proj_bias[: dim] _lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] _lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] _lowerCAmelCase = in_proj_weight[ -dim :, : ] _lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = x.shape _lowerCAmelCase = x.reshape(SCREAMING_SNAKE_CASE_ , 4 , in_channel // 4 ) _lowerCAmelCase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return x def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = x.shape _lowerCAmelCase = x.reshape(SCREAMING_SNAKE_CASE_ , in_channel // 4 , 4 ) _lowerCAmelCase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return x def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = x.shape[0] _lowerCAmelCase = x.reshape(4 , in_channel // 4 ) _lowerCAmelCase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE_ ) return x def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = x.shape[0] _lowerCAmelCase = x.reshape(in_channel // 4 , 4 ) _lowerCAmelCase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE_ ) return x def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" , file_name=SCREAMING_SNAKE_CASE_ )[ "state_dict" ] for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE_ , param.shape ) _lowerCAmelCase = get_upernet_config(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "bn" in key: _lowerCAmelCase = key.replace("bn" , "batch_norm" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _lowerCAmelCase = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE_ ) if "norm" in key: _lowerCAmelCase = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify on image _lowerCAmelCase = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert("RGB" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _lowerCAmelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": _lowerCAmelCase = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": _lowerCAmelCase = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": _lowerCAmelCase = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f'''upernet-swin-{size}''' for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
158
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
0
'''simple docstring''' from math import pi, sqrt def lowercase_ ( lowerCAmelCase__ : float ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(lowerCAmelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCAmelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase_ ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCAmelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase = 1.0 while num: _UpperCamelCase = float(input('''Gamma of: ''')) print(F'gamma({num}) = {gamma(num)}') print('''\nEnter 0 to exit...''')
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCamelCase__ ( A ): """simple docstring""" __a = """Salesforce/blip-image-captioning-base""" __a = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) __a = """image_captioner""" __a = AutoModelForVisionaSeq __a = ["""image"""] __a = ["""text"""] def __init__( self : Any , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : "Image" ): '''simple docstring''' return self.pre_processor(images=UpperCamelCase , return_tensors="""pt""" ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return self.model.generate(**UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : int ): '''simple docstring''' return self.pre_processor.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )[0].strip()
115
"""simple docstring""" import re def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' if len(re.findall("""[ATCG]""" , _UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
115
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Tuple = (EulerDiscreteScheduler,) _UpperCamelCase:int = 10 def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ ={ """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_SCREAMING_SNAKE_CASE ) return config def _snake_case ( self )-> Optional[int]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ =sample.to(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ =scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =output.prev_sample lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3 def _snake_case ( self )-> str: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ =sample.to(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ =scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =output.prev_sample lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1E-2 assert abs(result_mean.item() - 2.26_76E-06 ) < 1E-3 def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_ =sample.to(_SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: lowerCamelCase_ =scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =output.prev_sample lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3 def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE , use_karras_sigmas=_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_ =sample.to(_SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: lowerCamelCase_ =scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =output.prev_sample lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1E-3
49
import unittest from knapsack import greedy_knapsack as kp class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =[10, 20, 30, 40, 50, 60] lowerCamelCase_ =[2, 4, 6, 8, 10, 12] lowerCamelCase_ =100 self.assertEqual(kp.calc_profit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 210 ) def _snake_case ( self )-> Any: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """max_weight must greater than zero.""" ) def _snake_case ( self )-> Dict: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """Weight can not be negative.""" ) def _snake_case ( self )-> Dict: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """Profit can not be negative.""" ) def _snake_case ( self )-> Tuple: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """max_weight must greater than zero.""" ) def _snake_case ( self )-> Any: self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
49
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) def A (__A : Union[tf.Tensor, np.ndarray] ) -> List[int]: """simple docstring""" if isinstance(__A , np.ndarray ): return list(tensor.shape ) UpperCAmelCase_ = tf.shape(__A ) if tensor.shape == tf.TensorShape(__A ): return dynamic UpperCAmelCase_ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__A )] def A (__A : tf.Tensor , __A : Optional[int] = None , __A : Optional[str] = None ) -> tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=__A , name=__A ) def A (__A : Union[str, Any] , __A : Optional[int] , __A : str , __A : Optional[int]=1E-5 , __A : int=-1 ) -> Any: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__A , __A ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized UpperCAmelCase_ , UpperCAmelCase_ = tf.nn.moments(__A , axes=[axis] , keepdims=__A ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase_ = [1] * inputs.shape.rank UpperCAmelCase_ = shape_list(__A )[axis] UpperCAmelCase_ = tf.reshape(__A , __A ) UpperCAmelCase_ = tf.reshape(__A , __A ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase_ = tf.nn.batch_normalization( __A , __A , __A , offset=__A , scale=__A , variance_epsilon=__A , ) return outputs def A (__A : Any , __A : List[Any]=0 , __A : Tuple=-1 ) -> Optional[Any]: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase_ = tf.shape(__A ) UpperCAmelCase_ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase_ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__A , __A ) def A (__A : tf.Tensor ) -> tf.Tensor: """simple docstring""" if not isinstance(__A , tf.Tensor ): UpperCAmelCase_ = tf.convert_to_tensor(__A ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase_ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase_ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A (__A : tf.Tensor , __A : int , __A : str = "input_ids" ) -> None: """simple docstring""" tf.debugging.assert_less( __A , tf.cast(__A , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(__A )}) must be smaller than the embedding """ F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def A (__A : Tuple , __A : Dict , __A : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase_ = [x for x in data if len(__A ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) UpperCAmelCase_ = np.asarray(__A ) UpperCAmelCase_ = 1 UpperCAmelCase_ = np.array_split(__A , __A ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase_ = np.array_split(__A , __A ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__A ): UpperCAmelCase_ = chunk_data else: UpperCAmelCase_ = data def A (__A : List[Any] , __A : Any ) -> int: """simple docstring""" if name in group.attrs: UpperCAmelCase_ = [n.decode('''utf8''' ) if hasattr(__A , '''decode''' ) else n for n in group.attrs[name]] else: UpperCAmelCase_ = [] UpperCAmelCase_ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(__A , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def A (__A : List[Any] ) -> Any: """simple docstring""" def _expand_single_ad_tensor(__A : Optional[int] ): if isinstance(__A , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__A , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __A )
51
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" ,set() ) @pytest.fixture def UpperCAmelCase_ ( __lowerCamelCase : Any ): class a_ : def __init__( self : int , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = metric_id class a_ : __A = [MetricMock(_lowerCAmelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def lowercase__ ( self : Union[str, Any] ): """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" ,HfhMock() ) @pytest.mark.parametrize( "func, args" ,[(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : int ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Tuple ): if "tmp_path" in args: lowercase_ :Union[str, Any] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__lowerCamelCase ,match="https://huggingface.co/docs/evaluate" ): func(*__lowerCamelCase )
223
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _lowerCamelCase = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _lowerCamelCase = datasets.utils.logging.get_logger(__name__) class _snake_case (folder_based_builder.FolderBasedBuilderConfig): __A : bool =None __A : bool =None class _snake_case (folder_based_builder.FolderBasedBuilder): __A : Union[str, Any] =datasets.Audio() __A : Optional[int] ="audio" __A : Any =AudioFolderConfig __A : List[str] # definition at the bottom of the script __A : Optional[int] =AudioClassification(audio_column="audio" , label_column="label") _lowerCamelCase = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] _lowerCamelCase = AUDIO_EXTENSIONS
67
0
"""simple docstring""" import math import random def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : bool = False ) -> List[str]: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowercase_ = 0.02 def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> Optional[Any]: __a = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__SCREAMING_SNAKE_CASE ): # Forward propagation __a = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __a = (expected / 100) - layer_a # Error delta __a = layer_1_error * sigmoid_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input("Expected value: ")) lowercase_ = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
45
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowercase__( ): lowercase_ : Any = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) # Parse args lowercase_ , lowercase_ : Dict = parser.parse_known_args() if not hasattr(__SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) lowercase_ : int = parse_unknown_args(__SCREAMING_SNAKE_CASE ) # Run lowercase_ : List[Any] = args.func(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
213
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Tuple = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """mobilenet_v2""" def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Tuple=224 , UpperCamelCase__ : List[Any]=1.0 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=8 , UpperCamelCase__ : str=6 , UpperCamelCase__ : Optional[int]=32 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Union[str, Any]="relu6" , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[int]=0.8 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Tuple=0.001 , UpperCamelCase__ : int=255 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = depth_multiplier SCREAMING_SNAKE_CASE : List[Any] = depth_divisible_by SCREAMING_SNAKE_CASE : Dict = min_depth SCREAMING_SNAKE_CASE : List[str] = expand_ratio SCREAMING_SNAKE_CASE : List[str] = output_stride SCREAMING_SNAKE_CASE : Tuple = first_layer_is_expansion SCREAMING_SNAKE_CASE : List[Any] = finegrained_output SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = tf_padding SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : str = semantic_loss_ignore_index class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = version.parse("""1.11""") @property def __A ( self : Optional[int] ): '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __A ( self : Tuple ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __A ( self : Any ): '''simple docstring''' return 1E-4
258
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = 42 UpperCamelCase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
258
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : int = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class SCREAMING_SNAKE_CASE (A_ ): lowerCAmelCase = "speech_to_text_2" lowerCAmelCase = ["past_key_values"] lowerCAmelCase = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _UpperCAmelCase=1_0000 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=1024 , **_UpperCAmelCase , ): '''simple docstring''' __A : Dict = vocab_size __A : List[Any] = d_model __A : int = decoder_ffn_dim __A : int = decoder_layers __A : str = decoder_attention_heads __A : Tuple = dropout __A : str = attention_dropout __A : Union[str, Any] = activation_dropout __A : int = activation_function __A : int = init_std __A : Tuple = decoder_layerdrop __A : Dict = use_cache __A : str = decoder_layers __A : Any = scale_embedding # scale factor will be sqrt(d_model) if True __A : Optional[Any] = max_target_positions super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , **_snake_case , )
190
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) snake_case : Union[str, Any] = logging.getLogger(__name__) snake_case : Optional[int] = '''Hello world! cécé herlolip''' snake_case : List[str] = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict ): """simple docstring""" a :Optional[int] = BertAbsConfig( temp_dir='''.''' , finetune_bert=UpperCAmelCase_ , large=UpperCAmelCase_ , share_emb=UpperCAmelCase_ , use_bert_emb=UpperCAmelCase_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) a :Optional[int] = torch.load(UpperCAmelCase_ , lambda UpperCAmelCase_ , UpperCAmelCase_ : storage ) a :Tuple = AbsSummarizer(UpperCAmelCase_ , torch.device('''cpu''' ) , UpperCAmelCase_ ) original.eval() a :Optional[Any] = BertAbsSummarizer(UpperCAmelCase_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) a :Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs a :Tuple = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCAmelCase_ )) ) a :List[str] = torch.tensor(UpperCAmelCase_ ).unsqueeze(0 ) a :Any = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCAmelCase_ )) ) a :Dict = torch.tensor(UpperCAmelCase_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass a :Optional[Any] = encoder_input_ids a :Union[str, Any] = decoder_input_ids a :Optional[int] = None a :Any = None a :List[str] = None a :List[Any] = None a :Union[str, Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical a :Any = original(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )[0] a :List[str] = original.generator(UpperCAmelCase_ ) a :List[Any] = new_model( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )[0] a :Dict = new_model.generator(UpperCAmelCase_ ) a :List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(UpperCAmelCase_ ) ) a :int = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(UpperCAmelCase_ ) ) a :Dict = torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": snake_case : List[str] = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) snake_case : Any = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
281
from ...configuration_utils import PretrainedConfig class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'bert-generation' def __init__( self , _lowerCamelCase=5_0358 , _lowerCamelCase=1024 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=4096 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase="absolute" , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a :Optional[int] = vocab_size a :Tuple = hidden_size a :Any = num_hidden_layers a :Any = num_attention_heads a :List[Any] = hidden_act a :Tuple = intermediate_size a :Any = hidden_dropout_prob a :int = attention_probs_dropout_prob a :Dict = max_position_embeddings a :int = initializer_range a :Union[str, Any] = layer_norm_eps a :str = position_embedding_type a :int = use_cache
281
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _A ( __UpperCAmelCase ): def __init__( self : List[Any] , *__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = eval_examples __a = post_process_function def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Dataset] = None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : str = "eval" , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' __a = gen_kwargs.copy() __a = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''') is not None else self.args.generation_max_length ) __a = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''') is not None else self.args.generation_num_beams ) __a = gen_kwargs __a = self.eval_dataset if eval_dataset is None else eval_dataset __a = self.get_eval_dataloader(__SCREAMING_SNAKE_CASE) __a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = time.time() __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a = eval_loop( __SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __a = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.compute_metrics(__SCREAMING_SNAKE_CASE) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'{metric_key_prefix}_'): __a = metrics.pop(__SCREAMING_SNAKE_CASE) metrics.update(output.metrics) else: __a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__SCREAMING_SNAKE_CASE) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __SCREAMING_SNAKE_CASE) return metrics def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : str = "test" , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = gen_kwargs.copy() __a = self.get_test_dataloader(__SCREAMING_SNAKE_CASE) # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = time.time() __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a = eval_loop( __SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __a = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''predict''') __a = self.compute_metrics(__SCREAMING_SNAKE_CASE) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'{metric_key_prefix}_'): __a = metrics.pop(__SCREAMING_SNAKE_CASE) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__SCREAMING_SNAKE_CASE)
49
from __future__ import annotations from typing import Any def __snake_case ( _UpperCAmelCase ): if not postfix_notation: return 0 __a = {'''+''', '''-''', '''*''', '''/'''} __a = [] for token in postfix_notation: if token in operations: __a , __a = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_UpperCAmelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
49
1
"""simple docstring""" def _snake_case ( lowercase__ : list , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = 0 ) -> int: '''simple docstring''' lowerCAmelCase_ :List[str] = right or len(lowercase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase__ , lowercase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __UpperCAmelCase = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) __UpperCAmelCase = dataset.iloc[:, 1:2].values __UpperCAmelCase = dataset.iloc[:, 2].values __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split(X, y, test_size=0.2, random_state=0) __UpperCAmelCase = PolynomialFeatures(degree=4) __UpperCAmelCase = poly_reg.fit_transform(X) __UpperCAmelCase = LinearRegression() pol_reg.fit(X_poly, y) def _snake_case ( ) -> str: '''simple docstring''' plt.scatter(lowercase__ , lowercase__ , color="""red""" ) plt.plot(lowercase__ , pol_reg.predict(poly_reg.fit_transform(lowercase__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
1
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : Any = 16 _lowerCamelCase : Optional[Any] = 32 def __lowerCamelCase ( A__ , A__ = 16 ) -> Optional[Any]: """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( UpperCamelCase__ , padding='longest' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase : Tuple = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase__ ) == "1": UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config['lr'] UpperCamelCase = int(config['num_epochs'] ) UpperCamelCase = int(config['seed'] ) UpperCamelCase = int(config['batch_size'] ) set_seed(UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCamelCase = os.path.split(UpperCamelCase__ )[-1].split('.' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCamelCase = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**UpperCamelCase__ ) UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**UpperCamelCase__ ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(UpperCamelCase__ ), 'epoch': epoch, } , step=UpperCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCamelCase__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) UpperCamelCase = parser.parse_args() UpperCamelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
28
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __UpperCAmelCase =logging.get_logger(__name__) def __lowerCAmelCase ( UpperCamelCase__=None , UpperCamelCase__=None ) -> int: return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class a__ : lowerCamelCase : List[str] =list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) lowerCamelCase : List[int] =list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) lowerCamelCase : List[int] =list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} ) lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) lowerCamelCase : str =field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) lowerCamelCase : str =field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) lowerCamelCase : str =field( default=F'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) lowerCamelCase : str =field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) lowerCamelCase : str =field( default=F'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) lowerCamelCase : str =field( default=F'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) lowerCamelCase : int =field(default=3 , metadata={"help": "Times an experiment will be run."} ) lowerCamelCase : bool =field( default=UpperCAmelCase__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , a , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
67
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__a , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__a , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__a ) return parser.parse_args() def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = parse_args() # Import training_script as a module. snake_case_ : Any = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : str = script_fpath.stem snake_case_ : Optional[Any] = importlib.import_module(__a ) # Patch sys.argv snake_case_ : Union[str, Any] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
88
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = u for i in range(1 , __a ): snake_case_ : Optional[Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = int(input('enter the numbers of values: ' ) ) snake_case_ : list[list[float]] = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) snake_case_ : str = 0 print('enter the values of parameters in a list: ' ) snake_case_ : int = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): snake_case_ : Union[str, Any] = float(input() ) snake_case_ : int = int(input('enter the value to interpolate: ' ) ) snake_case_ : List[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): snake_case_ : int = y[j + 1][i - 1] - y[j][i - 1] snake_case_ : str = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
88
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ): A = params A = np.array(_lowerCAmelCase ) A = np.array([len(_lowerCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__(self : List[str] , _lowerCAmelCase : int ): return (self.token_ids[index], self.lengths[index]) def __len__(self : str ): return len(self.lengths ) def A (self : Tuple ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def A (self : List[Any] ): A = self.params.max_model_input_size A = self.lengths > max_len logger.info(F"""Splitting {sum(_lowerCAmelCase )} too long sequences.""" ) def divide_chunks(_lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): return [l[i : i + n] for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase )] A = [] A = [] if self.params.mlm: A , A = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: A , A = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: A = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: A = np.insert(_lowerCAmelCase , 0 , _lowerCAmelCase ) if sub_s[-1] != sep_id: A = np.insert(_lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) assert len(_lowerCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_lowerCAmelCase ) new_tok_ids.extend(_lowerCAmelCase ) new_lengths.extend([len(_lowerCAmelCase ) for l in sub_seqs] ) A = np.array(_lowerCAmelCase ) A = np.array(_lowerCAmelCase ) def A (self : str ): A = len(self ) A = self.lengths > 11 A = self.token_ids[indices] A = self.lengths[indices] A = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def A (self : int ): if "unk_token" not in self.params.special_tok_ids: return else: A = self.params.special_tok_ids["""unk_token"""] A = len(self ) A = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) A = (unk_occs / self.lengths) < 0.5 A = self.token_ids[indices] A = self.lengths[indices] A = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def A (self : Dict ): if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def A (self : Dict , _lowerCAmelCase : List[str] ): A = [t[0] for t in batch] A = [t[1] for t in batch] assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) # Max for paddings A = max(_lowerCAmelCase ) # Pad token ids if self.params.mlm: A = self.params.special_tok_ids["""pad_token"""] else: A = self.params.special_tok_ids["""unk_token"""] A = [list(t.astype(_lowerCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_lowerCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_lowerCAmelCase ) assert all(len(_lowerCAmelCase ) == max_seq_len_ for t in tk_ ) A = torch.tensor(tk_ ) # (bs, max_seq_len_) A = torch.tensor(_lowerCAmelCase ) # (bs) return tk_t, lg_t
258
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
258
1
import requests from bsa import BeautifulSoup def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = "https://www.worldometers.info/coronavirus" )-> dict: """simple docstring""" UpperCamelCase_ = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , "html.parser" ) UpperCamelCase_ = soup.findAll("h1" ) UpperCamelCase_ = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
60
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __magic_name__ : def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=4 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.1 , _lowercase=True , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , )-> str: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_multiple_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = weight_tying UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self )-> int: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase ) UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase )-> List[str]: UpperCamelCase_ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) UpperCamelCase_ = output_from_no_past["hidden_states"][0] UpperCamelCase_ = model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCamelCase_ :str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCamelCase_ :int = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCamelCase_ :int = False UpperCamelCase_ :Dict = False UpperCamelCase_ :List[str] = False UpperCamelCase_ :int = False def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = GPTNeoXJapaneseModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: # This regression test was failing with PyTorch < 1.3 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_ = None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = "abeja/gpt-neox-japanese-2.7b" UpperCamelCase_ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] UpperCamelCase_ = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] UpperCamelCase_ = GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) UpperCamelCase_ = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) UpperCamelCase_ = [] for prompt in prompts: UpperCamelCase_ = tokenizer(_lowercase , return_tensors="pt" ).input_ids UpperCamelCase_ = model.generate(_lowercase , max_length=50 ) UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
60
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Any = {} class _snake_case ( snake_case ): UpperCamelCase__ = 'llama' UpperCamelCase__ = ['past_key_values'] def __init__( self , _a=32_000 , _a=4_096 , _a=11_008 , _a=32 , _a=32 , _a=None , _a="silu" , _a=2_048 , _a=0.02 , _a=1e-6 , _a=True , _a=0 , _a=1 , _a=2 , _a=1 , _a=False , _a=None , **_a , ): __magic_name__ : Optional[Any] = vocab_size __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Dict = hidden_size __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __magic_name__ : List[str] = num_attention_heads __magic_name__ : Union[str, Any] = num_key_value_heads __magic_name__ : str = hidden_act __magic_name__ : List[str] = initializer_range __magic_name__ : List[str] = rms_norm_eps __magic_name__ : Optional[int] = pretraining_tp __magic_name__ : Any = use_cache __magic_name__ : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a , ) def SCREAMING_SNAKE_CASE ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) __magic_name__ : Optional[Any] = self.rope_scaling.get("type" , _a ) __magic_name__ : Dict = self.rope_scaling.get("factor" , _a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_a , _a ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
281
def lowerCAmelCase_ ( _snake_case : list[list[int | float]] ) -> int: '''simple docstring''' __magic_name__ : Any = len(_snake_case ) __magic_name__ : Optional[Any] = len(matrix[0] ) __magic_name__ : Union[str, Any] = min(_snake_case , _snake_case ) for row in range(_snake_case ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _snake_case ): __magic_name__ : Optional[Any] = matrix[col][row] / matrix[row][row] for i in range(_snake_case , _snake_case ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __magic_name__ : str = True for i in range(row + 1 , _snake_case ): if matrix[i][row] != 0: __magic_name__ , __magic_name__ : List[str] = matrix[i], matrix[row] __magic_name__ : Union[str, Any] = False break if reduce: rank -= 1 for i in range(_snake_case ): __magic_name__ : Any = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
281
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _lowerCamelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCamelCase : Tuple = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : List[Any] ): A = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) A = self.diffusers_dir shutil.copy( os.path.join(_lowerCAmelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def A (self : str ): A = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def A (self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : int=None ): A = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: A = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) A = black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase ) A = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(_lowerCAmelCase , """w""" , newline="""\n""" ) as f: f.write(_lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCAmelCase ) with open(_lowerCAmelCase , """r""" ) as f: self.assertTrue(f.read() , _lowerCAmelCase ) def A (self : Union[str, Any] ): A = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def A (self : Tuple ): # Base copy consistency self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , _lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , _lowerCAmelCase ) , ) # Copy consistency with a really long name A = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("""Bert""" , _lowerCAmelCase , _lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , _lowerCAmelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , _lowerCAmelCase ) , )
337
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
1
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( UpperCamelCase__ , unittest.TestCase ): A__ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def A ( self : List[str] , _a : str=0 ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.random.RandomState(__a ) _SCREAMING_SNAKE_CASE ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def A ( self : Dict ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**__a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Any ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**__a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Tuple ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**__a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**__a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Tuple ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**__a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Dict ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _SCREAMING_SNAKE_CASE =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**__a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Dict ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =3 * [inputs['prompt']] # forward _SCREAMING_SNAKE_CASE =pipe(**__a ) _SCREAMING_SNAKE_CASE =output.images[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =3 * [inputs.pop('prompt' )] _SCREAMING_SNAKE_CASE =pipe.tokenizer( __a , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=__a , return_tensors='np' , ) _SCREAMING_SNAKE_CASE =text_inputs['input_ids'] _SCREAMING_SNAKE_CASE =pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _SCREAMING_SNAKE_CASE =prompt_embeds # forward _SCREAMING_SNAKE_CASE =pipe(**__a ) _SCREAMING_SNAKE_CASE =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def A ( self : Any ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =3 * ['this is a negative prompt'] _SCREAMING_SNAKE_CASE =negative_prompt _SCREAMING_SNAKE_CASE =3 * [inputs['prompt']] # forward _SCREAMING_SNAKE_CASE =pipe(**__a ) _SCREAMING_SNAKE_CASE =output.images[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =3 * [inputs.pop('prompt' )] _SCREAMING_SNAKE_CASE =[] for p in [prompt, negative_prompt]: _SCREAMING_SNAKE_CASE =pipe.tokenizer( __a , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=__a , return_tensors='np' , ) _SCREAMING_SNAKE_CASE =text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =embeds # forward _SCREAMING_SNAKE_CASE =pipe(**__a ) _SCREAMING_SNAKE_CASE =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): @property def A ( self : List[str] ) -> Optional[int]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =ort.SessionOptions() _SCREAMING_SNAKE_CASE =False return options def A ( self : str ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE ='A painting of a squirrel eating a burger' np.random.seed(0 ) _SCREAMING_SNAKE_CASE =sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='np' ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE =np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Tuple ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE ='open neural network exchange' _SCREAMING_SNAKE_CASE =np.random.RandomState(0 ) _SCREAMING_SNAKE_CASE =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type='np' ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE =np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE ='open neural network exchange' _SCREAMING_SNAKE_CASE =np.random.RandomState(0 ) _SCREAMING_SNAKE_CASE =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type='np' ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE =np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =0 def test_callback_fn(_a : int , _a : int , _a : np.ndarray ) -> None: _SCREAMING_SNAKE_CASE =True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _SCREAMING_SNAKE_CASE =latents[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _SCREAMING_SNAKE_CASE =latents[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) _SCREAMING_SNAKE_CASE ='Andromeda galaxy in a bottle' _SCREAMING_SNAKE_CASE =np.random.RandomState(0 ) pipe( prompt=__a , num_inference_steps=5 , guidance_scale=7.5 , generator=__a , callback=__a , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(__a , __a ) assert pipe.safety_checker is None _SCREAMING_SNAKE_CASE =pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) _SCREAMING_SNAKE_CASE =OnnxStableDiffusionPipeline.from_pretrained(__a ) # sanity check that the pipeline still works assert pipe.safety_checker is None _SCREAMING_SNAKE_CASE =pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
47
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
0
from typing import List import numpy as np def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= {key: len(lowercase__ ) for key, value in gen_kwargs.items() if isinstance(lowercase__ , lowercase__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) __lowercase= max(lists_lengths.values() , default=0 ) return max(1 , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[range]: '''simple docstring''' __lowercase= [] for group_idx in range(lowercase__ ): __lowercase= num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __lowercase= shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __lowercase= range(lowercase__ , start + num_shards_to_add ) shards_indices_per_group.append(lowercase__ ) return shards_indices_per_group def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[dict]: '''simple docstring''' __lowercase= _number_of_shards_in_gen_kwargs(lowercase__ ) if num_shards == 1: return [dict(lowercase__ )] else: __lowercase= _distribute_shards(num_shards=lowercase__ , max_num_jobs=lowercase__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowercase__ , lowercase__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowercase__ ) ) ] def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowercase__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _lowerCamelCase( lowercase__ , lowercase__ ) -> dict: '''simple docstring''' __lowercase= {len(lowercase__ ) for value in gen_kwargs.values() if isinstance(lowercase__ , lowercase__ )} __lowercase= {} for size in list_sizes: __lowercase= list(range(lowercase__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __lowercase= dict(lowercase__ ) for key, value in shuffled_kwargs.items(): if isinstance(lowercase__ , lowercase__ ): __lowercase= [value[i] for i in indices_per_size[len(lowercase__ )]] return shuffled_kwargs
368
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """timm_backbone""" def __init__( self : Dict , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Any=3 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple=None , **UpperCamelCase__ : Any , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) __magic_name__ = backbone __magic_name__ = num_channels __magic_name__ = features_only __magic_name__ = use_pretrained_backbone __magic_name__ = True __magic_name__ = out_indices if out_indices is not None else (-1,)
88
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( A_ ): '''simple docstring''' __magic_name__ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(A_, A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ , __magic_name__ = emb.weight.shape __magic_name__ = nn.Linear(A_, A_, bias=A_ ) __magic_name__ = emb.weight.data return lin_layer def a__ ( A_ ): '''simple docstring''' __magic_name__ = torch.load(A_, map_location="""cpu""" ) __magic_name__ = Namespace(**checkpoint["""cfg"""]["""model"""] ) __magic_name__ = checkpoint["""model"""] remove_ignore_keys_(A_ ) __magic_name__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] __magic_name__ = {key.replace("""decoder""", """model""" ): val for key, val in state_dict.items()} __magic_name__ = XGLMConfig( vocab_size=A_, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="""gelu""", scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) __magic_name__ = XGLMForCausalLM(A_ ) __magic_name__ = model.load_state_dict(A_, strict=A_ ) print(A_ ) __magic_name__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
88
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : int = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[str] = '''poolformer''' def __init__( self :Optional[int] ,__snake_case :Tuple=3 ,__snake_case :Any=16 ,__snake_case :str=16 ,__snake_case :Dict=3 ,__snake_case :Optional[int]=4.0 ,__snake_case :int=[2, 2, 6, 2] ,__snake_case :int=[64, 1_28, 3_20, 5_12] ,__snake_case :Any=[7, 3, 3, 3] ,__snake_case :str=[4, 2, 2, 2] ,__snake_case :Optional[int]=[2, 1, 1, 1] ,__snake_case :List[Any]=4 ,__snake_case :List[str]=0.0 ,__snake_case :Optional[Any]="gelu" ,__snake_case :Tuple=True ,__snake_case :Any=1E-5 ,__snake_case :List[str]=0.02 ,**__snake_case :Any ,) -> Union[str, Any]: a__ = num_channels a__ = patch_size a__ = stride a__ = padding a__ = pool_size a__ = hidden_sizes a__ = mlp_ratio a__ = depths a__ = patch_sizes a__ = strides a__ = num_encoder_blocks a__ = drop_path_rate a__ = hidden_act a__ = use_layer_scale a__ = layer_scale_init_value a__ = initializer_range super().__init__(**__snake_case ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = version.parse('''1.11''' ) @property def lowerCamelCase__( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__( self :Any ) -> float: return 2E-3
109
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = MvpTokenizer UpperCAmelCase__ : List[Any] = MvpTokenizerFast UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Tuple = filter_roberta_detectors def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: super().setUp() a__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a__ = {'unk_token': '<unk>'} a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowerCamelCase__( self :Optional[Any] ,**__snake_case :Tuple ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__snake_case ) def lowerCamelCase__( self :Optional[Any] ,**__snake_case :Dict ) -> Dict: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ) -> List[Any]: return "lower newer", "lower newer" @cached_property def lowerCamelCase__( self :Tuple ) -> Optional[int]: return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def lowerCamelCase__( self :Optional[int] ) -> str: return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def lowerCamelCase__( self :Optional[int] ) -> str: a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a__ = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer(__snake_case ,max_length=len(__snake_case ) ,padding=__snake_case ,return_tensors='pt' ) self.assertIsInstance(__snake_case ,__snake_case ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) a__ = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case ,__snake_case ) # Test that special tokens are reset @require_torch def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer(__snake_case ,padding=__snake_case ,return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' ,__snake_case ) self.assertIn('attention_mask' ,__snake_case ) self.assertNotIn('labels' ,__snake_case ) self.assertNotIn('decoder_attention_mask' ,__snake_case ) @require_torch def lowerCamelCase__( self :Any ) -> int: a__ = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer(text_target=__snake_case ,max_length=32 ,padding='max_length' ,return_tensors='pt' ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) @require_torch def lowerCamelCase__( self :int ) -> Union[str, Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] ,padding=__snake_case ,truncation=__snake_case ,return_tensors='pt' ) self.assertIsInstance(__snake_case ,__snake_case ) self.assertEqual(batch.input_ids.shape ,(2, 10_24) ) @require_torch def lowerCamelCase__( self :List[Any] ) -> Any: a__ = ['A long paragraph for summarization.'] a__ = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer(__snake_case ,text_target=__snake_case ,return_tensors='pt' ) a__ = inputs['input_ids'] a__ = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass def lowerCamelCase__( self :Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a__ = self.rust_tokenizer_class.from_pretrained(__snake_case ,**__snake_case ) a__ = self.tokenizer_class.from_pretrained(__snake_case ,**__snake_case ) a__ = 'A, <mask> AllenNLP sentence.' a__ = tokenizer_r.encode_plus(__snake_case ,add_special_tokens=__snake_case ,return_token_type_ids=__snake_case ) a__ = tokenizer_p.encode_plus(__snake_case ,add_special_tokens=__snake_case ,return_token_type_ids=__snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) a__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) a__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __snake_case ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __snake_case ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
109
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Optional[int] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case__ : List[Any] = '''bart''' snake_case__ : Union[str, Any] = True @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): if LOAD_DENSE_INDEX: lowerCAmelCase : Dict = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) lowerCAmelCase : List[str] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) lowerCAmelCase : Optional[int] = qar_model.eval() else: lowerCAmelCase, lowerCAmelCase : int = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) lowerCAmelCase : Optional[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) lowerCAmelCase : Any = sas_model.eval() else: lowerCAmelCase, lowerCAmelCase : Any = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): if LOAD_DENSE_INDEX: lowerCAmelCase : List[str] = faiss.StandardGpuResources() lowerCAmelCase : Optional[Any] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] lowerCAmelCase : List[Any] = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) lowerCAmelCase : Union[str, Any] = faiss.IndexFlatIP(128 ) lowerCAmelCase : int = faiss.index_cpu_to_gpu(_snake_case , 1 , _snake_case ) wikiaab_gpu_index_flat.add(_snake_case ) # TODO fix for larger GPU else: lowerCAmelCase, lowerCAmelCase : List[str] = (None, None) lowerCAmelCase : int = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): lowerCAmelCase : List[str] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) lowerCAmelCase : Any = elia['''train_eli5'''] lowerCAmelCase : int = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) lowerCAmelCase : Tuple = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_snake_case ) return (elia_train, eli5_train_q_index) snake_case__ , snake_case__ , snake_case__ : Optional[Any] = load_indexes() snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = load_models() snake_case__ , snake_case__ : Union[str, Any] = load_train_data() def _snake_case ( _snake_case : int , _snake_case : Dict=10 ): lowerCAmelCase : Tuple = embed_questions_for_retrieval([question] , _snake_case , _snake_case ) lowerCAmelCase, lowerCAmelCase : Any = eli5_train_q_index.search(_snake_case , _snake_case ) lowerCAmelCase : str = [elia_train[int(_snake_case )] for i in I[0]] return nn_examples def _snake_case ( _snake_case : List[Any] , _snake_case : str="wiki40b" , _snake_case : List[str]="dense" , _snake_case : Union[str, Any]=10 ): if source == "none": lowerCAmelCase, lowerCAmelCase : List[str] = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase, lowerCAmelCase : Tuple = query_qa_dense_index( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: lowerCAmelCase, lowerCAmelCase : List[str] = query_es_index( _snake_case , _snake_case , index_name='''english_wiki40b_snippets_100w''' , n_results=_snake_case , ) lowerCAmelCase : int = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] lowerCAmelCase : Any = '''question: {} context: {}'''.format(_snake_case , _snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _snake_case : None), } ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : Dict , _snake_case : List[Any]=64 , _snake_case : int=256 , _snake_case : List[str]=False , _snake_case : Any=2 , _snake_case : List[Any]=0.95 , _snake_case : Tuple=0.8 ): with torch.no_grad(): lowerCAmelCase : Union[str, Any] = qa_sas_generate( _snake_case , _snake_case , _snake_case , num_answers=1 , num_beams=_snake_case , min_len=_snake_case , max_len=_snake_case , do_sample=_snake_case , temp=_snake_case , top_p=_snake_case , top_k=_snake_case , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar snake_case__ : Dict = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' snake_case__ : Tuple = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case__ : List[Any] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) snake_case__ : str = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] snake_case__ : List[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: snake_case__ : Tuple = st.sidebar.selectbox( '''''', action_list, index=3, ) snake_case__ : List[Any] = action_list.index(action_st) snake_case__ : List[str] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) snake_case__ : List[Any] = show_type == '''Show full text of passages''' else: snake_case__ : Tuple = 3 snake_case__ : List[Any] = True snake_case__ : List[str] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: snake_case__ : str = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) snake_case__ : Union[str, Any] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) snake_case__ : Union[str, Any] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: snake_case__ : List[Any] = '''wiki40b''' snake_case__ : Union[str, Any] = '''dense''' snake_case__ : int = '''beam''' snake_case__ : str = 2 snake_case__ : Dict = 64 snake_case__ : List[str] = 256 snake_case__ : Dict = None snake_case__ : List[str] = None snake_case__ : List[str] = st.sidebar.checkbox('''Generation options''') if generate_options: snake_case__ : List[Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) snake_case__ : List[str] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) snake_case__ : List[str] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) snake_case__ : Optional[Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": snake_case__ : Dict = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case__ : int = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) snake_case__ : int = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) snake_case__ : List[str] = None # start main text snake_case__ : str = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] snake_case__ : Union[str, Any] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case__ : Optional[Any] = st.text_input('''Enter your question here:''', '''''') else: snake_case__ : int = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": snake_case__ , snake_case__ : str = make_support(question, source=wiki_source, method='''dense''', n_results=10) snake_case__ , snake_case__ : Tuple = make_support(question, source=wiki_source, method='''sparse''', n_results=10) snake_case__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case__ : List[str] = support_list[:10] snake_case__ : int = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: snake_case__ , snake_case__ : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case__ , snake_case__ : List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): snake_case__ : int = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) snake_case__ : List[Any] = res[1].strip() if sec_titles == "": snake_case__ : Tuple = '''[{}]({})'''.format(res[0], wiki_url) else: snake_case__ : Optional[int] = sec_titles.split(''' & ''') snake_case__ : Optional[Any] = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: snake_case__ : int = find_nearest_training(question) snake_case__ : List[Any] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) snake_case__ : Dict = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) snake_case__ : Any = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
60
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : int = KandinskyVaaInpaintPipeline _SCREAMING_SNAKE_CASE : int = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _SCREAMING_SNAKE_CASE : Optional[Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _SCREAMING_SNAKE_CASE : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _SCREAMING_SNAKE_CASE : Optional[Any] = False @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 1_00 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ = UNetaDConditionModel(**_UpperCamelCase ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=_UpperCamelCase , ) lowerCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(_UpperCamelCase ).startswith('mps' ): lowerCAmelCase__ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase__ = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**_UpperCamelCase ) lowerCAmelCase__ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase__ = np.ones((7_68, 7_68) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 'a hat' lowerCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) lowerCAmelCase__ = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase__ = pipeline( image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
122
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 2_55 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) lowerCAmelCase__ = size if size is not None else {'shortest_edge': 2_56} lowerCAmelCase__ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) lowerCAmelCase__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowerCAmelCase__ = get_size_dict(_UpperCamelCase ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCAmelCase__ = get_resize_output_image_size(_UpperCamelCase , size=size['shortest_edge'] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(_UpperCamelCase ) return center_crop(_UpperCamelCase , size=(size['height'], size['width']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(_UpperCamelCase ) lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] lowerCAmelCase__ = {'pixel_values': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
122
1
import os import re import shutil import sys import tempfile import unittest import black __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __a = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowercase : Any = self.diffusers_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __lowerCamelCase ( self ): lowercase : List[Any] = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowercase : List[Any] = black.format_str(SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , newline='''\n''' ) as f: f.write(SCREAMING_SNAKE_CASE__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: self.assertTrue(f.read() , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Tuple = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , SCREAMING_SNAKE_CASE__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with a really long name lowercase : List[Any] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , SCREAMING_SNAKE_CASE__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE__ ) , )
337
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a = logging.get_logger(__name__) __a = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'deta' A : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=900 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=300 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.25 , **SCREAMING_SNAKE_CASE__ , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = backbone_config.pop('''model_type''' ) lowercase : Any = CONFIG_MAPPING[backbone_model_type] lowercase : List[Any] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = backbone_config lowercase : Union[str, Any] = num_queries lowercase : Any = max_position_embeddings lowercase : int = d_model lowercase : Any = encoder_ffn_dim lowercase : Optional[int] = encoder_layers lowercase : Tuple = encoder_attention_heads lowercase : Optional[Any] = decoder_ffn_dim lowercase : Optional[int] = decoder_layers lowercase : int = decoder_attention_heads lowercase : Any = dropout lowercase : int = attention_dropout lowercase : Dict = activation_dropout lowercase : int = activation_function lowercase : Dict = init_std lowercase : List[str] = init_xavier_std lowercase : Optional[Any] = encoder_layerdrop lowercase : Tuple = auxiliary_loss lowercase : Tuple = position_embedding_type # deformable attributes lowercase : List[str] = num_feature_levels lowercase : Tuple = encoder_n_points lowercase : Optional[int] = decoder_n_points lowercase : Tuple = two_stage lowercase : Optional[Any] = two_stage_num_proposals lowercase : Union[str, Any] = with_box_refine lowercase : Any = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase : Optional[Any] = class_cost lowercase : str = bbox_cost lowercase : List[Any] = giou_cost # Loss coefficients lowercase : Tuple = mask_loss_coefficient lowercase : Any = dice_loss_coefficient lowercase : Dict = bbox_loss_coefficient lowercase : Tuple = giou_loss_coefficient lowercase : Union[str, Any] = eos_coefficient lowercase : Tuple = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return self.encoder_attention_heads @property def __lowerCamelCase ( self ): return self.d_model def __lowerCamelCase ( self ): lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Any = self.backbone_config.to_dict() lowercase : List[str] = self.__class__.model_type return output
337
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Dict ) -> List[str]: torch.manual_seed(0 ) __magic_name__ : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCAmelCase ( self : str ) -> Any: __magic_name__ : Union[str, Any] = self.dummy_uncond_unet __magic_name__ : str = KarrasVeScheduler() __magic_name__ : List[Any] = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Dict = torch.manual_seed(0 ) __magic_name__ : int = pipe(num_inference_steps=2 , generator=_A , output_type='numpy' ).images __magic_name__ : Any = torch.manual_seed(0 ) __magic_name__ : str = pipe(num_inference_steps=2 , generator=_A , output_type='numpy' , return_dict=_A )[0] __magic_name__ : int = image[0, -3:, -3:, -1] __magic_name__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) -> str: __magic_name__ : Optional[int] = 'google/ncsnpp-celebahq-256' __magic_name__ : List[str] = UNetaDModel.from_pretrained(_A ) __magic_name__ : int = KarrasVeScheduler() __magic_name__ : str = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Any = torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = pipe(num_inference_steps=20 , generator=_A , output_type='numpy' ).images __magic_name__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __magic_name__ : int = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
275
'''simple docstring''' lowerCAmelCase :Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase :Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
275
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __snake_case = logging.get_logger("""transformers.models.speecht5""") def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE__ = checkpoint['''input_conv.weight_g'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_conv.weight_v'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE__ = checkpoint[F'upsamples.{i}.1.weight_g'] SCREAMING_SNAKE_CASE__ = checkpoint[F'upsamples.{i}.1.weight_v'] SCREAMING_SNAKE_CASE__ = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] SCREAMING_SNAKE_CASE__ = checkpoint['''output_conv.1.weight_g'''] SCREAMING_SNAKE_CASE__ = checkpoint['''output_conv.1.weight_v'''] SCREAMING_SNAKE_CASE__ = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , ) -> Dict: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ = SpeechTaHifiGanConfig.from_pretrained(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE__ = SpeechTaHifiGan(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase_ ) load_weights(orig_checkpoint['model']['generator'] , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = np.load(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE__ = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase_ ).float() SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase_ ).float() model.save_pretrained(UpperCamelCase_ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
176
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A : Optional[Any] = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: A : str = json.load(f) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : str , SCREAMING_SNAKE_CASE : Optional[int]): return FSMTTokenizer.from_pretrained(SCREAMING_SNAKE_CASE) def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple): _A : Union[str, Any] = FSMTForConditionalGeneration.from_pretrained(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ]) @slow def A ( self : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _A : int = F'facebook/wmt19-{pair}' _A : Dict = self.get_tokenizer(SCREAMING_SNAKE_CASE) _A : List[str] = self.get_model(SCREAMING_SNAKE_CASE) _A : Optional[int] = bleu_data[pair]['src'] _A : Optional[int] = bleu_data[pair]['tgt'] _A : List[str] = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE , padding='longest').to(SCREAMING_SNAKE_CASE) _A : Optional[int] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _A : List[Any] = tokenizer.batch_decode( SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE) _A : Tuple = calculate_bleu(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) print(SCREAMING_SNAKE_CASE) self.assertGreaterEqual(scores['bleu'] , SCREAMING_SNAKE_CASE)
354
'''simple docstring''' import string import numpy def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ): return b if a == 0 else greatest_common_divisor(b % a ,lowerCamelCase ) class __lowerCamelCase : """simple docstring""" a = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a = numpy.vectorize(lambda a_ : x % 36 ) a = numpy.vectorize(a_ ) def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : numpy.ndarray): _A : Union[str, Any] = self.modulus(SCREAMING_SNAKE_CASE) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _A : Optional[int] = encrypt_key.shape[0] def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): return self.key_string.index(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): return self.key_string[round(SCREAMING_SNAKE_CASE)] def A ( self : List[Any]): _A : Optional[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : int = det % len(self.key_string) _A : str = len(self.key_string) if greatest_common_divisor(SCREAMING_SNAKE_CASE , len(self.key_string)) != 1: _A : Optional[int] = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(SCREAMING_SNAKE_CASE) def A ( self : int , SCREAMING_SNAKE_CASE : str): _A : List[Any] = [char for char in text.upper() if char in self.key_string] _A : List[str] = chars[-1] while len(SCREAMING_SNAKE_CASE) % self.break_key != 0: chars.append(SCREAMING_SNAKE_CASE) return "".join(SCREAMING_SNAKE_CASE) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str): _A : Optional[int] = self.process_text(text.upper()) _A : List[str] = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[Any] = text[i : i + self.break_key] _A : Optional[int] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : List[str] = self.modulus(self.encrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[ 0 ] _A : str = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def A ( self : Union[str, Any]): _A : List[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : Optional[int] = det % len(self.key_string) _A : List[str] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: _A : Union[str, Any] = i break _A : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(SCREAMING_SNAKE_CASE)) def A ( self : Any , SCREAMING_SNAKE_CASE : str): _A : List[str] = self.make_decrypt_key() _A : Dict = self.process_text(text.upper()) _A : str = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[int] = text[i : i + self.break_key] _A : Union[str, Any] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : Optional[int] = self.modulus(decrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[0] _A : Tuple = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): _A : List[Any] = int(input('Enter the order of the encryption key: ' ) ) _A : List[str] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowerCamelCase ): _A : str = [int(lowerCamelCase ) for x in input().split()] hill_matrix.append(lowerCamelCase ) _A : Dict = HillCipher(numpy.array(lowerCamelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _A : List[str] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _A : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowerCamelCase ) ) elif option == "2": _A : int = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
227
0
"""simple docstring""" import re def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Dict = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(UpperCamelCase , UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
109
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A: List[str] = logging.get_logger(__name__) A: Dict = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Any = 'conditional_detr' __lowerCAmelCase : Union[str, Any] = ['past_key_values'] __lowerCAmelCase : int = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.25 , **_SCREAMING_SNAKE_CASE , ) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Tuple = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : Union[str, Any] = config_class.from_dict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = use_timm_backbone UpperCAmelCase : Optional[int] = backbone_config UpperCAmelCase : List[str] = num_channels UpperCAmelCase : Any = num_queries UpperCAmelCase : Union[str, Any] = d_model UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : Union[str, Any] = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Any = decoder_layers UpperCAmelCase : Optional[int] = decoder_attention_heads UpperCAmelCase : Optional[int] = dropout UpperCAmelCase : Dict = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Any = activation_function UpperCAmelCase : Any = init_std UpperCAmelCase : Tuple = init_xavier_std UpperCAmelCase : Optional[int] = encoder_layerdrop UpperCAmelCase : Any = decoder_layerdrop UpperCAmelCase : Any = encoder_layers UpperCAmelCase : Optional[Any] = auxiliary_loss UpperCAmelCase : List[Any] = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[Any] = use_pretrained_backbone UpperCAmelCase : Dict = dilation # Hungarian matcher UpperCAmelCase : Optional[int] = class_cost UpperCAmelCase : List[str] = bbox_cost UpperCAmelCase : List[str] = giou_cost # Loss coefficients UpperCAmelCase : List[Any] = mask_loss_coefficient UpperCAmelCase : List[str] = dice_loss_coefficient UpperCAmelCase : Optional[int] = cls_loss_coefficient UpperCAmelCase : Union[str, Any] = bbox_loss_coefficient UpperCAmelCase : Union[str, Any] = giou_loss_coefficient UpperCAmelCase : int = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.d_model def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCAmelCase : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase : Dict = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return 12
109
1
from math import pi, sqrt, tan def UpperCamelCase__( UpperCamelCase__ : float )->float: if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase__( UpperCamelCase__ : float )->float: if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCamelCase__( UpperCamelCase__ : float )->float: if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) A__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(UpperCamelCase__ , 2 ) * torus_radius * tube_radius def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCamelCase__( UpperCamelCase__ : float )->float: if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) A__ = (sidea + sidea + sidea) / 2 A__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCamelCase__( UpperCamelCase__ : float )->float: if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float )->float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase__( UpperCamelCase__ : int , UpperCamelCase__ : float )->float: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('\nSurface Areas of various geometric shapes: \n') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
39
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a__: str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a__: list[int] = [ord(letter) for letter in string.ascii_lowercase] a__: set[int] = {ord(char) for char in VALID_CHARS} a__: list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCamelCase__( UpperCamelCase__ : list[int] , UpperCamelCase__ : tuple[int, ...] )->str | None: A__ = "" A__ = 42 A__ = 42 A__ = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase__ ) , UpperCamelCase__ ): A__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase__ ) return decoded def UpperCamelCase__( UpperCamelCase__ : list[int] )->list[str]: A__ = [] for key in product(UpperCamelCase__ , repeat=3 ): A__ = try_key(UpperCamelCase__ , UpperCamelCase__ ) if encoded is not None: possibles.append(UpperCamelCase__ ) return possibles def UpperCamelCase__( UpperCamelCase__ : list[str] , UpperCamelCase__ : str )->list[str]: return [possible for possible in possibles if common_word in possible.lower()] def UpperCamelCase__( UpperCamelCase__ : str = "p059_cipher.txt" )->int: A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = Path(UpperCamelCase__ ).parent.joinpath(UpperCamelCase__ ).read_text(encoding='''utf-8''' ) A__ = [int(UpperCamelCase__ ) for number in data.strip().split(''',''' )] A__ = filter_valid_chars(UpperCamelCase__ ) for common_word in COMMON_WORDS: A__ = filter_common_word(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: break A__ = possibles[0] return sum(ord(UpperCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
39
1
# Function to print upper half of diamond (pyramid) def lowerCamelCase__ ( a__ : Union[str, Any] ) -> Dict: for i in range(0 , a__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def lowerCamelCase__ ( a__ : Union[str, Any] ) -> Tuple: for i in range(a__ , 0 , -1 ): for _ in range(a__ , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def lowerCamelCase__ ( a__ : Any ) -> Optional[int]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(a__ ) # upper half reverse_floyd(a__ ) # lower half if __name__ == "__main__": print(R'''| /\ | |- | |- |--| |\ /| |-''') print(R'''|/ \| |- |_ |_ |__| | \/ | |_''') _A = 1 while K: _A = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) _A = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
122
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
1
def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) a__ : Union[str, Any] =str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b" a__ : Optional[Any] =str(bin(lowerCAmelCase__ ) )[2:] a__ : Union[str, Any] =max(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase__ ) , b_binary.zfill(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
366
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase : List[Any] = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class __lowerCAmelCase ( unittest.TestCase): _lowercase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowercase : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowercase : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowercase : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : str =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) a__ : Any =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) a__ : Any =text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}] ) a__ : Tuple =text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) a__ : List[Any] =text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) # Legacy behavior a__ : Any =text_classifier("This is great !" , return_all_scores=lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) a__ : List[str] =text_classifier("This is great !" , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}]] ) a__ : Optional[int] =text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) a__ : int =text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_0", "score": 0.5_04}, ] , ) @require_torch def _lowercase ( self ) -> List[Any]: '''simple docstring''' import torch a__ : Dict =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) a__ : Optional[Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @require_tf def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) a__ : Optional[Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @slow @require_torch def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =pipeline("text-classification" ) a__ : Union[str, Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) a__ : Optional[Any] =text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) a__ : Dict =text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) @slow @require_tf def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Tuple =pipeline("text-classification" , framework="tf" ) a__ : str =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) a__ : str =text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) a__ : Dict =text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : Tuple =text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 a__ : List[Any] ="HuggingFace is in" a__ : int =text_classifier(lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) a__ : Optional[int] =["HuggingFace is in ", "Paris is in France"] a__ : Optional[Any] =text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}, {"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format a__ : Union[str, Any] =text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__ ) a__ : Optional[Any] =len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] * N, [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] * N] , ) a__ : List[str] ={"text": "HuggingFace is in ", "text_pair": "Paris is in France"} a__ : Optional[Any] =text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , {"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. a__ : Any =[["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(lowerCAmelCase__ ): text_classifier(lowerCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility a__ : Optional[int] =text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
148
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """mra""" def __init__( self , A_=5_0265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=1 , A_=0.02 , A_=1e-5 , A_="absolute" , A_=4 , A_="full" , A_=0 , A_=0 , A_=1 , A_=0 , A_=2 , **A_ , ) ->Optional[int]: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : Union[str, Any] = max_position_embeddings __lowerCAmelCase : List[Any] = hidden_size __lowerCAmelCase : Any = num_hidden_layers __lowerCAmelCase : Optional[int] = num_attention_heads __lowerCAmelCase : Optional[int] = intermediate_size __lowerCAmelCase : Optional[Any] = hidden_act __lowerCAmelCase : Tuple = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : List[Any] = type_vocab_size __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : List[str] = position_embedding_type __lowerCAmelCase : Tuple = block_per_row __lowerCAmelCase : List[Any] = approx_mode __lowerCAmelCase : str = initial_prior_first_n_blocks __lowerCAmelCase : Optional[Any] = initial_prior_diagonal_n_blocks
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): _UpperCamelCase = ViTImageProcessor if is_vision_available() else None @property def UpperCamelCase__ ( self ) ->str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = (3, 32, 128) __lowerCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off __lowerCAmelCase : List[str] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowerCAmelCase : Optional[int] = dict(zip(A_ , range(len(A_ ) ) ) ) __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) __lowerCAmelCase : Union[str, Any] = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A_ , A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowerCAmelCase : str = Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) return image_input def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.get_tokenizer() __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : Union[str, Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : Union[str, Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase : int = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __lowerCAmelCase : int = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Any = self.get_image_processor() __lowerCAmelCase : Optional[Any] = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Optional[int] = self.prepare_image_inputs() __lowerCAmelCase : Optional[Any] = image_processor(A_ , return_tensors='''np''' ) __lowerCAmelCase : Tuple = processor(images=A_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Union[str, Any] = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Any = '''test''' __lowerCAmelCase : Dict = processor(text=A_ ) __lowerCAmelCase : str = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Dict = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : str = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = '''test''' __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : int = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase : Optional[int] = processor.char_decode(A_ ) __lowerCAmelCase : Tuple = tokenizer.batch_decode(A_ ) __lowerCAmelCase : Any = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() __lowerCAmelCase : List[Any] = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = self.get_image_processor() __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = torch.randn(1 , 27 , 38 ) __lowerCAmelCase : Optional[int] = torch.randn(1 , 27 , 5_0257 ) __lowerCAmelCase : Optional[Any] = torch.randn(1 , 27 , 3_0522 ) __lowerCAmelCase : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
275
1
def snake_case ( snake_case__ :int = 1_000_000) -> int: _A = set(range(3 , snake_case__ , 2)) primes.add(2) for p in range(3 , snake_case__ , 2): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case__ , snake_case__))) _A = [float(snake_case__) for n in range(limit + 1)] for p in primes: for n in range(snake_case__ , limit + 1 , snake_case__): phi[n] *= 1 - 1 / p return int(sum(phi[2:])) if __name__ == "__main__": print(F'''{solution() = }''')
81
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _SCREAMING_SNAKE_CASE = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} _SCREAMING_SNAKE_CASE = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': F'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', 'emoji': True, }, } ] _SCREAMING_SNAKE_CASE = 0 for log in Path().glob('*.log'): _SCREAMING_SNAKE_CASE = 0 with open(log, 'r') as f: for line in f: _SCREAMING_SNAKE_CASE = json.loads(line) if line.get('nodeid', '') != "": _SCREAMING_SNAKE_CASE = line['nodeid'] if line.get('duration', None) is not None: _SCREAMING_SNAKE_CASE = F'''{line["duration"]:.4f}''' if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _SCREAMING_SNAKE_CASE = [] log.unlink() _SCREAMING_SNAKE_CASE = '' _SCREAMING_SNAKE_CASE = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {} for test in failed_tests: _SCREAMING_SNAKE_CASE = test[0].split('::') _SCREAMING_SNAKE_CASE = data[0].split('/')[-1] if data[0] not in filesafailed: _SCREAMING_SNAKE_CASE = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _SCREAMING_SNAKE_CASE = [test[0] for test in failed_table] _SCREAMING_SNAKE_CASE = list(set(files)) # Count number of instances in failed_tests _SCREAMING_SNAKE_CASE = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _SCREAMING_SNAKE_CASE = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: _SCREAMING_SNAKE_CASE = 'Too many failed tests, please see the full report in the Action results.' _SCREAMING_SNAKE_CASE = len(err) + 10 _SCREAMING_SNAKE_CASE = message[: 3_000 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: _SCREAMING_SNAKE_CASE = 'No failed tests! 🤗' print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": _SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) _SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': F'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) _SCREAMING_SNAKE_CASE = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': F'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) _SCREAMING_SNAKE_CASE = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) _SCREAMING_SNAKE_CASE = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _SCREAMING_SNAKE_CASE = '' for i, row in enumerate(test_failures): if row[0] != test_class: _SCREAMING_SNAKE_CASE = row[0] else: _SCREAMING_SNAKE_CASE = '' _SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
81
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings a_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _lowercase ( snake_case_ ): lowercase = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowercase = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowercase = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowercase = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowercase = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" UpperCamelCase_ : str = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase_ : List[Any] = v.to_dict() return d
175
def a( A : list ) -> list: """simple docstring""" if any(not isinstance(A , A ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(A ) ): for i, (rod_upper, rod_lower) in enumerate(zip(A , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
227
0
from __future__ import annotations __snake_case = "Muhammad Umer Farooq" __snake_case = "MIT" __snake_case = "1.0.0" __snake_case = "Muhammad Umer Farooq" __snake_case = "contact@muhammadumerfarooq.me" __snake_case = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class lowercase__ ( _UpperCAmelCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : Tuple ): super().__init__() SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = domain def A_ ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: SCREAMING_SNAKE_CASE__ = parse.urljoin(self.domain , _a ) self.urls.append(_a ) def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(_snake_case ).split('.' )[-2:] ) def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' return parse.urlparse(_snake_case ).netloc def _lowercase ( UpperCamelCase_ = "https://github.com" ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_domain_name(_snake_case ) # Initialize the parser SCREAMING_SNAKE_CASE__ = Parser(_snake_case ) try: # Open URL SCREAMING_SNAKE_CASE__ = requests.get(_snake_case ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through SCREAMING_SNAKE_CASE__ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: SCREAMING_SNAKE_CASE__ = requests.get(_snake_case ) # Get the valid email. SCREAMING_SNAKE_CASE__ = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_snake_case ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_snake_case ) if __name__ == "__main__": __snake_case = emails_from_url("""https://github.com""") print(F"""{len(emails)} emails found:""") print("""\n""".join(sorted(emails)))
369
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ = int(number**0.5 ) return number == sq * sq def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> tuple[int, int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE__ = x_den * y_den * z_den SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def _lowercase ( UpperCamelCase_ = 35 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = Fraction(0 ) SCREAMING_SNAKE_CASE__ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE__ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE__ = x_den * y_den SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE__ = add_three( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) unique_s.add(UpperCamelCase_ ) # n=2 SCREAMING_SNAKE_CASE__ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE__ = x_den * x_den * y_den * y_den if is_sq(UpperCamelCase_ ) and is_sq(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = int(sqrt(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = int(sqrt(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE__ = add_three( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) unique_s.add(UpperCamelCase_ ) # n=-1 SCREAMING_SNAKE_CASE__ = x_num * y_num SCREAMING_SNAKE_CASE__ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE__ = add_three( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) unique_s.add(UpperCamelCase_ ) # n=2 SCREAMING_SNAKE_CASE__ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE__ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(UpperCamelCase_ ) and is_sq(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = int(sqrt(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = int(sqrt(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE__ = add_three( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) unique_s.add(UpperCamelCase_ ) for num, den in unique_s: total += Fraction(UpperCamelCase_ , UpperCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
169
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" with open(UpperCAmelCase , encoding='utf-8' ) as input_file: _UpperCAmelCase = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) _UpperCAmelCase = input_file.read() _UpperCAmelCase = regexp.search(UpperCAmelCase ) return match def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" with open(UpperCAmelCase , encoding='utf-8' ) as input_file: _UpperCAmelCase = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) _UpperCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCAmelCase = regexp.finditer(UpperCAmelCase ) _UpperCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = Path('./datasets' ) _UpperCAmelCase = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = Path('./datasets' ) _UpperCAmelCase = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
39
from __future__ import annotations def __A ( __lowerCAmelCase )-> list[int]: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
39
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = 10 def _A ( A__ ): """simple docstring""" __lowercase = 1 __lowercase = max(lowerCAmelCase__ ) while placement <= max_digit: # declare and initialize empty buckets __lowercase = [[] for _ in range(lowerCAmelCase__ )] # split list_of_ints between the buckets for i in list_of_ints: __lowercase = int((i / placement) % RADIX ) buckets[tmp].append(lowerCAmelCase__ ) # put each buckets' contents into list_of_ints __lowercase = 0 for b in range(lowerCAmelCase__ ): for i in buckets[b]: __lowercase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowercase = [2, 4, 6, 8, 1_0, 1_2] __lowercase = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ ,lowercase__ ,lowercase__ ) ,2_1_0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.assertRaisesRegex(lowercase__ ,'''Weight can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.assertRaisesRegex(lowercase__ ,'''Profit can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : int ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertRaisesRegex( lowercase__ ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
0
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if digit_amount > 0: return round(number - int(lowerCAmelCase__ ) , lowerCAmelCase__ ) return number - int(lowerCAmelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
101
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Union[str, Any] = ["""pixel_values"""] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) snake_case : int = size if size is not None else {"shortest_edge": 224} snake_case : int = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) snake_case : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case : Dict = do_resize snake_case : Optional[int] = size snake_case : int = resample snake_case : Union[str, Any] = do_center_crop snake_case : Dict = crop_size snake_case : Dict = do_rescale snake_case : Any = rescale_factor snake_case : Tuple = do_normalize snake_case : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD snake_case : Tuple = do_convert_rgb def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case : Dict = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : Tuple = get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : int = do_resize if do_resize is not None else self.do_resize snake_case : List[str] = size if size is not None else self.size snake_case : Dict = get_size_dict(SCREAMING_SNAKE_CASE , param_name="size" , default_to_square=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = resample if resample is not None else self.resample snake_case : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size snake_case : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE , param_name="crop_size" , default_to_square=SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : List[str] = image_mean if image_mean is not None else self.image_mean snake_case : Optional[int] = image_std if image_std is not None else self.image_std snake_case : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case : Optional[int] = [convert_to_rgb(SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. snake_case : List[str] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case : Optional[Any] = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: snake_case : int = [self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case : Optional[int] = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] snake_case : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] snake_case : Tuple = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
148
0
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= [10, 20, 30, 40, 50, 60] lowercase__ : int= [2, 4, 6, 8, 10, 12] lowercase__ : Union[str, Any]= 100 self.assertEqual(kp.calc_profit(snake_case__ , snake_case__ , snake_case__ ) , 210 ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , "max_weight must greater than zero." ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , "Weight can not be negative." ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , "Profit can not be negative." ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , "max_weight must greater than zero." ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex( snake_case__ , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
150
"""simple docstring""" import os from pathlib import Path def lowercase__() ->List[Any]: """simple docstring""" from torch.utils.cpp_extension import load lowercase__ : Any= Path(A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowercase__ : Any= [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , A , with_cuda=A , extra_include_paths=[str(A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
150
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "nllb-moe" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __A=12_8112 , __A=1024 , __A=12 , __A=4096 , __A=16 , __A=12 , __A=4096 , __A=16 , __A=0.05 , __A=0.05 , __A=True , __A=True , __A="relu" , __A=1024 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.02 , __A=2 , __A=True , __A=False , __A="float32" , __A=False , __A=128 , __A=64 , __A=4 , __A=4 , __A=0.001 , __A=0.001 , __A="all" , __A=False , __A=False , __A=1.0 , __A=0.2 , __A=1 , __A=0 , __A=2 , __A=False , **__A , ) -> List[Any]: a =vocab_size a =max_position_embeddings a =d_model a =encoder_ffn_dim a =encoder_layers a =encoder_attention_heads a =decoder_ffn_dim a =decoder_layers a =decoder_attention_heads a =dropout a =attention_dropout a =activation_dropout a =activation_function a =init_std a =encoder_layerdrop a =decoder_layerdrop a =use_cache a =encoder_layers a =scale_embedding # scale factor will be sqrt(d_model) if True a =router_z_loss_coef a =router_aux_loss_coef a =decoder_sparse_step a =encoder_sparse_step a =num_experts a =expert_capacity a =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) a =router_dtype a =router_ignore_padding_tokens a =batch_prioritized_routing a =second_expert_policy a =normalize_router_prob_before_dropping a =moe_eval_capacity_token_fraction a =moe_token_dropout a =output_router_logits super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , **__A , )
81
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : str = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) lowerCamelCase_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _A ( lowercase ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: a =model_type_to_module_name(lowercase ) a =importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(lowercase , lowercase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase , '''__name__''' , lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a =importlib.import_module('''transformers''' ) if hasattr(lowercase , lowercase ): return getattr(lowercase , lowercase ) return None def _A ( lowercase , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = False , **lowercase , ): """simple docstring""" a =get_file_from_repo( lowercase , lowercase , cache_dir=lowercase , force_download=lowercase , resume_download=lowercase , proxies=lowercase , use_auth_token=lowercase , revision=lowercase , local_files_only=lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowercase , encoding='''utf-8''' ) as reader: return json.load(lowercase ) class __A : """simple docstring""" def __init__( self ) -> Optional[Any]: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__A ) def SCREAMING_SNAKE_CASE ( cls , __A , **__A ) -> Dict: a =kwargs.pop('''config''' , __A ) a =kwargs.pop('''trust_remote_code''' , __A ) a =True a , a =ImageProcessingMixin.get_image_processor_dict(__A , **__A ) a =config_dict.get('''image_processor_type''' , __A ) a =None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): a =config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: a =config_dict.pop('''feature_extractor_type''' , __A ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) a =feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a =config_dict['''auto_map''']['''AutoFeatureExtractor'''] a =feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__A , __A ): a =AutoConfig.from_pretrained(__A , **__A ) # It could be in `config.image_processor_type`` a =getattr(__A , '''image_processor_type''' , __A ) if hasattr(__A , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: a =config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: a =image_processor_class_from_name(__A ) a =image_processor_auto_map is not None a =image_processor_class is not None or type(__A ) in IMAGE_PROCESSOR_MAPPING a =resolve_trust_remote_code( __A , __A , __A , __A ) if has_remote_code and trust_remote_code: a =get_class_from_dynamic_module( __A , __A , **__A ) a =kwargs.pop('''code_revision''' , __A ) if os.path.isdir(__A ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__A , **__A ) elif image_processor_class is not None: return image_processor_class.from_dict(__A , **__A ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__A ) in IMAGE_PROCESSOR_MAPPING: a =IMAGE_PROCESSOR_MAPPING[type(__A )] return image_processor_class.from_dict(__A , **__A ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def SCREAMING_SNAKE_CASE ( __A , __A ) -> Any: IMAGE_PROCESSOR_MAPPING.register(__A , __A )
81
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a__ : def __init__( self : Optional[int], lowerCAmelCase : List[str], lowerCAmelCase : List[str]=3, lowerCAmelCase : Tuple=32, lowerCAmelCase : Any=3, lowerCAmelCase : Union[str, Any]=10, lowerCAmelCase : Optional[int]=[8, 16, 32, 64], lowerCAmelCase : int=[1, 1, 2, 1], lowerCAmelCase : List[Any]=True, lowerCAmelCase : int=True, lowerCAmelCase : Optional[Any]="relu", lowerCAmelCase : int=3, lowerCAmelCase : Optional[int]=None, lowerCAmelCase : List[str]=["stage2", "stage3", "stage4"], lowerCAmelCase : Optional[Any]=[2, 3, 4], lowerCAmelCase : List[str]=1, ) -> int: lowercase : Dict = parent lowercase : Optional[int] = batch_size lowercase : Tuple = image_size lowercase : List[Any] = num_channels lowercase : Tuple = embeddings_size lowercase : List[str] = hidden_sizes lowercase : Dict = depths lowercase : int = is_training lowercase : Union[str, Any] = use_labels lowercase : Optional[Any] = hidden_act lowercase : int = num_labels lowercase : Optional[int] = scope lowercase : List[Any] = len(_UpperCAmelCase ) lowercase : List[Any] = out_features lowercase : str = out_indices lowercase : Any = num_groups def lowercase ( self : Tuple ) -> Union[str, Any]: lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : List[Any] = None if self.use_labels: lowercase : List[Any] = ids_tensor([self.batch_size], self.num_labels ) lowercase : str = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> List[Any]: return BitConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, out_features=self.out_features, out_indices=self.out_indices, num_groups=self.num_groups, ) def lowercase ( self : str, lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : List[str] ) -> str: lowercase : List[str] = BitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase ( self : Tuple, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[str] ) -> Union[str, Any]: lowercase : Dict = self.num_labels lowercase : Optional[Any] = BitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase : str = model(_UpperCAmelCase, labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : List[str], lowerCAmelCase : Optional[Any] ) -> str: lowercase : Tuple = BitBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase : str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase : List[str] = None lowercase : Union[str, Any] = BitBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase : Tuple = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def lowercase ( self : int ) -> Dict: lowercase : Any = self.prepare_config_and_inputs() lowercase : str = config_and_inputs lowercase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): _lowerCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCamelCase = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowercase ( self : Optional[int] ) -> Optional[int]: lowercase : List[Any] = BitModelTester(self ) lowercase : Optional[int] = ConfigTester(self, config_class=_UpperCAmelCase, has_text_modality=_UpperCAmelCase ) def lowercase ( self : Tuple ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : int ) -> Tuple: return @unittest.skip(reason='Bit does not output attentions' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def lowercase ( self : Tuple ) -> Dict: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def lowercase ( self : str ) -> Dict: pass def lowercase ( self : List[str] ) -> str: lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Tuple = model_class(_UpperCAmelCase ) lowercase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Dict = [*signature.parameters.keys()] lowercase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) def lowercase ( self : Any ) -> int: lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase ( self : Tuple ) -> List[str]: lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def lowercase ( self : Optional[int] ) -> int: lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = model_class(config=_UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(_UpperCAmelCase, (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ), msg=f'''Parameter {name} of model {model_class} seems not properly initialized''', ) self.assertTrue( torch.all(module.bias == 0 ), msg=f'''Parameter {name} of model {model_class} seems not properly initialized''', ) def lowercase ( self : str ) -> int: def check_hidden_states_output(lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : Tuple ): lowercase : List[str] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : Any = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ), expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : str = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase : Tuple = layer_type lowercase : Optional[int] = True check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Union[str, Any] = True check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass def lowercase ( self : Optional[int] ) -> str: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowercase ( self : Dict ) -> Any: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = BitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowercase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def lowercase ( self : Dict ) -> Tuple: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self : List[Any] ) -> Dict: lowercase : int = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase ) lowercase : Optional[int] = self.default_image_processor lowercase : Optional[int] = prepare_img() lowercase : Union[str, Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase : int = model(**_UpperCAmelCase ) # verify the logits lowercase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, _UpperCAmelCase ) lowercase : List[Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _UpperCAmelCase, atol=1e-4 ) ) @require_torch class a__ ( _UpperCAmelCase, unittest.TestCase ): _lowerCamelCase = (BitBackbone,) if is_torch_available() else () _lowerCamelCase = BitConfig _lowerCamelCase = False def lowercase ( self : List[Any] ) -> Union[str, Any]: lowercase : Tuple = BitModelTester(self )
352
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = StableDiffusionInstructPixaPixPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase ( self : str ) -> str: torch.manual_seed(0 ) lowercase : int = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) lowercase : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) torch.manual_seed(0 ) lowercase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) lowercase : Optional[int] = CLIPTextModel(lowerCAmelCase ) lowercase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : int, lowerCAmelCase : str, lowerCAmelCase : Tuple=0 ) -> Tuple: lowercase : Optional[int] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Any = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : str = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase ( self : Tuple ) -> Optional[Any]: lowercase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : int = self.get_dummy_components() lowercase : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : Union[str, Any] = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Union[str, Any] = sd_pipe(**lowerCAmelCase ).images lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : str = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Optional[Any] ) -> int: lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : Union[str, Any] = self.get_dummy_components() lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : Union[str, Any] = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Any = 'french fries' lowercase : Tuple = sd_pipe(**lowerCAmelCase, negative_prompt=lowerCAmelCase ) lowercase : Optional[Any] = output.images lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : Dict = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Optional[int] ) -> str: lowercase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : str = self.get_dummy_components() lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : str = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_inputs(lowerCAmelCase ) lowercase : int = [inputs['prompt']] * 2 lowercase : Dict = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 lowercase : Optional[int] = torch.from_numpy(lowerCAmelCase ).unsqueeze(0 ).to(lowerCAmelCase ) lowercase : List[Any] = image / 2 + 0.5 lowercase : List[str] = image.permute(0, 3, 1, 2 ) lowercase : List[str] = image.repeat(2, 1, 1, 1 ) lowercase : Dict = sd_pipe(**lowerCAmelCase ).images lowercase : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase : Optional[int] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Union[str, Any] ) -> Any: lowercase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[int] = self.get_dummy_components() lowercase : str = EulerAncestralDiscreteScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear' ) lowercase : Tuple = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : str = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Dict = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Dict = sd_pipe(**lowerCAmelCase ).images lowercase : Tuple = image[0, -3:, -3:, -1] lowercase : Optional[int] = [round(lowerCAmelCase, 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(lowerCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase : List[str] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : List[str] ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase ( self : int ) -> Optional[Any]: lowercase : List[Any] = self.get_dummy_components() lowercase : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) lowercase : List[str] = VaeImageProcessor(do_resize=lowerCAmelCase, do_normalize=lowerCAmelCase ) lowercase : int = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Dict = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase, input_image_type='pt' ) )[0] lowercase : Optional[Any] = components['vae'] lowercase : str = self.get_dummy_inputs_by_type(lowerCAmelCase, input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase : Optional[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase : Optional[int] = pipe(**lowerCAmelCase )[0] lowercase : int = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase, 1e-4, 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def lowercase ( self : List[str] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str], lowerCAmelCase : int=0 ) -> str: lowercase : Dict = torch.manual_seed(lowerCAmelCase ) lowercase : Optional[Any] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) lowercase : int = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def lowercase ( self : int ) -> str: lowercase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : Optional[Any] = self.get_inputs() lowercase : List[Any] = pipe(**lowerCAmelCase ).images lowercase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : List[str] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase ) lowercase : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : List[Any] = self.get_inputs() lowercase : Tuple = pipe(**lowerCAmelCase ).images lowercase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : str = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Optional[Any] ) -> List[Any]: lowercase : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase ) lowercase : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : Any = self.get_inputs() lowercase : Union[str, Any] = pipe(**lowerCAmelCase ).images lowercase : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : int = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Tuple ) -> Dict: lowercase : Dict = 0 def callback_fn(lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : torch.FloatTensor ) -> None: lowercase : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase : Union[str, Any] = latents[0, -3:, -3:, -1] lowercase : List[str] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase : Union[str, Any] = latents[0, -3:, -3:, -1] lowercase : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase : Union[str, Any] = False lowercase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Optional[int] = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase, callback=lowerCAmelCase, callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Dict = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase : Dict = self.get_inputs() lowercase : List[Any] = pipe(**lowerCAmelCase ) lowercase : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase ( self : Union[str, Any] ) -> Tuple: lowercase : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase : Optional[Any] = inputs['image'].resize((504, 504) ) lowercase : Union[str, Any] = 'timbrooks/instruct-pix2pix' lowercase : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase, safety_checker=lowerCAmelCase, ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowercase : str = pipe(**lowerCAmelCase ) lowercase : int = output.images[0] lowercase : int = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase : Union[str, Any] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
53
0
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Tuple = set(UpperCamelCase ), [start] while stack: lowerCAmelCase__ : Any = stack.pop() explored.add(UpperCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCamelCase ) return explored _lowerCAmelCase = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
37
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """markuplm""" def __init__( self :Dict , lowerCamelCase :List[Any]=3_0522 , lowerCamelCase :List[Any]=768 , lowerCamelCase :Union[str, Any]=12 , lowerCamelCase :Optional[int]=12 , lowerCamelCase :List[str]=3072 , lowerCamelCase :Dict="gelu" , lowerCamelCase :List[str]=0.1 , lowerCamelCase :Union[str, Any]=0.1 , lowerCamelCase :int=512 , lowerCamelCase :Union[str, Any]=2 , lowerCamelCase :int=0.02 , lowerCamelCase :int=1e-12 , lowerCamelCase :Tuple=0 , lowerCamelCase :List[str]=0 , lowerCamelCase :int=2 , lowerCamelCase :Optional[int]=256 , lowerCamelCase :List[str]=1024 , lowerCamelCase :Optional[Any]=216 , lowerCamelCase :str=1001 , lowerCamelCase :List[str]=32 , lowerCamelCase :Dict=50 , lowerCamelCase :int="absolute" , lowerCamelCase :Union[str, Any]=True , lowerCamelCase :Dict=None , **lowerCamelCase :List[Any] , ) -> int: super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout # additional properties UpperCAmelCase__ = max_depth UpperCAmelCase__ = max_xpath_tag_unit_embeddings UpperCAmelCase__ = max_xpath_subs_unit_embeddings UpperCAmelCase__ = tag_pad_id UpperCAmelCase__ = subs_pad_id UpperCAmelCase__ = xpath_unit_hidden_size
169
0
from __future__ import annotations from math import ceil, floor, sqrt def _lowercase ( __snake_case = 2_000_000 ) -> Optional[int]: __lowerCAmelCase : Optional[Any] = [0] __lowerCAmelCase : Tuple = 42 for idx in range(1 ,ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCAmelCase : Union[str, Any] = 0 # the area corresponding to the grid that gives the product closest to target __lowerCAmelCase : Tuple = 0 # an estimate of b, using the quadratic formula __lowerCAmelCase : Any = 42 # the largest integer less than b_estimate __lowerCAmelCase : Optional[Any] = 42 # the largest integer less than b_estimate __lowerCAmelCase : List[str] = 42 # the triangle number corresponding to b_floor __lowerCAmelCase : str = 42 # the triangle number corresponding to b_ceil __lowerCAmelCase : Tuple = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] ,1 ): __lowerCAmelCase : List[Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCAmelCase : Union[str, Any] = floor(UpperCAmelCase_ ) __lowerCAmelCase : Any = ceil(UpperCAmelCase_ ) __lowerCAmelCase : List[Any] = triangle_numbers[b_floor] __lowerCAmelCase : List[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCAmelCase : str = triangle_b_first_guess * triangle_a __lowerCAmelCase : Optional[Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCAmelCase : Union[str, Any] = triangle_b_second_guess * triangle_a __lowerCAmelCase : Any = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
352
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _lowercase ( __snake_case ) -> Dict: return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] ,unknown_args[1::2] )} def _lowercase ( ) -> Union[str, Any]: __lowerCAmelCase : List[str] = ArgumentParser( "HuggingFace Datasets CLI tool" ,usage="datasets-cli <command> [<args>]" ,allow_abbrev=__snake_case ) __lowerCAmelCase : str = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__snake_case ) EnvironmentCommand.register_subcommand(__snake_case ) TestCommand.register_subcommand(__snake_case ) RunBeamCommand.register_subcommand(__snake_case ) DummyDataCommand.register_subcommand(__snake_case ) # Parse args __lowerCAmelCase , __lowerCAmelCase : Any = parser.parse_known_args() if not hasattr(__snake_case ,"func" ): parser.print_help() exit(1 ) __lowerCAmelCase : List[Any] = parse_unknown_args(__snake_case ) # Run __lowerCAmelCase : Union[str, Any] = args.func(__snake_case ,**__snake_case ) service.run() if __name__ == "__main__": main()
58
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __SCREAMING_SNAKE_CASE : int = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.state_dict() def to_tf_var_name(lowercase__ ): for patt, repl in iter(lowercase__ ): __SCREAMING_SNAKE_CASE : Any = name.replace(lowercase__ , lowercase__ ) return F'''bert/{name}''' def create_tf_var(lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) __SCREAMING_SNAKE_CASE : int = tf.get_variable(dtype=lowercase__ , shape=tensor.shape , name=lowercase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowercase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = to_tf_var_name(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __SCREAMING_SNAKE_CASE : Dict = torch_tensor.T __SCREAMING_SNAKE_CASE : Optional[Any] = create_tf_var(tensor=lowercase__ , name=lowercase__ , session=lowercase__ ) tf.keras.backend.set_value(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = session.run(lowercase__ ) print(F'''Successfully created {tf_name}: {np.allclose(lowercase__ , lowercase__ )}''' ) __SCREAMING_SNAKE_CASE : Dict = tf.train.Saver(tf.trainable_variables() ) saver.save(lowercase__ , os.path.join(lowercase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def _UpperCamelCase ( lowercase__=None ): __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowercase__ , required=lowercase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowercase__ , default=lowercase__ , required=lowercase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowercase__ , required=lowercase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowercase__ , required=lowercase__ , help='''Directory in which to save tensorflow model''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args(lowercase__ ) __SCREAMING_SNAKE_CASE : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowercase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
9
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCamelCase : List[Any] = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase : Optional[int] = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ __lowerCamelCase : str = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def A_ ( _lowerCAmelCase ) -> str: def remove_articles(_lowerCAmelCase ): UpperCamelCase : Tuple = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCAmelCase , " " , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): UpperCamelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = [any(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 100 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Optional[int] = Counter(_lowerCAmelCase ) UpperCamelCase : List[Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCamelCase : Tuple = scount * numref UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Tuple = Counter() for cgram, ccount in cgramcounter.items(): UpperCamelCase : Dict = ccount * numref # KEEP UpperCamelCase : List[Any] = sgramcounter_rep & cgramcounter_rep UpperCamelCase : Union[str, Any] = keepgramcounter_rep & rgramcounter UpperCamelCase : Dict = sgramcounter_rep & rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Any = 1 UpperCamelCase : Any = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCamelCase : Union[str, Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCamelCase : Any = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCamelCase : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCamelCase : Any = sgramcounter_rep - cgramcounter_rep UpperCamelCase : str = delgramcounter_rep - rgramcounter UpperCamelCase : Any = sgramcounter_rep - rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Union[str, Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Dict = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : str = deltmpscorea / len(_lowerCAmelCase ) # ADDITION UpperCamelCase : List[str] = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : List[str] = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) UpperCamelCase : Dict = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Tuple = 1 UpperCamelCase : Tuple = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Tuple = addtmpscore / len(_lowerCAmelCase ) UpperCamelCase : List[str] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCamelCase : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: UpperCamelCase : int = len(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = ssent.split(" " ) UpperCamelCase : Dict = csent.split(" " ) UpperCamelCase : str = [] UpperCamelCase : Any = [] UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] UpperCamelCase : str = [] UpperCamelCase : str = [] UpperCamelCase : Dict = [] UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [] UpperCamelCase : Tuple = [] for rsent in rsents: UpperCamelCase : List[Any] = rsent.split(" " ) UpperCamelCase : List[str] = [] UpperCamelCase : int = [] UpperCamelCase : Tuple = [] ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : List[Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : List[str] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Optional[int] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[Any] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : str = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCamelCase : str = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCamelCase : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCamelCase : Union[str, Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = "13a" , _lowerCAmelCase = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCamelCase : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCamelCase : str = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: UpperCamelCase : Dict = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": UpperCamelCase : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase , escape=_lowerCAmelCase ) elif tokenizer == "penn": UpperCamelCase : str = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase ) else: UpperCamelCase : Union[str, Any] = sentence if not return_str: UpperCamelCase : Tuple = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError("Sources length must match predictions and references lengths." ) UpperCamelCase : Optional[Any] = 0 for src, pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ) , normalize(_lowerCAmelCase ) , [normalize(_lowerCAmelCase ) for sent in refs] ) UpperCamelCase : Optional[int] = sari_score / len(_lowerCAmelCase ) return 100 * sari_score def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="exp" , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> List[str]: UpperCamelCase : Optional[Any] = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase : Optional[int] = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] UpperCamelCase : Tuple = sacrebleu.corpus_bleu( _lowerCAmelCase , _lowerCAmelCase , smooth_method=_lowerCAmelCase , smooth_value=_lowerCAmelCase , force=_lowerCAmelCase , lowercase=_lowerCAmelCase , use_effective_order=_lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = {} result.update({"sari": compute_sari(sources=A_ , predictions=A_ , references=A_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=A_ , references=A_ )} ) result.update({"exact": compute_em(predictions=A_ , references=A_ )} ) return result
52
0
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowercase : List[str]=None , __lowercase : List[Any]=None ) -> Any: '''simple docstring''' return field(default_factory=lambda: default , metadata=_a ) @dataclass class A_ : _lowerCamelCase : List[str] = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) _lowerCamelCase : List[int] = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) _lowerCamelCase : List[int] = list_field( default=[8, 32, 1_28, 5_12] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) _lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Use FP16 to accelerate inference."""} ) _lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Benchmark training of model"""} ) _lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Verbose memory tracing"""} ) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) _lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Trace memory line by line"""} ) _lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Save result to a CSV file"""} ) _lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Save all print statements in a log file"""} ) _lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether to print environment information"""} ) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) _lowerCamelCase : str = field( default=f"inference_time_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) _lowerCamelCase : str = field( default=f"inference_memory_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) _lowerCamelCase : str = field( default=f"train_time_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) _lowerCamelCase : str = field( default=f"train_memory_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) _lowerCamelCase : str = field( default=f"env_info_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) _lowerCamelCase : str = field( default=f"log_{round(time() )}.csv" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) _lowerCamelCase : int = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def lowercase ( self : int ): warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , _SCREAMING_SNAKE_CASE , ) def lowercase ( self : Dict ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowercase ( self : Dict ): if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def lowercase ( self : Optional[Any] ): if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
364
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCAmelCase_ ( __lowercase : str , __lowercase : str = "cpu" , __lowercase : Union[str, None] = None ) -> None: '''simple docstring''' _UpperCAmelCase = torch.load(__lowercase , map_location=__lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowercase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _UpperCAmelCase = v.half() if save_path is None: # overwrite src_path _UpperCAmelCase = src_path torch.save(__lowercase , __lowercase ) if __name__ == "__main__": fire.Fire(convert)
156
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" snake_case = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) snake_case = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house snake_case = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim snake_case = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case = model(lowerCAmelCase )['last_hidden_state'].detach() self.assertEqual(output.shape , lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase , atol=1E-3 ) ) @slow def snake_case ( self ): """simple docstring""" snake_case = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) snake_case = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house snake_case = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim snake_case = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case = model(lowerCAmelCase )['last_hidden_state'].detach() self.assertEqual(output.shape , lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase , atol=1E-3 ) )
150
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( _UpperCamelCase : list[list[int]] ) -> int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
150
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->np.ndarray: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = cva.getAffineTransform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return cva.warpAffine(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image __A = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value __A = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A = gray_img.shape # set different points to rotate image __A = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A = plt.figure(1) __A = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
254
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = """facebook/bart-large-mnli""" __magic_name__ :Any = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) __magic_name__ :Optional[int] = """text_classifier""" __magic_name__ :List[Any] = AutoTokenizer __magic_name__ :str = AutoModelForSequenceClassification __magic_name__ :int = ["""text""", ["""text"""]] __magic_name__ :int = ["""text"""] def snake_case ( self ): '''simple docstring''' super().setup() lowerCAmelCase__ :Any = self.model.config lowerCAmelCase__ :Any = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): lowerCAmelCase__ :Optional[Any] = int(__UpperCAmelCase ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = labels return self.pre_processor( [text] * len(__UpperCAmelCase ) , [F"This example is {label}" for label in labels] , return_tensors='pt' , padding='max_length' , ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = outputs.logits lowerCAmelCase__ :int = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
254
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :Union[str, Any] , a :List[str] , a :List[str] ) -> int: a = UniSpeechSatForSequenceClassification.from_pretrained(a , config=a ) a = downstream_dict['''projector.weight'''] a = downstream_dict['''projector.bias'''] a = downstream_dict['''model.post_net.linear.weight'''] a = downstream_dict['''model.post_net.linear.bias'''] return model def _a ( a :Any , a :str , a :List[Any] ) -> Tuple: a = UniSpeechSatForAudioFrameClassification.from_pretrained(a , config=a ) a = downstream_dict['''model.linear.weight'''] a = downstream_dict['''model.linear.bias'''] return model def _a ( a :Dict , a :int , a :Union[str, Any] ) -> Dict: a = UniSpeechSatForXVector.from_pretrained(a , config=a ) a = downstream_dict['''connector.weight'''] a = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] a = downstream_dict['''objective.W'''] return model @torch.no_grad() def _a ( a :str , a :List[Any] , a :Optional[int] , a :Any ) -> str: a = torch.load(a , map_location='''cpu''' ) a = checkpoint['''Downstream'''] a = UniSpeechSatConfig.from_pretrained(a ) a = WavaVecaFeatureExtractor.from_pretrained( a , return_attention_mask=a , do_normalize=a ) a = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): a = convert_classification(a , a , a ) elif arch.endswith('''ForAudioFrameClassification''' ): a = convert_diarization(a , a , a ) elif arch.endswith('''ForXVector''' ): a = convert_xvector(a , a , a ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(a ) hf_model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") UpperCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def lowercase__ ( __lowercase : SplitDict ) -> int: """simple docstring""" __UpperCamelCase = split_dict._to_yaml_list() assert len(__lowercase ) == len(__lowercase ) __UpperCamelCase = SplitDict._from_yaml_list(__lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __UpperCamelCase = None # the split name of split_dict takes over the name of the split info object __UpperCamelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=__lowercase ), SplitInfo(dataset_name='my_dataset' )] ) def lowercase__ ( __lowercase : Dict ) -> Any: """simple docstring""" __UpperCamelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
53
0
"""simple docstring""" import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): def __init__( self : str , snake_case__ : List[str]="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(snake_case__ , self ).__init__() UpperCAmelCase__ : int = AutoModel.from_pretrained(snake_case__ , return_dict=snake_case__ ) UpperCAmelCase__ : str = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCAmelCase__ : Optional[Any] = torch.nn.Softmax(dim=1 ) def __a ( self : Optional[Any] , **snake_case__ : Optional[Any] ): '''simple docstring''' return self.bert(**snake_case__ ).last_hidden_state def __a ( self : Any , snake_case__ : Any ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=snake_case__ ) def __a ( self : List[Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : str=1 ): '''simple docstring''' return self.softmax(T * self.cos(snake_case__ , snake_case__ ) ) def __a ( self : List[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = W_supports["sizes"].tolist() UpperCAmelCase__ : str = W_supports["start_token_id"].item() UpperCAmelCase__ : Dict = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase__ : str = self.BERT(**snake_case__ ) UpperCAmelCase__ : Tuple = self.BERT(**snake_case__ ) UpperCAmelCase__ : int = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Tuple = W_supports["input_ids"] == start_token_id UpperCAmelCase__ : List[Any] = W_supports["input_ids"] == end_token_id for i, size in enumerate(snake_case__ ): if i == 0: UpperCAmelCase__ : str = 0 else: UpperCAmelCase__ : Any = support_sizes[i - 1] UpperCAmelCase__ : Dict = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase__ : Dict = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase__ : Optional[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase__ : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase__ : List[str] = torch.vstack((p_starts, p_start) ) UpperCAmelCase__ : str = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase__ : List[str] = p_start UpperCAmelCase__ : List[Any] = p_end return p_starts, p_ends
353
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
298
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> int: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = """Usage of script: script_name <size_of_canvas:int>""" lowercase_ = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCamelCase ( __lowerCamelCase : int ) ->list[list[bool]]: _SCREAMING_SNAKE_CASE = [[False for i in range(__lowerCamelCase )] for j in range(__lowerCamelCase )] return canvas def lowerCamelCase ( __lowerCamelCase : list[list[bool]] ) ->None: for i, row in enumerate(__lowerCamelCase ): for j, _ in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = bool(random.getrandbits(1 ) ) def lowerCamelCase ( __lowerCamelCase : list[list[bool]] ) ->list[list[bool]]: _SCREAMING_SNAKE_CASE = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__lowerCamelCase ): for c, pt in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = __judge_point( __lowerCamelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _SCREAMING_SNAKE_CASE = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _SCREAMING_SNAKE_CASE = current_canvas.tolist() return return_canvas def lowerCamelCase ( __lowerCamelCase : bool , __lowerCamelCase : list[list[bool]] ) ->bool: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _SCREAMING_SNAKE_CASE = pt if pt: if alive < 2: _SCREAMING_SNAKE_CASE = False elif alive == 2 or alive == 3: _SCREAMING_SNAKE_CASE = True elif alive > 3: _SCREAMING_SNAKE_CASE = False else: if alive == 3: _SCREAMING_SNAKE_CASE = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["""w""", """k"""]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
58
0
import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE :str = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=a_ ) def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" __A = tmp_path_factory.getbasetemp() / "cache" __A = test_hf_cache_home / "datasets" __A = test_hf_cache_home / "metrics" __A = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(a_ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(a_ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(a_ ) ) __A = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(a_ ) ) __A = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(a_ ) ) @pytest.fixture(autouse=a_ , scope="session" ) def UpperCAmelCase ( ) -> str: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , a_ ) @pytest.fixture def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , a_ )
360
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] ,A : Optional[Any] ,A : List[Any] ): super().__init__() # make sure scheduler can always be converted to DDIM __A = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : Tuple ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : float = 0.0 ,A : int = 50 ,A : Optional[bool] = None ,A : Optional[str] = "pil" ,A : bool = True ,): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size ,A ): __A = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __A = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __A = randn_tensor(A ,generator=A ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __A = self.unet(A ,A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step( A ,A ,A ,eta=A ,use_clipped_model_output=A ,generator=A ).prev_sample __A = (image / 2 + 0.5).clamp(0 ,1 ) __A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
124
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Union[str, Any] ) -> Tuple: # A mock response for an HTTP head request to emulate server down lowercase_ : List[str] = mock.Mock() lowercase_ : Optional[int] = 5_00 lowercase_ : str = {} lowercase_ : Dict = HTTPError lowercase_ : Tuple = {} # Download this model to make sure it's in the cache. lowercase_ : Optional[Any] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=A ) as mock_head: lowercase_ : int = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A ( self : str ) -> int: # A mock response for an HTTP head request to emulate server down lowercase_ : List[str] = mock.Mock() lowercase_ : Any = 5_00 lowercase_ : Union[str, Any] = {} lowercase_ : int = HTTPError lowercase_ : Any = {} # Download this model to make sure it's in the cache. lowercase_ : Union[str, Any] = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=A ) as mock_head: lowercase_ : int = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def A ( self : List[Any] ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 try: lowercase_ : List[str] = tempfile.mktemp() with open(A , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , A ) lowercase_ : int = AlbertTokenizer.from_pretrained(A ) finally: os.remove(A ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , A ) lowercase_ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def A ( self : Optional[Any] ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 lowercase_ : Tuple = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A ( cls : Optional[Any] ) -> Optional[int]: lowercase_ : str = TOKEN HfFolder.save_token(A ) @classmethod def A ( cls : Union[str, Any] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def A ( self : Optional[int] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Tuple = os.path.join(A , '''vocab.txt''' ) with open(A , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase_ : Dict = BertTokenizer(A ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) lowercase_ : int = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A , repo_id='''test-tokenizer''' , push_to_hub=A , use_auth_token=self._token ) lowercase_ : int = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def A ( self : Optional[int] ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = os.path.join(A , '''vocab.txt''' ) with open(A , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase_ : Union[str, Any] = BertTokenizer(A ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) lowercase_ : Union[str, Any] = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=A , use_auth_token=self._token ) lowercase_ : Dict = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def A ( self : Optional[Any] ) -> List[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : List[str] = os.path.join(A , '''vocab.txt''' ) with open(A , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase_ : Any = CustomTokenizer(A ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[Any] = os.path.join(A , '''vocab.txt''' ) with open(A , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase_ : List[Any] = BertTokenizerFast.from_pretrained(A ) bert_tokenizer.save_pretrained(A ) lowercase_ : int = CustomTokenizerFast.from_pretrained(A ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) lowercase_ : str = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=A , trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Dict ) -> Any: lowercase_ : str = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def A ( self : Dict ) -> List[str]: lowercase_ : int = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def A ( self : Any ) -> List[str]: lowercase_ : List[Any] = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def A ( self : Optional[int] ) -> Optional[int]: lowercase_ : Dict = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def A ( self : str ) -> Union[str, Any]: lowercase_ : Optional[int] = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def A ( self : Optional[int] ) -> str: lowercase_ : Optional[Any] = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def A ( self : Optional[int] ) -> str: lowercase_ : Optional[Any] = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def A ( self : List[str] ) -> Optional[int]: # Even if the offsets are wrong, we necessarily output correct string # parts. lowercase_ : Union[str, Any] = Trie() lowercase_ : Dict = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A , ['''AB''', '''C'''] )
33
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # Initialise PyTorch model __lowercase : Tuple = RemBertConfig.from_json_file(__lowerCAmelCase ) print('''Building PyTorch model from configuration: {}'''.format(str(__lowerCAmelCase ) ) ) __lowercase : Union[str, Any] = RemBertModel(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__lowerCAmelCase ) ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : List[str] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
156
0
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : List[str] , A__ : Optional[int] ): '''simple docstring''' lowerCAmelCase_ : str = hf_hub_url(repo_id=A__ , path=A__ , revision=A__ ) assert url == f'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(A__ )}'
370
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 42 class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE): """simple docstring""" @register_to_config def __init__( self : Optional[int] , lowerCamelCase : int = 6_55_36 , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 0 , lowerCamelCase : str = "fourier" , lowerCamelCase : bool = True , lowerCamelCase : bool = False , lowerCamelCase : float = 0.0 , lowerCamelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase : Tuple[str] = "UNetMidBlock1D" , lowerCamelCase : str = None , lowerCamelCase : Tuple[int] = (32, 32, 64) , lowerCamelCase : str = None , lowerCamelCase : int = 8 , lowerCamelCase : int = 1 , lowerCamelCase : bool = False , ) -> List[Any]: super().__init__() lowerCAmelCase_ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": lowerCAmelCase_ : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) lowerCAmelCase_ : List[Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCAmelCase_ : Optional[int] = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = block_out_channels[0] if use_timestep_embedding: lowerCAmelCase_ : List[str] = block_out_channels[0] * 4 lowerCAmelCase_ : List[str] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) lowerCAmelCase_ : str = nn.ModuleList([] ) lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : str = nn.ModuleList([] ) lowerCAmelCase_ : List[str] = None # down lowerCAmelCase_ : List[str] = in_channels for i, down_block_type in enumerate(lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = output_channel lowerCAmelCase_ : str = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCAmelCase_ : int = i == len(lowerCamelCase ) - 1 lowerCAmelCase_ : List[str] = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid lowerCAmelCase_ : Dict = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up lowerCAmelCase_ : List[str] = list(reversed(lowerCamelCase ) ) lowerCAmelCase_ : str = reversed_block_out_channels[0] if out_block_type is None: lowerCAmelCase_ : Optional[int] = out_channels else: lowerCAmelCase_ : Optional[Any] = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): lowerCAmelCase_ : Any = output_channel lowerCAmelCase_ : str = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) lowerCAmelCase_ : int = i == len(lowerCamelCase ) - 1 lowerCAmelCase_ : Any = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = output_channel # out lowerCAmelCase_ : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCAmelCase_ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def __lowercase ( self : List[Any] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : Union[torch.Tensor, float, int] , lowerCamelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCAmelCase_ : Optional[Any] = timestep if not torch.is_tensor(lowerCamelCase ): lowerCAmelCase_ : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: lowerCAmelCase_ : Dict = timesteps[None].to(sample.device ) lowerCAmelCase_ : int = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: lowerCAmelCase_ : int = self.time_mlp(lowerCamelCase ) else: lowerCAmelCase_ : Tuple = timestep_embed[..., None] lowerCAmelCase_ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCAmelCase_ : Union[str, Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCAmelCase_ : Optional[Any] = () for downsample_block in self.down_blocks: lowerCAmelCase_, lowerCAmelCase_ : Any = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCAmelCase_ : int = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCAmelCase_ : str = down_block_res_samples[-1:] lowerCAmelCase_ : Union[str, Any] = down_block_res_samples[:-1] lowerCAmelCase_ : List[str] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: lowerCAmelCase_ : Union[str, Any] = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
89
0