code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : str = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
185
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a :List[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _lowercase ( __lowerCAmelCase ) -> List[str]: for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ : Union[str, Any] = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: SCREAMING_SNAKE_CASE__ : str = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = PegasusConfig(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = PegasusForConditionalGeneration(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch_model.model.state_dict() SCREAMING_SNAKE_CASE__ : Any = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE__ : Tuple = v.T SCREAMING_SNAKE_CASE__ : Any = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE__ : Optional[int] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : Any = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : int = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _lowercase ( __lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: SCREAMING_SNAKE_CASE__ : List[Any] = tf.train.list_variables(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Any = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): SCREAMING_SNAKE_CASE__ : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE__ : str = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = array return tf_weights def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: # save tokenizer first SCREAMING_SNAKE_CASE__ : Any = Path(__lowerCAmelCase ).parent.name SCREAMING_SNAKE_CASE__ : Dict = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] SCREAMING_SNAKE_CASE__ : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tf_weights_as_numpy(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": SCREAMING_SNAKE_CASE__ : Tuple = task_specific_params SCREAMING_SNAKE_CASE__ : str = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": a :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") a :Optional[Any] = parser.parse_args() if args.save_dir is None: a :List[Any] = Path(args.tf_ckpt_path).parent.name a :Optional[Any] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
132
0
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCamelCase ( UpperCAmelCase__ : ndarray ) -> float: return np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) class __magic_name__ : def __init__( self : int , *, lowercase_ : float = np.inf , lowercase_ : str = "linear" , lowercase_ : float = 0.0 , ): lowercase_ : Any = regularization lowercase_ : List[str] = gamma if kernel == "linear": lowercase_ : Any = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) lowercase_ : Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowercase_ : Any = f'''Unknown kernel: {kernel}''' raise ValueError(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : ndarray , lowercase_ : ndarray ): return np.dot(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : ndarray , lowercase_ : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : list[ndarray] , lowercase_ : ndarray ): lowercase_ : Union[str, Any] = observations lowercase_ : List[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowercase_) , ) : List[str] = np.shape(lowercase_ ) def to_minimize(lowercase_ : ndarray ) -> float: lowercase_ : List[str] = 0 ((lowercase_) , ) : Tuple = np.shape(lowercase_ ) for i in range(lowercase_ ): for j in range(lowercase_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(lowercase_ ) lowercase_ : Optional[Any] = LinearConstraint(lowercase_ , 0 , 0 ) lowercase_ : Dict = Bounds(0 , self.regularization ) lowercase_ : Tuple = minimize( lowercase_ , np.ones(lowercase_ ) , bounds=lowercase_ , constraints=[ly_contraint] ).x lowercase_ : int = l_star # calculating mean offset of separation plane to points lowercase_ : List[str] = 0 for i in range(lowercase_ ): for j in range(lowercase_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowercase_ : Tuple = s / n def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : ndarray ): lowercase_ : List[str] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowercase_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__ ( unittest.TestCase ): @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.dummy_uncond_unet UpperCamelCase : str = KarrasVeScheduler() UpperCamelCase : List[str] = KarrasVePipeline(unet=A_ , scheduler=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Tuple = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe(num_inference_steps=2 , generator=A_ , output_type="numpy" ).images UpperCamelCase : List[Any] = torch.manual_seed(0 ) UpperCamelCase : Any = pipe(num_inference_steps=2 , generator=A_ , output_type="numpy" , return_dict=A_ )[0] UpperCamelCase : str = image[0, -3:, -3:, -1] UpperCamelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = "google/ncsnpp-celebahq-256" UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained(A_ ) UpperCamelCase : Any = KarrasVeScheduler() UpperCamelCase : List[Any] = KarrasVePipeline(unet=A_ , scheduler=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : List[str] = torch.manual_seed(0 ) UpperCamelCase : List[str] = pipe(num_inference_steps=20 , generator=A_ , output_type="numpy" ).images UpperCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase : int = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
52
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
1
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
213
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , **__snake_case ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
213
1
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) a_ = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" a_ = str(bin(UpperCAmelCase ) )[2:] a_ = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
243
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : int = (KDPMaDiscreteScheduler,) a_ : List[str] = 10 def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Tuple: a_ = { "num_train_timesteps": 11_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__UpperCAmelCase) return config def UpperCAmelCase__ ( self) ->Optional[Any]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02]): self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(prediction_type="v_prediction") a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps) a_ = self.dummy_model() a_ = self.dummy_sample_deter * scheduler.init_noise_sigma a_ = sample.to(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07) < 1E-2 assert abs(result_mean.item() - 6.1112E-10) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07) < 1E-2 assert abs(result_mean.item() - 0.0_002) < 1E-3 def UpperCAmelCase__ ( self) ->str: if torch_device == "mps": return a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps) a_ = self.dummy_model() a_ = self.dummy_sample_deter * scheduler.init_noise_sigma a_ = sample.to(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 def UpperCAmelCase__ ( self) ->Any: if torch_device == "mps": return a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCAmelCase) a_ = self.dummy_model() a_ = self.dummy_sample_deter.to(__UpperCAmelCase) * scheduler.init_noise_sigma for t in scheduler.timesteps: a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if str(__UpperCAmelCase).startswith("cpu"): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3
243
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _lowerCAmelCase ( lowercase ) -> List[str]: if isinstance(__a , collections.abc.Iterable ): return x return (x, x) @require_tf class _UpperCAmelCase : def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_a,_a ) __lowerCAmelCase = TFVisionTextDualEncoderModel(_a ) __lowerCAmelCase = model(input_ids=_a,pixel_values=_a,attention_mask=_a ) self.assertEqual(output["""text_embeds"""].shape,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape,(pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_a,_a ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_a,text_model=_a ) __lowerCAmelCase = model(input_ids=_a,pixel_values=_a,attention_mask=_a ) self.assertEqual(output["""text_embeds"""].shape,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_a,_a ) __lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_a ) __lowerCAmelCase = model(input_ids=_a,pixel_values=_a,attention_mask=_a ) self.assertEqual(output["""text_embeds"""].shape,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_a,_a ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_a,text_model=_a ) __lowerCAmelCase = model(input_ids=_a,pixel_values=_a,attention_mask=_a ) __lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_a ) __lowerCAmelCase = model(input_ids=_a,pixel_values=_a,attention_mask=_a ) __lowerCAmelCase = after_output[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a,1e-5 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_a,_a ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_a,text_model=_a ) __lowerCAmelCase = model( input_ids=_a,pixel_values=_a,attention_mask=_a,output_attentions=_a ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_a ),vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:],(vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_a ),text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:],(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_a,_a,f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_a ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_a ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_a ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_a ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_a ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_pretrained_model_and_inputs() __lowerCAmelCase = model_a(**_a ) __lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_a ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_a ) __lowerCAmelCase = model_a(**_a ) __lowerCAmelCase = after_outputs[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a,1e-5 ) @require_tf class _UpperCAmelCase ( __lowercase , unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""","""hf-internal-testing/tiny-random-bert""" ) __lowerCAmelCase = 13 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4],model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = TFViTModel(_a,name="""vision_model""" ) __lowerCAmelCase = TFBertModel(_a,name="""text_model""" ) return vision_model, text_model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFViTModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( __lowercase , unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""","""hf-internal-testing/tiny-random-roberta""" ) __lowerCAmelCase = 13 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4],model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_a,_a ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_a,text_model=_a ) __lowerCAmelCase = model( input_ids=_a,pixel_values=_a,attention_mask=_a,output_attentions=_a ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_a ),vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:],(vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_a ),text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:],(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = TFDeiTModel(_a,name="""vision_model""" ) __lowerCAmelCase = TFRobertaModel(_a,name="""text_model""" ) return vision_model, text_model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = TFRobertaModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( __lowercase , unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""","""hf-internal-testing/tiny-random-bert""" ) __lowerCAmelCase = 13 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4],model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = TFCLIPVisionModel(_a,name="""vision_model""" ) __lowerCAmelCase = TFBertModel(_a,name="""text_model""" ) return vision_model, text_model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFCLIPVisionModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""",logit_scale_init_value=1.0,from_pt=_a ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""],images=_a,padding=_a,return_tensors="""np""" ) __lowerCAmelCase = model(**_a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]),) __lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy(),_a,atol=1e-3 ) )
350
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def _lowerCAmelCase ( lowercase=None ) -> Any: __lowerCAmelCase = argparse.ArgumentParser(add_help=lowercase , allow_abbrev=lowercase ) # The main config parser __lowerCAmelCase = config_command_parser(lowercase ) # The subparser to add commands to __lowerCAmelCase = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(lowercase , parents=[parent_parser] ) update_command_parser(lowercase , parents=[parent_parser] ) return config_parser def _lowerCAmelCase ( ) -> List[Any]: __lowerCAmelCase = get_config_parser() __lowerCAmelCase = config_parser.parse_args() if not hasattr(lowercase , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
46
0
import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _snake_case ( __a ): '''simple docstring''' A__ : Dict = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) A__ : str = '''CIDAS/clipseg-rd64-refined''' A__ : List[Any] = '''image_segmenter''' A__ : str = CLIPSegForImageSegmentation A__ : Dict = ['''image''', '''text'''] A__ : Union[str, Any] = ['''image'''] def __init__( self: Dict ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[int] ) -> Any: requires_backends(self ,["""vision"""] ) super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ) -> Dict: return self.pre_processor(text=[label] ,images=[image] ,padding=lowerCAmelCase__ ,return_tensors="""pt""" ) def A__ ( self: Any ,lowerCamelCase_: Tuple ) -> Dict: with torch.no_grad(): UpperCAmelCase_ : List[str] = self.model(**lowerCAmelCase__ ).logits return logits def A__ ( self: Tuple ,lowerCamelCase_: Optional[Any] ) -> str: UpperCAmelCase_ : Tuple = outputs.cpu().detach().numpy() UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
345
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''blip_2_vision_model''' def __init__( self , lowerCAmelCase__=1_4_0_8 , lowerCAmelCase__=6_1_4_4 , lowerCAmelCase__=3_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0_00_01 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-10 , lowerCAmelCase__=True , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = qkv_bias @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): cls._set_token_in_kwargs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""") == "blip-2": __SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = '''blip_2_qformer''' def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=2 , lowerCAmelCase__=1_4_0_8 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = cross_attention_frequency __SCREAMING_SNAKE_CASE = encoder_hidden_size @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): cls._set_token_in_kwargs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""") == "blip-2": __SCREAMING_SNAKE_CASE = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''blip-2''' __lowercase : Any = True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=3_2 , **lowerCAmelCase__): super().__init__(**lowerCAmelCase__) if vision_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""") if qformer_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""") if text_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""") __SCREAMING_SNAKE_CASE = BlipaVisionConfig(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = BlipaQFormerConfig(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.text_config.tie_word_embeddings __SCREAMING_SNAKE_CASE = self.text_config.is_encoder_decoder __SCREAMING_SNAKE_CASE = num_query_tokens __SCREAMING_SNAKE_CASE = self.vision_config.hidden_size __SCREAMING_SNAKE_CASE = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __SCREAMING_SNAKE_CASE = 1.0 __SCREAMING_SNAKE_CASE = 0.02 @classmethod def snake_case_ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) __SCREAMING_SNAKE_CASE = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE = self.qformer_config.to_dict() __SCREAMING_SNAKE_CASE = self.text_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
100
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def a__ ( __lowercase ) -> List[Any]: _A = DPTConfig() if "large" in checkpoint_url: _A = 1024 _A = 4096 _A = 24 _A = 16 _A = [5, 11, 17, 23] _A = [256, 512, 1024, 1024] _A = (1, 384, 384) if "ade" in checkpoint_url: _A = True _A = 150 _A = "huggingface/label-files" _A = "ade20k-id2label.json" _A = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type="dataset" ) ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} _A = [1, 150, 480, 480] return config, expected_shape def a__ ( __lowercase ) -> Optional[Any]: _A = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a__ ( __lowercase ) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _A = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: _A = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: _A = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: _A = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: _A = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: _A = name.replace("proj" , "projection" ) if "blocks" in name: _A = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: _A = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _A = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: _A = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _A = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: _A = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: _A = name.replace("scratch" , "neck" ) if "layer1_rn" in name: _A = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: _A = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: _A = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: _A = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: _A = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _A = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _A = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: _A = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: _A = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: _A = name.replace("conv1" , "convolution1" ) if "conv2" in name: _A = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _A = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _A = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _A = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _A = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _A = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _A = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _A = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _A = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _A = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _A = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _A = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _A = name.replace("pretrained" , "dpt" ) if "bn" in name: _A = name.replace("bn" , "batch_norm" ) if "head" in name: _A = name.replace("head" , "head.head" ) if "encoder.norm" in name: _A = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: _A = name.replace("auxlayer" , "auxiliary_head.head" ) return name def a__ ( __lowercase , __lowercase ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _A = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[: config.hidden_size, :] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[ -config.hidden_size :, : ] _A = in_proj_bias[-config.hidden_size :] def a__ ( ) -> Any: _A = "http://images.cocodataset.org/val2017/000000039769.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: _A , _A = get_dpt_config(__lowercase ) # load original state_dict from URL _A = torch.hub.load_state_dict_from_url(__lowercase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowercase ) # rename keys for key in state_dict.copy().keys(): _A = state_dict.pop(__lowercase ) _A = val # read in qkv matrices read_in_q_k_v(__lowercase , __lowercase ) # load HuggingFace model _A = DPTForSemanticSegmentation(__lowercase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowercase ) model.load_state_dict(__lowercase ) model.eval() # Check outputs on an image _A = 480 if "ade" in checkpoint_url else 384 _A = DPTImageProcessor(size=__lowercase ) _A = prepare_img() _A = image_processor(__lowercase , return_tensors="pt" ) # forward pass _A = model(**__lowercase ).logits if "ade" in checkpoint_url else model(**__lowercase ).predicted_depth # Assert logits _A = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: _A = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(__lowercase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __lowercase , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __lowercase ) ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowercase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowercase , __lowercase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__lowercase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowercase , __lowercase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__lowercase , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) a_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
163
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class snake_case ( _UpperCamelCase): __UpperCamelCase = 't5' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any] , a__ : Optional[int]=3_21_28 , a__ : Any=5_12 , a__ : Any=64 , a__ : List[str]=20_48 , a__ : Tuple=6 , a__ : Dict=None , a__ : Optional[int]=8 , a__ : int=32 , a__ : List[str]=1_28 , a__ : Optional[Any]=0.1 , a__ : Union[str, Any]=1E-6 , a__ : Dict=1.0 , a__ : Optional[int]="relu" , a__ : Tuple=True , a__ : Any=True , a__ : Tuple=0 , a__ : Optional[Any]=1 , **a__ : Tuple , ) -> int: '''simple docstring''' _A = vocab_size _A = d_model _A = d_kv _A = d_ff _A = num_layers _A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _A = num_heads _A = relative_attention_num_buckets _A = relative_attention_max_distance _A = dropout_rate _A = layer_norm_epsilon _A = initializer_factor _A = feed_forward_proj _A = use_cache _A = self.feed_forward_proj.split("-" ) _A = act_info[-1] _A = act_info[0] == "gated" if len(a__ ) > 1 and act_info[0] != "gated" or len(a__ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _A = "gelu_new" super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , **a__ , ) class snake_case ( _UpperCamelCase): @property def a_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _A = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: _A = "past_encoder_sequence + sequence" _A = {0: "batch"} _A = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _A = {0: "batch", 1: "decoder_sequence"} _A = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a__ , direction="inputs" ) return common_inputs @property def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return 13
163
1
def UpperCamelCase_( lowerCamelCase_ = 1000 ) -> int: _lowercase : Tuple = -1 _lowercase : List[str] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _lowercase : Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) _lowercase : Tuple = n - a - b if c * c == (a * a + b * b): _lowercase : str = a * b * c if candidate >= product: _lowercase : Any = candidate return product if __name__ == "__main__": print(F"{solution() = }")
21
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_=1024 , A_=1024 , A_=3.6 ) -> Tuple: __UpperCamelCase =tokenizer __UpperCamelCase =tokenizer.bos_token_id __UpperCamelCase =dataset __UpperCamelCase =seq_length __UpperCamelCase =seq_length * chars_per_token * num_of_sequences def __iter__( self ) -> Optional[Any]: __UpperCamelCase =iter(self.dataset ) __UpperCamelCase =True while more_examples: __UpperCamelCase , __UpperCamelCase =[], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A_ )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __UpperCamelCase =False break __UpperCamelCase =tokenizer(A_ , truncation=A_ )['input_ids'] __UpperCamelCase =[] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(A_ ) , self.seq_length ): __UpperCamelCase =all_token_ids[i : i + self.seq_length] if len(A_ ) == self.seq_length: yield torch.tensor(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase ={'streaming': True} __UpperCamelCase =load_dataset(args.dataset_name , split='train' , **SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =ConstantLengthDataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , seq_length=args.seq_length ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=args.batch_size ) return eval_dataloader def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): model.eval() __UpperCamelCase =[] for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): with torch.no_grad(): __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(SCREAMING_SNAKE_CASE__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __UpperCamelCase =torch.mean(torch.cat(SCREAMING_SNAKE_CASE__ ) ) try: __UpperCamelCase =torch.exp(SCREAMING_SNAKE_CASE__ ) except OverflowError: __UpperCamelCase =float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _A = Accelerator() # Parse configuration _A = HfArgumentParser(EvaluationArguments) _A = parser.parse_args() set_seed(args.seed) # Logging _A = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _A = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _A = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _A = create_dataloader(args) # Prepare everything with our `accelerator`. _A , _A = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _A , _A = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
117
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _A = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _A = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = BertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): __UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =tokenize_chinese_chars __UpperCamelCase =normalizer_class(**A_ ) __UpperCamelCase =do_lower_case def _a ( self , A_ , A_=None ) -> List[str]: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
117
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ): # Initialise PyTorch model lowercase_ : Any = LxmertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Any = LxmertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
213
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( enum.Enum ): lowercase = 0 lowercase = 1 @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'generated' def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' super().__init__(*__UpperCamelCase ,**__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = {} if truncation is not None: lowercase_ : int = truncation lowercase_ : Dict = generate_kwargs lowercase_ : List[Any] = {} if return_tensors is not None and return_type is None: lowercase_ : Union[str, Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase_ : str = return_type if clean_up_tokenization_spaces is not None: lowercase_ : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase_ : Union[str, Any] = self.tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) lowercase_ : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return True def _UpperCAmelCase ( self ,*__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] ,__UpperCamelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) lowercase_ : str = ([prefix + arg for arg in args[0]],) lowercase_ : Union[str, Any] = True elif isinstance(args[0] ,__UpperCamelCase ): lowercase_ : Union[str, Any] = (prefix + args[0],) lowercase_ : Union[str, Any] = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowercase_ : List[Any] = self.tokenizer(*__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = super().__call__(*__UpperCamelCase ,**__UpperCamelCase ) if ( isinstance(args[0] ,__UpperCamelCase ) and all(isinstance(__UpperCamelCase ,__UpperCamelCase ) for el in args[0] ) and all(len(__UpperCamelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Any = self._parse_and_tokenize(__UpperCamelCase ,truncation=__UpperCamelCase ,**__UpperCamelCase ) return inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' if self.framework == "pt": lowercase_ , lowercase_ : Optional[int] = model_inputs['input_ids'].shape elif self.framework == "tf": lowercase_ , lowercase_ : Union[str, Any] = tf.shape(model_inputs['input_ids'] ).numpy() lowercase_ : str = generate_kwargs.get('min_length' ,self.model.config.min_length ) lowercase_ : List[Any] = generate_kwargs.get('max_length' ,self.model.config.max_length ) self.check_inputs(__UpperCamelCase ,generate_kwargs['min_length'] ,generate_kwargs['max_length'] ) lowercase_ : Tuple = self.model.generate(**__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : str = output_ids.shape[0] if self.framework == "pt": lowercase_ : List[Any] = output_ids.reshape(__UpperCamelCase ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": lowercase_ : List[Any] = tf.reshape(__UpperCamelCase ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=ReturnType.TEXT ,__UpperCamelCase=False ) -> Dict: '''simple docstring''' lowercase_ : Dict = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase_ : List[Any] = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowercase_ : str = { f'''{self.return_name}_text''': self.tokenizer.decode( __UpperCamelCase ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase ,) } records.append(__UpperCamelCase ) return records @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'summary' def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return super().__call__(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'translation' def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def _UpperCAmelCase ( self ,*__UpperCamelCase ,__UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> int: '''simple docstring''' if getattr(self.tokenizer ,'_build_translation_inputs' ,__UpperCamelCase ): return self.tokenizer._build_translation_inputs( *__UpperCamelCase ,return_tensors=self.framework ,truncation=__UpperCamelCase ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ) else: return super()._parse_and_tokenize(*__UpperCamelCase ,truncation=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ : int = super()._sanitize_parameters(**__UpperCamelCase ) if src_lang is not None: lowercase_ : str = src_lang if tgt_lang is not None: lowercase_ : Optional[Any] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase_ : Tuple = kwargs.get('task' ,self.task ) lowercase_ : List[str] = task.split('_' ) if task and len(__UpperCamelCase ) == 4: # translation, XX, to YY lowercase_ : Union[str, Any] = items[1] lowercase_ : Tuple = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' return super().__call__(*__UpperCamelCase ,**__UpperCamelCase )
213
1
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# __SCREAMING_SNAKE_CASE :Tuple = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] __SCREAMING_SNAKE_CASE :Tuple = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] __SCREAMING_SNAKE_CASE :List[str] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks __SCREAMING_SNAKE_CASE :Optional[int] = F"down_blocks.{i}.resnets.{j}." __SCREAMING_SNAKE_CASE :Any = F"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 __SCREAMING_SNAKE_CASE :Any = F"down_blocks.{i}.attentions.{j}." __SCREAMING_SNAKE_CASE :List[Any] = F"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks __SCREAMING_SNAKE_CASE :List[Any] = F"up_blocks.{i}.resnets.{j}." __SCREAMING_SNAKE_CASE :Any = F"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 __SCREAMING_SNAKE_CASE :Tuple = F"up_blocks.{i}.attentions.{j}." __SCREAMING_SNAKE_CASE :Any = F"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 __SCREAMING_SNAKE_CASE :Optional[Any] = F"down_blocks.{i}.downsamplers.0.conv." __SCREAMING_SNAKE_CASE :Optional[Any] = F"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 __SCREAMING_SNAKE_CASE :Union[str, Any] = F"up_blocks.{i}.upsamplers.0." __SCREAMING_SNAKE_CASE :str = F"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) __SCREAMING_SNAKE_CASE :Tuple = '''mid_block.attentions.0.''' __SCREAMING_SNAKE_CASE :str = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): __SCREAMING_SNAKE_CASE :Union[str, Any] = F"mid_block.resnets.{j}." __SCREAMING_SNAKE_CASE :Optional[int] = F"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def UpperCAmelCase_ ( __lowercase : int ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCAmelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCAmelCase = v.replace(__lowercase , __lowercase ) _UpperCAmelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCAmelCase = v.replace(__lowercase , __lowercase ) _UpperCAmelCase = v _UpperCAmelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# __SCREAMING_SNAKE_CASE :List[Any] = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): __SCREAMING_SNAKE_CASE :Any = F"encoder.down_blocks.{i}.resnets.{j}." __SCREAMING_SNAKE_CASE :Optional[Any] = F"encoder.down.{i}.block.{j}." vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: __SCREAMING_SNAKE_CASE :Optional[Any] = F"down_blocks.{i}.downsamplers.0." __SCREAMING_SNAKE_CASE :int = F"down.{i}.downsample." vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) __SCREAMING_SNAKE_CASE :Tuple = F"up_blocks.{i}.upsamplers.0." __SCREAMING_SNAKE_CASE :int = F"up.{3-i}.upsample." vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): __SCREAMING_SNAKE_CASE :List[str] = F"decoder.up_blocks.{i}.resnets.{j}." __SCREAMING_SNAKE_CASE :Optional[Any] = F"decoder.up.{3-i}.block.{j}." vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): __SCREAMING_SNAKE_CASE :Tuple = F"mid_block.resnets.{i}." __SCREAMING_SNAKE_CASE :str = F"mid.block_{i+1}." vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) __SCREAMING_SNAKE_CASE :Tuple = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> Dict: '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCAmelCase = v.replace(__lowercase , __lowercase ) _UpperCAmelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCAmelCase = v.replace(__lowercase , __lowercase ) _UpperCAmelCase = v _UpperCAmelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCAmelCase = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'mid.attn_1.{weight_name}.weight' in k: print(f'Reshaping {k} for SD format' ) _UpperCAmelCase = reshape_weight_for_sd(__lowercase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# __SCREAMING_SNAKE_CASE :Optional[int] = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] __SCREAMING_SNAKE_CASE :Any = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} __SCREAMING_SNAKE_CASE :List[str] = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp __SCREAMING_SNAKE_CASE :Dict = {'''q''': 0, '''k''': 1, '''v''': 2} def UpperCAmelCase_ ( __lowercase : str ) -> Any: '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): _UpperCAmelCase = k[: -len(".q_proj.weight" )] _UpperCAmelCase = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: _UpperCAmelCase = [None, None, None] _UpperCAmelCase = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): _UpperCAmelCase = k[: -len(".q_proj.bias" )] _UpperCAmelCase = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: _UpperCAmelCase = [None, None, None] _UpperCAmelCase = v continue _UpperCAmelCase = textenc_pattern.sub(lambda __lowercase : protected[re.escape(m.group(0 ) )] , __lowercase ) _UpperCAmelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) _UpperCAmelCase = textenc_pattern.sub(lambda __lowercase : protected[re.escape(m.group(0 ) )] , __lowercase ) _UpperCAmelCase = torch.cat(__lowercase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) _UpperCAmelCase = textenc_pattern.sub(lambda __lowercase : protected[re.escape(m.group(0 ) )] , __lowercase ) _UpperCAmelCase = torch.cat(__lowercase ) return new_state_dict def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return text_enc_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) __SCREAMING_SNAKE_CASE :str = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors __SCREAMING_SNAKE_CASE :Optional[Any] = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') __SCREAMING_SNAKE_CASE :Optional[Any] = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') __SCREAMING_SNAKE_CASE :Dict = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): __SCREAMING_SNAKE_CASE :List[Any] = load_file(unet_path, device='''cpu''') else: __SCREAMING_SNAKE_CASE :Tuple = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') __SCREAMING_SNAKE_CASE :int = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): __SCREAMING_SNAKE_CASE :Optional[int] = load_file(vae_path, device='''cpu''') else: __SCREAMING_SNAKE_CASE :Dict = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): __SCREAMING_SNAKE_CASE :int = load_file(text_enc_path, device='''cpu''') else: __SCREAMING_SNAKE_CASE :Union[str, Any] = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') __SCREAMING_SNAKE_CASE :Optional[int] = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model __SCREAMING_SNAKE_CASE :Tuple = convert_unet_state_dict(unet_state_dict) __SCREAMING_SNAKE_CASE :Optional[int] = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model __SCREAMING_SNAKE_CASE :List[str] = convert_vae_state_dict(vae_state_dict) __SCREAMING_SNAKE_CASE :Any = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper __SCREAMING_SNAKE_CASE :int = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm __SCREAMING_SNAKE_CASE :Any = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} __SCREAMING_SNAKE_CASE :Optional[int] = convert_text_enc_state_dict_vaa(text_enc_dict) __SCREAMING_SNAKE_CASE :Tuple = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: __SCREAMING_SNAKE_CASE :List[str] = convert_text_enc_state_dict(text_enc_dict) __SCREAMING_SNAKE_CASE :Optional[int] = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint __SCREAMING_SNAKE_CASE :List[str] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: __SCREAMING_SNAKE_CASE :Union[str, Any] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: __SCREAMING_SNAKE_CASE :Optional[int] = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
362
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _UpperCAmelCase = set() # Replace all the whitespace in our sentence _UpperCAmelCase = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowercase ) == 26 def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _UpperCAmelCase = [False] * 26 for char in input_str: if char.islower(): _UpperCAmelCase = True elif char.isupper(): _UpperCAmelCase = True return all(__lowercase ) def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCAmelCase_ ( ) -> None: '''simple docstring''' from timeit import timeit _UpperCAmelCase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=__lowercase ) ) print(timeit("is_pangram_faster()" , setup=__lowercase ) ) print(timeit("is_pangram_fastest()" , setup=__lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
156
0
# Function to print upper half of diamond (pyramid) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: for i in range(0 , lowerCamelCase_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCamelCase_( lowerCamelCase_ ) -> Any: for i in range(lowerCamelCase_ , 0 , -1 ): for _ in range(lowerCamelCase_ , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCamelCase_ ) # upper half reverse_floyd(lowerCamelCase_ ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") SCREAMING_SNAKE_CASE : Tuple = 1 while K: SCREAMING_SNAKE_CASE : Union[str, Any] = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) SCREAMING_SNAKE_CASE : List[str] = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
21
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowercase ( unittest.TestCase ): def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : int=13 , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : int=True , _UpperCamelCase : List[str]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=99 , _UpperCamelCase : List[Any]=32 , _UpperCamelCase : Any=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Optional[int]=37 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : int=512 , _UpperCamelCase : List[Any]=16 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : str=4 , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_attention_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_choices def __snake_case( self : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_attention_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase__ : str = True lowercase__ : str = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __snake_case( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self ) @slow def __snake_case( self : Tuple ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=_a ) SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class lowercase ( unittest.TestCase ): @slow def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE = model(_a )[0] SCREAMING_SNAKE_CASE = 50_000 SCREAMING_SNAKE_CASE = (1, 6, vocab_size) self.assertEqual(output.shape , _a ) SCREAMING_SNAKE_CASE = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
361
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase : lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : int lowercase__ : int lowercase__ : float lowercase__ : float lowercase__ : Tuple[int] def __snake_case( self : str ) -> Dict: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __snake_case( self : int ) -> str: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __snake_case( self : Tuple ) -> List[str]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __snake_case( self : Any ) -> torch.Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(_UpperCamelCase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def __snake_case( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE = self.shape SCREAMING_SNAKE_CASE = int(np.prod(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = self.get_image_coords() SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) SCREAMING_SNAKE_CASE = self.get_camera_rays(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rays.view(_UpperCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __snake_case( self : Optional[int] , _UpperCamelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] SCREAMING_SNAKE_CASE = coords.view(_UpperCamelCase , -1 , 2 ) SCREAMING_SNAKE_CASE = self.resolution() SCREAMING_SNAKE_CASE = self.fov() SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) SCREAMING_SNAKE_CASE = fracs.view(_UpperCamelCase , -1 , 2 ) SCREAMING_SNAKE_CASE = ( self.z.view(_UpperCamelCase , 1 , 3 ) + self.x.view(_UpperCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_UpperCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(_UpperCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_UpperCamelCase , *_UpperCamelCase , 2 , 3 ) def __snake_case( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_UpperCamelCase , height=_UpperCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase (UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): SCREAMING_SNAKE_CASE = np.array([np.sin(UpperCAmelCase__ ), np.cos(UpperCAmelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) SCREAMING_SNAKE_CASE = -z * 4 SCREAMING_SNAKE_CASE = np.array([np.cos(UpperCAmelCase__ ), -np.sin(UpperCAmelCase__ ), 0.0] ) SCREAMING_SNAKE_CASE = np.cross(UpperCAmelCase__ , UpperCAmelCase__ ) origins.append(UpperCAmelCase__ ) xs.append(UpperCAmelCase__ ) ys.append(UpperCAmelCase__ ) zs.append(UpperCAmelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , width=UpperCAmelCase__ , height=UpperCAmelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCAmelCase__ )) , )
206
0
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( a__ , a__ , a__ ): lowerCAmelCase :List[str] = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 5_0257 , _lowerCamelCase = 1024 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = None , _lowerCamelCase = "gelu_new" , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 1e-5 , _lowerCamelCase = 0.02 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = False , ): super().__init__() UpperCAmelCase__ : Optional[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''') UpperCAmelCase__ : str = prefix_inner_dim UpperCAmelCase__ : Tuple = prefix_hidden_dim UpperCAmelCase__ : Any = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Optional[Any] = ( nn.Linear(self.prefix_hidden_dim , _lowerCamelCase) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Optional[Any] = GPTaConfig( vocab_size=_lowerCamelCase , n_positions=_lowerCamelCase , n_embd=_lowerCamelCase , n_layer=_lowerCamelCase , n_head=_lowerCamelCase , n_inner=_lowerCamelCase , activation_function=_lowerCamelCase , resid_pdrop=_lowerCamelCase , embd_pdrop=_lowerCamelCase , attn_pdrop=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , initializer_range=_lowerCamelCase , scale_attn_weights=_lowerCamelCase , use_cache=_lowerCamelCase , scale_attn_by_inverse_layer_idx=_lowerCamelCase , reorder_and_upcast_attn=_lowerCamelCase , ) UpperCAmelCase__ : int = GPTaLMHeadModel(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ): UpperCAmelCase__ : Dict = self.transformer.transformer.wte(_lowerCamelCase) UpperCAmelCase__ : Any = self.encode_prefix(_lowerCamelCase) UpperCAmelCase__ : Tuple = self.decode_prefix(_lowerCamelCase) UpperCAmelCase__ : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: UpperCAmelCase__ : str = self.get_dummy_token(input_ids.shape[0] , input_ids.device) UpperCAmelCase__ : Tuple = torch.cat((dummy_token, input_ids) , dim=1) UpperCAmelCase__ : Union[str, Any] = self.transformer(inputs_embeds=_lowerCamelCase , labels=_lowerCamelCase , attention_mask=_lowerCamelCase) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): return torch.zeros(_lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): return self.encode_prefix(_lowerCamelCase) @torch.no_grad() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Dict = torch.split(_lowerCamelCase , 1 , dim=0) UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Any = [] for feature in features: UpperCAmelCase__ : int = self.decode_prefix(feature.to(_lowerCamelCase)) # back to the clip feature # Only support beam search for now UpperCAmelCase__ , UpperCAmelCase__ : str = self.generate_beam( input_embeds=_lowerCamelCase , device=_lowerCamelCase , eos_token_id=_lowerCamelCase) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) UpperCAmelCase__ : List[Any] = torch.stack(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = torch.stack(_lowerCamelCase) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = 5 , _lowerCamelCase = 67 , _lowerCamelCase = 1.0 , _lowerCamelCase = None , ): UpperCAmelCase__ : Dict = eos_token_id UpperCAmelCase__ : Any = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Any = torch.ones(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.int) UpperCAmelCase__ : Any = torch.zeros(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.bool) if input_embeds is not None: UpperCAmelCase__ : Optional[int] = input_embeds else: UpperCAmelCase__ : Any = self.transformer.transformer.wte(_lowerCamelCase) for i in range(_lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = self.transformer(inputs_embeds=_lowerCamelCase) UpperCAmelCase__ : List[str] = outputs.logits UpperCAmelCase__ : List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase__ : int = logits.softmax(-1).log() if scores is None: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = logits.topk(_lowerCamelCase , -1) UpperCAmelCase__ : int = generated.expand(_lowerCamelCase , *generated.shape[1:]) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: UpperCAmelCase__ : Any = next_tokens else: UpperCAmelCase__ : Tuple = tokens.expand(_lowerCamelCase , *tokens.shape[1:]) UpperCAmelCase__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1) else: UpperCAmelCase__ : Any = -float(np.inf) UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Any = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase__ : Optional[Any] = scores_sum / seq_lengths[:, None] UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = scores_sum_average.view(-1).topk(_lowerCamelCase , -1) UpperCAmelCase__ : str = next_tokens // scores_sum.shape[1] UpperCAmelCase__ : Optional[int] = seq_lengths[next_tokens_source] UpperCAmelCase__ : List[str] = next_tokens % scores_sum.shape[1] UpperCAmelCase__ : List[Any] = next_tokens.unsqueeze(1) UpperCAmelCase__ : Dict = tokens[next_tokens_source] UpperCAmelCase__ : Optional[int] = torch.cat((tokens, next_tokens) , dim=1) UpperCAmelCase__ : Optional[Any] = generated[next_tokens_source] UpperCAmelCase__ : List[Any] = scores_sum_average * seq_lengths UpperCAmelCase__ : Union[str, Any] = is_stopped[next_tokens_source] UpperCAmelCase__ : Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) UpperCAmelCase__ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1) UpperCAmelCase__ : Union[str, Any] = is_stopped + next_tokens.eq(_lowerCamelCase).squeeze() if is_stopped.all(): break UpperCAmelCase__ : Tuple = scores / seq_lengths UpperCAmelCase__ : Union[str, Any] = scores.argsort(descending=_lowerCamelCase) # tokens tensors are already padded to max_seq_length UpperCAmelCase__ : Optional[Any] = [tokens[i] for i in order] UpperCAmelCase__ : Optional[Any] = torch.stack(_lowerCamelCase , dim=0) UpperCAmelCase__ : Dict = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
163
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ): UpperCAmelCase__ : Any = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" UpperCAmelCase__ : Optional[int] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) return image def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : int = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = dct.pop(UpperCamelCase__ ) UpperCAmelCase__ : Dict = val def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase__ : List[Any] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase__ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase__ : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(UpperCamelCase__ , requires_grad=UpperCamelCase__ ), v_bias) ) UpperCAmelCase__ : Tuple = qkv_bias def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = 3_6_4 if """coco""" in model_name else 2_2_4 UpperCAmelCase__ : int = BlipaVisionConfig(image_size=UpperCamelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase__ : str = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=UpperCamelCase__ ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase__ : List[Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=UpperCamelCase__ ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase__ : Dict = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase__ : Optional[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() UpperCAmelCase__ : int = BlipaConfig(vision_config=UpperCamelCase__ , text_config=UpperCamelCase__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ): UpperCAmelCase__ : Tuple = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) UpperCAmelCase__ : int = tokenizer("""\n""" , add_special_tokens=UpperCamelCase__ ).input_ids[0] UpperCAmelCase__ , UpperCAmelCase__ : Any = get_blipa_config(UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) UpperCAmelCase__ : List[str] = BlipaForConditionalGeneration(UpperCamelCase__ ).eval() UpperCAmelCase__ : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) UpperCAmelCase__ : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = load_model_and_preprocess( name=UpperCamelCase__ , model_type=UpperCamelCase__ , is_eval=UpperCamelCase__ , device=UpperCamelCase__ ) original_model.eval() print("""Done!""" ) # update state dict keys UpperCAmelCase__ : List[Any] = original_model.state_dict() UpperCAmelCase__ : Union[str, Any] = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase__ : str = state_dict.pop(UpperCamelCase__ ) if key.startswith("""Qformer.bert""" ): UpperCAmelCase__ : Any = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: UpperCAmelCase__ : Dict = key.replace("""self""" , """attention""" ) if "opt_proj" in key: UpperCAmelCase__ : Any = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: UpperCAmelCase__ : int = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): UpperCAmelCase__ : Optional[int] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): UpperCAmelCase__ : int = key.replace("""t5""" , """language""" ) UpperCAmelCase__ : List[str] = val # read in qv biases read_in_q_v_bias(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : Any = hf_model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase__ : List[Any] = load_demo_image() UpperCAmelCase__ : Any = vis_processors["""eval"""](UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) UpperCAmelCase__ : Any = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(UpperCamelCase__ ) # create processor UpperCAmelCase__ : int = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ ) UpperCAmelCase__ : Any = BlipaProcessor(image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) UpperCAmelCase__ : Tuple = processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) hf_model.to(UpperCamelCase__ ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase__ : List[str] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits UpperCAmelCase__ : Union[str, Any] = hf_model(UpperCamelCase__ , UpperCamelCase__ ).logits else: UpperCAmelCase__ : List[str] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits UpperCAmelCase__ : Any = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase__ : Optional[Any] = hf_model(UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase__ : Any = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=UpperCamelCase__ ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase__ : int = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=UpperCamelCase__ ) else: # cast to same type UpperCAmelCase__ : int = logits.dtype assert torch.allclose(original_logits.to(UpperCamelCase__ ) , UpperCamelCase__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) UpperCAmelCase__ : Union[str, Any] = """""" UpperCAmelCase__ : Dict = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ).input_ids.to(UpperCamelCase__ ) UpperCAmelCase__ : int = original_model.generate({"""image""": original_pixel_values} ) UpperCAmelCase__ : Optional[Any] = hf_model.generate( UpperCamelCase__ , UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = input_ids.shape[1] UpperCAmelCase__ : Optional[Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase__ ) UpperCAmelCase__ : Any = [text.strip() for text in output_text] print("""HF generation:""" , UpperCamelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __A =argparse.ArgumentParser() __A =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __A =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
163
1
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: UpperCamelCase__ : Optional[int] = TOKENIZER_CLASSES else: UpperCamelCase__ : Optional[int] = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + '''Fast''' )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: UpperCamelCase__ : Tuple = TOKENIZER_CLASSES[tokenizer_name] UpperCamelCase__ : str = True if checkpoint_name is None: UpperCamelCase__ : Optional[Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCamelCase__ : Tuple = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer UpperCamelCase__ : int = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: UpperCamelCase__ : List[str] = checkpoint.split('''/''' ) UpperCamelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: UpperCamelCase__ : Tuple = checkpoint UpperCamelCase__ : List[Any] = dump_path else: UpperCamelCase__ : List[str] = None UpperCamelCase__ : Tuple = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCamelCase__ : Union[str, Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCamelCase__ : List[Any] = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": UpperCamelCase__ : str = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) UpperCamelCase__ : int = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) __UpperCamelCase : int = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
367
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple="attention" ): """simple docstring""" UpperCamelCase__ : List[Any] = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"] UpperCamelCase__ : Optional[Any] = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"] UpperCamelCase__ : Union[str, Any] = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"] UpperCamelCase__ : int = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any=False ): """simple docstring""" if split_mlp_wi: UpperCamelCase__ : Optional[int] = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"] UpperCamelCase__ : int = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"] UpperCamelCase__ : Any = (wi_a, wi_a) else: UpperCamelCase__ : Union[str, Any] = params[F"{prefix}/layers_{i}/mlp/wi/kernel"] UpperCamelCase__ : Any = params[F"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return params[F"{prefix}/layers_{i}/{layer_name}/scale"] def _a ( SCREAMING_SNAKE_CASE : dict , *, SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool ): """simple docstring""" UpperCamelCase__ : List[Any] = traverse_util.flatten_dict(variables['''target'''] ) UpperCamelCase__ : List[str] = {'''/'''.join(SCREAMING_SNAKE_CASE ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase__ : List[Any] = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = collections.OrderedDict() # Shared embeddings. UpperCamelCase__ : List[Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). UpperCamelCase__ : int = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''attention''' ) UpperCamelCase__ : Tuple = layer_norm UpperCamelCase__ : Optional[int] = k.T UpperCamelCase__ : Any = o.T UpperCamelCase__ : Dict = q.T UpperCamelCase__ : List[str] = v.T # Block i, layer 1 (MLP). UpperCamelCase__ : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ : Dict = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = layer_norm if split_mlp_wi: UpperCamelCase__ : Optional[int] = wi[0].T UpperCamelCase__ : Tuple = wi[1].T else: UpperCamelCase__ : List[Any] = wi.T UpperCamelCase__ : Optional[int] = wo.T UpperCamelCase__ : List[str] = old[ '''encoder/relpos_bias/rel_embedding''' ].T UpperCamelCase__ : str = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). UpperCamelCase__ : List[Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''self_attention''' ) UpperCamelCase__ : Dict = layer_norm UpperCamelCase__ : Optional[Any] = k.T UpperCamelCase__ : Tuple = o.T UpperCamelCase__ : Any = q.T UpperCamelCase__ : Optional[Any] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase__ : Optional[Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Any = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''encoder_decoder_attention''' ) UpperCamelCase__ : Optional[int] = layer_norm UpperCamelCase__ : List[Any] = k.T UpperCamelCase__ : Optional[Any] = o.T UpperCamelCase__ : Dict = q.T UpperCamelCase__ : Any = v.T # Block i, layer 2 (MLP). UpperCamelCase__ : Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = layer_norm if split_mlp_wi: UpperCamelCase__ : str = wi[0].T UpperCamelCase__ : Any = wi[1].T else: UpperCamelCase__ : Tuple = wi.T UpperCamelCase__ : Tuple = wo.T UpperCamelCase__ : Optional[int] = old['''decoder/decoder_norm/scale'''] UpperCamelCase__ : Any = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase__ : Dict = old['''decoder/logits_dense/kernel'''].T return new def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : bool ): """simple docstring""" UpperCamelCase__ : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase__ : Optional[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase__ : List[Any] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCamelCase__ : List[str] = state_dict['''shared.weight'''] return state_dict def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" UpperCamelCase__ : Tuple = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = make_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" UpperCamelCase__ : Tuple = TaConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase__ : Any = TaEncoderModel(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Union[str, Any] = TaForConditionalGeneration(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE ) print('''Done''' ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) __UpperCamelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
51
0
import numpy as np from PIL import Image def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = np.array(lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __A = 0 __A = 0 __A = 0 __A = 0 # compute the shape of the output matrix __A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __A = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __A = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A = 0 __A = 0 return updated_arr def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = np.array(lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __A = 0 __A = 0 __A = 0 __A = 0 # compute the shape of the output matrix __A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __A = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __A = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A = 0 __A = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
117
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case__ : int = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } snake_case__ : int = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } snake_case__ : str = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BertTokenizer def __init__(self :List[str] , _UpperCamelCase :List[str]=None , _UpperCamelCase :Optional[Any]=None , _UpperCamelCase :str=True , _UpperCamelCase :Optional[Any]="[UNK]" , _UpperCamelCase :Tuple="[SEP]" , _UpperCamelCase :List[Any]="[PAD]" , _UpperCamelCase :int="[CLS]" , _UpperCamelCase :Optional[int]="[MASK]" , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :str=None , **_UpperCamelCase :List[str] , )-> str: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): __A = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**_UpperCamelCase ) __A = do_lower_case def _lowerCAmelCase (self :Any , _UpperCamelCase :int , _UpperCamelCase :List[str]=None )-> List[Any]: __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCAmelCase (self :List[str] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None )-> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase (self :Any , _UpperCamelCase :str , _UpperCamelCase :Optional[str] = None )-> Tuple[str]: __A = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
117
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _lowerCamelCase : Union[str, Any] = datasets.load_iris() _lowerCamelCase : Union[str, Any] = np.array(data["""data"""]) _lowerCamelCase : Tuple = np.array(data["""target"""]) _lowerCamelCase : Union[str, Any] = data["""target_names"""] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = train_test_split(X, y) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" return np.linalg.norm(np.array(lowercase_ ) - np.array(lowercase_ ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=5 ) -> Optional[Any]: """simple docstring""" A__ = zip(lowercase_ , lowercase_ ) # List of distances of all points from the point to be classified A__ = [] for data_point in data: A__ = euclidean_distance(data_point[0] , lowercase_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A__ = [i[1] for i in sorted(lowercase_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A__ = Counter(lowercase_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
231
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowerCamelCase : Tuple = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
1
from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> bool: """simple docstring""" return np.array_equal(__lowerCAmelCase , matrix.conjugate().T ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = v.conjugate().T SCREAMING_SNAKE_CASE__ = v_star.dot(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(__lowerCAmelCase )) / (v_star.dot(__lowerCAmelCase )) def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) SCREAMING_SNAKE_CASE__ = np.array([[1], [2], [3]] ) assert is_hermitian(__lowerCAmelCase ), f"""{a} is not hermitian.""" print(rayleigh_quotient(__lowerCAmelCase , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__lowerCAmelCase ), f"""{a} is not hermitian.""" assert rayleigh_quotient(__lowerCAmelCase , __lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
219
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __lowerCAmelCase : str = False __lowerCAmelCase : List[str] = True __lowerCAmelCase : Union[str, Any] = False if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __lowerCAmelCase : Optional[int] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __lowerCAmelCase : str = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __lowerCAmelCase : Any = reader.read() __lowerCAmelCase : int = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __lowerCAmelCase : Any = UNetaDModel(**config) else: __lowerCAmelCase : List[str] = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __lowerCAmelCase : str = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __lowerCAmelCase : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __lowerCAmelCase : Dict = config[key] del config[key] __lowerCAmelCase : int = [k.replace("UNetRes", "") for k in config["down_block_types"]] __lowerCAmelCase : Optional[Any] = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __lowerCAmelCase : Any = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __lowerCAmelCase : Tuple = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __lowerCAmelCase : Dict = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __lowerCAmelCase : Union[str, Any] = param_value __lowerCAmelCase : str = True if not has_changed: __lowerCAmelCase : Union[str, Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
156
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
def __UpperCamelCase ( _A ): lowerCAmelCase_ = [int(_A ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_A ) == 4 and all(0 <= int(_A ) <= 254 for octet in octets ) if __name__ == "__main__": _A = input().strip() _A = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f"{ip} is a {valid_or_invalid} IP v4 address.")
167
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class __A: snake_case_ = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) snake_case_ = field( default=a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) snake_case_ = field( default=a , metadata={'''help''': '''The column name of the images in the files.'''} ) snake_case_ = field(default=a , metadata={'''help''': '''A folder containing the training data.'''} ) snake_case_ = field(default=a , metadata={'''help''': '''A folder containing the validation data.'''} ) snake_case_ = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) snake_case_ = field( default=a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) snake_case_ = field( default=a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = {} if self.train_dir is not None: __a = self.train_dir if self.validation_dir is not None: __a = self.validation_dir __a = data_files if data_files else None @dataclass class __A: snake_case_ = field( default=a , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) snake_case_ = field( default=a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) snake_case_ = field( default=a , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) snake_case_ = field( default=a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) snake_case_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) snake_case_ = field(default=a , metadata={'''help''': '''Name or path of preprocessor config.'''} ) snake_case_ = field( default=a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) snake_case_ = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) snake_case_ = field( default=a , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class __A( a ): snake_case_ = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def __lowerCAmelCase ( a__ ) -> Tuple: __a = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def __lowerCAmelCase ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , a__ , a__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a = training_args.get_process_log_level() logger.setLevel(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __a = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , a__ ) and data_args.train_val_split > 0.0: __a = ds['''train'''].train_test_split(data_args.train_val_split ) __a = split['''train'''] __a = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __a = ViTMAEConfig.from_pretrained(model_args.config_name , **a__ ) elif model_args.model_name_or_path: __a = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **a__ ) else: __a = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __a = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **a__ ) elif model_args.model_name_or_path: __a = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **a__ ) else: __a = ViTImageProcessor() # create model if model_args.model_name_or_path: __a = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __a = ViTMAEForPreTraining(a__ ) if training_args.do_train: __a = ds['''train'''].column_names else: __a = ds['''validation'''].column_names if data_args.image_column_name is not None: __a = data_args.image_column_name elif "image" in column_names: __a = '''image''' elif "img" in column_names: __a = '''img''' else: __a = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __a = image_processor.size['''shortest_edge'''] else: __a = (image_processor.size['''height'''], image_processor.size['''width''']) __a = Compose( [ Lambda(lambda a__ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(a__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(a__ ): __a = [transforms(a__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __a = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(a__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __a = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(a__ ) # Compute absolute learning rate __a = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __a = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __a = Trainer( model=a__ , args=a__ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=a__ , data_collator=a__ , ) # Training if training_args.do_train: __a = None if training_args.resume_from_checkpoint is not None: __a = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a = last_checkpoint __a = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __a = trainer.evaluate() trainer.log_metrics('''eval''' , a__ ) trainer.save_metrics('''eval''' , a__ ) # Write model card and (optionally) push to hub __a = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) def __lowerCAmelCase ( a__ ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase :Tuple = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase ): if isinstance(lowercase , lowercase ): A_ : Tuple = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__(self , lowercase , lowercase , lowercase ): if len(lowercase ) == 0 or len(lowercase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowercase ) ) if isinstance(lowercase , lowercase ): A_ : Optional[Any] = [sequences] A_ : List[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase=ZeroShotClassificationArgumentHandler() , *lowercase , **lowercase ): A_ : str = args_parser super().__init__(*lowercase , **lowercase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _a (self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _a (self , lowercase , lowercase=True , lowercase=True , lowercase=TruncationStrategy.ONLY_FIRST , **lowercase ): A_ : Optional[int] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) A_ : Any = self.tokenizer.eos_token try: A_ : Optional[Any] = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=lowercase , ) except Exception as e: if "too short" in str(lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A_ : str = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _a (self , **lowercase ): if kwargs.get("""multi_class""" , lowercase ) is not None: A_ : Union[str, Any] = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) A_ : Tuple = {} if "candidate_labels" in kwargs: A_ : Optional[int] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: A_ : List[str] = kwargs["""hypothesis_template"""] A_ : Union[str, Any] = {} if "multi_label" in kwargs: A_ : Optional[int] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__(self , lowercase , *lowercase , **lowercase , ): if len(lowercase ) == 0: pass elif len(lowercase ) == 1 and "candidate_labels" not in kwargs: A_ : Any = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(lowercase , **lowercase ) def _a (self , lowercase , lowercase=None , lowercase="This example is {}." ): A_, A_ : Any = self._args_parser(lowercase , lowercase , lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase , lowercase ) ): A_ : List[Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase ) - 1, **model_input, } def _a (self , lowercase ): A_ : Dict = inputs["""candidate_label"""] A_ : Any = inputs["""sequence"""] A_ : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} A_ : Optional[int] = self.model(**lowercase ) A_ : Optional[Any] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _a (self , lowercase , lowercase=False ): A_ : Tuple = [outputs["""candidate_label"""] for outputs in model_outputs] A_ : Optional[int] = [outputs["""sequence"""] for outputs in model_outputs] A_ : Union[str, Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) A_ : List[str] = logits.shape[0] A_ : Optional[int] = len(lowercase ) A_ : int = N // n A_ : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A_ : Dict = self.entailment_id A_ : Dict = -1 if entailment_id == 0 else 0 A_ : str = reshaped_outputs[..., [contradiction_id, entailment_id]] A_ : Optional[Any] = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Tuple = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A_ : Optional[int] = reshaped_outputs[..., self.entailment_id] A_ : Any = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : List[str] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
206
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class A__ ( __magic_name__ ): lowercase = 'mra' def __init__( self : str , a : Optional[Any]=50_265 , a : List[Any]=768 , a : List[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Union[str, Any]="gelu" , a : List[str]=0.1 , a : str=0.1 , a : Any=512 , a : List[Any]=1 , a : Any=0.0_2 , a : str=1E-5 , a : str="absolute" , a : int=4 , a : Optional[int]="full" , a : Union[str, Any]=0 , a : int=0 , a : Optional[int]=1 , a : Tuple=0 , a : str=2 , **a : Any , ): '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : str = max_position_embeddings lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Optional[Any] = layer_norm_eps lowerCAmelCase__ : Any = position_embedding_type lowerCAmelCase__ : List[Any] = block_per_row lowerCAmelCase__ : Optional[int] = approx_mode lowerCAmelCase__ : Optional[int] = initial_prior_first_n_blocks lowerCAmelCase__ : Optional[Any] = initial_prior_diagonal_n_blocks
362
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
0
def A_ ( snake_case : int = 1000 ) -> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = 1, 1 __UpperCamelCase = [] for i in range(1 , n + 1 ): __UpperCamelCase = prev_numerator + 2 * prev_denominator __UpperCamelCase = prev_numerator + prev_denominator if len(str(__A ) ) > len(str(__A ) ): result.append(__A ) __UpperCamelCase = numerator __UpperCamelCase = denominator return len(__A ) if __name__ == "__main__": print(F"{solution() = }")
328
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : int = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename snake_case : Tuple = '''http://www.mocksite.com/file1.txt''' snake_case : Optional[Any] = '''"text": ["foo", "foo"]''' snake_case : List[str] = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class snake_case_ : UpperCAmelCase__ : Union[str, Any] = 2_0_0 UpperCAmelCase__ : str = {'''Content-Length''': '''100'''} UpperCAmelCase__ : Any = {} def lowerCamelCase__( self :Optional[int] ,**__snake_case :List[Any] ) -> Optional[Any]: return [bytes(__snake_case ,'utf-8' )] def __lowercase ( *__lowerCAmelCase : Tuple , **__lowerCAmelCase : Any ): return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): import requests monkeypatch.setattr(__lowerCAmelCase , 'request' , __lowerCAmelCase ) a__ = URL if issubclass(__lowerCAmelCase , __lowerCAmelCase ): a__ = url elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a__ = [url] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a__ = {'train': url} a__ = 'dummy' a__ = 'downloads' a__ = tmp_path a__ = DownloadConfig( cache_dir=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , use_etag=__lowerCAmelCase , ) a__ = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) a__ = dl_manager.download(__lowerCAmelCase ) a__ = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = [downloaded_paths] a__ = [urls] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in downloaded_paths.keys() a__ = downloaded_paths.values() a__ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCAmelCase , __lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] a__ = Path(__lowerCAmelCase ) a__ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() a__ = downloaded_path.read_text() assert content == CONTENT a__ = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() a__ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Dict ): a__ = str(__lowerCAmelCase ) if issubclass(__lowerCAmelCase , __lowerCAmelCase ): a__ = filename elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a__ = [filename] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a__ = {'train': filename} a__ = 'dummy' a__ = xz_file.parent a__ = 'extracted' a__ = DownloadConfig( cache_dir=__lowerCAmelCase , use_etag=__lowerCAmelCase , ) a__ = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) a__ = dl_manager.extract(__lowerCAmelCase ) a__ = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = [extracted_paths] a__ = [paths] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in extracted_paths.keys() a__ = extracted_paths.values() a__ = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCAmelCase , __lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] a__ = Path(__lowerCAmelCase ) a__ = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCAmelCase , etag=__lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() a__ = extracted_path.read_text() a__ = text_file.read_text() assert extracted_file_content == expected_file_content def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert path.endswith('.jsonl' ) for num_items, line in enumerate(__lowerCAmelCase , start=1 ): a__ = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): a__ = request.getfixturevalue(__lowerCAmelCase ) a__ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): a__ = request.getfixturevalue(__lowerCAmelCase ) a__ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def __lowercase ( __lowerCAmelCase : Any ): a__ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCAmelCase ) , start=1 ): assert os.path.basename(__lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
362
from __future__ import annotations def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): # noqa: E741 while r - l > 1: a__ = (l + r) // 2 if v[m] >= key: a__ = m else: a__ = m # noqa: E741 return r def __lowercase ( __lowerCAmelCase : list[int] ): if len(__lowerCAmelCase ) == 0: return 0 a__ = [0] * len(__lowerCAmelCase ) a__ = 1 a__ = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: a__ = v[i] elif v[i] > tail[length - 1]: a__ = v[i] length += 1 else: a__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
109
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _lowerCAmelCase : def __a ( self , _UpperCamelCase ) -> Optional[Any]: raise NotImplementedError() def __a ( self ) -> Dict: raise NotImplementedError() class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase = False , **_UpperCamelCase ) -> str: lowerCAmelCase_ = tokenizer lowerCAmelCase_ = skip_prompt lowerCAmelCase_ = decode_kwargs # variables used in the streaming process lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = True def __a ( self , _UpperCamelCase ) -> str: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: lowerCAmelCase_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCAmelCase_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCAmelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): lowerCAmelCase_ = text[self.print_len :] lowerCAmelCase_ = [] lowerCAmelCase_ = 0 # If the last token is a CJK character, we print the characters. elif len(_UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCAmelCase_ = text[self.print_len :] self.print_len += len(_UpperCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCAmelCase_ = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(_UpperCamelCase ) self.on_finalized_text(_UpperCamelCase ) def __a ( self ) -> Optional[Any]: # Flush the cache, if it exists if len(self.token_cache ) > 0: lowerCAmelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCAmelCase_ = text[self.print_len :] lowerCAmelCase_ = [] lowerCAmelCase_ = 0 else: lowerCAmelCase_ = "" lowerCAmelCase_ = True self.on_finalized_text(_UpperCamelCase , stream_end=_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase = False ) -> List[str]: print(_UpperCamelCase , flush=_UpperCamelCase , end="" if not stream_end else None ) def __a ( self , _UpperCamelCase ) -> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = None , **_UpperCamelCase ) -> List[Any]: super().__init__(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = Queue() lowerCAmelCase_ = None lowerCAmelCase_ = timeout def __a ( self , _UpperCamelCase , _UpperCamelCase = False ) -> List[Any]: self.text_queue.put(_UpperCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Tuple: return self def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
231
import functools def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = len(__lowerCAmelCase ) lowerCAmelCase_ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
231
1
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [True] * n SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : List[str] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE : int = i * 2 while index < n: SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : int = index + i SCREAMING_SNAKE_CASE : int = [2] for i in range(3 , a__ , 2 ): if is_prime[i]: primes.append(a__ ) return primes def UpperCAmelCase_( a__ = 999_966_663_333 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = math.floor(math.sqrt(a__ ) ) + 100 SCREAMING_SNAKE_CASE : int = prime_sieve(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE : List[str] = primes[prime_index + 1] SCREAMING_SNAKE_CASE : int = last_prime**2 SCREAMING_SNAKE_CASE : Tuple = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE : Tuple = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE : List[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE : List[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCAmelCase__ ( __UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 class UpperCAmelCase__ ( __UpperCAmelCase ,__UpperCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : Any , a_ : int = 16 , a_ : int = 88 , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : int = 1 , a_ : float = 0.0 , a_ : int = 32 , a_ : Optional[int] = None , a_ : bool = False , a_ : Optional[int] = None , a_ : str = "geglu" , a_ : bool = True , a_ : bool = True , ): '''simple docstring''' super().__init__() __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Union[str, Any] = attention_head_dim __UpperCAmelCase : Optional[int] = num_attention_heads * attention_head_dim __UpperCAmelCase : Any = in_channels __UpperCAmelCase : Tuple = torch.nn.GroupNorm(num_groups=_lowerCamelCase , num_channels=_lowerCamelCase , eps=1e-6 , affine=_lowerCamelCase ) __UpperCAmelCase : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) # 3. Define transformers blocks __UpperCAmelCase : Any = nn.ModuleList( [ BasicTransformerBlock( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , dropout=_lowerCamelCase , cross_attention_dim=_lowerCamelCase , activation_fn=_lowerCamelCase , attention_bias=_lowerCamelCase , double_self_attention=_lowerCamelCase , norm_elementwise_affine=_lowerCamelCase , ) for d in range(_lowerCamelCase ) ] ) __UpperCAmelCase : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def snake_case__ ( self : int , a_ : List[Any] , a_ : Any=None , a_ : List[Any]=None , a_ : int=None , a_ : Tuple=1 , a_ : Optional[int]=None , a_ : bool = True , ): '''simple docstring''' __UpperCAmelCase : List[Any] = hidden_states.shape __UpperCAmelCase : Union[str, Any] = batch_frames // num_frames __UpperCAmelCase : List[str] = hidden_states __UpperCAmelCase : Tuple = hidden_states[None, :].reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __UpperCAmelCase : str = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __UpperCAmelCase : List[str] = self.norm(_lowerCamelCase ) __UpperCAmelCase : List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowerCamelCase , _lowerCamelCase ) __UpperCAmelCase : Dict = self.proj_in(_lowerCamelCase ) # 2. Blocks for block in self.transformer_blocks: __UpperCAmelCase : Optional[int] = block( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , timestep=_lowerCamelCase , cross_attention_kwargs=_lowerCamelCase , class_labels=_lowerCamelCase , ) # 3. Output __UpperCAmelCase : List[str] = self.proj_out(_lowerCamelCase ) __UpperCAmelCase : Any = ( hidden_states[None, None, :] .reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __UpperCAmelCase : List[str] = hidden_states.reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __UpperCAmelCase : List[str] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_lowerCamelCase )
226
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : int = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Union[str, Any] = """transfo-xl""" __lowerCAmelCase : Optional[Any] = ["""mems"""] __lowerCAmelCase : List[str] = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , _lowerCamelCase : List[Any]=26_77_35 , _lowerCamelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _lowerCamelCase : str=10_24 , _lowerCamelCase : Union[str, Any]=10_24 , _lowerCamelCase : Union[str, Any]=16 , _lowerCamelCase : int=64 , _lowerCamelCase : Optional[int]=40_96 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : str=False , _lowerCamelCase : Union[str, Any]=18 , _lowerCamelCase : Optional[Any]=16_00 , _lowerCamelCase : Optional[int]=10_00 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=0 , _lowerCamelCase : List[Any]=-1 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : List[str]="normal" , _lowerCamelCase : int=0.01 , _lowerCamelCase : List[str]=0.01 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=1E-5 , _lowerCamelCase : int=0 , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[Any] = vocab_size A_ : str = [] self.cutoffs.extend(_lowerCamelCase ) if proj_share_all_but_first: A_ : str = [False] + [True] * len(self.cutoffs ) else: A_ : str = [False] + [False] * len(self.cutoffs ) A_ : Optional[Any] = d_model A_ : Dict = d_embed A_ : List[str] = d_head A_ : List[Any] = d_inner A_ : Dict = div_val A_ : int = pre_lnorm A_ : Optional[Any] = n_layer A_ : List[Any] = n_head A_ : List[Any] = mem_len A_ : Dict = same_length A_ : Optional[Any] = attn_type A_ : Any = clamp_len A_ : Dict = sample_softmax A_ : List[Any] = adaptive A_ : Union[str, Any] = dropout A_ : List[Any] = dropatt A_ : Any = untie_r A_ : Optional[int] = init A_ : int = init_range A_ : List[Any] = proj_init_std A_ : Union[str, Any] = init_std A_ : List[Any] = layer_norm_epsilon super().__init__(eos_token_id=_lowerCamelCase , **_lowerCamelCase ) @property def a_ ( self : Union[str, Any] ): """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a_ ( self : Any , _lowerCamelCase : int ): """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
167
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =FileLock(str(tmpdir / '''foo.lock''' ) ) __UpperCamelCase =FileLock(str(tmpdir / '''foo.lock''' ) ) __UpperCamelCase =0.0_1 with locka.acquire(): with pytest.raises(__UpperCamelCase ): __UpperCamelCase =time.time() locka.acquire(__UpperCamelCase ) assert time.time() - _start > timeout def lowerCAmelCase (__UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase ='''a''' * 1_0_0_0 + '''.lock''' __UpperCamelCase =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 __UpperCamelCase =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCamelCase ): locka.acquire(0 )
85
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = F'''Input value of [number={number}] must be an integer''' raise TypeError(__SCREAMING_SNAKE_CASE ) if number < 0: return False lowercase_ : str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
93
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[int] = 'char' A : Optional[int] = 'bpe' A : List[Any] = 'wp' lowercase : int = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = ['image_processor', 'char_tokenizer'] A : str = 'ViTImageProcessor' A : Any = 'MgpstrTokenizer' def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> str: snake_case_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = kwargs.pop("feature_extractor" ) snake_case_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) snake_case_ : Tuple = tokenizer snake_case_ : str = AutoTokenizer.from_pretrained("gpt2" ) snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> str: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: snake_case_ : Union[str, Any] = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: snake_case_ : Union[str, Any] = self.char_tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif images is None: return encodings else: snake_case_ : Optional[int] = encodings["input_ids"] return inputs def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ , snake_case_ , snake_case_ : int = sequences snake_case_ : Tuple = char_preds.size(0 ) snake_case_ , snake_case_ : Union[str, Any] = self._decode_helper(_SCREAMING_SNAKE_CASE , "char" ) snake_case_ , snake_case_ : Union[str, Any] = self._decode_helper(_SCREAMING_SNAKE_CASE , "bpe" ) snake_case_ , snake_case_ : Dict = self._decode_helper(_SCREAMING_SNAKE_CASE , "wp" ) snake_case_ : Dict = [] snake_case_ : Tuple = [] for i in range(_SCREAMING_SNAKE_CASE ): snake_case_ : Optional[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case_ : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case_ : List[Any] = scores.index(max(_SCREAMING_SNAKE_CASE ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case_ : Union[str, Any] = {} snake_case_ : Union[str, Any] = final_strs snake_case_ : Optional[Any] = final_scores snake_case_ : Tuple = char_strs snake_case_ : Tuple = bpe_strs snake_case_ : Union[str, Any] = wp_strs return out def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if format == DecodeType.CHARACTER: snake_case_ : int = self.char_decode snake_case_ : Union[str, Any] = 1 snake_case_ : int = "[s]" elif format == DecodeType.BPE: snake_case_ : Any = self.bpe_decode snake_case_ : List[Any] = 2 snake_case_ : List[Any] = "#" elif format == DecodeType.WORDPIECE: snake_case_ : str = self.wp_decode snake_case_ : Tuple = 102 snake_case_ : Optional[Any] = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''' ) snake_case_ , snake_case_ : Dict = [], [] snake_case_ : List[Any] = pred_logits.size(0 ) snake_case_ : Union[str, Any] = pred_logits.size(1 ) snake_case_ , snake_case_ : Tuple = pred_logits.topk(1 , dim=-1 , largest=_SCREAMING_SNAKE_CASE , sorted=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = preds_index.view(-1 , _SCREAMING_SNAKE_CASE )[:, 1:] snake_case_ : Optional[Any] = decoder(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ : Optional[Any] = torch.nn.functional.softmax(_SCREAMING_SNAKE_CASE , dim=2 ).max(dim=2 ) snake_case_ : Dict = preds_max_prob[:, 1:] for index in range(_SCREAMING_SNAKE_CASE ): snake_case_ : Optional[Any] = preds_str[index].find(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = preds_str[index][:pred_eos] snake_case_ : Tuple = preds_index[index].cpu().tolist() snake_case_ : Optional[Any] = pred_index.index(_SCREAMING_SNAKE_CASE ) if eos_token in pred_index else -1 snake_case_ : str = preds_max_prob[index][: pred_eos_index + 1] snake_case_ : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_SCREAMING_SNAKE_CASE ) conf_scores.append(_SCREAMING_SNAKE_CASE ) return dec_strs, conf_scores def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ : Dict = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )] return decode_strs def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: return self.bpe_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ : Optional[int] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )] return decode_strs
36
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Any = MobileBertTokenizer A : Optional[int] = MobileBertTokenizerFast A : Any = True A : Optional[int] = True A : List[str] = filter_non_english A : Any = 'google/mobilebert-uncased' def _lowerCAmelCase ( self ) -> List[str]: super().setUp() snake_case_ : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) snake_case_ : Dict = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ : int = "UNwant\u00E9d,running" snake_case_ : Dict = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self ) -> Dict: snake_case_ : int = self.tokenizer_class(self.vocab_file ) snake_case_ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [9, 6, 7, 12, 10, 11] ) def _lowerCAmelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return snake_case_ : List[str] = self.get_tokenizer() snake_case_ : str = self.get_rust_tokenizer() snake_case_ : str = "UNwant\u00E9d,running" snake_case_ : int = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : int = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = self.get_rust_tokenizer() snake_case_ : Any = tokenizer.encode(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # With lower casing snake_case_ : Optional[Any] = self.get_tokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = self.get_rust_tokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) snake_case_ : int = "UNwant\u00E9d,running" snake_case_ : Optional[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) snake_case_ : int = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : int = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Any = self.get_rust_tokenizer() snake_case_ : str = tokenizer.encode(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Any = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Optional[int] = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Optional[Any] = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Dict = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Union[str, Any] = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Dict = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Any = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : Dict = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Any = BasicTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : Tuple = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] snake_case_ : Optional[int] = {} for i, token in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ : Optional[Any] = i snake_case_ : List[Any] = WordpieceTokenizer(vocab=_SCREAMING_SNAKE_CASE , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Optional[int] = self.get_tokenizer() snake_case_ : Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Union[str, Any] = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) snake_case_ : int = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowerCAmelCase ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ : Dict = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' snake_case_ : Any = tokenizer_r.encode_plus( _SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[Any] = tokenizer_r.do_lower_case if hasattr(_SCREAMING_SNAKE_CASE , "do_lower_case" ) else False snake_case_ : Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Union[str, Any] = ["的", "人", "有"] snake_case_ : int = "".join(_SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ : Tuple = True snake_case_ : Union[str, Any] = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = tokenizer_p.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer_r.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = False snake_case_ : str = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = tokenizer_r.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer_p.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = tokenizer_r.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : Any = tokenizer_p.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". snake_case_ : Union[str, Any] = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_SCREAMING_SNAKE_CASE ) ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
36
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Dict) ->None: '''simple docstring''' warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
14
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def _snake_case ( UpperCamelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _snake_case ( UpperCamelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _snake_case ( UpperCamelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _snake_case ( ): # Main function for testing. UpperCAmelCase : int = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : Any = Node(3 ) UpperCAmelCase : Optional[int] = Node(4 ) UpperCAmelCase : Any = Node(5 ) UpperCAmelCase : Optional[int] = Node(6 ) UpperCAmelCase : int = Node(7 ) UpperCAmelCase : str = Node(8 ) UpperCAmelCase : str = Node(9 ) print(is_full_binary_tree(UpperCamelCase ) ) print(depth_of_tree(UpperCamelCase ) ) print("""Tree is: """ ) display(UpperCamelCase ) if __name__ == "__main__": main()
109
0
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( snake_case_ , unittest.TestCase ): _lowerCAmelCase = DDIMPipeline _lowerCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } _lowerCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) _a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) _a = DDIMScheduler() _a = {'unet': unet, 'scheduler': scheduler} return components def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=0 ) -> Any: if str(__magic_name__ ).startswith('mps' ): _a = torch.manual_seed(__magic_name__ ) else: _a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) _a = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ) -> int: _a = 'cpu' _a = self.get_dummy_components() _a = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) _a = self.get_dummy_inputs(__magic_name__ ) _a = pipe(**__magic_name__ ).images _a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _a = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) _a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__ , 1e-3 ) def __UpperCAmelCase ( self ) -> int: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def __UpperCAmelCase ( self ) -> Dict: _a = 'google/ddpm-cifar10-32' _a = UNetaDModel.from_pretrained(__magic_name__ ) _a = DDIMScheduler() _a = DDIMPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) ddim.to(__magic_name__ ) ddim.set_progress_bar_config(disable=__magic_name__ ) _a = torch.manual_seed(0 ) _a = ddim(generator=__magic_name__ , eta=0.0 , output_type='numpy' ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self ) -> Dict: _a = 'google/ddpm-ema-bedroom-256' _a = UNetaDModel.from_pretrained(__magic_name__ ) _a = DDIMScheduler.from_pretrained(__magic_name__ ) _a = DDIMPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) ddpm.to(__magic_name__ ) ddpm.set_progress_bar_config(disable=__magic_name__ ) _a = torch.manual_seed(0 ) _a = ddpm(generator=__magic_name__ , output_type='numpy' ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _a = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
168
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = botoa.client("iam" ) lowercase__ : str = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCamelCase__ , AssumeRolePolicyDocument=json.dumps(lowerCamelCase__ , indent=2 ) ) lowercase__ : Tuple = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCamelCase__ , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(lowerCamelCase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = botoa.client("iam" ) return iam_client.get_role(RoleName=lowerCamelCase__ )["Role"]["Arn"] def __lowerCamelCase ( ): """simple docstring""" lowercase__ : str = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , lowerCamelCase__ , ) lowercase__ : Any = None if credentials_configuration == 0: lowercase__ : int = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) lowercase__ : Tuple = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) lowercase__ : Any = _ask_field("AWS Access Key ID: " ) lowercase__ : List[Any] = aws_access_key_id lowercase__ : int = _ask_field("AWS Secret Access Key: " ) lowercase__ : Optional[Any] = aws_secret_access_key lowercase__ : Any = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) lowercase__ : Union[str, Any] = aws_region lowercase__ : Tuple = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , lowerCamelCase__ , ) if role_management == 0: lowercase__ : Tuple = _ask_field("Enter your IAM role name: " ) else: lowercase__ : Optional[int] = "accelerate_sagemaker_execution_role" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(lowerCamelCase__ ) lowercase__ : int = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : Any = None if is_custom_docker_image: lowercase__ : Tuple = _ask_field("Enter your Docker image: " , lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() ) lowercase__ : Tuple = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : str = None if is_sagemaker_inputs_enabled: lowercase__ : str = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() , ) lowercase__ : Tuple = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : List[str] = None if is_sagemaker_metrics_enabled: lowercase__ : Dict = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() , ) lowercase__ : int = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) lowercase__ : Union[str, Any] = {} lowercase__ : Union[str, Any] = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) if use_dynamo: lowercase__ : int = "dynamo_" lowercase__ : Optional[int] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowercase__ : Optional[Any] = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) if use_custom_options: lowercase__ : int = _ask_options( "Which mode do you want to use?" , lowerCamelCase__ , lambda lowerCamelCase__ : TORCH_DYNAMO_MODES[int(lowerCamelCase__ )] , default="default" , ) lowercase__ : Any = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : Optional[int] = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : int = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: lowercase__ : str = _ask_options( lowerCamelCase__ , lowerCamelCase__ , lambda lowerCamelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCamelCase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowercase__ : Union[str, Any] = _ask_field(lowerCamelCase__ , lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() , default="ml.p3.2xlarge" ) lowercase__ : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowercase__ : Optional[int] = _ask_field( "How many machines do you want use? [1]: " , lowerCamelCase__ , default=1 , ) lowercase__ : Union[str, Any] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=lowerCamelCase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowerCamelCase__ , use_cpu=lowerCamelCase__ , dynamo_config=lowerCamelCase__ , eca_instance_type=lowerCamelCase__ , profile=lowerCamelCase__ , region=lowerCamelCase__ , iam_role_name=lowerCamelCase__ , mixed_precision=lowerCamelCase__ , num_machines=lowerCamelCase__ , sagemaker_inputs_file=lowerCamelCase__ , sagemaker_metrics_file=lowerCamelCase__ , )
367
from typing import Union import fire import torch from tqdm import tqdm def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = "cpu" , lowerCamelCase__ = None ): """simple docstring""" lowercase__ : Any = torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCamelCase__ , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) lowercase__ : int = v.half() if save_path is None: # overwrite src_path lowercase__ : Optional[Any] = src_path torch.save(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": fire.Fire(convert)
121
0
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Dict = logging.get_logger() # the current default level is logging.WARNING a__: Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity()) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity()) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity()) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity()) # restore to the original level logging.set_verbosity(a__) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Tuple = logging.get_verbosity() a__: Tuple = logging.get_logger('transformers.models.bart.tokenization_bart') a__: Union[str, Any] = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__) as cl: logger.warning(a__) self.assertEqual(cl.out , msg + '\n') # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__) as cl: logger.warning(a__) self.assertEqual(cl.out , '') # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__) as cl: logger.warning(a__) self.assertEqual(cl.out , msg + '\n') # restore to the original level logging.set_verbosity(a__) @mockenv(TRANSFORMERS_VERBOSITY='error') def lowerCamelCase_ ( self) -> int: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var a__: Any = logging.get_logger('transformers.models.bart.tokenization_bart') a__: Tuple = os.getenv('TRANSFORMERS_VERBOSITY' , a__) a__: Tuple = logging.log_levels[env_level_str] a__: List[Any] = logging.get_verbosity() self.assertEqual( a__ , a__ , f'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level a__: Tuple = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error') def lowerCamelCase_ ( self) -> Any: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() a__: str = logging.logging.getLogger() with CaptureLogger(a__) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart') self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out) # no need to restore as nothing was changed def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() a__: Optional[Any] = logging.get_logger('transformers.models.bart.tokenization_bart') a__: str = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1'): # nothing should be logged as env var disables this method with CaptureLogger(a__) as cl: logger.warning_advice(a__) self.assertEqual(cl.out , '') with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS=''): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__) as cl: logger.warning_advice(a__) self.assertEqual(cl.out , msg + '\n') def __a ( ) ->Optional[Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
290
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase_( snake_case : Tuple ): '''simple docstring''' snake_case_ = FileLock(str(tmpdir / "foo.lock" ) ) snake_case_ = FileLock(str(tmpdir / "foo.lock" ) ) snake_case_ = 0.01 with locka.acquire(): with pytest.raises(snake_case ): snake_case_ = time.time() locka.acquire(snake_case ) assert time.time() - _start > timeout def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = "a" * 1_0_0_0 + ".lock" snake_case_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 snake_case_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case ): locka.acquire(0 )
85
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int ): __A = 0 @slow def UpperCamelCase_ ( self : Any ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __A = AutoTokenizer.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(A ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __A = AutoTokenizer.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(A ) ,0 ) def UpperCamelCase_ ( self : str ): __A = AutoTokenizer.from_pretrained(A ) self.assertIsInstance(A ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def UpperCamelCase_ ( self : List[str] ): __A = AutoTokenizer.from_pretrained(A ) self.assertIsInstance(A ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def UpperCamelCase_ ( self : List[str] ): __A = AutoConfig.from_pretrained(A ) self.assertIsInstance(A ,A ) # Check that tokenizer_type ≠ model_type __A = AutoTokenizer.from_pretrained(A ,config=A ) self.assertIsInstance(A ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def UpperCamelCase_ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" ,os.path.join(A ,"vocab.txt" ) ) __A = AutoTokenizer.from_pretrained(A ,tokenizer_type="bert" ,use_fast=A ) self.assertIsInstance(A ,A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" ,os.path.join(A ,"vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" ,os.path.join(A ,"merges.txt" ) ) __A = AutoTokenizer.from_pretrained(A ,tokenizer_type="gpt2" ,use_fast=A ) self.assertIsInstance(A ,A ) @require_tokenizers def UpperCamelCase_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" ,os.path.join(A ,"vocab.txt" ) ) __A = AutoTokenizer.from_pretrained(A ,tokenizer_type="bert" ) self.assertIsInstance(A ,A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" ,os.path.join(A ,"vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" ,os.path.join(A ,"merges.txt" ) ) __A = AutoTokenizer.from_pretrained(A ,tokenizer_type="gpt2" ) self.assertIsInstance(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): with pytest.raises(A ): AutoTokenizer.from_pretrained("./" ,tokenizer_type="xxx" ) @require_tokenizers def UpperCamelCase_ ( self : Dict ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __A = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(A ,(BertTokenizer, BertTokenizerFast) ) if isinstance(A ,A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,A ) else: self.assertEqual(tokenizer.do_lower_case ,A ) self.assertEqual(tokenizer.model_max_length ,5_12 ) @require_tokenizers def UpperCamelCase_ ( self : Any ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( A ,"julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" ,): __A = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def UpperCamelCase_ ( self : Optional[int] ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __A = TOKENIZER_MAPPING.values() __A = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(A ) @require_tokenizers def UpperCamelCase_ ( self : Optional[int] ): self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ,use_fast=A ) ,A ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) ,A ) @require_tokenizers def UpperCamelCase_ ( self : Tuple ): __A = AutoTokenizer.from_pretrained("distilbert-base-uncased" ,do_lower_case=A ) __A = "Hello, world. How are you?" __A = tokenizer.tokenize(A ) self.assertEqual("[UNK]" ,tokens[0] ) __A = AutoTokenizer.from_pretrained("microsoft/mpnet-base" ,do_lower_case=A ) __A = tokenizer.tokenize(A ) self.assertEqual("[UNK]" ,tokens[0] ) @require_tokenizers def UpperCamelCase_ ( self : Optional[int] ): __A = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(A ) ,A ) self.assertEqual(tokenizer.model_max_length ,5_12 ) self.assertEqual(tokenizer.vocab_size ,3_00_00 ) self.assertEqual(tokenizer.unk_token ,"[UNK]" ) self.assertEqual(tokenizer.padding_side ,"right" ) self.assertEqual(tokenizer.truncation_side ,"right" ) def UpperCamelCase_ ( self : Optional[Any] ): __A = AutoTokenizer.from_pretrained(A ) self.assertIsInstance(A ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A ) __A = AutoTokenizer.from_pretrained(A ) self.assertIsInstance(A ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def UpperCamelCase_ ( self : Dict ): __A = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(A ,A ) def UpperCamelCase_ ( self : List[str] ): # Check we can load the tokenizer config of an online model. __A = get_tokenizer_config("bert-base-cased" ) __A = config.pop("_commit_hash" ,A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(A ,{"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __A = get_tokenizer_config(A ) self.assertDictEqual(A ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __A = AutoTokenizer.from_pretrained(A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A ) __A = get_tokenizer_config(A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] ,"BertTokenizer" ) def UpperCamelCase_ ( self : Tuple ): try: AutoConfig.register("custom" ,A ) AutoTokenizer.register(A ,slow_tokenizer_class=A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A ): AutoTokenizer.register(A ,slow_tokenizer_class=A ) __A = CustomTokenizer.from_pretrained(A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A ) __A = AutoTokenizer.from_pretrained(A ) self.assertIsInstance(A ,A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase_ ( self : Optional[int] ): try: AutoConfig.register("custom" ,A ) # Can register in two steps AutoTokenizer.register(A ,slow_tokenizer_class=A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(A ,fast_tokenizer_class=A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( A ,slow_tokenizer_class=A ,fast_tokenizer_class=A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A ): AutoTokenizer.register(A ,fast_tokenizer_class=A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __A = BertTokenizerFast.from_pretrained(A ) bert_tokenizer.save_pretrained(A ) __A = CustomTokenizerFast.from_pretrained(A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A ) __A = AutoTokenizer.from_pretrained(A ) self.assertIsInstance(A ,A ) __A = AutoTokenizer.from_pretrained(A ,use_fast=A ) self.assertIsInstance(A ,A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A ): __A = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(A ): __A = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=A ) __A = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A ) __A = AutoTokenizer.from_pretrained(A ,trust_remote_code=A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizerFast" ) # Test we can also load the slow version __A = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=A ,use_fast=A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A ) __A = AutoTokenizer.from_pretrained(A ,trust_remote_code=A ,use_fast=A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizer" ) @require_tokenizers def UpperCamelCase_ ( self : Tuple ): class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = False class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = NewTokenizer snake_case_ = False try: AutoConfig.register("custom" ,A ) AutoTokenizer.register(A ,slow_tokenizer_class=A ) AutoTokenizer.register(A ,fast_tokenizer_class=A ) # If remote code is not set, the default is to use local __A = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __A = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ,use_fast=A ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __A = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=A ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __A = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=A ,use_fast=A ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __A = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=A ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) __A = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=A ,use_fast=A ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : List[Any] ): __A = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" ,trust_remote_code=A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) # Test we can also load the slow version __A = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" ,trust_remote_code=A ,use_fast=A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) def UpperCamelCase_ ( self : Optional[int] ): with self.assertRaisesRegex( A ,"bert-base is not a local folder and is not a valid model identifier" ): __A = AutoTokenizer.from_pretrained("bert-base" ) def UpperCamelCase_ ( self : Dict ): with self.assertRaisesRegex( A ,R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __A = AutoTokenizer.from_pretrained(A ,revision="aaaaaa" ) def UpperCamelCase_ ( self : Dict ): # Make sure we have cached the tokenizer. __A = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __A = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
367
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = CTRLTokenizer snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] __A = dict(zip(A ,range(len(A ) ) ) ) __A = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] __A = {"unk_token": "<unk>"} __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(A ) ) def UpperCamelCase_ ( self : List[str] ,**A : List[str] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[int] ,A : Tuple ): __A = "adapt react readapt apt" __A = "adapt react readapt apt" return input_text, output_text def UpperCamelCase_ ( self : Any ): __A = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) __A = "adapt react readapt apt" __A = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() __A = tokenizer.tokenize(A ) self.assertListEqual(A ,A ) __A = tokens + [tokenizer.unk_token] __A = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,A )
124
0
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) _lowerCAmelCase : Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
36
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _snake_case = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCAmelCase_ ( a): def __init__( self, __a = 101): '''simple docstring''' _lowerCAmelCase : str = length def __len__( self): '''simple docstring''' return self.length def __getitem__( self, __a): '''simple docstring''' return i class UpperCAmelCase_ : def __call__( self, __a): '''simple docstring''' return {"input_ids": torch.tensor(__a), "labels": torch.tensor(__a)} class UpperCAmelCase_ ( nn.Module): def __init__( self): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCAmelCase : str = nn.Linear(120, 80) def snake_case__ ( self, __a, __a=None): '''simple docstring''' if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids class UpperCAmelCase_ ( a): @require_torch_neuroncore def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split() _lowerCAmelCase : List[Any] = ["torchrun"] + distributed_args + args execute_subprocess_async(__a, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class UpperCAmelCase_ ( a): @require_torch_multi_gpu def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split() _lowerCAmelCase : Any = ["torchrun"] + distributed_args + args execute_subprocess_async(__a, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _snake_case = HfArgumentParser((TrainingArguments,)) _snake_case = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _snake_case = DummyDataset(dataset_length) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = list(range(len(_lowerCamelCase ) ) ) _lowerCAmelCase : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} _snake_case = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = 2 _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = None
36
1
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = len(SCREAMING_SNAKE_CASE_ ) for i in range(length - 1 ): lowercase__ = i for k in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if collection[k] < collection[least]: lowercase__ = k if least != i: lowercase__ , lowercase__ = (collection[i], collection[least]) return collection if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
224
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class _snake_case : UpperCamelCase__ : Optional[str] =field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""}) UpperCamelCase__ : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) UpperCamelCase__ : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The column name of the images in the files."""}) UpperCamelCase__ : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the training data."""}) UpperCamelCase__ : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the validation data."""}) UpperCamelCase__ : Optional[float] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""}) UpperCamelCase__ : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase__ : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def A__ ( self : Tuple ): lowercase__ = {} if self.train_dir is not None: lowercase__ = self.train_dir if self.validation_dir is not None: lowercase__ = self.validation_dir lowercase__ = data_files if data_files else None @dataclass class _snake_case : UpperCamelCase__ : str =field( default=lowercase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase__ : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""}) UpperCamelCase__ : Optional[str] =field( default=lowercase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase__ : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""}) UpperCamelCase__ : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase__ : str =field(default=lowercase__ , metadata={"""help""": """Name or path of preprocessor config."""}) UpperCamelCase__ : bool =field( default=lowercase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCamelCase__ : float =field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""}) UpperCamelCase__ : bool =field( default=lowercase__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""}) @dataclass class _snake_case ( lowercase__): UpperCamelCase__ : float =field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""}) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def __lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE_ ) and data_args.train_val_split > 0.0: lowercase__ = ds["train"].train_test_split(data_args.train_val_split ) lowercase__ = split["train"] lowercase__ = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowercase__ = ViTMAEConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE_ ) elif model_args.model_name_or_path: lowercase__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE_ ) else: lowercase__ = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE_ ) elif model_args.model_name_or_path: lowercase__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE_ ) else: lowercase__ = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowercase__ = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) if training_args.do_train: lowercase__ = ds["train"].column_names else: lowercase__ = ds["validation"].column_names if data_args.image_column_name is not None: lowercase__ = data_args.image_column_name elif "image" in column_names: lowercase__ = "image" elif "img" in column_names: lowercase__ = "img" else: lowercase__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase__ = image_processor.size["shortest_edge"] else: lowercase__ = (image_processor.size["height"], image_processor.size["width"]) lowercase__ = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE_ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(SCREAMING_SNAKE_CASE_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(SCREAMING_SNAKE_CASE_ ): lowercase__ = [transforms(SCREAMING_SNAKE_CASE_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowercase__ = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowercase__ = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE_ ) # Compute absolute learning rate lowercase__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase__ = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowercase__ = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics("eval" , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics("eval" , SCREAMING_SNAKE_CASE_ ) # Write model card and (optionally) push to hub lowercase__ = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
224
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = ["""pixel_values"""] def __init__( self : List[str] , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : float = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : Tuple , ): super().__init__(**snake_case_ ) _UpperCAmelCase = size if size is not None else {"shortest_edge": 3_8_4} _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = do_resize _UpperCAmelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCAmelCase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : Any , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : float , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Optional[int] , ): _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _UpperCAmelCase = size["shortest_edge"] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCAmelCase = int(shortest_edge / crop_pct ) _UpperCAmelCase = get_resize_output_image_size(snake_case_ , size=snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=snake_case_ , size=(shortest_edge, shortest_edge) , data_format=snake_case_ , **snake_case_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( snake_case_ , size=(shortest_edge, shortest_edge) , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : int , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Union[str, Any] , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Any , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : float = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : str , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=snake_case_ , size=snake_case_ , crop_pct=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
22
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE :int = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[str] = PegasusTokenizer _lowerCamelCase : int = PegasusTokenizerFast _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[str] = True def lowercase ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = PegasusTokenizer(snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Tuple ): return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def lowercase ( self : Union[str, Any] , **snake_case_ : Union[str, Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : Any ): return ("This is a test", "This is a test") def lowercase ( self : Optional[int] ): _UpperCAmelCase = "</s>" _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(snake_case_ ) , 1_1_0_3 ) def lowercase ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def lowercase ( self : List[Any] ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) _UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] _UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowercase ( self : Tuple ): _UpperCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _UpperCAmelCase = "<mask_1> To ensure a <mask_2> flow of bank resolutions." _UpperCAmelCase = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] _UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 _UpperCAmelCase = "To ensure a smooth flow of bank resolutions." _UpperCAmelCase = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] _UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self : int ): _UpperCAmelCase = ["This is going to be way too long." * 1_5_0, "short example"] _UpperCAmelCase = ["not super long but more than 5 tokens", "tiny"] _UpperCAmelCase = self._large_tokenizer(snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) _UpperCAmelCase = self._large_tokenizer( text_target=snake_case_ , max_length=5 , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(snake_case_ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self : Dict ): # fmt: off _UpperCAmelCase = {"input_ids": [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[str] = PegasusTokenizer _lowerCamelCase : List[Any] = PegasusTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Union[str, Any] = True def lowercase ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = PegasusTokenizer(snake_case_ , offset=0 , mask_token_sent=snake_case_ , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Tuple ): return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def lowercase ( self : Optional[Any] , **snake_case_ : Dict ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowercase ( self : Union[str, Any] , snake_case_ : str ): return ("This is a test", "This is a test") def lowercase ( self : List[str] ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) _UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] _UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) @require_torch def lowercase ( self : Tuple ): _UpperCAmelCase = ["This is going to be way too long." * 1_0_0_0, "short example"] _UpperCAmelCase = ["not super long but more than 5 tokens", "tiny"] _UpperCAmelCase = self._large_tokenizer(snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) _UpperCAmelCase = self._large_tokenizer( text_target=snake_case_ , max_length=5 , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(snake_case_ ) == 2 # input_ids, attention_mask. def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) _UpperCAmelCase = self._large_tokenizer(snake_case_ ).input_ids self.assertListEqual( snake_case_ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
22
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase_ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): A__ : Any = StableDiffusionControlNetImgaImgPipeline A__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) A__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) UpperCamelCase_ = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) UpperCamelCase_ = CLIPTextModel(lowercase_ ) UpperCamelCase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(lowercase_ ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(lowercase_ ) else: UpperCamelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCamelCase_ = 2 UpperCamelCase_ = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ) UpperCamelCase_ = floats_tensor(control_image.shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert("""RGB""" ).resize((6_4, 6_4) ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def lowerCamelCase_ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase_ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowerCamelCase_ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowercase_ ( lowercase__ , lowercase__ , unittest.TestCase ): A__ : Any = StableDiffusionControlNetImgaImgPipeline A__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A__ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A__ : Union[str, Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(__UpperCamelCase ): if isinstance(lowercase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCamelCase_ = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) UpperCamelCase_ = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) UpperCamelCase_ = CLIPTextModel(lowercase_ ) UpperCamelCase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase_ = MultiControlNetModel([controlneta, controlneta] ) UpperCamelCase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(lowercase_ ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(lowercase_ ) else: UpperCamelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCamelCase_ = 2 UpperCamelCase_ = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), ] UpperCamelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert("""RGB""" ).resize((6_4, 6_4) ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) UpperCamelCase_ = 10.0 UpperCamelCase_ = 4 UpperCamelCase_ = self.get_dummy_inputs(lowercase_ ) UpperCamelCase_ = steps UpperCamelCase_ = scale UpperCamelCase_ = pipe(**lowercase_ )[0] UpperCamelCase_ = self.get_dummy_inputs(lowercase_ ) UpperCamelCase_ = steps UpperCamelCase_ = scale UpperCamelCase_ = pipe(**lowercase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCamelCase_ = self.get_dummy_inputs(lowercase_ ) UpperCamelCase_ = steps UpperCamelCase_ = scale UpperCamelCase_ = pipe(**lowercase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCamelCase_ = self.get_dummy_inputs(lowercase_ ) UpperCamelCase_ = steps UpperCamelCase_ = scale UpperCamelCase_ = pipe(**lowercase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase_ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowerCamelCase_ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowercase_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) UpperCamelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase_ , controlnet=lowercase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase_ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase_ = "evil space-punk bird" UpperCamelCase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((5_1_2, 5_1_2) ) UpperCamelCase_ = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((5_1_2, 5_1_2) ) UpperCamelCase_ = pipe( lowercase_ , lowercase_ , control_image=lowercase_ , generator=lowercase_ , output_type="""np""" , num_inference_steps=5_0 , strength=0.6 , ) UpperCamelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) UpperCamelCase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9e-2
351
def lowerCamelCase__ ( a__ : List[Any] ) -> Optional[int]: UpperCamelCase_ = len(a__ ) while cur > 1: # Find the maximum number in arr UpperCamelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCamelCase_ = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list UpperCamelCase_ = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": _A = input('''Enter numbers separated by a comma:\n''').strip() _A = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
261
0
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( lowerCamelCase ): for param in module.parameters(): lowerCamelCase : Union[str, Any] = False def _a ( ): lowerCamelCase : Union[str, Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCamelCase : Optional[int] = '''mps''' if device == "mps": print( """WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues""" """ with generations.""" ) return device def _a ( lowerCamelCase ): lowerCamelCase : List[Any] = plt.imshow(lowerCamelCase ) fig.axes.get_xaxis().set_visible(lowerCamelCase ) fig.axes.get_yaxis().set_visible(lowerCamelCase ) plt.show() def _a ( ): lowerCamelCase : List[Any] = datetime.now() lowerCamelCase : Tuple = current_time.strftime("""%H:%M:%S""" ) return timestamp
287
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def lowerCamelCase__ ( a , a ) -> Any: _A: Any = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) _A: Optional[int] = DatasetInfosDict.from_directory(a ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def lowerCamelCase__ ( a , a ) -> Any: _A: int = str(a ) dataset_info.write_to_directory(a ) _A: str = DatasetInfo.from_directory(a ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a , '''dataset_info.json''' ) ) def lowerCamelCase__ ( ) -> Any: _A: int = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) _A: Optional[Any] = dataset_info._to_yaml_dict() assert sorted(a ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _A: str = yaml.safe_dump(a ) _A: Optional[int] = yaml.safe_load(a ) assert dataset_info_yaml_dict == reloaded def lowerCamelCase__ ( ) -> int: _A: Union[str, Any] = DatasetInfo() _A: Union[str, Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def lowerCamelCase__ ( a , a ) -> Optional[int]: _A: Optional[int] = str(a ) dataset_infos_dict.write_to_directory(a ) _A: Union[str, Any] = DatasetInfosDict.from_directory(a ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _A: Optional[Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _A: Any = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a , '''README.md''' ) )
121
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a__( _a ): def lowercase_ ( self : Optional[int] ): a : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_a , 'depth_multiplier' ) ) class a__: def __init__( self : Any , __snake_case : List[str] , __snake_case : Optional[Any]=13 , __snake_case : Dict=3 , __snake_case : str=32 , __snake_case : List[Any]=0.25 , __snake_case : List[Any]=8 , __snake_case : Optional[Any]=True , __snake_case : Optional[int]=10_24 , __snake_case : int=32 , __snake_case : Optional[Any]="relu6" , __snake_case : Tuple=0.1 , __snake_case : Any=0.02 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : List[str]=10 , __snake_case : Dict=None , ): a : Optional[int] = parent a : List[str] = batch_size a : List[Any] = num_channels a : List[Any] = image_size a : Dict = depth_multiplier a : Optional[int] = min_depth a : str = tf_padding a : str = int(last_hidden_size * depth_multiplier ) a : Any = output_stride a : str = hidden_act a : Optional[int] = classifier_dropout_prob a : Any = use_labels a : Any = is_training a : str = num_labels a : Dict = initializer_range a : Optional[int] = scope def lowercase_ ( self : Optional[int] ): a : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : int = None a : Tuple = None if self.use_labels: a : Any = ids_tensor([self.batch_size] , self.num_labels ) a : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a : str = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self : Union[str, Any] ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : int , __snake_case : Optional[Any] ): a : Optional[Any] = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() a : Union[str, Any] = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self : str , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , __snake_case : Optional[int] ): a : Tuple = self.num_labels a : str = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() a : Optional[int] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : List[Any] ): a : Optional[int] = self.prepare_config_and_inputs() a : Dict = config_and_inputs a : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__( _a , _a , unittest.TestCase ): lowercase__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase_ ( self : List[Any] ): a : Optional[int] = MobileNetVaModelTester(self ) a : str = MobileNetVaConfigTester(self , config_class=_a , has_text_modality=_a ) def lowercase_ ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def lowercase_ ( self : Dict ): pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def lowercase_ ( self : Optional[Any] ): pass def lowercase_ ( self : List[str] ): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Optional[Any] = model_class(_a ) a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Any = [*signature.parameters.keys()] a : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def lowercase_ ( self : Tuple ): a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowercase_ ( self : Optional[Any] ): def check_hidden_states_output(__snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any ): a : List[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): a : str = model(**self._prepare_for_class(_a , _a ) ) a : Dict = outputs.hidden_states a : List[Any] = 26 self.assertEqual(len(_a ) , _a ) a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Optional[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Optional[Any] = True check_hidden_states_output(_a , _a , _a ) def lowercase_ ( self : Any ): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def lowercase_ ( self : Optional[int] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Optional[int] = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase__ ( ): a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__( unittest.TestCase ): @cached_property def lowercase_ ( self : int ): return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def lowercase_ ( self : int ): a : Any = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(_a ) a : Optional[Any] = self.default_image_processor a : List[str] = prepare_img() a : Optional[int] = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): a : Optional[int] = model(**_a ) # verify the logits a : Tuple = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , _a ) a : int = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
370
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowerCAmelCase: Optional[int] = parser.parse_args() lowerCAmelCase: List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase: Optional[Any] = CLIPImageProcessor() lowerCAmelCase: Tuple = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowerCAmelCase: List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
96
0
import unittest import numpy as np def __UpperCamelCase ( _A , _A , _A , _A = None , ): lowerCAmelCase_ = np.shape(_A ) lowerCAmelCase_ = np.shape(_A ) lowerCAmelCase_ = np.shape(_A ) if shape_a[0] != shape_b[0]: lowerCAmelCase_ = ( """Expected the same number of rows for A and B. """ f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(_A ) if shape_b[1] != shape_c[1]: lowerCAmelCase_ = ( """Expected the same number of columns for B and C. """ f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(_A ) lowerCAmelCase_ = pseudo_inv if a_inv is None: try: lowerCAmelCase_ = np.linalg.inv(_A ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase_ = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase_ = np.array([[2, 1], [6, 3]] ) lowerCAmelCase_ = schur_complement(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = np.block([[a, b], [b.T, c]] ) lowerCAmelCase_ = np.linalg.det(UpperCamelCase__ ) lowerCAmelCase_ = np.linalg.det(UpperCamelCase__ ) lowerCAmelCase_ = np.linalg.det(UpperCamelCase__ ) self.assertAlmostEqual(UpperCamelCase__, det_a * det_s ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase_ = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase_ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase__ ): schur_complement(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase_ = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase_ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase__ ): schur_complement(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
278
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : Optional[int] = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
0
UpperCAmelCase : Union[str, Any] = 0 # The first color of the flag. UpperCAmelCase : Optional[int] = 1 # The second color of the flag. UpperCAmelCase : int = 2 # The third color of the flag. UpperCAmelCase : Any = (red, white, blue) def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' if not sequence: return [] if len(_A ) == 1: return list(_A ) lowerCamelCase = 0 lowerCamelCase = len(_A ) - 1 lowerCamelCase = 0 while mid <= high: if sequence[mid] == colors[0]: lowerCamelCase = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: lowerCamelCase = sequence[high], sequence[mid] high -= 1 else: lowerCamelCase = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : str = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase : Dict = [int(item.strip()) for item in user_input.split(",")] print(f"""{dutch_national_flag_sort(unsorted)}""")
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : int = {"vocab_file": "spiece.model"} UpperCAmelCase : Optional[int] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __lowercase ( a_ ): """simple docstring""" def __init__( self , A , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , A = None , **A , ) -> None: '''simple docstring''' lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowerCamelCase = 3 lowerCamelCase = do_lower_case lowerCamelCase = remove_space lowerCamelCase = keep_accents lowerCamelCase = vocab_file lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) lowerCamelCase = jieba lowerCamelCase = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __A ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.__dict__.copy() lowerCamelCase = None return state def __setstate__( self , A ) -> int: '''simple docstring''' lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase = {} lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , A ) -> Any: '''simple docstring''' if self.remove_space: lowerCamelCase = """ """.join(inputs.strip().split() ) else: lowerCamelCase = inputs lowerCamelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase = unicodedata.normalize("""NFKD""" , A ) lowerCamelCase = """""".join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: lowerCamelCase = outputs.lower() return outputs def __A ( self , A ) -> List[str]: '''simple docstring''' lowerCamelCase = self.preprocess_text(A ) lowerCamelCase = self.sp_model.encode(A , out_type=A ) lowerCamelCase = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase = cur_pieces[1:] else: lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def __A ( self , A ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.PieceToId(A ) def __A ( self , A ) -> int: '''simple docstring''' return self.sp_model.IdToPiece(A ) def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = """""".join(A ).replace(A , """ """ ).strip() return out_string def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self , A , A = None , A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return ([0] * len(A )) + [1] + ([0] * len(A )) + [1, 1] return ([0] * len(A )) + [1, 1] def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def __A ( self , *A , **A ) -> int: '''simple docstring''' lowerCamelCase = super()._decode(*A , **A ) lowerCamelCase = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
66
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowercase__ : Optional[Any] = logging.getLogger(__name__) @dataclass class UpperCamelCase__ : """simple docstring""" _SCREAMING_SNAKE_CASE = field( default="""tab_fact""", metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) _SCREAMING_SNAKE_CASE = field( default="""tab_fact""", metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}, ) _SCREAMING_SNAKE_CASE = field( default=1024, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) }, ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) }, ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={"""help""": """A csv or a json file containing the training data."""} ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={"""help""": """A csv or a json file containing the validation data."""} ) _SCREAMING_SNAKE_CASE = field(default=lowercase_, metadata={"""help""": """A csv or a json file containing the test data."""} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: lowerCAmelCase_ : Optional[Any] = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCAmelCase_ : str = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCamelCase__ : """simple docstring""" _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""}, ) _SCREAMING_SNAKE_CASE = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) _SCREAMING_SNAKE_CASE = field( default=lowercase_, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) def UpperCamelCase_ ( ) -> int: """simple docstring""" lowerCAmelCase_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCAmelCase_ : str = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCAmelCase_ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCAmelCase_ : Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCAmelCase_ : List[str] = data_args.train_file.split('.' )[-1] lowerCAmelCase_ : List[str] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCAmelCase_ : List[str] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files lowerCAmelCase_ : Optional[int] = load_dataset('csv' , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCAmelCase_ : str = load_dataset('json' , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCAmelCase_ : List[Any] = raw_datasets['train'].features['label'].names lowerCAmelCase_ : str = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowerCAmelCase_ : int = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase__ , ) lowerCAmelCase_ : Tuple = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase_ : List[str] = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase_ : Tuple = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCAmelCase_ : Dict = {'Refused': 0, 'Entailed': 1} lowerCAmelCase_ : Union[str, Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCAmelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ : Optional[Any] ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ : Any ): lowerCAmelCase_ : Any = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] lowerCAmelCase_ : Optional[int] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowerCAmelCase_ : str = examples['statement'] lowerCAmelCase_ : List[Any] = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) lowerCAmelCase_ : Any = tokenizer(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): lowerCAmelCase_ : Tuple = raw_datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowerCAmelCase_ : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: lowerCAmelCase_ : int = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowerCAmelCase_ : List[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: lowerCAmelCase_ : str = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) lowerCAmelCase_ : Optional[int] = raw_datasets['test'] if data_args.max_predict_samples is not None: lowerCAmelCase_ : Any = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) , 3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ : EvalPrediction ): lowerCAmelCase_ : Tuple = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase__ ) else p.predictions lowerCAmelCase_ : Tuple = np.argmax(lowerCAmelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase_ : Tuple = default_data_collator elif training_args.fpaa: lowerCAmelCase_ : Optional[Any] = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 ) else: lowerCAmelCase_ : List[str] = None # Initialize our Trainer lowerCAmelCase_ : List[str] = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: lowerCAmelCase_ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase_ : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase_ : Union[str, Any] = last_checkpoint lowerCAmelCase_ : List[str] = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = train_result.metrics lowerCAmelCase_ : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Optional[Any] = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCAmelCase__ ) trainer.save_metrics('train' , lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase_ : List[Any] = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics('eval' , lowerCAmelCase__ ) trainer.save_metrics('eval' , lowerCAmelCase__ ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCAmelCase_ : Optional[Any] = predict_dataset.remove_columns('label' ) lowerCAmelCase_ : Optional[int] = trainer.predict(lowerCAmelCase__ , metric_key_prefix='predict' ).predictions lowerCAmelCase_ : Tuple = np.argmax(lowerCAmelCase__ , axis=1 ) lowerCAmelCase_ : Any = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCAmelCase_ : int = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCAmelCase_ : Any = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
224
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
224
1
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __A , ) class UpperCamelCase_ (__A ): __magic_name__ = RobertaConfig __magic_name__ = '''roberta''' def __init__( self : List[Any] , lowerCAmelCase_ : Tuple ) -> Dict: super().__init__(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = RobertaEmbeddings(lowerCAmelCase_ ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __A , ) class UpperCamelCase_ (__A ): __magic_name__ = RobertaConfig __magic_name__ = '''roberta''' def __init__( self : str , lowerCAmelCase_ : Any ) -> str: super().__init__(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = config.num_labels UpperCAmelCase_ : Union[str, Any] = config.num_hidden_layers UpperCAmelCase_ : Dict = DeeRobertaModel(lowerCAmelCase_ ) UpperCAmelCase_ : int = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase_ : Union[str, Any] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=-1 , lowerCAmelCase_ : int=False , ) -> Union[str, Any]: UpperCAmelCase_ : int = self.num_layers try: UpperCAmelCase_ : Union[str, Any] = self.roberta( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , ) UpperCAmelCase_ : Dict = outputs[1] UpperCAmelCase_ : Union[str, Any] = self.dropout(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.classifier(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase_ : Optional[int] = e.message UpperCAmelCase_ : List[Any] = e.exit_layer UpperCAmelCase_ : Union[str, Any] = outputs[0] if not self.training: UpperCAmelCase_ : List[Any] = entropy(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase_ : List[Any] = MSELoss() UpperCAmelCase_ : str = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ : List[str] = CrossEntropyLoss() UpperCAmelCase_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase_ : Dict = [] for highway_exit in outputs[-1]: UpperCAmelCase_ : str = highway_exit[0] if not self.training: highway_logits_all.append(lowerCAmelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase_ : int = MSELoss() UpperCAmelCase_ : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ : Optional[Any] = CrossEntropyLoss() UpperCAmelCase_ : str = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCAmelCase_ ) if train_highway: UpperCAmelCase_ : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase_ : Union[str, Any] = (loss,) + outputs if not self.training: UpperCAmelCase_ : str = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase_ : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
352
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class UpperCamelCase_ (__A ): __magic_name__ = '''longformer''' def __init__( self : List[str] , lowerCAmelCase_ : Union[List[int], int] = 512 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 30_522 , lowerCAmelCase_ : int = 768 , lowerCAmelCase_ : int = 12 , lowerCAmelCase_ : int = 12 , lowerCAmelCase_ : int = 3_072 , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 512 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : float = 1e-12 , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : Optional[int] , ) -> Dict: super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = attention_window UpperCAmelCase_ : Dict = sep_token_id UpperCAmelCase_ : Any = bos_token_id UpperCAmelCase_ : Dict = eos_token_id UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = onnx_export class UpperCamelCase_ (__A ): def __init__( self : List[Any] , lowerCAmelCase_ : "PretrainedConfig" , lowerCAmelCase_ : str = "default" , lowerCAmelCase_ : "List[PatchingSpec]" = None ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : int = True @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ : Dict = super().outputs if self.task == "default": UpperCAmelCase_ : List[str] = {0: "batch"} return outputs @property def _SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : "PreTrainedTokenizerBase" , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: UpperCAmelCase_ : Tuple = super().generate_dummy_inputs( preprocessor=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase_ : str = torch.zeros_like(inputs["input_ids"] ) # make every second token global UpperCAmelCase_ : Union[str, Any] = 1 return inputs
253
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __UpperCAmelCase ( __lowerCamelCase = "" ) -> dict[str, float]: lowercase__ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__ : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , '''html.parser''' ) lowercase__ : Dict = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__ : List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCamelCase , __lowerCamelCase ) } def __UpperCAmelCase ( __lowerCamelCase = "IMDb_Top_250_Movies.csv" ) -> None: lowercase__ : str = get_imdb_top_aaa_movies() with open(__lowerCamelCase , '''w''' , newline='''''' ) as out_file: lowercase__ : Dict = csv.writer(__lowerCamelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
16
"""simple docstring""" def _lowerCamelCase( a = 1_0_0_0 ): __a = 3 __a = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
261
0
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=7_6_8 )->Tuple: super().__init__(__UpperCamelCase ) _UpperCAmelCase = proj_size _UpperCAmelCase = CLIPVisionModel(__UpperCamelCase ) _UpperCAmelCase = PaintByExampleMapper(__UpperCamelCase ) _UpperCAmelCase = nn.LayerNorm(config.hidden_size ) _UpperCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _UpperCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = self.model(pixel_values=__UpperCamelCase ) _UpperCAmelCase = clip_output.pooler_output _UpperCAmelCase = self.mapper(latent_states[:, None] ) _UpperCAmelCase = self.final_layer_norm(__UpperCamelCase ) _UpperCAmelCase = self.proj_out(__UpperCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _a ( nn.Module): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : int )->Dict: super().__init__() _UpperCAmelCase = (config.num_hidden_layers + 1) // 5 _UpperCAmelCase = config.hidden_size _UpperCAmelCase = 1 _UpperCAmelCase = nn.ModuleList( [ BasicTransformerBlock(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , activation_fn='''gelu''' , attention_bias=__UpperCamelCase ) for _ in range(__UpperCamelCase ) ] ) def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] )->Union[str, Any]: for block in self.blocks: _UpperCAmelCase = block(__UpperCamelCase ) return hidden_states
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowercase ( A_ )-> Dict: '''simple docstring''' a : Union[str, Any] = model.config a : List[str] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) a : str = MBartConfig( is_decoder=A_ , is_encoder_decoder=A_ , add_cross_attention=A_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=A_ , add_final_layer_norm=A_ , ) return encoder_config, decoder_config def lowercase ( A_ )-> Dict: '''simple docstring''' if "encoder.model" in name: a : List[str] = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: a : Union[str, Any] = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: a : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a : int = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: a : List[str] = "encoder." + name if "attn.proj" in name: a : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: a : Tuple = name.replace("attn" , "attention.self" ) if "norm1" in name: a : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a : str = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a : List[Any] = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": a : Tuple = "encoder.layernorm.weight" if name == "encoder.norm.bias": a : Union[str, Any] = "encoder.layernorm.bias" return name def lowercase ( A_ , A_ )-> Tuple: '''simple docstring''' for key in orig_state_dict.copy().keys(): a : Tuple = orig_state_dict.pop(A_ ) if "qkv" in key: a : Any = key.split("." ) a : int = int(key_split[3] ) a : Optional[Any] = int(key_split[5] ) a : Dict = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Any = val[:dim, :] a : Tuple = val[dim : dim * 2, :] a : Optional[Any] = val[-dim:, :] else: a : List[str] = val[:dim] a : List[str] = val[dim : dim * 2] a : Tuple = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: a : Union[str, Any] = val return orig_state_dict def lowercase ( A_ , A_=None , A_=False )-> List[str]: '''simple docstring''' a : Dict = DonutModel.from_pretrained(A_ ).eval() # load HuggingFace model a , a : Optional[int] = get_configs(A_ ) a : Union[str, Any] = DonutSwinModel(A_ ) a : Union[str, Any] = MBartForCausalLM(A_ ) a : str = VisionEncoderDecoderModel(encoder=A_ , decoder=A_ ) model.eval() a : Optional[Any] = original_model.state_dict() a : Union[str, Any] = convert_state_dict(A_ , A_ ) model.load_state_dict(A_ ) # verify results on scanned document a : Optional[Any] = load_dataset("hf-internal-testing/example-documents" ) a : Tuple = dataset["test"][0]["image"].convert("RGB" ) a : Any = XLMRobertaTokenizerFast.from_pretrained(A_ , from_slow=A_ ) a : Dict = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) a : Tuple = DonutProcessor(A_ , A_ ) a : Union[str, Any] = processor(A_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": a : List[str] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a : int = "When is the coffee break?" a : int = task_prompt.replace("{user_input}" , A_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": a : Dict = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: a : Dict = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": a : List[Any] = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": a : int = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt a : List[str] = "hello world" else: raise ValueError("Model name not supported" ) a : Tuple = original_model.decoder.tokenizer(A_ , add_special_tokens=A_ , return_tensors="pt" )[ "input_ids" ] a : Optional[int] = original_model.encoder.model.patch_embed(A_ ) a , a : int = model.encoder.embeddings(A_ ) assert torch.allclose(A_ , A_ , atol=1e-3 ) # verify encoder hidden states a : List[str] = original_model.encoder(A_ ) a : Dict = model.encoder(A_ ).last_hidden_state assert torch.allclose(A_ , A_ , atol=1e-2 ) # verify decoder hidden states a : Union[str, Any] = original_model(A_ , A_ , A_ ).logits a : List[str] = model(A_ , decoder_input_ids=A_ ).logits assert torch.allclose(A_ , A_ , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) processor.save_pretrained(A_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) __lowercase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
40
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _lowerCamelCase : List[Any] = (boundary[1] - boundary[0]) / steps _lowerCamelCase : Tuple = boundary[0] _lowerCamelCase : Dict = boundary[1] _lowerCamelCase : List[Any] = make_points(lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : List[Any] = 0.0 y += (h / 2.0) * f(lowercase__ ) for i in x_i: # print(i) y += h * f(lowercase__ ) y += (h / 2.0) * f(lowercase__ ) return y def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = a + h while x < (b - h): yield x _lowerCamelCase : int = x + h def _snake_case ( lowercase__ ): # enter your function here _lowerCamelCase : Optional[Any] = (x - 0) * (x - 0) return y def _snake_case ( ): _lowerCamelCase : int = 0.0 # Lower bound of integration _lowerCamelCase : Optional[int] = 1.0 # Upper bound of integration _lowerCamelCase : List[str] = 1_0.0 # define number of steps or resolution _lowerCamelCase : List[Any] = [a, b] # define boundary of integration _lowerCamelCase : Optional[Any] = method_a(lowercase__ , lowercase__ ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
96
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( _lowercase): _a : Optional[int] = '''new-model''' if is_tf_available(): class _a ( _lowercase): _a : List[Any] = NewModelConfig @require_tf class _a ( unittest.TestCase): @slow def UpperCAmelCase__( self : List[str] )-> List[str]: lowerCAmelCase__ : List[str] = '''bert-base-cased''' lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : int )-> Optional[Any]: lowerCAmelCase__ : Tuple = '''bert-base-cased''' lowerCAmelCase__ : List[str] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = TFAutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[int] )-> str: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ : Any = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[int] )-> List[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Any = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Union[str, Any] )-> str: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : int )-> Optional[Any]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ : int = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Union[str, Any] )-> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = TFAutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Union[str, Any] )-> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow @require_tensorflow_probability def UpperCAmelCase__( self : Dict )-> Any: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int )-> str: lowerCAmelCase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_4410 ) def UpperCAmelCase__( self : Any )-> Tuple: lowerCAmelCase__ : List[str] = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_4410 ) def UpperCAmelCase__( self : Dict )-> Optional[int]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel lowerCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = copy.deepcopy(model.config ) lowerCAmelCase__ : Union[str, Any] = ['''FunnelBaseModel'''] lowerCAmelCase__ : Dict = TFAutoModel.from_config(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int )-> Tuple: try: AutoConfig.register('''new-model''' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase__ : Tuple = BertModelTester(self ).get_config() lowerCAmelCase__ : Optional[int] = NewModelConfig(**tiny_config.to_dict() ) lowerCAmelCase__ : List[Any] = auto_class.from_config(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = auto_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def UpperCAmelCase__( self : int )-> List[str]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''bert-base''' ) def UpperCAmelCase__( self : Optional[int] )-> Union[str, Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase__ : List[str] = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def UpperCAmelCase__( self : Dict )-> Tuple: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): lowerCAmelCase__ : Optional[int] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCAmelCase__( self : List[Any] )-> Dict: with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , '''Use `from_pt=True` to load this model''' ): lowerCAmelCase__ : str = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def UpperCAmelCase__( self : int )-> Any: # Make sure we have cached the model. lowerCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: lowerCAmelCase__ : Any = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
211
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _a ( _lowercase): _a : Optional[int] = '''xlm-roberta-xl''' def __init__( self : Any , _SCREAMING_SNAKE_CASE : str=25_0880 , _SCREAMING_SNAKE_CASE : Optional[Any]=2560 , _SCREAMING_SNAKE_CASE : int=36 , _SCREAMING_SNAKE_CASE : Optional[int]=32 , _SCREAMING_SNAKE_CASE : Any=1_0240 , _SCREAMING_SNAKE_CASE : List[str]="gelu" , _SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE : Dict=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=514 , _SCREAMING_SNAKE_CASE : Optional[int]=1 , _SCREAMING_SNAKE_CASE : Tuple=0.02 , _SCREAMING_SNAKE_CASE : Dict=1E-05 , _SCREAMING_SNAKE_CASE : Tuple=1 , _SCREAMING_SNAKE_CASE : Optional[int]=0 , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]="absolute" , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Any=None , **_SCREAMING_SNAKE_CASE : Tuple , )-> str: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = max_position_embeddings lowerCAmelCase__ : Any = type_vocab_size lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = position_embedding_type lowerCAmelCase__ : Any = use_cache lowerCAmelCase__ : List[Any] = classifier_dropout class _a ( _lowercase): @property def UpperCAmelCase__( self : Any )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
211
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase__: Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : str , *__snake_case : str , **__snake_case : int ) -> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
0
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowercase__(A , A , A ) ->Optional[int]: """simple docstring""" lowercase__ : Tuple= BertConfig.from_json_file(A ) print(f'''Building PyTorch model from configuration: {config}''' ) lowercase__ : Optional[Any]= BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
150
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge a : Optional[Any] = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] a : str = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def lowercase__() ->List[Any]: """simple docstring""" lowercase__ : str= calculate_rouge(A , A , bootstrap_aggregation=A , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(A , A ) lowercase__ : Optional[int]= calculate_rouge(A , A , bootstrap_aggregation=A , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def lowercase__() ->int: """simple docstring""" lowercase__ : Optional[int]= "rougeLsum" lowercase__ : str= calculate_rouge(A , A , newline_sep=A , rouge_keys=[k] )[k] lowercase__ : Union[str, Any]= calculate_rouge(A , A , newline_sep=A , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase__() ->Tuple: """simple docstring""" lowercase__ : Tuple= ["rouge1", "rouge2", "rougeL"] lowercase__ : Optional[Any]= calculate_rouge(A , A , newline_sep=A , rouge_keys=A ) lowercase__ : Dict= calculate_rouge(A , A , newline_sep=A , rouge_keys=A ) assert score_sep == score_no_sep def lowercase__() ->Optional[int]: """simple docstring""" lowercase__ : int= [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] lowercase__ : Dict= [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(A , A , newline_sep=A ) == calculate_rouge(A , A , newline_sep=A ) def lowercase__() ->Dict: """simple docstring""" lowercase__ : List[str]= [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] lowercase__ : Union[str, Any]= [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] lowercase__ : List[Any]= calculate_rouge(A , A , rouge_keys=["rougeLsum"] , newline_sep=A )["rougeLsum"] lowercase__ : Optional[Any]= calculate_rouge(A , A , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def lowercase__() ->Optional[Any]: """simple docstring""" lowercase__ : Optional[Any]= Path("examples/seq2seq/test_data/wmt_en_ro" ) lowercase__ : Union[str, Any]= calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(A , A ) lowercase__ : List[Any]= calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=A ) assert isinstance(A , A )
150
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __UpperCamelCase : int = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # save results if os.path.exists(A_ ): if os.path.exists(os.path.join(A_ , '''config.json''' ) ) and os.path.isfile( os.path.join(A_ , '''config.json''' ) ): os.remove(os.path.join(A_ , '''config.json''' ) ) if os.path.exists(os.path.join(A_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(A_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(A_ , '''pytorch_model.bin''' ) ) else: os.makedirs(A_ ) model.save_pretrained(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : Optional[Any] = 2 if unlogit: lowerCAmelCase__ : Union[str, Any] = torch.pow(A_ , A_ ) lowerCAmelCase__ : Optional[Any] = p * torch.log(A_ ) lowerCAmelCase__ : List[Any] = 0 return -plogp.sum(dim=-1 ) def __SCREAMING_SNAKE_CASE ( A_ ): logger.info('''lv, h >\t''' + '''\t'''.join(f'{x + 1}' for x in range(len(A_ ) ) ) ) for row in range(len(A_ ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:d}' for x in tensor[row].cpu().data ) ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=True , A_=True , A_=None , A_=False ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ : Dict = torch.zeros(A_ , A_ ).to(args.device ) lowerCAmelCase__ : int = torch.zeros(A_ , A_ ).to(args.device ) if head_mask is None: lowerCAmelCase__ : Union[str, Any] = torch.ones(A_ , A_ ).to(args.device ) head_mask.requires_grad_(requires_grad=A_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(A_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ : Any = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) ,) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ : Any = model(A_ , labels=A_ , head_mask=A_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A_ ): lowerCAmelCase__ : Dict = entropy(attn.detach() , A_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : Dict = torch.pow(torch.pow(A_ , A_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: lowerCAmelCase__ : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(A_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(A_ ) logger.info('''Head ranked by importance scores''' ) lowerCAmelCase__ : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ : Optional[int] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ : int = head_ranks.view_as(A_ ) print_ad_tensor(A_ ) return attn_entropy, head_importance, total_loss def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = compute_heads_importance(A_ , A_ , A_ , compute_entropy=A_ ) lowerCAmelCase__ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , A_ , original_score * args.masking_threshold ) lowerCAmelCase__ : Union[str, Any] = torch.ones_like(A_ ) lowerCAmelCase__ : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ : int = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ : str = float('''Inf''' ) lowerCAmelCase__ : List[Any] = head_importance.view(-1 ).sort()[1] if len(A_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowerCAmelCase__ : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ : int = new_head_mask.view(-1 ) lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Union[str, Any] = new_head_mask.view_as(A_ ) lowerCAmelCase__ : Tuple = new_head_mask.clone().detach() print_ad_tensor(A_ ) # Compute metric and head importance again lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , head_mask=A_ ) lowerCAmelCase__ : Tuple = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , A_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(A_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ ) lowerCAmelCase__ : Optional[Any] = 1 / loss lowerCAmelCase__ : Tuple = datetime.now() - before_time lowerCAmelCase__ : int = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A_ ) ) } for k, v in heads_to_prune.items(): if isinstance(A_ , A_ ): lowerCAmelCase__ : int = [ v, ] assert sum(len(A_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A_ ) lowerCAmelCase__ : List[Any] = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : Any = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : int = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ , actually_pruned=A_ , ) lowerCAmelCase__ : int = 1 / loss lowerCAmelCase__ : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , A_ , A_ , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , A_ , A_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(A_ , args.output_dir ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=A_ , type=A_ , required=A_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=A_ , type=A_ , required=A_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=A_ , type=A_ , required=A_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=A_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=A_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=A_ , type=A_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=A_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=A_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=A_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=A_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=A_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=A_ , default=42 ) parser.add_argument('''--local_rank''' , type=A_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) lowerCAmelCase__ : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowerCAmelCase__ : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ : Dict = torch.device('''cuda''' , args.local_rank ) lowerCAmelCase__ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ : Dict = nn.parallel.DistributedDataParallel( A_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A_ ) elif args.n_gpu > 1: lowerCAmelCase__ : List[Any] = nn.DataParallel(A_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A_ ) torch.save(A_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , A_ ) # Prepare dataset lowerCAmelCase__ : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ : Union[str, Any] = (torch.from_numpy(A_ ),) lowerCAmelCase__ : Tuple = TensorDataset(*A_ ) lowerCAmelCase__ : Optional[int] = RandomSampler(A_ ) lowerCAmelCase__ : Dict = DataLoader(A_ , sampler=A_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A_ , A_ , A_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ : Tuple = mask_heads(A_ , A_ , A_ ) prune_heads(A_ , A_ , A_ , A_ ) if __name__ == "__main__": main()
106
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : Dict = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = ['LayoutLMv2FeatureExtractor'] lowerCAmelCase : int = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
0
from collections import defaultdict from math import gcd def __lowercase ( a__ = 1_50_00_00 ) -> int: __SCREAMING_SNAKE_CASE = defaultdict(a__ ) __SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , a__ , 2 ): if gcd(a__ , a__ ) > 1: continue __SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(a__ , limit + 1 , a__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
118
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = LayoutLMTokenizer UpperCamelCase__ : Any = LayoutLMTokenizerFast UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : int = True def _A ( self ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _A ( self , **_A ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' __SCREAMING_SNAKE_CASE = 'unwanted, running' return input_text, output_text def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_A , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def _A ( self ): '''simple docstring''' pass
118
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
256
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Optional[int] = logging.get_logger() # the current default level is logging.WARNING A__ : List[str] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(A__ ) def __A ( self ): A__ : List[Any] = logging.get_verbosity() A__ : List[Any] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) A__ : Optional[Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(A__ ) as cl: logger.warning(A__ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(A__ ) as cl: logger.warning(A__ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(A__ ) as cl: logger.warning(A__ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(A__ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def __A ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var A__ : Optional[Any] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) A__ : List[Any] = os.getenv("""TRANSFORMERS_VERBOSITY""" , A__ ) A__ : Optional[Any] = logging.log_levels[env_level_str] A__ : Dict = logging.get_verbosity() self.assertEqual( A__ , A__ , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level A__ : Any = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def __A ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() A__ : Union[str, Any] = logging.logging.getLogger() with CaptureLogger(A__ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def __A ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() A__ : Union[str, Any] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) A__ : Optional[Any] = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(A__ ) as cl: logger.warning_advice(A__ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(A__ ) as cl: logger.warning_advice(A__ ) self.assertEqual(cl.out , msg + """\n""" ) def UpperCamelCase () -> Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
141
from typing import Any def UpperCamelCase (lowercase_: list ) -> list[Any]: if not input_list: return [] A__ : Any = [input_list.count(lowercase_ ) for value in input_list] A__ : List[Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
141
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase (__A): """simple docstring""" _a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__A , __A) def lowerCAmelCase (__A): """simple docstring""" _a , _a = emb.weight.shape _a = nn.Linear(__A , __A , bias=__A) _a = emb.weight.data return lin_layer def lowerCAmelCase (__A , __A=None): """simple docstring""" _a = {} for old_key in state_dict.keys(): _a = old_key if "moe_layer.experts." in key: if expert_idx is not None: _a = key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''') else: _a = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''') if "gate" in key: _a = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''') if "fc2" and "experts" not in key: _a = key.replace('''.fc2.''' , '''.ffn.fc2.''') if "fc1" and "experts" not in key: _a = key.replace('''.fc1.''' , '''.ffn.fc1.''') if ".encoder_attn." in key: _a = key.replace('''.encoder_attn.''' , '''.cross_attention.''') if "encoder_attn_layer_norm" in key: _a = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''') if "final_layer_norm" in key: _a = key.replace('''final_layer_norm''' , '''ff_layer_norm''') _a = state_dict[old_key] return new_dict def lowerCAmelCase (__A , __A , __A , __A , __A = WEIGHTS_NAME): """simple docstring""" _a = [] _a = 0 os.makedirs(__A , exist_ok=__A) for expert in range(__A): _a = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__A): _a = torch.load(__A)['''model'''] remove_ignore_keys_(__A) _a = rename_fairseq_keys(__A , __A) _a = os.path.join( __A , weights_name.replace('''.bin''' , F'''-{len(__A)+1:05d}-of-???.bin''')) torch.save(__A , __A) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(__A)[0]].dtype) # Add the last block _a = os.path.join(__A , weights_name.replace('''.bin''' , F'''-{len(__A)+1:05d}-of-???.bin''')) _a = torch.load(switch_checkpoint_path + '''-shared.pt''')['''model'''] remove_ignore_keys_(__A) _a = rename_fairseq_keys(__A , __A) _a = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__A) == 1: _a = os.path.join(__A , __A) torch.save(__A , __A) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__A , __A) # Otherwise, let's build the index _a = {} for idx, shard in enumerate(__A): _a = weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__A):05d}.bin''') _a = os.path.join(__A , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''')) os.rename(__A , os.path.join(__A , __A)) for key in shard: _a = shard_file # Add the metadata _a = {'''total_size''': total_size} _a = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__A , __A) , '''w''' , encoding='''utf-8''') as f: _a = json.dumps(__A , indent=2 , sort_keys=__A) + '''\n''' f.write(__A) return metadata, index if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) lowercase_ = parser.parse_args() lowercase_ , lowercase_ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowercase_ = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowercase_ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
211
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'glpn' def __init__(self , A=3 , A=4 , A=[2, 2, 2, 2] , A=[8, 4, 2, 1] , A=[32, 64, 160, 256] , A=[7, 3, 3, 3] , A=[4, 2, 2, 2] , A=[1, 2, 5, 8] , A=[4, 4, 4, 4] , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=0.1 , A=1E-6 , A=64 , A=10 , A=-1 , **A , ) -> Any: """simple docstring""" super().__init__(**A ) _a = num_channels _a = num_encoder_blocks _a = depths _a = sr_ratios _a = hidden_sizes _a = patch_sizes _a = strides _a = mlp_ratios _a = num_attention_heads _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = drop_path_rate _a = layer_norm_eps _a = decoder_hidden_size _a = max_depth _a = head_in_index
211
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class A_ : lowerCAmelCase__ = LEDConfig lowerCAmelCase__ = {} lowerCAmelCase__ = 'gelu' def __init__( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any]=13 ,__lowerCAmelCase: Union[str, Any]=7 ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: List[Any]=99 ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=4 ,__lowerCAmelCase: List[Any]=37 ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: Tuple=20 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: Optional[int]=1 ,__lowerCAmelCase: List[str]=0 ,__lowerCAmelCase: Dict=4 ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Dict = use_labels _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Union[str, Any] = eos_token_id _lowerCamelCase : Optional[Any] = pad_token_id _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCamelCase : str = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) _lowerCamelCase : Dict = tf.concat([input_ids, eos_tensor] ,axis=1 ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,attention_window=self.attention_window ,**self.config_updates ,) _lowerCamelCase : List[Any] = prepare_led_inputs_dict(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tf.concat( [tf.zeros_like(__lowerCAmelCase )[:, :-1], tf.ones_like(__lowerCAmelCase )[:, -1:]] ,axis=-1 ,) _lowerCamelCase : int = global_attention_mask return config, inputs_dict def _lowercase ( self: Dict ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : str = TFLEDModel(config=__lowerCAmelCase ).get_decoder() _lowerCamelCase : Optional[int] = inputs_dict["input_ids"] _lowerCamelCase : List[Any] = input_ids[:1, :] _lowerCamelCase : Tuple = inputs_dict["attention_mask"][:1, :] _lowerCamelCase : Optional[int] = 1 # first forward pass _lowerCamelCase : Any = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,use_cache=__lowerCAmelCase ) _lowerCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Tuple = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and _lowerCamelCase : int = tf.concat([input_ids, next_tokens] ,axis=-1 ) _lowerCamelCase : Dict = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) _lowerCamelCase : Any = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase )[0] _lowerCamelCase : Tuple = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice _lowerCamelCase : Tuple = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) _lowerCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase ,__lowerCAmelCase ,rtol=1e-3 ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCamelCase : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCAmelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = TFLEDModelTester(self ) _lowerCamelCase : str = ConfigTester(self ,config_class=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = tf.zeros_like(inputs_dict["attention_mask"] ) _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices ,1 ,inputs_dict["global_attention_mask"] ,) _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = self.model_tester.seq_length _lowerCamelCase : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowerCAmelCase: Tuple ): _lowerCamelCase : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) def check_encoder_attentions_output(__lowerCAmelCase: Union[str, Any] ): _lowerCamelCase : List[str] = [t.numpy() for t in outputs.encoder_attentions] _lowerCamelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) self.assertListEqual( list(global_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] ,) for model_class in self.all_model_classes: _lowerCamelCase : Any = True _lowerCamelCase : str = False _lowerCamelCase : List[str] = False _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : List[str] = len(__lowerCAmelCase ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) if self.is_encoder_decoder: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_decoder_attentions_output(__lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCamelCase : Tuple = True _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) # Check attention is always last and order is fine _lowerCamelCase : List[str] = True _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[str] = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(__lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' return tf.constant(_lowerCamelCase , dtype=tf.intaa ) __snake_case : str = 1e-4 @slow @require_tf class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : int = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _lowerCamelCase : Optional[int] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : Optional[int] = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : Tuple = prepare_led_inputs_dict(model.config ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = model(**__lowerCAmelCase )[0] _lowerCamelCase : Union[str, Any] = (1, 1_024, 768) self.assertEqual(output.shape ,__lowerCAmelCase ) # change to expected output here _lowerCamelCase : str = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] ,) tf.debugging.assert_near(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-3 ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _lowerCamelCase : int = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : str = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : Dict = prepare_led_inputs_dict(model.config ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = model(**__lowerCAmelCase )[0] _lowerCamelCase : List[Any] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape ,__lowerCAmelCase ) # change to expected output here _lowerCamelCase : Dict = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] ,) tf.debugging.assert_near(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-3 ,rtol=1e-3 )
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["ChineseCLIPFeatureExtractor"] SCREAMING_SNAKE_CASE__ = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
150
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } SCREAMING_SNAKE_CASE__ = {"mgp-str": 27} class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Tuple = VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCAmelCase , lowerCAmelCase="[GO]" , lowerCAmelCase="[GO]" , lowerCAmelCase="[s]" , lowerCAmelCase="[GO]" , **lowerCAmelCase ): """simple docstring""" super().__init__( unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: snake_case = json.load(lowerCAmelCase ) snake_case = {v: k for k, v in self.vocab.items()} @property def snake_case ( self ): """simple docstring""" return len(self.vocab ) def snake_case ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for s in text: char_tokens.extend(lowerCAmelCase ) return char_tokens def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.vocab.get(lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase ) ) return snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) return (vocab_file,)
150
1
import math UpperCamelCase__ = 10 UpperCamelCase__ = 7 UpperCamelCase__ = BALLS_PER_COLOUR * NUM_COLOURS def _a ( SCREAMING_SNAKE_CASE_ : int = 20 ): __lowerCAmelCase = math.comb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
102
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=512, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
102
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : List[Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
118
from functools import lru_cache @lru_cache def a__ ( __UpperCamelCase ): if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
118
1
from __future__ import annotations import typing from collections import Counter def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ): """simple docstring""" __lowerCamelCase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase__ , max_perimeter + 1 ): __lowerCamelCase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase__ ): __lowerCamelCase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] = 1000 ): """simple docstring""" __lowerCamelCase = pythagorean_triple(lowerCAmelCase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
359
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( A , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaControlnetPipeline lowerCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] lowerCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] lowerCAmelCase_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ = False @property def snake_case ( self : Tuple ): """simple docstring""" return 32 @property def snake_case ( self : Tuple ): """simple docstring""" return 32 @property def snake_case ( self : Dict ): """simple docstring""" return self.time_input_dim @property def snake_case ( self : Dict ): """simple docstring""" return self.time_input_dim * 4 @property def snake_case ( self : Any ): """simple docstring""" return 100 @property def snake_case ( self : str ): """simple docstring""" torch.manual_seed(0 ) __lowercase ={ 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowercase =UNetaDConditionModel(**__lowercase ) return model @property def snake_case ( self : str ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) __lowercase =VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self : int ): """simple docstring""" __lowercase =self.dummy_unet __lowercase =self.dummy_movq __lowercase =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowercase , set_alpha_to_one=__lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=__lowercase , ) __lowercase ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case ( self : Optional[int] , __lowercase : List[str] , __lowercase : str=0 ): """simple docstring""" __lowercase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowercase ) # create hint __lowercase =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) if str(__lowercase ).startswith('mps' ): __lowercase =torch.manual_seed(__lowercase ) else: __lowercase =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase ={ 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def snake_case ( self : List[str] ): """simple docstring""" __lowercase ='cpu' __lowercase =self.get_dummy_components() __lowercase =self.pipeline_class(**__lowercase ) __lowercase =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowercase =pipe(**self.get_dummy_inputs(__lowercase ) ) __lowercase =output.images __lowercase =pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __lowercase =image[0, -3:, -3:, -1] __lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase =np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : str ): """simple docstring""" __lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __lowercase =torch.from_numpy(np.array(__lowercase ) ).float() / 2_5_5.0 __lowercase =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowercase =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) __lowercase =KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __lowercase =pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) __lowercase ='A robot, 4k photo' __lowercase =torch.Generator(device='cuda' ).manual_seed(0 ) __lowercase , __lowercase =pipe_prior( __lowercase , generator=__lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowercase =torch.Generator(device='cuda' ).manual_seed(0 ) __lowercase =pipeline( image_embeds=__lowercase , negative_image_embeds=__lowercase , hint=__lowercase , generator=__lowercase , num_inference_steps=100 , output_type='np' , ) __lowercase =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
141
'''simple docstring''' import math class lowerCAmelCase : def snake_case ( self : Optional[int] , __lowercase : list[list[float]] , __lowercase : list[int] ): """simple docstring""" __lowercase =0.0 __lowercase =0.0 for i in range(len(__lowercase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def snake_case ( self : Union[str, Any] , __lowercase : list[list[int | float]] , __lowercase : list[int] , __lowercase : int , __lowercase : float ): """simple docstring""" for i in range(len(__lowercase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCamelCase ( ): '''simple docstring''' __lowercase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __lowercase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __lowercase =SelfOrganizingMap() __lowercase =3 __lowercase =0.5 for _ in range(lowercase__ ): for j in range(len(lowercase__ ) ): # training sample __lowercase =training_samples[j] # Compute the winning vector __lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ ) # Update the winning vector __lowercase =self_organizing_map.update(lowercase__, lowercase__, lowercase__, lowercase__ ) # classify test sample __lowercase =[0, 0, 0, 1] __lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
141
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Dict = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: UpperCamelCase_: Tuple = TOKENIZER_CLASSES else: UpperCamelCase_: Optional[Any] = {tokenizer_name: getattr(lowerCamelCase , tokenizer_name + """Fast""" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: UpperCamelCase_: List[str] = TOKENIZER_CLASSES[tokenizer_name] UpperCamelCase_: Optional[Any] = True if checkpoint_name is None: UpperCamelCase_: Any = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCamelCase_: Tuple = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer UpperCamelCase_: int = tokenizer_class.from_pretrained(lowerCamelCase , force_download=lowerCamelCase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: UpperCamelCase_: List[str] = checkpoint.split("""/""" ) UpperCamelCase_: Tuple = os.path.join(lowerCamelCase , lowerCamelCase ) elif add_prefix: UpperCamelCase_: Optional[int] = checkpoint UpperCamelCase_: List[str] = dump_path else: UpperCamelCase_: List[str] = None UpperCamelCase_: Optional[Any] = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCamelCase_: List[str] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCamelCase_: Any = file_path.split(lowerCamelCase )[-1][0] if next_char == "/": UpperCamelCase_: int = os.path.join(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: str = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) UpperCamelCase_: str = tokenizer.save_pretrained( lowerCamelCase , legacy_format=lowerCamelCase , filename_prefix=lowerCamelCase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(lowerCamelCase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": lowerCamelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCamelCase_ : Any = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
359
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = PegasusConfig __UpperCamelCase : str = {} __UpperCamelCase : Optional[Any] = """gelu""" def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str=13 , snake_case_ : Dict=7 , snake_case_ : List[Any]=True , snake_case_ : Optional[int]=False , snake_case_ : Any=99 , snake_case_ : Optional[Any]=32 , snake_case_ : Dict=2 , snake_case_ : Any=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=40 , snake_case_ : Tuple=2 , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: Union[str, Any] = seq_length UpperCamelCase_: Tuple = is_training UpperCamelCase_: Tuple = use_labels UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Optional[Any] = num_hidden_layers UpperCamelCase_: List[Any] = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: Union[str, Any] = eos_token_id UpperCamelCase_: Optional[int] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: List[str] = prepare_pegasus_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCAmelCase__ ( self : Any , snake_case_ : List[str] , snake_case_ : Dict ): UpperCamelCase_: Any = TFPegasusModel(config=snake_case_ ).get_decoder() UpperCamelCase_: Any = inputs_dict["""input_ids"""] UpperCamelCase_: int = input_ids[:1, :] UpperCamelCase_: List[str] = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase_: Tuple = inputs_dict["""head_mask"""] UpperCamelCase_: int = 1 # first forward pass UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: List[Any] = model(snake_case_ , attention_mask=snake_case_ )[0] UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if attention_mask is None: UpperCamelCase_: Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCamelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : int = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = TFPegasusModelTester(self ) UpperCamelCase_: List[Any] = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase : Optional[int] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCamelCase : Union[str, Any] = """google/pegasus-xsum""" @cached_property def lowerCAmelCase__ ( self : Dict ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : Optional[int] ): UpperCamelCase_: str = self.translate_src_text(**snake_case_ ) assert self.expected_text == generated_words def lowerCAmelCase__ ( self : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Tuple = self.tokenizer(self.src_text , **snake_case_ , padding=snake_case_ , return_tensors="""tf""" ) UpperCamelCase_: Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case_ , ) UpperCamelCase_: Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case_ ) return generated_words @slow def lowerCAmelCase__ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
223
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput snake_case_ = 8 def lowerCamelCase__ ( snake_case_ : str , snake_case_ : List[str]=BITS ) -> Any: __snake_case = x.device __snake_case = (x * 255).int().clamp(0 , 255 ) __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase_ ) __snake_case = rearrange(UpperCamelCase_ , '''d -> d 1 1''' ) __snake_case = rearrange(UpperCamelCase_ , '''b c h w -> b c 1 h w''' ) __snake_case = ((x & mask) != 0).float() __snake_case = rearrange(UpperCamelCase_ , '''b c d h w -> b (c d) h w''' ) __snake_case = bits * 2 - 1 return bits def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Dict=BITS ) -> Dict: __snake_case = x.device __snake_case = (x > 0).int() __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase_ , dtype=torch.intaa ) __snake_case = rearrange(UpperCamelCase_ , '''d -> d 1 1''' ) __snake_case = rearrange(UpperCamelCase_ , '''b (c d) h w -> b c d h w''' , d=8 ) __snake_case = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def lowerCamelCase__ ( self : List[str] , snake_case_ : torch.FloatTensor , snake_case_ : int , snake_case_ : torch.FloatTensor , snake_case_ : float = 0.0 , snake_case_ : bool = True , snake_case_ : Optional[Any]=None , snake_case_ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __snake_case = self.alphas_cumprod[timestep] __snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(UpperCamelCase_ , -scale , UpperCamelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __snake_case = self._get_variance(UpperCamelCase_ , UpperCamelCase_ ) __snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __snake_case = model_output.device if torch.is_tensor(UpperCamelCase_ ) else '''cpu''' __snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ ).to(UpperCamelCase_ ) __snake_case = self._get_variance(UpperCamelCase_ , UpperCamelCase_ ) ** 0.5 * eta * noise __snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , snake_case_ : torch.FloatTensor , snake_case_ : int , snake_case_ : torch.FloatTensor , snake_case_ : Any="epsilon" , snake_case_ : List[Any]=None , snake_case_ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: __snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __snake_case , __snake_case = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: __snake_case = None # 1. compute alphas, betas __snake_case = self.alphas_cumprod[t] __snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one __snake_case = 1 - alpha_prod_t __snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(UpperCamelCase_ , -scale , UpperCamelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case = 0 if t > 0: __snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase_ ).to(model_output.device ) __snake_case = (self._get_variance(UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise __snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Any , a__ : Tuple , a__ : Union[str, Any] , a__ : int = 1.0 , ): """simple docstring""" super().__init__() __snake_case = bit_scale __snake_case = ( ddim_bit_scheduler_step if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__(self : Optional[int] , a__ : List[Any] = 256 , a__ : str = 256 , a__ : str = 50 , a__ : str = None , a__ : Dict = 1 , a__ : List[Any] = "pil" , a__ : Any = True , **a__ : List[Any] , ): """simple docstring""" __snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__UpperCAmelCase , ) __snake_case = decimal_to_bits(__UpperCAmelCase ) * self.bit_scale __snake_case = latents.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __snake_case = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample __snake_case = bits_to_decimal(__UpperCAmelCase ) if output_type == "pil": __snake_case = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
24
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
0
"""simple docstring""" import math def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 1_00_01) -> Optional[Any]: try: a = int(_lowercase) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int.") from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one.") a = [] a = 2 while len(_lowercase) < nth: if is_prime(_lowercase): primes.append(_lowercase) num += 1 else: num += 1 return primes[len(_lowercase) - 1] if __name__ == "__main__": print(F'{solution() = }')
359
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase__ : Optional[int] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowercase__ : int = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase__ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase__ : Tuple = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase_ ( self , A ) -> List[str]: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase_ ( self , A , A , A=0.9 , A=3 , A=0.5 ) -> Tuple: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): a = [ meteor_score.single_meteor_score( word_tokenize(A ) , word_tokenize(A ) , alpha=A , beta=A , gamma=A ) for ref, pred in zip(A , A ) ] else: a = [ meteor_score.single_meteor_score(A , A , alpha=A , beta=A , gamma=A ) for ref, pred in zip(A , A ) ] return {"meteor": np.mean(A )}
180
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=2 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=False , a_=True , a_="None" , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : str = parent __snake_case : List[str] = batch_size __snake_case : Optional[int] = seq_length __snake_case : List[Any] = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : Optional[int] = use_token_type_ids __snake_case : Optional[int] = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : int = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : Any = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Tuple = num_choices __snake_case : int = relative_attention __snake_case : List[Any] = position_biased_input __snake_case : Optional[Any] = pos_att_type __snake_case : str = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : List[str] = None if self.use_token_type_ids: __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = None __snake_case : Union[str, Any] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Dict = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = TFDebertaVaModel(config=a_ ) __snake_case : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __snake_case : int = [input_ids, input_mask] __snake_case : List[str] = model(a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = TFDebertaVaForMaskedLM(config=a_ ) __snake_case : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __snake_case : Optional[Any] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : List[Any] = TFDebertaVaForSequenceClassification(config=a_ ) __snake_case : Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __snake_case : int = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = self.num_labels __snake_case : Any = TFDebertaVaForTokenClassification(config=a_ ) __snake_case : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __snake_case : Dict = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = TFDebertaVaForQuestionAnswering(config=a_ ) __snake_case : Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __snake_case : int = model(a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ =( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = TFDebertaVaModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(a_ ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) __snake_case : Tuple = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __snake_case : Tuple = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __snake_case : str = model(a_ , attention_mask=a_ )[0] __snake_case : List[str] = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a_ , atol=1E-4 )
102
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='new-model' if is_tf_available(): class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =NewModelConfig @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''bert-base-cased''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : int = TFAutoModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''bert-base-cased''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[Any] = TFAutoModelForPreTraining.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Dict = TFAutoModelForCausalLM.from_pretrained(a_ ) __snake_case , __snake_case : int = TFAutoModelForCausalLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(a_ ) __snake_case , __snake_case : int = TFAutoModelForMaskedLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a_ ) __snake_case , __snake_case : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case : Any = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Dict = TFAutoModelForSequenceClassification.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case : Optional[int] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(a_ ) __snake_case , __snake_case : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a_ ) , 1_44_10 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a_ ) , 1_44_10 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = copy.deepcopy(model.config ) __snake_case : int = ['''FunnelBaseModel'''] __snake_case : Any = TFAutoModel.from_config(a_ ) self.assertIsInstance(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ ) __snake_case : Dict = TFAutoModel.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' try: AutoConfig.register('''new-model''' , a_ ) __snake_case : List[str] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a_ ): auto_class.register(a_ , a_ ) auto_class.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): auto_class.register(a_ , a_ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : Union[str, Any] = BertModelTester(self ).get_config() __snake_case : str = NewModelConfig(**tiny_config.to_dict() ) __snake_case : Optional[int] = auto_class.from_config(a_ ) self.assertIsInstance(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ ) __snake_case : Optional[int] = auto_class.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , '''bert-base is not a local folder and is not a valid model identifier''' ): __snake_case : Any = TFAutoModel.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __snake_case : Dict = TFAutoModel.from_pretrained(a_ , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __snake_case : Any = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex(a_ , '''Use `from_pt=True` to load this model''' ): __snake_case : Dict = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __snake_case : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __snake_case : Dict = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __snake_case : Dict = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
102
1
"""simple docstring""" import numpy # List of input, output pairs __lowercase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __lowercase = (((515, 22, 13), 555), ((61, 35, 49), 150)) __lowercase = [2, 4, 1, 5] __lowercase = len(train_data) __lowercase = 0.0_09 def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : str="train" ): """simple docstring""" return calculate_hypothesis_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) - output( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase (__UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase : str =0 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : Any=m ): """simple docstring""" __UpperCamelCase : Optional[Any] =0 for i in range(SCREAMING_SNAKE_CASE_ ): if index == -1: summation_value += _error(SCREAMING_SNAKE_CASE_ ) else: summation_value += _error(SCREAMING_SNAKE_CASE_ ) * train_data[i][0][index] return summation_value def lowerCAmelCase (__UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase : Tuple =summation_of_cost_derivative(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / m return cost_derivative_value def lowerCAmelCase (): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output __UpperCamelCase : Optional[int] =0.0_0_0_0_0_2 __UpperCamelCase : List[str] =0 __UpperCamelCase : Optional[int] =0 while True: j += 1 __UpperCamelCase : Optional[int] =[0, 0, 0, 0] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase : Optional[Any] =get_cost_derivative(i - 1 ) __UpperCamelCase : Optional[Any] =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ , rtol=SCREAMING_SNAKE_CASE_ , ): break __UpperCamelCase : Union[str, Any] =temp_parameter_vector print(('''Number of iterations:''', j) ) def lowerCAmelCase (): """simple docstring""" for i in range(len(SCREAMING_SNAKE_CASE_ ) ): print(('''Actual output value:''', output(SCREAMING_SNAKE_CASE_ , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(SCREAMING_SNAKE_CASE_ , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __snake_case = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ = 101 ): '''simple docstring''' UpperCamelCase__ :int = length def __len__( self ): '''simple docstring''' return self.length def __getitem__( self , UpperCamelCase_ ): '''simple docstring''' return i class lowercase : """simple docstring""" def __call__( self , UpperCamelCase_ ): '''simple docstring''' return {"input_ids": torch.tensor(UpperCamelCase_ ), "labels": torch.tensor(UpperCamelCase_ )} class lowercase ( nn.Module ): """simple docstring""" def __init__( self ): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase__ :List[Any] = nn.Linear(120 , 80 ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowercase ( A__ ): """simple docstring""" @require_torch_neuroncore def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() UpperCamelCase__ :Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ :Tuple = F'''--output_dir {output_dir}'''.split() UpperCamelCase__ :Tuple = ['''torchrun'''] + distributed_args + args execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase ( A__ ): """simple docstring""" @require_torch_multi_gpu def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() UpperCamelCase__ :int = self.get_auto_remove_tmp_dir() UpperCamelCase__ :List[Any] = F'''--output_dir {output_dir}'''.split() UpperCamelCase__ :str = ['''torchrun'''] + distributed_args + args execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __snake_case = HfArgumentParser((TrainingArguments,)) __snake_case = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __snake_case = DummyDataset(dataset_length) def a ( __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :List[Any] = list(range(len(__a ) ) ) UpperCamelCase__ :Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __snake_case = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __snake_case = 2 __snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __snake_case = None
97
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
0
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __SCREAMING_SNAKE_CASE : List[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
73
"""simple docstring""" def lowerCAmelCase_( lowercase_ : List[str] ) -> Optional[Any]: _lowerCamelCase = len(lowercase_ ) while cur > 1: # Find the maximum number in arr _lowerCamelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowerCamelCase = arr[mi::-1] + arr[mi + 1 : len(lowercase_ )] # Reverse whole list _lowerCamelCase = arr[cur - 1 :: -1] + arr[cur : len(lowercase_ )] cur -= 1 return arr if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = input('''Enter numbers separated by a comma:\n''').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
73
1
from __future__ import annotations _UpperCAmelCase : Optional[Any] =8.988E9 # units = N * m^s * C^-2 def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: lowerCAmelCase_ : int = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowerCAmelCase_ : Any = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCAmelCase_ : int = abs(__lowerCamelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCAmelCase_ : Dict = abs(__lowerCamelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCAmelCase_ : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(__lowerCamelCase )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
262
'''simple docstring''' lowerCAmelCase : str =''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase : int =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase : List[str] ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
223
0
from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase_ , 2 ) + pow(lowercase_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
367
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase_ ) A__ = checkpoints.load_tax_checkpoint(lowercase_ ) A__ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": A__ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": A__ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): A__ = f"""layers_{str(lowercase_ )}""" # Self-Attention A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization A__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning A__ = flax_model.params['''encoder''']['''block'''][str(lowercase_ )]['''layer'''] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_global_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = tax_mlp_layer_norm A__ = flax_model_encoder_layer_block # Only for layer 0: A__ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T A__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T A__ = tax_encoder_global_rel_embedding # Assigning A__ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] A__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A__ = f"""layers_{str(lowercase_ )}""" # Self-Attention A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention A__ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] A__ = tax_enc_dec_attention_module['''key''']['''kernel'''] A__ = tax_enc_dec_attention_module['''out''']['''kernel'''] A__ = tax_enc_dec_attention_module['''query''']['''kernel'''] A__ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning A__ = flax_model.params['''decoder''']['''block'''][str(lowercase_ )]['''layer'''] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_pre_attention_layer_norm A__ = tax_enc_dec_attention_key A__ = tax_enc_dec_attention_out A__ = tax_enc_dec_attention_query A__ = tax_enc_dec_attention_value A__ = tax_cross_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = txa_mlp_layer_norm A__ = flax_model_decoder_layer_block # Decoder Normalization A__ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] A__ = txa_decoder_norm # Only for layer 0: A__ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T A__ = tax_decoder_rel_embedding # Token Embeddings A__ = tax_model['''target''']['''token_embedder''']['''embedding'''] A__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A__ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(lowercase_ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) _lowerCamelCase : Tuple = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
231
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A ( a_ ,a_ ,a_ ,a_ ) -> List[str]: for param, grad_param in zip(model_a.parameters() ,model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def A ( a_ ,a_ ,a_ ,a_ ,a_=True ) -> Tuple: model.train() __UpperCamelCase : List[Any] =model(a_ ) __UpperCamelCase : List[Any] =F.mse_loss(a_ ,target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(a_ ) def A ( a_ ,a_=False ) -> List[Any]: set_seed(42 ) __UpperCamelCase : str =RegressionModel() __UpperCamelCase : int =deepcopy(a_ ) __UpperCamelCase : Optional[int] =RegressionDataset(length=80 ) __UpperCamelCase : List[Any] =DataLoader(a_ ,batch_size=16 ) model.to(accelerator.device ) if sched: __UpperCamelCase : Optional[int] =AdamW(params=model.parameters() ,lr=1e-3 ) __UpperCamelCase : Tuple =AdamW(params=ddp_model.parameters() ,lr=1e-3 ) __UpperCamelCase : int =LambdaLR(a_ ,lr_lambda=lambda a_ : epoch**0.65 ) __UpperCamelCase : Tuple =LambdaLR(a_ ,lr_lambda=lambda a_ : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict =accelerator.prepare(a_ ,a_ ,a_ ,a_ ) else: __UpperCamelCase , __UpperCamelCase : str =accelerator.prepare(a_ ,a_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A ( a_ ) -> Union[str, Any]: # Test when on a single CPU or GPU that the context manager does nothing __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any =get_training_setup(a_ ) # Use a single batch __UpperCamelCase , __UpperCamelCase : int =next(iter(a_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCamelCase , __UpperCamelCase : List[str] =accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a_ ,a_ ,a_ ,a_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a_ ): step_model(a_ ,a_ ,a_ ,a_ ) else: # Sync grads step_model(a_ ,a_ ,a_ ,a_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(a_ ,a_ ,a_ ,a_ ) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad ,ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) __UpperCamelCase : str =ddp_input[torch.randperm(len(a_ ) )] def A ( a_ ) -> Tuple: # Test on distributed setup that context manager behaves properly __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict =get_training_setup(a_ ) # Use a single batch __UpperCamelCase , __UpperCamelCase : Optional[int] =next(iter(a_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCamelCase , __UpperCamelCase : Optional[Any] =accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase , __UpperCamelCase : int =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a_ ,a_ ,a_ ,a_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a_ ): step_model(a_ ,a_ ,a_ ,a_ ) else: # Sync grads step_model(a_ ,a_ ,a_ ,a_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) __UpperCamelCase : Optional[int] =ddp_input[torch.randperm(len(a_ ) )] def A ( a_=False ,a_=False ) -> Tuple: __UpperCamelCase : Union[str, Any] =Accelerator( split_batches=a_ ,dispatch_batches=a_ ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple =get_training_setup(a_ ) for iteration, batch in enumerate(a_ ): __UpperCamelCase , __UpperCamelCase : Tuple =batch.values() # Gather the distributed inputs and targs for the base model __UpperCamelCase , __UpperCamelCase : Union[str, Any] =accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase , __UpperCamelCase : Any =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a_ ,a_ ,a_ ,a_ ,a_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(a_ ): step_model(a_ ,a_ ,a_ ,a_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(a_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) __UpperCamelCase : Union[str, Any] =ddp_input[torch.randperm(len(a_ ) )] GradientState._reset_state() def A ( a_=False ,a_=False ) -> Dict: __UpperCamelCase : int =Accelerator( split_batches=a_ ,dispatch_batches=a_ ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str =get_training_setup(a_ ,a_ ) for iteration, batch in enumerate(a_ ): __UpperCamelCase , __UpperCamelCase : List[Any] =batch.values() # Gather the distributed inputs and targs for the base model __UpperCamelCase , __UpperCamelCase : Dict =accelerator.gather((ddp_input, ddp_target) ) __UpperCamelCase , __UpperCamelCase : Optional[int] =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(a_ ,a_ ,a_ ,a_ ,a_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(a_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(a_ ): step_model(a_ ,a_ ,a_ ,a_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' __UpperCamelCase : Tuple =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(a_ )) if accelerator.num_processes > 1: check_model_parameters(a_ ,a_ ,a_ ,a_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def A ( ) -> int: __UpperCamelCase : List[Any] =Accelerator() __UpperCamelCase : Any =RegressionDataset(length=80 ) __UpperCamelCase : Any =DataLoader(a_ ,batch_size=16 ) __UpperCamelCase : List[Any] =RegressionDataset(length=96 ) __UpperCamelCase : Optional[int] =DataLoader(a_ ,batch_size=16 ) __UpperCamelCase , __UpperCamelCase : Dict =accelerator.prepare(a_ ,a_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(a_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(a_ ) if iteration < len(a_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(a_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(a_ ) if batch_num < len(a_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A ( ) -> Union[str, Any]: __UpperCamelCase : List[Any] =Accelerator() __UpperCamelCase : List[str] =accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(a_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(a_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' ,F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' ,) test_gradient_accumulation(a_ ,a_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' ,'2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' ,'`split_batches=False`, `dispatch_batches=False`**' ,) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' ,F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' ,) test_gradient_accumulation_with_opt_and_scheduler(a_ ,a_ ) def A ( a_ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
71
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Dict = WavaVecaPhonemeCTCTokenizer lowerCamelCase :Optional[int] = False def UpperCAmelCase ( self ) -> Optional[int]: super().setUp() _A = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=20 , lowerCAmelCase_=5 ) -> Tuple[str, list]: _A = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase_ )) for i in range(len(lowerCAmelCase_ ) )] _A = list(filter(lambda lowerCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCAmelCase_ ) , lowerCAmelCase_ ) ) if max_length is not None and len(lowerCAmelCase_ ) > max_length: _A = toks[:max_length] if min_length is not None and len(lowerCAmelCase_ ) < min_length and len(lowerCAmelCase_ ) > 0: while len(lowerCAmelCase_ ) < min_length: _A = toks + toks # toks_str = [t[1] for t in toks] _A = [t[0] for t in toks] # Ensure consistency _A = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) if " " not in output_txt and len(lowerCAmelCase_ ) > 1: _A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase_ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase_ ) ) if with_prefix_space: _A = """ """ + output_txt _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) return output_txt, output_ids def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _A = tokenizer("""m xxx ɪ""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _A = tokenizer("""m aaa ɪ ccc""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa _A = tokenizer("""maɪ c""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [3, 2_00] ) # mai should be <unk> (=3) def UpperCAmelCase ( self ) -> int: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase_ ).input_ids , tokenizer(lowerCAmelCase_ , do_phonemize=lowerCAmelCase_ ).input_ids ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _A = tokenizer.decode(sample_ids[0] ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def UpperCAmelCase ( self ) -> str: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase_ ).input_ids , tokenizer(lowerCAmelCase_ , do_phonemize=lowerCAmelCase_ ).input_ids ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _A = tokenizer.decode(sample_ids[0] ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _A = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def UpperCAmelCase ( self ) -> Dict: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _A = """Hello how are you""" _A = tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) _A = tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=lowerCAmelCase_ ) _A = """Hello how are you""" _A = tokenizer(lowerCAmelCase_ , phonemizer_lang="""en-us""" ).input_ids _A = tokenizer(lowerCAmelCase_ , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A = tokenizer.decode(lowerCAmelCase_ ) _A = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(lowerCAmelCase_ , """ɛ l o h aʊ a ʁ j u""" ) def UpperCAmelCase ( self ) -> Any: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _A = """Hello how Are you""" _A = """hello how are you""" _A = tokenizer(lowerCAmelCase_ ).input_ids _A = tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _A = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _A = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _A = tokenizer.decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ , filter_word_delimiter_token=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowerCAmelCase_ ) ) # transform list to ModelOutput _A = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): [recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for la, la in zip(lowerCAmelCase_ , lowerCAmelCase_ )] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off _A = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _A = tokenizer.batch_decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ ) _A = [tokenizer.decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ ) for ids in sample_ids] check_list_tuples_equal(lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def UpperCAmelCase ( self ) -> int: pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def UpperCAmelCase ( self ) -> Optional[int]: pass def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _A = tokenizer.add_tokens(lowerCAmelCase_ ) _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ , all_size + len(lowerCAmelCase_ ) ) _A = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=lowerCAmelCase_ ) self.assertGreaterEqual(len(lowerCAmelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _A = tokenizer.add_special_tokens(lowerCAmelCase_ ) _A = tokenizer.vocab_size _A = len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ , all_size_a + len(lowerCAmelCase_ ) ) _A = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=lowerCAmelCase_ ) self.assertGreaterEqual(len(lowerCAmelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: pass def UpperCAmelCase ( self ) -> str: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. _A = self.get_tokenizers(fast=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _A = tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) self.assertIsInstance(output["""text"""] , lowerCAmelCase_ )
180
0
def A_ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(_lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
140
from pathlib import Path import numpy as np from PIL import Image def A_ ( _lowerCAmelCase ) -> np.ndarray: UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def A_ ( _lowerCAmelCase ) -> np.ndarray: return (gray > 127) & (gray <= 255) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> np.ndarray: UpperCamelCase : Dict = np.zeros_like(_lowerCAmelCase ) UpperCamelCase : List[str] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCamelCase : Tuple = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCamelCase : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCamelCase : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image __lowerCamelCase : int = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" __lowerCamelCase : Tuple = np.array(Image.open(lena_path)) # kernel to be applied __lowerCamelCase : Optional[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __lowerCamelCase : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __lowerCamelCase : Any = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
140
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __magic_name__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = val def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __SCREAMING_SNAKE_CASE = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value return new_state_dict def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias[:256] __SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias[:256] __SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __SCREAMING_SNAKE_CASE = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[:256] __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[-256:] def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = image.size __SCREAMING_SNAKE_CASE = max(UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 800 if """detection""" in checkpoint_url else 1000 __SCREAMING_SNAKE_CASE = target_max_size / current_max_size __SCREAMING_SNAKE_CASE = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = F.to_tensor(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = F.normalize(UpperCamelCase_ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): logger.info("""Converting model...""" ) # load original state dict __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __SCREAMING_SNAKE_CASE = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = val # create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __SCREAMING_SNAKE_CASE = 15 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = {0: """table""", 1: """table rotated"""} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} else: __SCREAMING_SNAKE_CASE = 125 __SCREAMING_SNAKE_CASE = 6 __SCREAMING_SNAKE_CASE = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = DetrImageProcessor( format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 ) __SCREAMING_SNAKE_CASE = TableTransformerForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # verify our conversion __SCREAMING_SNAKE_CASE = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = Image.open(UpperCamelCase_ ).convert("""RGB""" ) __SCREAMING_SNAKE_CASE = normalize(resize(UpperCamelCase_ , UpperCamelCase_ ) ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE = model(UpperCamelCase_ ) if "detection" in checkpoint_url: __SCREAMING_SNAKE_CASE = (1, 15, 3) __SCREAMING_SNAKE_CASE = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: __SCREAMING_SNAKE_CASE = (1, 125, 7) __SCREAMING_SNAKE_CASE = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) __SCREAMING_SNAKE_CASE = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(UpperCamelCase_ ) image_processor.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __magic_name__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
100
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Any = "upernet" def __init__( self , a__=None , a__=512 , a__=0.0_2 , a__=[1, 2, 3, 6] , a__=True , a__=0.4 , a__=384 , a__=256 , a__=1 , a__=False , a__=255 , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case_ = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(a__ , a__ ): snake_case_ = backbone_config.get("model_type" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(a__ ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
85
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _snake_case ( A ) -> Dict: if not is_accelerate_available(): return method lowerCAmelCase__ = version.parse(accelerate.__version__ ).base_version if version.parse(A ) < version.parse('''0.17.0''' ): return method def wrapper(self , *A , **A ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *A , **A ) return wrapper
228
'''simple docstring''' def _snake_case ( A = 10 , A = 22 ) -> int: lowerCAmelCase__ = range(1 , A ) lowerCAmelCase__ = range(1 , A ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
228
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class A_ : def __init__( self : Optional[Any]): __lowerCamelCase : Dict = '' __lowerCamelCase : str = '' __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : str = 0 __lowerCamelCase : Any = 2_5_6 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Any = 0 __lowerCamelCase : Dict = 0 __lowerCamelCase : str = 0 def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Optional[Any] = cva.imread(SCREAMING_SNAKE_CASE__ ,0) __lowerCamelCase : Optional[int] = copy.deepcopy(self.img) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = plt.hist(self.img.ravel() ,2_5_6 ,[0, 2_5_6] ,label='x') __lowerCamelCase : str = np.sum(SCREAMING_SNAKE_CASE__) for i in range(len(SCREAMING_SNAKE_CASE__)): __lowerCamelCase : List[str] = x[i] / self.k self.sk += prk __lowerCamelCase : List[str] = (self.L - 1) * self.sk if self.rem != 0: __lowerCamelCase : Union[str, Any] = int(last % last) __lowerCamelCase : Optional[int] = int(last + 1 if self.rem >= 0.5 else last) self.last_list.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = int(np.ma.count(self.img) / self.img[1].size) __lowerCamelCase : Dict = self.img[1].size for i in range(self.number_of_cols): for j in range(self.number_of_rows): __lowerCamelCase : Optional[int] = self.img[j][i] if num != self.last_list[num]: __lowerCamelCase : Optional[Any] = self.last_list[num] cva.imwrite('output_data/output.jpg' ,self.img) def lowerCAmelCase ( self : int): plt.hist(self.img.ravel() ,2_5_6 ,[0, 2_5_6]) def lowerCAmelCase ( self : List[Any]): cva.imshow('Output-Image' ,self.img) cva.imshow('Input-Image' ,self.original_image) cva.waitKey(5_0_0_0) cva.destroyAllWindows() if __name__ == "__main__": a =os.path.join(os.path.basename(__file__), """image_data/input.jpg""") a =ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
73
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = '''mask2former''' _UpperCAmelCase : Dict = ['''swin'''] _UpperCAmelCase : Optional[int] = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Dict] = None ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ,SCREAMING_SNAKE_CASE__ : str = "relu" ,SCREAMING_SNAKE_CASE__ : int = 6 ,SCREAMING_SNAKE_CASE__ : int = 1_0 ,SCREAMING_SNAKE_CASE__ : int = 8 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : int = 4 ,SCREAMING_SNAKE_CASE__ : int = 2_5_5 ,SCREAMING_SNAKE_CASE__ : int = 1_0_0 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,SCREAMING_SNAKE_CASE__ : float = 2.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : int = 1_2_5_4_4 ,SCREAMING_SNAKE_CASE__ : float = 3.0 ,SCREAMING_SNAKE_CASE__ : float = 0.75 ,SCREAMING_SNAKE_CASE__ : float = 0.02 ,SCREAMING_SNAKE_CASE__ : float = 1.0 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 1_6, 3_2] ,SCREAMING_SNAKE_CASE__ : bool = None ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.') __lowerCamelCase : Optional[Any] = CONFIG_MAPPING['swin']( image_size=2_2_4 ,in_channels=3 ,patch_size=4 ,embed_dim=9_6 ,depths=[2, 2, 1_8, 2] ,num_heads=[3, 6, 1_2, 2_4] ,window_size=7 ,drop_path_rate=0.3 ,use_absolute_embeddings=SCREAMING_SNAKE_CASE__ ,out_features=['stage1', 'stage2', 'stage3', 'stage4'] ,) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Union[str, Any] = backbone_config.pop('model_type') __lowerCamelCase : Dict = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : int = config_class.from_dict(SCREAMING_SNAKE_CASE__) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported)}") __lowerCamelCase : Dict = backbone_config __lowerCamelCase : int = feature_size __lowerCamelCase : List[str] = mask_feature_size __lowerCamelCase : int = hidden_dim __lowerCamelCase : str = encoder_feedforward_dim __lowerCamelCase : Optional[int] = activation_function __lowerCamelCase : int = encoder_layers __lowerCamelCase : List[Any] = decoder_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Tuple = dropout __lowerCamelCase : Dict = dim_feedforward __lowerCamelCase : Union[str, Any] = pre_norm __lowerCamelCase : List[str] = enforce_input_projection __lowerCamelCase : Optional[int] = common_stride __lowerCamelCase : Dict = ignore_value __lowerCamelCase : Optional[Any] = num_queries __lowerCamelCase : int = no_object_weight __lowerCamelCase : Optional[Any] = class_weight __lowerCamelCase : str = mask_weight __lowerCamelCase : List[str] = dice_weight __lowerCamelCase : Dict = train_num_points __lowerCamelCase : Optional[int] = oversample_ratio __lowerCamelCase : Optional[Any] = importance_sample_ratio __lowerCamelCase : List[Any] = init_std __lowerCamelCase : Tuple = init_xavier_std __lowerCamelCase : Union[str, Any] = use_auxiliary_loss __lowerCamelCase : List[Any] = feature_strides __lowerCamelCase : Any = output_auxiliary_logits __lowerCamelCase : List[Any] = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__) @classmethod def lowerCAmelCase ( cls : str ,SCREAMING_SNAKE_CASE__ : PretrainedConfig ,**SCREAMING_SNAKE_CASE__ : Tuple): return cls( backbone_config=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) def lowerCAmelCase ( self : str): __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__) __lowerCamelCase : List[Any] = self.backbone_config.to_dict() __lowerCamelCase : Union[str, Any] = self.__class__.model_type return output
73
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowerCamelCase ( UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Any=100 , UpperCAmelCase_ : List[str]=1026 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str="data/tokenized_stories_train_wikitext103.jbl" , UpperCAmelCase_ : List[Any]="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set a , a :Optional[int] = generate_datasets( UpperCAmelCase_ , UpperCAmelCase_ , number=UpperCAmelCase_ , min_len=1026 , trim=UpperCAmelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a :str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model a :str = load_gpta('''gpt2''' ).to(UpperCAmelCase_ ) print('''computing perplexity on objective set''' ) a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).item() print('''perplexity on objective set:''' , UpperCAmelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=15 , UpperCAmelCase_ : Optional[Any]=128 , UpperCAmelCase_ : List[Any]=100 , UpperCAmelCase_ : List[str]="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model a :Tuple = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model a :List[str] = SecondaryLearner(UpperCAmelCase_ ) # Train secondary learner a :List[str] = train_secondary_learner( UpperCAmelCase_ , UpperCAmelCase_ , max_epochs=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , eval_freq=100 , igf_model_path=UpperCAmelCase_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[str]=1000 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=1.0 , UpperCAmelCase_ : Optional[int]=recopy_gpta , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : Any="gpt2_finetuned.pt" , ): """simple docstring""" a :Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) a :Optional[Any] = RandomSampler(UpperCAmelCase_ ) a :Union[str, Any] = DataLoader(UpperCAmelCase_ , sampler=UpperCAmelCase_ ) a :List[str] = max_steps // (len(UpperCAmelCase_ )) + 1 a :Tuple = 0 a :int = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCAmelCase_ ) a , a , a :str = recopy_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase_ ) secondary_learner.eval() a :Optional[Any] = [] a :Union[str, Any] = 0 a :Optional[Any] = [] a :Tuple = [] # Compute the performance of the transformer model at the beginning a :Any = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) for epoch in range(int(UpperCAmelCase_ ) ): for step, example in enumerate(UpperCAmelCase_ ): torch.cuda.empty_cache() a :Tuple = random.randint(0 , example.size(2 ) - context_len - 1 ) a :Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a :Optional[int] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) a :int = True if secondary_learner is not None: a :Tuple = secondary_learner.forward( torch.tensor(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a :List[str] = -1 if predicted_q < threshold: a :Tuple = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a :Any = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a :Tuple = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , UpperCAmelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowerCamelCase ( ): """simple docstring""" a :Union[str, Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=UpperCAmelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=UpperCAmelCase_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=UpperCAmelCase_ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=UpperCAmelCase_ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=UpperCAmelCase_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=UpperCAmelCase_ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=UpperCAmelCase_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=UpperCAmelCase_ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=UpperCAmelCase_ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=UpperCAmelCase_ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=UpperCAmelCase_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=UpperCAmelCase_ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=UpperCAmelCase_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner a :Union[str, Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner a :Any = training_secondary_learner( UpperCAmelCase_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model a :Any = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a , a :Union[str, Any] = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=UpperCAmelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=UpperCAmelCase_ , secondary_learner=UpperCAmelCase_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
281
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : List[str] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'efficientnet' def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 600 , _lowerCamelCase = 2.0 , _lowerCamelCase = 3.1 , _lowerCamelCase = 8 , _lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , _lowerCamelCase = [32, 16, 24, 40, 80, 112, 192] , _lowerCamelCase = [16, 24, 40, 80, 112, 192, 320] , _lowerCamelCase = [] , _lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , _lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , _lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , _lowerCamelCase = 0.25 , _lowerCamelCase = "swish" , _lowerCamelCase = 2560 , _lowerCamelCase = "mean" , _lowerCamelCase = 0.02 , _lowerCamelCase = 0.001 , _lowerCamelCase = 0.99 , _lowerCamelCase = 0.5 , _lowerCamelCase = 0.2 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :Optional[int] = num_channels a :List[str] = image_size a :int = width_coefficient a :Optional[Any] = depth_coefficient a :Any = depth_divisor a :Any = kernel_sizes a :Tuple = in_channels a :Union[str, Any] = out_channels a :Any = depthwise_padding a :Any = strides a :Optional[Any] = num_block_repeats a :Tuple = expand_ratios a :Dict = squeeze_expansion_ratio a :int = hidden_act a :Dict = hidden_dim a :Tuple = pooling_type a :Any = initializer_range a :Tuple = batch_norm_eps a :Optional[int] = batch_norm_momentum a :List[Any] = dropout_rate a :Optional[int] = drop_connect_rate a :Tuple = sum(_lowerCamelCase ) * 4 class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1e-5
281
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _a ( unittest.TestCase ): def __snake_case (self ) -> int: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase_: List[Any] = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase_: str = DisjunctiveConstraint(_UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids, _UpperCamelCase ) ) with self.assertRaises(_UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __snake_case (self ) -> Tuple: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase_: Dict = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_UpperCamelCase ): DisjunctiveConstraint(_UpperCamelCase ) # fails here def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[Any] = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase_: int = DisjunctiveConstraint(_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = dc.update(1 ) UpperCAmelCase_: List[str] = stepped is True and completed is False and reset is False self.assertTrue(_UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = dc.update(2 ) UpperCAmelCase_: Dict = stepped is True and completed is False and reset is False self.assertTrue(_UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = dc.update(3 ) UpperCAmelCase_: Optional[int] = stepped is True and completed is True and reset is False self.assertTrue(_UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase_: List[Any] = DisjunctiveConstraint(_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[str] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
147
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) lowerCAmelCase_ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(__lowerCAmelCase ) DownloadCommand.register_subcommand(__lowerCAmelCase ) EnvironmentCommand.register_subcommand(__lowerCAmelCase ) RunCommand.register_subcommand(__lowerCAmelCase ) ServeCommand.register_subcommand(__lowerCAmelCase ) UserCommands.register_subcommand(__lowerCAmelCase ) AddNewModelCommand.register_subcommand(__lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(__lowerCAmelCase ) LfsCommands.register_subcommand(__lowerCAmelCase ) PTtoTFCommand.register_subcommand(__lowerCAmelCase ) # Let's go lowerCAmelCase_ = parser.parse_args() if not hasattr(__lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run lowerCAmelCase_ = args.func(__lowerCAmelCase ) service.run() if __name__ == "__main__": main()
231
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _A : def __init__( self : List[str] , _A : str , _A : str=100 , _A : Optional[int]=13 , _A : Optional[Any]=30 , _A : Optional[int]=2 , _A : Tuple=3 , _A : Tuple=True , _A : Optional[int]=True , _A : List[Any]=32 , _A : Dict=4 , _A : Tuple=4 , _A : Optional[Any]=37 , _A : str="gelu" , _A : Optional[int]=0.1 , _A : List[str]=0.1 , _A : Any=10 , _A : List[str]=0.02 , _A : str=3 , _A : Union[str, Any]=None , _A : str=[0, 1, 2, 3] , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[Any] = parent lowercase : Optional[Any] = 100 lowercase : int = batch_size lowercase : List[str] = image_size lowercase : str = patch_size lowercase : Tuple = num_channels lowercase : Tuple = is_training lowercase : Union[str, Any] = use_labels lowercase : int = hidden_size lowercase : Any = num_hidden_layers lowercase : str = num_attention_heads lowercase : List[str] = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : Optional[int] = hidden_dropout_prob lowercase : int = attention_probs_dropout_prob lowercase : List[str] = type_sequence_label_size lowercase : int = initializer_range lowercase : List[Any] = scope lowercase : str = out_indices lowercase : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase : List[str] = (image_size // patch_size) ** 2 lowercase : List[str] = num_patches + 1 def __a ( self : int ) -> Dict: """simple docstring""" lowercase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Dict = None lowercase : Any = None if self.use_labels: lowercase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : Optional[Any] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Any ) -> Union[str, Any]: """simple docstring""" lowercase : List[str] = BeitModel(config=_A ) model.to(_A ) model.eval() lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : str , _A : Optional[Any] , _A : Union[str, Any] , _A : List[str] , _A : Dict ) -> Dict: """simple docstring""" lowercase : str = BeitForMaskedImageModeling(config=_A ) model.to(_A ) model.eval() lowercase : int = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Any , _A : Dict , _A : Any , _A : Any , _A : List[Any] ) -> str: """simple docstring""" lowercase : List[str] = self.type_sequence_label_size lowercase : Tuple = BeitForImageClassification(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase : List[str] = 1 lowercase : int = BeitForImageClassification(_A ) model.to(_A ) model.eval() lowercase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Optional[Any] , _A : Tuple , _A : Tuple , _A : List[Any] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase : str = self.num_labels lowercase : Tuple = BeitForSemanticSegmentation(_A ) model.to(_A ) model.eval() lowercase : List[Any] = model(_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : Optional[Any] ) -> int: """simple docstring""" lowercase : int = self.prepare_config_and_inputs() lowercase : List[Any] = config_and_inputs lowercase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : str = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _UpperCamelCase : str = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Dict = False def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase : List[str] = BeitModelTester(self ) lowercase : str = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def __a ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Union[str, Any] = model_class(_A ) lowercase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] = [*signature.parameters.keys()] lowercase : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def __a ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __a ( self : Tuple ) -> Tuple: """simple docstring""" lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_A ), BeitForMaskedImageModeling]: continue lowercase : List[Any] = model_class(_A ) model.to(_A ) model.train() lowercase : Optional[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) lowercase : Any = model(**_A ).loss loss.backward() def __a ( self : List[str] ) -> Any: """simple docstring""" lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase : List[Any] = False lowercase : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_A ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase : List[str] = model_class(_A ) model.gradient_checkpointing_enable() model.to(_A ) model.train() lowercase : Dict = self._prepare_for_class(_A , _A , return_labels=_A ) lowercase : Any = model(**_A ).loss loss.backward() def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple = _config_zero_init(_A ) for model_class in self.all_model_classes: lowercase : int = model_class(config=_A ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __a ( self : str ) -> int: """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Union[str, Any] = BeitModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def snake_case( ) -> int: '''simple docstring''' lowercase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def __a ( self : Tuple ) -> str: """simple docstring""" return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __a ( self : Tuple ) -> int: """simple docstring""" lowercase : List[str] = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(_A ) lowercase : Any = self.default_image_processor lowercase : Union[str, Any] = prepare_img() lowercase : Optional[Any] = image_processor(images=_A , return_tensors='''pt''' ).pixel_values.to(_A ) # prepare bool_masked_pos lowercase : List[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(_A ) # forward pass with torch.no_grad(): lowercase : Union[str, Any] = model(pixel_values=_A , bool_masked_pos=_A ) lowercase : List[Any] = outputs.logits # verify the logits lowercase : Union[str, Any] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , _A ) lowercase : str = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(_A ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _A , atol=1E-2 ) ) @slow def __a ( self : Dict ) -> Any: """simple docstring""" lowercase : Any = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(_A ) lowercase : List[Any] = self.default_image_processor lowercase : List[str] = prepare_img() lowercase : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): lowercase : List[Any] = model(**_A ) lowercase : Tuple = outputs.logits # verify the logits lowercase : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , _A ) lowercase : str = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(_A ) self.assertTrue(torch.allclose(logits[0, :3] , _A , atol=1E-4 ) ) lowercase : List[Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , _A ) @slow def __a ( self : Tuple ) -> Any: """simple docstring""" lowercase : Optional[Any] = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( _A ) lowercase : str = self.default_image_processor lowercase : List[str] = prepare_img() lowercase : Tuple = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): lowercase : List[Any] = model(**_A ) lowercase : Any = outputs.logits # verify the logits lowercase : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , _A ) lowercase : Any = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(_A ) self.assertTrue(torch.allclose(logits[0, :3] , _A , atol=1E-4 ) ) lowercase : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _A ) @slow def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : Union[str, Any] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase : Any = model.to(_A ) lowercase : Tuple = BeitImageProcessor(do_resize=_A , size=640 , do_center_crop=_A ) lowercase : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase : List[str] = Image.open(ds[0]['''file'''] ) lowercase : Optional[int] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): lowercase : Any = model(**_A ) lowercase : Tuple = outputs.logits # verify the logits lowercase : str = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _A ) lowercase : Optional[Any] = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: lowercase : int = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=_A , ) else: lowercase : Dict = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=_A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _A , atol=1E-4 ) ) @slow def __a ( self : Dict ) -> List[Any]: """simple docstring""" lowercase : List[str] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase : Any = model.to(_A ) lowercase : Optional[Any] = BeitImageProcessor(do_resize=_A , size=640 , do_center_crop=_A ) lowercase : Any = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase : Dict = Image.open(ds[0]['''file'''] ) lowercase : List[str] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): lowercase : Optional[int] = model(**_A ) lowercase : List[Any] = outputs.logits.detach().cpu() lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(500, 300)] ) lowercase : Union[str, Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _A ) lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=_A ) lowercase : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _A )
371
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case( __magic_name__ = None ) -> str: '''simple docstring''' lowercase : List[Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ , __magic_name__ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__magic_name__ , __magic_name__ ): ua += "; " + user_agent return ua def snake_case( __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> Optional[Any]: '''simple docstring''' if token is None: lowercase : int = HfFolder.get_token() if organization is None: lowercase : List[str] = whoami(__magic_name__ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__magic_name__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase : Optional[Any] = args.hub_token if hasattr(__magic_name__ , '''hub_token''' ) else None lowercase : int = get_full_repo_name(__magic_name__ , token=__magic_name__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__magic_name__ , model_name=__magic_name__ , repo_name=__magic_name__ , dataset_name=args.dataset_name if hasattr(__magic_name__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__magic_name__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase : Any = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ = None ) -> int: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase : Dict = str(Path(__magic_name__ ).as_posix() ) lowercase : Any = re.search(r'''snapshots/([^/]+)/''' , __magic_name__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers') def snake_case( __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase : str = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : str = Path(__magic_name__ ).expanduser() lowercase : Dict = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : List[Any] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) os.replace(__magic_name__ , __magic_name__ ) try: os.symlink(__magic_name__ , __magic_name__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def snake_case( __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' if variant is not None: lowercase : List[str] = weights_name.split('''.''' ) lowercase : Any = splits[:-1] + [variant] + splits[-1:] lowercase : Tuple = '''.'''.join(__magic_name__ ) return weights_name def snake_case( __magic_name__ , *, __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) ): # Load from a PyTorch checkpoint lowercase : Dict = os.path.join(__magic_name__ , __magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) ): lowercase : str = os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase : int = hf_hub_download( __magic_name__ , filename=_add_variant(__magic_name__ , __magic_name__ ) , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __magic_name__ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ , __magic_name__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ , __magic_name__ )}' so that the correct variant file can be added.""" , __magic_name__ , ) try: # 2. Load model file as usual lowercase : Dict = hf_hub_download( __magic_name__ , filename=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
116
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase ( __lowercase : int ,__lowercase : int ,__lowercase : float = 1 / sqrt(2 ) ): '''simple docstring''' A_ : int = tau * frequency / samplerate A_ : Optional[Any] = sin(__lowercase ) A_ : Dict = cos(__lowercase ) A_ : List[str] = _sin / (2 * q_factor) A_ : Optional[Any] = (1 - _cos) / 2 A_ : str = 1 - _cos A_ : Tuple = 1 + alpha A_ : Union[str, Any] = -2 * _cos A_ : Tuple = 1 - alpha A_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def UpperCamelCase ( __lowercase : int ,__lowercase : int ,__lowercase : float = 1 / sqrt(2 ) ): '''simple docstring''' A_ : Dict = tau * frequency / samplerate A_ : List[Any] = sin(__lowercase ) A_ : Optional[int] = cos(__lowercase ) A_ : List[Any] = _sin / (2 * q_factor) A_ : Optional[int] = (1 + _cos) / 2 A_ : Union[str, Any] = -1 - _cos A_ : int = 1 + alpha A_ : List[str] = -2 * _cos A_ : Union[str, Any] = 1 - alpha A_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def UpperCamelCase ( __lowercase : int ,__lowercase : int ,__lowercase : float = 1 / sqrt(2 ) ): '''simple docstring''' A_ : List[str] = tau * frequency / samplerate A_ : Dict = sin(__lowercase ) A_ : Any = cos(__lowercase ) A_ : int = _sin / (2 * q_factor) A_ : Union[str, Any] = _sin / 2 A_ : int = 0 A_ : Optional[int] = -ba A_ : Tuple = 1 + alpha A_ : str = -2 * _cos A_ : Optional[int] = 1 - alpha A_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def UpperCamelCase ( __lowercase : int ,__lowercase : int ,__lowercase : float = 1 / sqrt(2 ) ): '''simple docstring''' A_ : Optional[int] = tau * frequency / samplerate A_ : Union[str, Any] = sin(__lowercase ) A_ : int = cos(__lowercase ) A_ : str = _sin / (2 * q_factor) A_ : Optional[int] = 1 - alpha A_ : Tuple = -2 * _cos A_ : Union[str, Any] = 1 + alpha A_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def UpperCamelCase ( __lowercase : int ,__lowercase : int ,__lowercase : float ,__lowercase : float = 1 / sqrt(2 ) ,): '''simple docstring''' A_ : str = tau * frequency / samplerate A_ : Optional[Any] = sin(__lowercase ) A_ : int = cos(__lowercase ) A_ : List[Any] = _sin / (2 * q_factor) A_ : str = 10 ** (gain_db / 40) A_ : Dict = 1 + alpha * big_a A_ : Tuple = -2 * _cos A_ : Union[str, Any] = 1 - alpha * big_a A_ : Tuple = 1 + alpha / big_a A_ : int = -2 * _cos A_ : List[str] = 1 - alpha / big_a A_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def UpperCamelCase ( __lowercase : int ,__lowercase : int ,__lowercase : float ,__lowercase : float = 1 / sqrt(2 ) ,): '''simple docstring''' A_ : str = tau * frequency / samplerate A_ : List[Any] = sin(__lowercase ) A_ : Tuple = cos(__lowercase ) A_ : Tuple = _sin / (2 * q_factor) A_ : Dict = 10 ** (gain_db / 40) A_ : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos A_ : Dict = (big_a + 1) + (big_a - 1) * _cos A_ : int = (big_a - 1) - (big_a + 1) * _cos A_ : int = (big_a - 1) + (big_a + 1) * _cos A_ : List[str] = 2 * sqrt(__lowercase ) * alpha A_ : Union[str, Any] = big_a * (pmc + aaa) A_ : Any = 2 * big_a * mpc A_ : int = big_a * (pmc - aaa) A_ : str = ppmc + aaa A_ : Any = -2 * pmpc A_ : int = ppmc - aaa A_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def UpperCamelCase ( __lowercase : int ,__lowercase : int ,__lowercase : float ,__lowercase : float = 1 / sqrt(2 ) ,): '''simple docstring''' A_ : int = tau * frequency / samplerate A_ : List[str] = sin(__lowercase ) A_ : Dict = cos(__lowercase ) A_ : Union[str, Any] = _sin / (2 * q_factor) A_ : Dict = 10 ** (gain_db / 40) A_ : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos A_ : Dict = (big_a + 1) + (big_a - 1) * _cos A_ : Any = (big_a - 1) - (big_a + 1) * _cos A_ : int = (big_a - 1) + (big_a + 1) * _cos A_ : Tuple = 2 * sqrt(__lowercase ) * alpha A_ : Optional[Any] = big_a * (ppmc + aaa) A_ : Any = -2 * big_a * pmpc A_ : Dict = big_a * (ppmc - aaa) A_ : Any = pmc + aaa A_ : Any = 2 * mpc A_ : List[Any] = pmc - aaa A_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
140
from typing import Any import numpy as np def UpperCamelCase ( __lowercase : np.ndarray ): '''simple docstring''' return np.array_equal(__lowercase ,matrix.conjugate().T ) def UpperCamelCase ( __lowercase : np.ndarray ,__lowercase : np.ndarray ): '''simple docstring''' A_ : Union[str, Any] = v.conjugate().T A_ : Dict = v_star.dot(__lowercase ) assert isinstance(__lowercase ,np.ndarray ) return (v_star_dot.dot(__lowercase )) / (v_star.dot(__lowercase )) def UpperCamelCase ( ): '''simple docstring''' A_ : Dict = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A_ : List[Any] = np.array([[1], [2], [3]] ) assert is_hermitian(__lowercase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(__lowercase ,__lowercase ) ) A_ : List[str] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__lowercase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(__lowercase ,__lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
140
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase__ (A ) ->Optional[Any]: """simple docstring""" return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def lowercase__ (A , A ) ->Tuple: """simple docstring""" lowercase__ : int= {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Any= key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowercase__ : Optional[int]= key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowercase__ : Optional[Any]= key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowercase__ : List[str]= key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowercase__ : str= key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowercase__ : Any= key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowercase__ : Optional[Any]= key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowercase__ : Tuple= key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowercase__ : Optional[int]= key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowercase__ : Optional[int]= key.replace("image_encoder.module" , "flava.image_model" ) lowercase__ : Optional[Any]= key.replace("text_encoder.module" , "flava.text_model" ) lowercase__ : List[str]= key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowercase__ : str= key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowercase__ : str= key.replace("text_projection" , "flava.text_projection" ) lowercase__ : List[str]= key.replace("image_projection" , "flava.image_projection" ) lowercase__ : List[str]= value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any= value return upgrade @torch.no_grad() def lowercase__ (A , A , A , A=None ) ->List[Any]: """simple docstring""" if config_path is not None: lowercase__ : int= FlavaConfig.from_pretrained(__a ) else: lowercase__ : Any= FlavaConfig() lowercase__ : Any= FlavaForPreTraining(__a ).eval() lowercase__ : Union[str, Any]= convert_dalle_checkpoint(__a , __a , save_checkpoint=__a ) if os.path.exists(__a ): lowercase__ : List[str]= torch.load(__a , map_location="cpu" ) else: lowercase__ : int= torch.hub.load_state_dict_from_url(__a , map_location="cpu" ) lowercase__ : Dict= upgrade_state_dict(__a , __a ) hf_model.load_state_dict(__a ) lowercase__ : List[str]= hf_model.state_dict() lowercase__ : Optional[Any]= count_parameters(__a ) lowercase__ : List[str]= count_parameters(__a ) + count_parameters(__a ) assert torch.allclose(__a , __a , atol=1e-3 ) hf_model.save_pretrained(__a ) if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a : Tuple = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
365
"""simple docstring""" from scipy.stats import spearmanr import datasets a : Dict = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ a : List[Any] = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ a : int = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' lowercase__ : Optional[int]= spearmanr(snake_case__ , snake_case__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
150
0
from __future__ import annotations def __A ( __lowerCamelCase ) -> int: if not nums: return 0 a = nums[0] a = 0 for num in nums[1:]: a , a = ( max_excluding + num, max(__lowerCamelCase , __lowerCamelCase ), ) return max(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
228
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase : Any = 16 __UpperCamelCase : Union[str, Any] = 32 def __A ( __lowerCamelCase , __lowerCamelCase = 16 ) -> List[str]: a = AutoTokenizer.from_pretrained("""bert-base-cased""" ) a = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 16 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( __lowerCamelCase , padding="""longest""" , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) a = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase : Any = mocked_dataloaders # noqa: F811 def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCamelCase ) == "1": a = 2 # New Code # a = int(args.gradient_accumulation_steps ) # Initialize accelerator a = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config["""lr"""] a = int(config["""num_epochs"""] ) a = int(config["""seed"""] ) a = int(config["""batch_size"""] ) a = evaluate.load("""glue""" , """mrpc""" ) set_seed(__lowerCamelCase ) a , a = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters() , lr=__lowerCamelCase ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCamelCase ): a = model(**__lowerCamelCase ) a = output.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**__lowerCamelCase ) a = outputs.logits.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __lowerCamelCase ) def __A ( ) -> int: a = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCamelCase , default=__lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__lowerCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) a = parser.parse_args() a = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
228
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCamelCase__ ( _a ): _lowerCAmelCase = ['''image_processor''', '''tokenizer'''] _lowerCAmelCase = '''BlipImageProcessor''' _lowerCAmelCase = '''AutoTokenizer''' def __init__( self : Any , _a : List[Any] , _a : List[Any] , _a : Optional[Any] ): super().__init__(_a , _a ) # add QFormer tokenizer a__: Optional[int] =qformer_tokenizer def __call__( self : Optional[Any] , _a : ImageInput = None , _a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _a : bool = True , _a : Union[bool, str, PaddingStrategy] = False , _a : Union[bool, str, TruncationStrategy] = None , _a : Optional[int] = None , _a : int = 0 , _a : Optional[int] = None , _a : Optional[bool] = None , _a : bool = False , _a : bool = False , _a : bool = False , _a : bool = False , _a : bool = False , _a : bool = True , _a : Optional[Union[str, TensorType]] = None , **_a : str , ): if images is None and text is None: raise ValueError("You have to specify at least images or text." ) a__: Union[str, Any] =BatchFeature() if text is not None: a__: List[Any] =self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) encoding.update(_a ) a__: List[Any] =self.qformer_tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) a__: Any =qformer_text_encoding.pop("input_ids" ) a__: Union[str, Any] =qformer_text_encoding.pop("attention_mask" ) if images is not None: a__: str =self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def _lowerCamelCase ( self : List[str] , *_a : str , **_a : Optional[int] ): return self.tokenizer.batch_decode(*_a , **_a ) def _lowerCamelCase ( self : int , *_a : int , **_a : Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self : Optional[Any] ): a__: Optional[Any] =self.tokenizer.model_input_names a__: Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self : Dict , _a : Optional[Any] , **_a : str ): if os.path.isfile(_a ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(_a , exist_ok=_a ) a__: int =os.path.join(_a , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(_a ) return super().save_pretrained(_a , **_a ) @classmethod def _lowerCamelCase ( cls : str , _a : List[Any] , **_a : int ): a__: Optional[int] =AutoTokenizer.from_pretrained(_a , subfolder="qformer_tokenizer" ) a__: str =cls._get_arguments_from_pretrained(_a , **_a ) args.append(_a ) return cls(*_a )
363
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
42
0
def lowerCAmelCase_ ( _snake_case : int ) -> list: '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __magic_name__ : str = gray_code_sequence_string(_snake_case ) # # convert them to integers for i in range(len(_snake_case ) ): __magic_name__ : int = int(sequence[i] , 2 ) return sequence def lowerCAmelCase_ ( _snake_case : int ) -> list: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __magic_name__ : Optional[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __magic_name__ : Optional[int] = gray_code_sequence_string(bit_count - 1 ) __magic_name__ : List[str] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __magic_name__ : int = "0" + smaller_sequence[i] sequence.append(_snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __magic_name__ : Dict = "1" + smaller_sequence[i] sequence.append(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
281
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _snake_case : @staticmethod def SCREAMING_SNAKE_CASE ( *_a , **_a ): pass def lowerCAmelCase_ ( _snake_case : Image ) -> str: '''simple docstring''' __magic_name__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowerCAmelCase_ ( _snake_case : Image ) -> Dict: '''simple docstring''' __magic_name__ : List[Any] = np.array(_snake_case ) __magic_name__ : Optional[int] = npimg.shape return {"hash": hashimage(_snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _snake_case ( unittest.TestCase ): UpperCamelCase__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Dict = MaskGenerationPipeline(model=_a , image_processor=_a ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self , _a , _a ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def SCREAMING_SNAKE_CASE ( self ): pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) __magic_name__ : str = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing __magic_name__ : Dict = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_21}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.99_67}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_93}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.99_09}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.98_79}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.98_34}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.97_16}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.96_12}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.95_99}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.95_52}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.95_32}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.95_16}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.94_99}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.94_83}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.94_64}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.94_08}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.93_35}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.93_26}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.92_62}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.89_99}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.89_86}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.89_84}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.88_73}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.88_71} ] , ) # fmt: on @require_torch @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = "facebook/sam-vit-huge" __magic_name__ : str = pipeline("mask-generation" , model=_a ) __magic_name__ : Tuple = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __magic_name__ : Any = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.02_10}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, ] , )
281
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) def _a ( lowerCamelCase: Optional[Any] ) -> Dict: '''simple docstring''' if isinstance(lowerCamelCase , np.ndarray ): return list(tensor.shape ) __A = tf.shape(lowerCamelCase ) if tensor.shape == tf.TensorShape(lowerCamelCase ): return dynamic __A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase )] def _a ( lowerCamelCase: List[str] , lowerCamelCase: List[Any] = None , lowerCamelCase: int = None ) -> Dict: '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=lowerCamelCase , name=lowerCamelCase ) def _a ( lowerCamelCase: List[str] , lowerCamelCase: Union[str, Any] , lowerCamelCase: Tuple , lowerCamelCase: Tuple=1e-5 , lowerCamelCase: List[Any]=-1 ) -> Dict: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase , lowerCamelCase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __A , __A = tf.nn.moments(lowerCamelCase , axes=[axis] , keepdims=lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __A = [1] * inputs.shape.rank __A = shape_list(lowerCamelCase )[axis] __A = tf.reshape(lowerCamelCase , lowerCamelCase ) __A = tf.reshape(lowerCamelCase , lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. __A = tf.nn.batch_normalization( lowerCamelCase , lowerCamelCase , lowerCamelCase , offset=lowerCamelCase , scale=lowerCamelCase , variance_epsilon=lowerCamelCase , ) return outputs def _a ( lowerCamelCase: Any , lowerCamelCase: Union[str, Any]=0 , lowerCamelCase: str=-1 ) -> Any: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __A = tf.shape(lowerCamelCase ) __A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase , lowerCamelCase ) def _a ( lowerCamelCase: Tuple ) -> Any: '''simple docstring''' if not isinstance(lowerCamelCase , tf.Tensor ): __A = tf.convert_to_tensor(lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _a ( lowerCamelCase: Optional[int] , lowerCamelCase: Optional[int] , lowerCamelCase: str = "input_ids" ) -> Optional[Any]: '''simple docstring''' tf.debugging.assert_less( lowerCamelCase , tf.cast(lowerCamelCase , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase )}) must be smaller than the embedding """ F"""layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def _a ( lowerCamelCase: Union[str, Any] , lowerCamelCase: Optional[Any] , lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' __A = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __A = [x for x in data if len(lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) __A = np.asarray(lowerCamelCase ) __A = 1 __A = np.array_split(lowerCamelCase , lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __A = np.array_split(lowerCamelCase , lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase ): __A = chunk_data else: __A = data def _a ( lowerCamelCase: Tuple , lowerCamelCase: Union[str, Any] ) -> Optional[int]: '''simple docstring''' if name in group.attrs: __A = [n.decode('''utf8''' ) if hasattr(lowerCamelCase , '''decode''' ) else n for n in group.attrs[name]] else: __A = [] __A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(lowerCamelCase , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def _a ( lowerCamelCase: Optional[int] ) -> Dict: '''simple docstring''' def _expand_single_ad_tensor(lowerCamelCase: List[Any] ): if isinstance(lowerCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase )
355
from __future__ import annotations snake_case__ : Dict = [True] * 1000001 snake_case__ : int = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): snake_case__ : str = False i += 1 def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' return seive[n] def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' return any(digit in '''02468''' for digit in str(lowerCamelCase ) ) def _a ( lowerCamelCase: int = 1_00_00_00 ) -> list[int]: '''simple docstring''' __A = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowerCamelCase ) and not contains_an_even_digit(lowerCamelCase ): __A = str(lowerCamelCase ) __A = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowerCamelCase ) )] if all(is_prime(lowerCamelCase ) for i in list_nums ): result.append(lowerCamelCase ) return result def _a ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
250
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" __UpperCAmelCase : List[str] = ["torch", "transformers", "onnx"] def __init__( self : str ,*_a : List[Any] ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(self ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : List[str] ,*_a : List[str] ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Optional[int] ,*_a : Optional[Any] ,**_a : str ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) class UpperCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" __UpperCAmelCase : Dict = ["torch", "transformers", "onnx"] def __init__( self : List[Any] ,*_a : Optional[int] ,**_a : int ): '''simple docstring''' requires_backends(self ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Any ,*_a : Dict ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Any ,*_a : Any ,**_a : Dict ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) class UpperCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" __UpperCAmelCase : Any = ["torch", "transformers", "onnx"] def __init__( self : List[Any] ,*_a : List[Any] ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(self ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Dict ,*_a : List[Any] ,**_a : Tuple ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : int ,*_a : List[Any] ,**_a : Optional[Any] ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) class UpperCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" __UpperCAmelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : str ,*_a : Optional[int] ,**_a : Optional[Any] ): '''simple docstring''' requires_backends(self ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Dict ,*_a : Tuple ,**_a : Any ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Optional[Any] ,*_a : Dict ,**_a : Tuple ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) class UpperCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" __UpperCAmelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Union[str, Any] ,*_a : Any ,**_a : Dict ): '''simple docstring''' requires_backends(self ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Dict ,*_a : List[str] ,**_a : List[str] ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Any ,*_a : Optional[Any] ,**_a : Tuple ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) class UpperCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" __UpperCAmelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : int ,*_a : Optional[int] ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(self ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Tuple ,*_a : int ,**_a : Any ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] ) @classmethod def __lowercase ( cls : Any ,*_a : int ,**_a : Optional[int] ): '''simple docstring''' requires_backends(cls ,['torch', 'transformers', 'onnx'] )
271
def __UpperCamelCase ( _lowerCAmelCase = 100_0000 ) -> int: """simple docstring""" A : str = limit + 1 A : Tuple = [0] * limit for first_term in range(1 , _lowerCAmelCase ): for n in range(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): A : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a A : Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
116
0
"""simple docstring""" import numpy as np from PIL import Image def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> np.ndarray: A__ = np.array(lowercase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) A__ = 0 A__ = 0 A__ = 0 A__ = 0 # compute the shape of the output matrix A__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape A__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix A__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A__ = 0 A__ = 0 return updated_arr def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> np.ndarray: A__ = np.array(lowercase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) A__ = 0 A__ = 0 A__ = 0 A__ = 0 # compute the shape of the output matrix A__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape A__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix A__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A__ = 0 A__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image SCREAMING_SNAKE_CASE = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
230
"""simple docstring""" SCREAMING_SNAKE_CASE = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
230
1
def lowerCamelCase__ ( A__ : Optional[Any]=28123 ): '''simple docstring''' __lowerCamelCase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __lowerCamelCase = set() __lowerCamelCase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(A__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
12
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm SCREAMING_SNAKE_CASE__ = 2_048 SCREAMING_SNAKE_CASE__ = 4_096 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = os.environ.pop("PROCESS_TRAIN", "false") SCREAMING_SNAKE_CASE__ = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase__ ( _UpperCamelCase : str ) -> Any: """simple docstring""" def choose_first(_UpperCamelCase : Tuple , _UpperCamelCase : List[Any]=False ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) == 1: snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: snake_case = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a snake_case = {'id': example['id']} snake_case = example['annotations'] snake_case = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: snake_case = ['yes'] if 1 in yes_no_answer else ['no'] snake_case = snake_case = [] snake_case = snake_case = [] snake_case = ['<cls>'] else: snake_case = ['short'] snake_case = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available snake_case = ['long'] snake_case = choose_first(annotation['long_answer'] , is_long_answer=_UpperCamelCase ) snake_case = [] answer.update(_UpperCamelCase ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: snake_case = True else: snake_case = False snake_case = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , _UpperCamelCase ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : List[str]=False ) -> Union[str, Any]: """simple docstring""" snake_case = _get_single_answer(_UpperCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case = example['document']['tokens'] snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(_UpperCamelCase ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples snake_case = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 snake_case = example['document']['tokens'] snake_case = answer['start_token'] snake_case = answer['end_token'] snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 snake_case = ' '.join(context[start_token:end_token] ) # checking above code if assertion: snake_case = doc['is_html'][answer['start_token'] : answer['end_token']] snake_case = doc['token'][answer['start_token'] : answer['end_token']] snake_case = ' '.join([old[i] for i in range(len(_UpperCamelCase ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , _UpperCamelCase , end='\n' ) print('Old:' , _UpperCamelCase , end='\n\n' ) return { "context": " ".join(_UpperCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Optional[int]=2_0_4_8 , _UpperCamelCase : Union[str, Any]=4_0_9_6 , _UpperCamelCase : Dict=True ) -> Optional[Any]: """simple docstring""" snake_case = get_context_and_ans(_UpperCamelCase , assertion=_UpperCamelCase ) snake_case = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } snake_case = tokenizer(example['question']['text'] , out['context'] ).input_ids snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case = [] snake_case = [] snake_case = input_ids[:q_len] snake_case = range(_UpperCamelCase , len(_UpperCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: snake_case = i + max_length - q_len snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(_UpperCamelCase ), "end_token": [-1_0_0] * len(_UpperCamelCase ), "category": category, }, } snake_case = out['context'].split() snake_case = splitted_context[answer['end_token']] snake_case = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=_UpperCamelCase , ).input_ids ) snake_case = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=_UpperCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token snake_case = len(tokenizer(_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 snake_case = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive snake_case = answer['start_token'] snake_case = answer['end_token'] if assertion: snake_case = tokenizer.decode(_UpperCamelCase ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , _UpperCamelCase , end='\n\n' ) if len(_UpperCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } snake_case = input_ids[:q_len] snake_case = range(_UpperCamelCase , len(_UpperCamelCase ) , max_length - doc_stride ) snake_case = [] snake_case = [] snake_case = [] snake_case = [] # null, yes, no, long, short for i in doc_start_indices: snake_case = i + max_length - q_len snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: snake_case = start_token - i + q_len snake_case = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: snake_case = -1_0_0 snake_case = -1_0_0 answers_category.append('null' ) snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(_UpperCamelCase ) answers_end_token.append(_UpperCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(_UpperCamelCase ) ) print('Old:' , tokenizer.decode(_UpperCamelCase ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=2_0_4_8 , _UpperCamelCase : Union[str, Any]=4_0_9_6 , _UpperCamelCase : List[str]=False ) -> Union[str, Any]: """simple docstring""" snake_case = get_strided_contexts_and_ans( _UpperCamelCase , _UpperCamelCase , doc_stride=_UpperCamelCase , max_length=_UpperCamelCase , assertion=_UpperCamelCase , ) return example def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : List[str] ) -> Any: """simple docstring""" with jsonlines.open(_UpperCamelCase , 'a' ) as writer: for example in tqdm(_UpperCamelCase , total=len(_UpperCamelCase ) , desc='Saving samples ... ' ): snake_case = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer SCREAMING_SNAKE_CASE__ = load_dataset("natural_questions") SCREAMING_SNAKE_CASE__ = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") SCREAMING_SNAKE_CASE__ = data["train" if PROCESS_TRAIN == "true" else "validation"] SCREAMING_SNAKE_CASE__ = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } SCREAMING_SNAKE_CASE__ = data.map(prepare_inputs, fn_kwargs=fn_kwargs) SCREAMING_SNAKE_CASE__ = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) SCREAMING_SNAKE_CASE__ = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
150
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A : Tuple = logging.get_logger(__name__) A : Tuple = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __lowerCamelCase ( a_ ): """simple docstring""" a = "longformer" def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[List[int], int] = 512 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 30522 , SCREAMING_SNAKE_CASE : int = 768 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 3072 , SCREAMING_SNAKE_CASE : str = "gelu" , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : float = 1e-12 , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[Any] , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[Any] = attention_window _A : int = sep_token_id _A : Tuple = bos_token_id _A : Any = eos_token_id _A : List[str] = vocab_size _A : Any = hidden_size _A : Optional[int] = num_hidden_layers _A : int = num_attention_heads _A : Dict = hidden_act _A : List[Any] = intermediate_size _A : int = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : int = max_position_embeddings _A : Any = type_vocab_size _A : Dict = initializer_range _A : Any = layer_norm_eps _A : List[Any] = onnx_export class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : "PretrainedConfig" , SCREAMING_SNAKE_CASE : str = "default" , SCREAMING_SNAKE_CASE : "List[PatchingSpec]" = None): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Optional[Any] = True @property def A ( self : List[str]): if self.task == "multiple-choice": _A : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ]) @property def A ( self : str): _A : int = super().outputs if self.task == "default": _A : str = {0: 'batch'} return outputs @property def A ( self : List[Any]): return 1e-4 @property def A ( self : Dict): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def A ( self : str , SCREAMING_SNAKE_CASE : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ): _A : Union[str, Any] = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _A : Tuple = torch.zeros_like(inputs['input_ids']) # make every second token global _A : Dict = 1 return inputs
227
'''simple docstring''' import string import numpy def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ): return b if a == 0 else greatest_common_divisor(b % a ,lowerCamelCase ) class __lowerCamelCase : """simple docstring""" a = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a = numpy.vectorize(lambda a_ : x % 36 ) a = numpy.vectorize(a_ ) def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : numpy.ndarray): _A : Union[str, Any] = self.modulus(SCREAMING_SNAKE_CASE) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _A : Optional[int] = encrypt_key.shape[0] def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): return self.key_string.index(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): return self.key_string[round(SCREAMING_SNAKE_CASE)] def A ( self : List[Any]): _A : Optional[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : int = det % len(self.key_string) _A : str = len(self.key_string) if greatest_common_divisor(SCREAMING_SNAKE_CASE , len(self.key_string)) != 1: _A : Optional[int] = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(SCREAMING_SNAKE_CASE) def A ( self : int , SCREAMING_SNAKE_CASE : str): _A : List[Any] = [char for char in text.upper() if char in self.key_string] _A : List[str] = chars[-1] while len(SCREAMING_SNAKE_CASE) % self.break_key != 0: chars.append(SCREAMING_SNAKE_CASE) return "".join(SCREAMING_SNAKE_CASE) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str): _A : Optional[int] = self.process_text(text.upper()) _A : List[str] = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[Any] = text[i : i + self.break_key] _A : Optional[int] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : List[str] = self.modulus(self.encrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[ 0 ] _A : str = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def A ( self : Union[str, Any]): _A : List[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : Optional[int] = det % len(self.key_string) _A : List[str] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: _A : Union[str, Any] = i break _A : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(SCREAMING_SNAKE_CASE)) def A ( self : Any , SCREAMING_SNAKE_CASE : str): _A : List[str] = self.make_decrypt_key() _A : Dict = self.process_text(text.upper()) _A : str = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[int] = text[i : i + self.break_key] _A : Union[str, Any] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : Optional[int] = self.modulus(decrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[0] _A : Tuple = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): _A : List[Any] = int(input('Enter the order of the encryption key: ' ) ) _A : List[str] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowerCamelCase ): _A : str = [int(lowerCamelCase ) for x in input().split()] hill_matrix.append(lowerCamelCase ) _A : Dict = HillCipher(numpy.array(lowerCamelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _A : List[str] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _A : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowerCamelCase ) ) elif option == "2": _A : int = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
227
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : str = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowercase__ ( _lowerCamelCase ): lowercase__ = """deformable_detr""" lowercase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Optional[int]=3 ,lowerCamelCase__ : List[str]=300 ,lowerCamelCase__ : Tuple=1024 ,lowerCamelCase__ : Optional[int]=6 ,lowerCamelCase__ : Dict=1024 ,lowerCamelCase__ : int=8 ,lowerCamelCase__ : str=6 ,lowerCamelCase__ : Optional[int]=1024 ,lowerCamelCase__ : Dict=8 ,lowerCamelCase__ : Tuple=0.0 ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : List[Any]="relu" ,lowerCamelCase__ : Any=256 ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : List[Any]=0.0 ,lowerCamelCase__ : Tuple=0.0_2 ,lowerCamelCase__ : Dict=1.0 ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : List[str]="sine" ,lowerCamelCase__ : Any="resnet50" ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Optional[Any]=False ,lowerCamelCase__ : Union[str, Any]=4 ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : List[str]=300 ,lowerCamelCase__ : Optional[Any]=False ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : Any=5 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : Dict=1 ,lowerCamelCase__ : Dict=1 ,lowerCamelCase__ : str=5 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Optional[Any]=0.2_5 ,lowerCamelCase__ : Optional[Any]=False ,**lowerCamelCase__ : int ,): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _UpperCamelCase : str = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ): _UpperCamelCase : Any = backbone_config.get('model_type' ) _UpperCamelCase : int = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase : Optional[int] = config_class.from_dict(lowerCAmelCase_ ) _UpperCamelCase : Optional[int] = use_timm_backbone _UpperCamelCase : str = backbone_config _UpperCamelCase : Optional[int] = num_channels _UpperCamelCase : Union[str, Any] = num_queries _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = d_model _UpperCamelCase : Optional[int] = encoder_ffn_dim _UpperCamelCase : Any = encoder_layers _UpperCamelCase : Union[str, Any] = encoder_attention_heads _UpperCamelCase : Dict = decoder_ffn_dim _UpperCamelCase : Any = decoder_layers _UpperCamelCase : str = decoder_attention_heads _UpperCamelCase : Any = dropout _UpperCamelCase : Optional[Any] = attention_dropout _UpperCamelCase : Optional[Any] = activation_dropout _UpperCamelCase : List[Any] = activation_function _UpperCamelCase : Any = init_std _UpperCamelCase : Dict = init_xavier_std _UpperCamelCase : Optional[int] = encoder_layerdrop _UpperCamelCase : Union[str, Any] = auxiliary_loss _UpperCamelCase : Dict = position_embedding_type _UpperCamelCase : List[Any] = backbone _UpperCamelCase : Tuple = use_pretrained_backbone _UpperCamelCase : List[Any] = dilation # deformable attributes _UpperCamelCase : Tuple = num_feature_levels _UpperCamelCase : List[Any] = encoder_n_points _UpperCamelCase : Tuple = decoder_n_points _UpperCamelCase : Dict = two_stage _UpperCamelCase : Dict = two_stage_num_proposals _UpperCamelCase : int = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _UpperCamelCase : Dict = class_cost _UpperCamelCase : Optional[int] = bbox_cost _UpperCamelCase : Optional[int] = giou_cost # Loss coefficients _UpperCamelCase : List[str] = mask_loss_coefficient _UpperCamelCase : List[Any] = dice_loss_coefficient _UpperCamelCase : Optional[int] = bbox_loss_coefficient _UpperCamelCase : List[Any] = giou_loss_coefficient _UpperCamelCase : List[str] = eos_coefficient _UpperCamelCase : Tuple = focal_alpha _UpperCamelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase_ ,**lowerCAmelCase_ ) @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.d_model def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCamelCase : Optional[int] = self.backbone_config.to_dict() _UpperCamelCase : Optional[Any] = self.__class__.model_type return output
83
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("DownEncoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_=True , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = torch.nn.Convad( lowerCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) # down _snake_case = block_out_channels[0] for i, down_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_down_block( lowerCAmelCase_ , num_layers=self.layers_per_block , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) self.down_blocks.append(lowerCAmelCase_ ) # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # out _snake_case = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = 2 * out_channels if double_z else out_channels _snake_case = nn.Convad(block_out_channels[-1] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = x _snake_case = self.conv_in(lowerCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCAmelCase_ ) else: # down for down_block in self.down_blocks: _snake_case = down_block(lowerCAmelCase_ ) # middle _snake_case = self.mid_block(lowerCAmelCase_ ) # post-process _snake_case = self.conv_norm_out(lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("UpDecoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_="group" , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = nn.Convad( lowerCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) _snake_case = in_channels if norm_type == 'spatial' else None # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # up _snake_case = list(reversed(lowerCAmelCase_ ) ) _snake_case = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = reversed_block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_up_block( lowerCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , prev_output_channel=lowerCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , resnet_time_scale_shift=lowerCAmelCase_ , ) self.up_blocks.append(lowerCAmelCase_ ) _snake_case = output_channel # out if norm_type == "spatial": _snake_case = SpatialNorm(block_out_channels[0] , lowerCAmelCase_ ) else: _snake_case = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = nn.Convad(block_out_channels[0] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = z _snake_case = self.conv_in(lowerCAmelCase_ ) _snake_case = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ ) else: # middle _snake_case = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = up_block(lowerCAmelCase_ , lowerCAmelCase_ ) # post-process if latent_embeds is None: _snake_case = self.conv_norm_out(lowerCAmelCase_ ) else: _snake_case = self.conv_norm_out(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="random" , lowerCAmelCase_=False , lowerCAmelCase_=True ): """simple docstring""" super().__init__() _snake_case = n_e _snake_case = vq_embed_dim _snake_case = beta _snake_case = legacy _snake_case = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _snake_case = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _snake_case = self.used.shape[0] _snake_case = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _snake_case = self.re_embed _snake_case = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: _snake_case = n_e _snake_case = sane_index_shape def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) _snake_case = (inds[:, :, None] == used[None, None, ...]).long() _snake_case = match.argmax(-1 ) _snake_case = match.sum(2 ) < 1 if self.unknown_index == "random": _snake_case = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _snake_case = self.unknown_index return new.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token _snake_case = 0 # simply set to zero _snake_case = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCAmelCase_ ) return back.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = z.permute(0 , 2 , 3 , 1 ).contiguous() _snake_case = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _snake_case = torch.argmin(torch.cdist(lowerCAmelCase_ , self.embedding.weight ) , dim=1 ) _snake_case = self.embedding(lowerCAmelCase_ ).view(z.shape ) _snake_case = None _snake_case = None # compute loss for embedding if not self.legacy: _snake_case = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _snake_case = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _snake_case = z + (z_q - z).detach() # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _snake_case = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _snake_case = self.remap_to_used(lowerCAmelCase_ ) _snake_case = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _snake_case = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.remap is not None: _snake_case = indices.reshape(shape[0] , -1 ) # add batch axis _snake_case = self.unmap_to_all(lowerCAmelCase_ ) _snake_case = indices.reshape(-1 ) # flatten again # get quantized latent vectors _snake_case = self.embedding(lowerCAmelCase_ ) if shape is not None: _snake_case = z_q.view(lowerCAmelCase_ ) # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = parameters _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , dim=1 ) _snake_case = torch.clamp(self.logvar , -30.0 , 20.0 ) _snake_case = deterministic _snake_case = torch.exp(0.5 * self.logvar ) _snake_case = torch.exp(self.logvar ) if self.deterministic: _snake_case = _snake_case = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase ( self , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = randn_tensor( self.mean.shape , generator=lowerCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _snake_case = self.mean + self.std * sample return x def lowerCamelCase ( self , lowerCAmelCase_=None ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=[1, 2, 3] ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) _snake_case = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" return self.mean
42
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__:Optional[Any] = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[int] = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[Any] = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a , a , a , a , ): __a = len(a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , a , a , ) def _lowerCamelCase( a ): __a = [] depth_first_search([] , [] , [] , a , a ) # Print all the boards for board in boards: for column in board: print(a ) print("" ) print(len(a ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
268
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowercase_ ( _lowerCamelCase : Dict=None): lowercase__ : Union[str, Any] = argparse.ArgumentParser(add_help=_lowerCamelCase , allow_abbrev=_lowerCamelCase) # The main config parser lowercase__ : Dict = config_command_parser(_lowerCamelCase) # The subparser to add commands to lowercase__ : List[str] = config_parser.add_subparsers(title="subcommands" , dest="subcommand") # Then add other parsers with the parent parser default_command_parser(_lowerCamelCase , parents=[parent_parser]) update_command_parser(_lowerCamelCase , parents=[parent_parser]) return config_parser def lowercase_ ( ): lowercase__ : Tuple = get_config_parser() lowercase__ : List[Any] = config_parser.parse_args() if not hasattr(_lowerCamelCase , "func"): config_parser.print_help() exit(1) # Run args.func(_lowerCamelCase) if __name__ == "__main__": main()
87
'''simple docstring''' from __future__ import annotations import requests def _A ( snake_case ) -> dict: _lowercase : Dict = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(snake_case ).json() def _A ( snake_case = 10 ) -> list[dict]: _lowercase : List[Any] = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _lowercase : List[str] = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def _A ( snake_case = 10 ) -> str: _lowercase : Union[str, Any] = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
250
0
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() A : Union[str, Any] = nn.Linear(3, 4 ) A : Union[str, Any] = nn.BatchNormad(4 ) A : Optional[Any] = nn.Linear(4, 5 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.lineara(self.batchnorm(self.lineara(lowerCamelCase__ ) ) ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__, *lowerCamelCase__, **lowerCamelCase__ ): return (args[0] + 1,) + args[1:], kwargs class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): return output + 1 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Any = ModelHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) self.assertEqual(test_model._hf_hook, lowerCamelCase__ ) self.assertTrue(hasattr(lowerCamelCase__, """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ), ["""x"""] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__, """_hf_hook""" ) ) self.assertFalse(hasattr(lowerCamelCase__, """_old_forward""" ) ) def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Optional[int] = ModelHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__, append=lowerCamelCase__ ) self.assertEqual(isinstance(test_model._hf_hook, lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ), 2 ) self.assertTrue(hasattr(lowerCamelCase__, """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ), ["""x"""] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__, """_hf_hook""" ) ) self.assertFalse(hasattr(lowerCamelCase__, """_old_forward""" ) ) def _lowerCAmelCase ( self ): A : Any = ModelForTest() A : Tuple = torch.randn(2, 3 ) A : Optional[int] = test_model(x + 1 ) A : List[str] = test_model(x + 2 ) A : List[str] = PreForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[str] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A : Optional[Any] = PreForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A : Any = SequentialHook(PreForwardHook(), PreForwardHook() ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Optional[Any] = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-5 ) def _lowerCAmelCase ( self ): A : Tuple = ModelForTest() A : Any = torch.randn(2, 3 ) A : Any = test_model(lowerCamelCase__ ) A : List[Any] = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : str = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1, atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A : Tuple = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : Optional[int] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1, atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A : Dict = SequentialHook(PostForwardHook(), PostForwardHook() ) add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[str] = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__, output + 2, atol=1e-5 ) def _lowerCAmelCase ( self ): A : List[Any] = ModelForTest() A : Tuple = torch.randn(2, 3 ) A : Union[str, Any] = test_model(lowerCamelCase__ ) A : List[Any] = PostForwardHook() add_hook_to_module(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__, output + 1 ) ) self.assertTrue(outputa.requires_grad ) A : int = True A : Tuple = test_model(lowerCamelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _lowerCAmelCase ( self ): A : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara, AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara, AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device, torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device, torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device(0 ) ) self.assertEqual(model.lineara.weight.device, torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A : str = torch.randn(2, 3 ) A : int = model(lowerCamelCase__ ) self.assertEqual(output.device, torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowerCamelCase__, AlignDevicesHook(io_same_device=lowerCamelCase__ ) ) A : int = torch.randn(2, 3 ).to(0 ) A : str = model(lowerCamelCase__ ) self.assertEqual(output.device, torch.device(0 ) ) def _lowerCAmelCase ( self ): A : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : int = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Dict = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : int = torch.randn(2, 3 ) A : List[Any] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload A : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara, AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : int = torch.randn(2, 3 ) A : str = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) def _lowerCAmelCase ( self ): A : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : Tuple = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Optional[int] = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : List[str] = torch.randn(2, 3 ) A : Optional[int] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, offload_buffers=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : List[str] = torch.randn(2, 3 ) A : List[str] = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) def _lowerCAmelCase ( self ): A : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices A : List[str] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A : Any = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device, lowerCamelCase__ ) A : Optional[Any] = torch.randn(2, 3 ) A : Tuple = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( lowerCamelCase__, execution_device=lowerCamelCase__, offload=lowerCamelCase__, weights_map=model.state_dict(), offload_buffers=lowerCamelCase__, ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) A : List[Any] = torch.randn(2, 3 ) A : Dict = model(lowerCamelCase__ ) self.assertEqual(output.device, lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) )
115
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_:Any = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:List[Any] = ["""MobileNetV2FeatureExtractor"""] SCREAMING_SNAKE_CASE_:Tuple = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys SCREAMING_SNAKE_CASE_:Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
115
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class a ( unittest.TestCase ): @require_torch def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[int] = pipeline( task='''zero-shot-audio-classification''' ,model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) snake_case__ : Optional[Any] = load_dataset('''ashraq/esc50''' ) snake_case__ : List[str] = dataset['''train''']['''audio'''][-1]['''array'''] snake_case__ : List[Any] = audio_classifier(__lowercase ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowercase ) ,[{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] ,) @unittest.skip('''No models are available in TF''' ) def __lowerCamelCase ( self :Optional[Any] ): pass @slow @require_torch def __lowerCamelCase ( self :Optional[int] ): snake_case__ : int = pipeline( task='''zero-shot-audio-classification''' ,model='''laion/clap-htsat-unfused''' ,) # This is an audio of a dog snake_case__ : Union[str, Any] = load_dataset('''ashraq/esc50''' ) snake_case__ : Optional[Any] = dataset['''train''']['''audio'''][-1]['''array'''] snake_case__ : Optional[int] = audio_classifier(__lowercase ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowercase ) ,[ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] ,) snake_case__ : Union[str, Any] = audio_classifier([audio] * 5 ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowercase ) ,[ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 ,) snake_case__ : int = audio_classifier( [audio] * 5 ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ,batch_size=5 ) self.assertEqual( nested_simplify(__lowercase ) ,[ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 ,) @unittest.skip('''No models are available in TF''' ) def __lowerCamelCase ( self :Union[str, Any] ): pass
230
import random from .binary_exp_mod import bin_exp_mod def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=1000 ) -> str: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case__ : Tuple = n - 1 snake_case__ : Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case__ : List[str] = 0 while count < prec: snake_case__ : List[str] = random.randint(2 , n - 1 ) snake_case__ : Optional[Any] = bin_exp_mod(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if b != 1: snake_case__ : List[Any] = True for _ in range(__lowerCAmelCase ): if b == n - 1: snake_case__ : List[str] = False break snake_case__ : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
230
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available UpperCAmelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : '''simple docstring''' __snake_case = 42 __snake_case = 42 __snake_case = 42 @dataclass class lowerCAmelCase_ : '''simple docstring''' __snake_case = 42 __snake_case = 42 __snake_case = None __snake_case = None class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = "train" __snake_case = "dev" __snake_case = "test" class lowerCAmelCase_ : '''simple docstring''' @staticmethod def UpperCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): raise NotImplementedError @staticmethod def UpperCamelCase__ ( _UpperCAmelCase ): raise NotImplementedError @staticmethod def UpperCamelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase="[CLS]" , _UpperCAmelCase=1 , _UpperCAmelCase="[SEP]" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=-1_00 , _UpperCAmelCase=0 , _UpperCAmelCase=True , ): snake_case_ = {label: i for i, label in enumerate(_UpperCAmelCase )} snake_case_ = [] for ex_index, example in enumerate(_UpperCAmelCase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _UpperCAmelCase , len(_UpperCAmelCase ) ) snake_case_ = [] snake_case_ = [] for word, label in zip(example.words , example.labels ): snake_case_ = tokenizer.tokenize(_UpperCAmelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_UpperCAmelCase ) > 0: tokens.extend(_UpperCAmelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_UpperCAmelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. snake_case_ = tokenizer.num_special_tokens_to_add() if len(_UpperCAmelCase ) > max_seq_length - special_tokens_count: snake_case_ = tokens[: (max_seq_length - special_tokens_count)] snake_case_ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] snake_case_ = [sequence_a_segment_id] * len(_UpperCAmelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: snake_case_ = [cls_token] + tokens snake_case_ = [pad_token_label_id] + label_ids snake_case_ = [cls_token_segment_id] + segment_ids snake_case_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. snake_case_ = [1 if mask_padding_with_zero else 0] * len(_UpperCAmelCase ) # Zero-pad up to the sequence length. snake_case_ = max_seq_length - len(_UpperCAmelCase ) if pad_on_left: snake_case_ = ([pad_token] * padding_length) + input_ids snake_case_ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask snake_case_ = ([pad_token_segment_id] * padding_length) + segment_ids snake_case_ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_UpperCAmelCase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_UpperCAmelCase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_UpperCAmelCase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_UpperCAmelCase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_UpperCAmelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ = None features.append( InputFeatures( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , label_ids=_UpperCAmelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = 42 __snake_case = nn.CrossEntropyLoss().ignore_index def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase = Split.train , ): # Load data features from cache or dataset file snake_case_ = os.path.join( _UpperCAmelCase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ = cached_features_file + '''.lock''' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) snake_case_ = torch.load(_UpperCAmelCase ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) snake_case_ = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ = token_classification_task.convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , _UpperCAmelCase ) def __len__( self ): return len(self.features ) def __getitem__( self , _UpperCAmelCase ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : '''simple docstring''' __snake_case = 42 __snake_case = -1_0_0 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase = Split.train , ): snake_case_ = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ = token_classification_task.convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ = tf.data.Dataset.from_generator( _UpperCAmelCase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: snake_case_ = tf.data.Dataset.from_generator( _UpperCAmelCase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def UpperCamelCase__ ( self ): snake_case_ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , _UpperCAmelCase ): return self.features[i]
267
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ()-> Optional[Any]: """simple docstring""" snake_case_ = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return image def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" snake_case_ = dct.pop(SCREAMING_SNAKE_CASE ) snake_case_ = val def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case_ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) snake_case_ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict snake_case_ = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE ), v_bias) ) snake_case_ = qkv_bias def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" snake_case_ = 364 if '''coco''' in model_name else 224 snake_case_ = BlipaVisionConfig(image_size=SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: snake_case_ = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=SCREAMING_SNAKE_CASE ).to_dict() elif "opt-6.7b" in model_name: snake_case_ = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=SCREAMING_SNAKE_CASE ).to_dict() elif "t5-xl" in model_name: snake_case_ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case_ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() snake_case_ = BlipaConfig(vision_config=SCREAMING_SNAKE_CASE , text_config=SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False )-> List[Any]: """simple docstring""" snake_case_ = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) snake_case_ = tokenizer('''\n''' , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0] snake_case_ , snake_case_ = get_blipa_config(SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) snake_case_ = BlipaForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval() snake_case_ = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } snake_case_ , snake_case_ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) snake_case_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case_ , snake_case_ , snake_case_ = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE , model_type=SCREAMING_SNAKE_CASE , is_eval=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) original_model.eval() print('''Done!''' ) # update state dict keys snake_case_ = original_model.state_dict() snake_case_ = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE ) if key.startswith('''Qformer.bert''' ): snake_case_ = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: snake_case_ = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: snake_case_ = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: snake_case_ = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): snake_case_ = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): snake_case_ = key.replace('''t5''' , '''language''' ) snake_case_ = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = hf_model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] snake_case_ = load_demo_image() snake_case_ = vis_processors['''eval'''](SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE ) snake_case_ = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE ) # create processor snake_case_ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE ) snake_case_ = BlipaProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) snake_case_ = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values.to(SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) original_model.to(SCREAMING_SNAKE_CASE ) hf_model.to(SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "opt" in model_name: snake_case_ = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits snake_case_ = hf_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).logits else: snake_case_ = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits snake_case_ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) snake_case_ = hf_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": snake_case_ = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=SCREAMING_SNAKE_CASE ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": snake_case_ = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=SCREAMING_SNAKE_CASE ) else: # cast to same type snake_case_ = logits.dtype assert torch.allclose(original_logits.to(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) snake_case_ = '''''' snake_case_ = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE ) snake_case_ = original_model.generate({'''image''': original_pixel_values} ) snake_case_ = hf_model.generate( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , SCREAMING_SNAKE_CASE ) snake_case_ = input_ids.shape[1] snake_case_ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=SCREAMING_SNAKE_CASE ) snake_case_ = [text.strip() for text in output_text] print('''HF generation:''' , SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
267
1
import math import unittest def a( A : int ) -> bool: """simple docstring""" assert isinstance(A , A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def UpperCamelCase_ (self ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
227
def a( A : list ) -> list: """simple docstring""" if any(not isinstance(A , A ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(A ) ): for i, (rod_upper, rod_lower) in enumerate(zip(A , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
227
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _a ( _lowercase : List[str] ): '''simple docstring''' def wrapper(*_lowercase : int , **_lowercase : Dict ): __UpperCAmelCase : Any = timeit.default_timer() __UpperCAmelCase : Tuple = func(*UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : Any = timeit.default_timer() - starttime return delta __UpperCAmelCase : int = func.__name__ return wrapper def _a ( _lowercase : dict , _lowercase : Optional[int]=100 , _lowercase : Optional[Any]=None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Optional[Any] = seq_shapes or {} for i in range(UpperCAmelCase_ ): __UpperCAmelCase : Dict = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCAmelCase_ , _ArrayXD ): __UpperCAmelCase : Dict = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCAmelCase_ , datasets.Value ): if v.dtype == "string": __UpperCAmelCase : Optional[int] = '''The small grey turtle was surprisingly fast when challenged.''' else: __UpperCAmelCase : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCAmelCase_ , datasets.Sequence ): while isinstance(UpperCAmelCase_ , datasets.Sequence ): __UpperCAmelCase : Optional[Any] = v.feature __UpperCAmelCase : int = seq_shapes[k] __UpperCAmelCase : Any = np.random.rand(*UpperCAmelCase_ ).astype(v.dtype ) __UpperCAmelCase : Optional[int] = data dummy_data.append((i, example) ) return dummy_data def _a ( _lowercase : List[str] , _lowercase : Any , _lowercase : Dict=100 , _lowercase : int=None ): '''simple docstring''' __UpperCAmelCase : Any = generate_examples(UpperCAmelCase_ , num_examples=UpperCAmelCase_ , seq_shapes=UpperCAmelCase_ ) with ArrowWriter(features=UpperCAmelCase_ , path=UpperCAmelCase_ ) as writer: for key, record in dummy_data: __UpperCAmelCase : Optional[int] = features.encode_example(UpperCAmelCase_ ) writer.write(UpperCAmelCase_ ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) __UpperCAmelCase : Tuple = datasets.Dataset.from_file(filename=UpperCAmelCase_ , info=datasets.DatasetInfo(features=UpperCAmelCase_ ) ) return dataset
353
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a : """simple docstring""" SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : Tuple[int] def lowerCamelCase__ ( self : Any ) -> int: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCamelCase__ ( self : Union[str, Any] ) -> str: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCamelCase__ ( self : Any ) -> torch.Tensor: __UpperCAmelCase : Dict = torch.arange(self.height * self.width ) __UpperCAmelCase : Dict = torch.stack( [ pixel_indices % self.width, torch.div(snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def lowerCamelCase__ ( self : Any ) -> int: __UpperCAmelCase , *__UpperCAmelCase : str = self.shape __UpperCAmelCase : Dict = int(np.prod(snake_case ) ) __UpperCAmelCase : Tuple = self.get_image_coords() __UpperCAmelCase : List[Any] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __UpperCAmelCase : Any = self.get_camera_rays(snake_case ) __UpperCAmelCase : List[str] = rays.view(snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCamelCase__ ( self : Union[str, Any] , snake_case : torch.Tensor ) -> torch.Tensor: __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase : List[str] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __UpperCAmelCase : List[str] = coords.view(snake_case , -1 , 2 ) __UpperCAmelCase : Optional[Any] = self.resolution() __UpperCAmelCase : Tuple = self.fov() __UpperCAmelCase : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 __UpperCAmelCase : Union[str, Any] = fracs * torch.tan(fov / 2 ) __UpperCAmelCase : str = fracs.view(snake_case , -1 , 2 ) __UpperCAmelCase : Any = ( self.z.view(snake_case , 1 , 3 ) + self.x.view(snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(snake_case , 1 , 3 ) * fracs[:, :, 1:] ) __UpperCAmelCase : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=snake_case ) __UpperCAmelCase : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(snake_case , *snake_case , 2 , 3 ) def lowerCamelCase__ ( self : Any , snake_case : int , snake_case : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=snake_case , height=snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def _a ( _lowercase : int ): '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : List[Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __UpperCAmelCase : Dict = np.array([np.sin(_lowercase ), np.cos(_lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __UpperCAmelCase : Any = -z * 4 __UpperCAmelCase : Dict = np.array([np.cos(_lowercase ), -np.sin(_lowercase ), 0.0] ) __UpperCAmelCase : List[str] = np.cross(_lowercase , _lowercase ) origins.append(_lowercase ) xs.append(_lowercase ) ys.append(_lowercase ) zs.append(_lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , width=_lowercase , height=_lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_lowercase )) , )
240
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : int = JsonDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_json_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE_ : List[Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : int = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Dict = JsonDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_json_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Any = {"col_3": "float64", "col_1": "string", "col_2": "int64"} SCREAMING_SNAKE_CASE_ : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Optional[Any] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : List[Any] = JsonDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {"col_2": "int64", "col_3": "float64", "col_1": "string"} SCREAMING_SNAKE_CASE_ : List[str] = features.copy() SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[int] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = JsonDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE_ : Optional[int] = JsonDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_json_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : str ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = jsonl_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = [jsonl_path] SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE_ : Union[str, Any] = JsonDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_json_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = JsonDatasetReader({"train": jsonl_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_json_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE_ : Optional[int] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Tuple = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Dict = JsonDatasetReader({"train": jsonl_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_json_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Any = {split: jsonl_path} else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "train" SCREAMING_SNAKE_CASE_ : List[Any] = {"train": jsonl_path, "test": jsonl_path} SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE_ : List[str] = JsonDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_json_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" return json.load(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" return [json.loads(lowerCAmelCase ) for line in buffer] class a__ : @pytest.mark.parametrize("lines, load_json_function",[(True, load_json_lines), (False, load_json)] ) def __UpperCamelCase ( self : Optional[Any],_A : Optional[Any],_A : str,_A : Union[str, Any] ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_A,_A,lines=_A ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE_ : Dict = load_json_function(_A ) assert isinstance(_A,_A ) assert isinstance(exported_content[0],_A ) assert len(_A ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at",[ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ],) def __UpperCamelCase ( self : str,_A : Any,_A : List[str],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_A,_A,lines=_A,orient=_A ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE_ : str = load_json(_A ) assert isinstance(_A,_A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_A,"keys" ) and not hasattr(exported_content[0],"keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_A ) == 10 @pytest.mark.parametrize("lines, load_json_function",[(True, load_json_lines), (False, load_json)] ) def __UpperCamelCase ( self : Tuple,_A : int,_A : Any,_A : Optional[int] ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_A,_A,lines=_A,num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = load_json_function(_A ) assert isinstance(_A,_A ) assert isinstance(exported_content[0],_A ) assert len(_A ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at",[ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ],) def __UpperCamelCase ( self : Union[str, Any],_A : Dict,_A : Optional[int],_A : Optional[int],_A : Dict,_A : int ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_A,_A,lines=_A,orient=_A,num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE_ : Any = load_json(_A ) assert isinstance(_A,_A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_A,"keys" ) and not hasattr(exported_content[0],"keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_A ) == 10 def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" with pytest.raises(_A ): with io.BytesIO() as buffer: JsonDatasetWriter(_A,_A,num_proc=0 ) @pytest.mark.parametrize("compression, extension",[("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def __UpperCamelCase ( self : Optional[int],_A : str,_A : Union[str, Any],_A : Optional[Any],_A : List[Any],_A : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = tmp_path_factory.mktemp("data" ) / F'test.json.{extension}' SCREAMING_SNAKE_CASE_ : Any = str(shared_datadir / F'test_file.json.{extension}' ) JsonDatasetWriter(_A,_A,compression=_A ).write() with fsspec.open(_A,"rb",compression="infer" ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = f.read() with fsspec.open(_A,"rb",compression="infer" ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() assert exported_content == original_content
18
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ (__A ): def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=768 ) -> List[Any]: super().__init__(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = proj_size UpperCAmelCase_ : Optional[Any] = CLIPVisionModel(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = PaintByExampleMapper(lowerCAmelCase_ ) UpperCAmelCase_ : str = nn.LayerNorm(config.hidden_size ) UpperCAmelCase_ : List[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=False ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.model(pixel_values=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = clip_output.pooler_output UpperCAmelCase_ : List[Any] = self.mapper(latent_states[:, None] ) UpperCAmelCase_ : List[str] = self.final_layer_norm(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.proj_out(lowerCAmelCase_ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCamelCase_ (nn.Module ): def __init__( self : Dict , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: super().__init__() UpperCAmelCase_ : List[Any] = (config.num_hidden_layers + 1) // 5 UpperCAmelCase_ : Optional[Any] = config.hidden_size UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , activation_fn="gelu" , attention_bias=lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ] ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[str] ) -> str: for block in self.blocks: UpperCAmelCase_ : int = block(lowerCAmelCase_ ) return hidden_states
268
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCamelCase ( snake_case__ : Any ) -> int: if is_torch_version('<' , '2.0.0' ) or not hasattr(snake_case__ , '_dynamo' ): return False return isinstance(snake_case__ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : bool = True ) -> List[str]: UpperCamelCase : int = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase : Tuple = is_compiled_module(snake_case__ ) if is_compiled: UpperCamelCase : List[str] = model UpperCamelCase : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Any = model.module if not keep_fpaa_wrapper: UpperCamelCase : int = getattr(snake_case__ , 'forward' ) UpperCamelCase : List[str] = model.__dict__.pop('_original_forward' , snake_case__ ) if original_forward is not None: while hasattr(snake_case__ , '__wrapped__' ): UpperCamelCase : List[str] = forward.__wrapped__ if forward == original_forward: break UpperCamelCase : Optional[int] = forward if getattr(snake_case__ , '_converted_to_transformer_engine' , snake_case__ ): convert_model(snake_case__ , to_transformer_engine=snake_case__ ) if is_compiled: UpperCamelCase : Any = model UpperCamelCase : int = compiled_model return model def UpperCamelCase ( ) -> Optional[Any]: PartialState().wait_for_everyone() def UpperCamelCase ( snake_case__ : Any , snake_case__ : Optional[int] ) -> Union[str, Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case__ , snake_case__ ) elif PartialState().local_process_index == 0: torch.save(snake_case__ , snake_case__ ) @contextmanager def UpperCamelCase ( **snake_case__ : List[str] ) -> int: for key, value in kwargs.items(): UpperCamelCase : Optional[Any] = str(snake_case__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCamelCase ( snake_case__ : Dict ) -> int: if not hasattr(snake_case__ , '__qualname__' ) and not hasattr(snake_case__ , '__name__' ): UpperCamelCase : Optional[Any] = getattr(snake_case__ , '__class__' , snake_case__ ) if hasattr(snake_case__ , '__qualname__' ): return obj.__qualname__ if hasattr(snake_case__ , '__name__' ): return obj.__name__ return str(snake_case__ ) def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : List[Any] ) -> Optional[int]: for key, value in source.items(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : List[Any] = destination.setdefault(snake_case__ , {} ) merge_dicts(snake_case__ , snake_case__ ) else: UpperCamelCase : Any = value return destination def UpperCamelCase ( snake_case__ : int = None ) -> bool: if port is None: UpperCamelCase : Union[str, Any] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
103
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=19, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCamelCase : Any = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : List[str] = use_input_mask UpperCamelCase : Optional[int] = use_token_type_ids UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : int = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : str = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : List[Any] = num_labels UpperCamelCase : Any = num_choices UpperCamelCase : Tuple = scope def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Optional[Any] = None if self.use_input_mask: UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None if self.use_labels: UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=SCREAMING_SNAKE_CASE_, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Union[str, Any] = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE_ ).float() model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : int = () UpperCAmelCase__ : List[str] = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = EsmFoldModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> int: self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Does not support attention outputs' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('ESMFold only has one output format.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support input chunking.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Optional[Any]: pass @require_torch class lowerCAmelCase_ ( a__ ): @slow def snake_case_ ( self ) -> str: UpperCamelCase : Union[str, Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCamelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )['positions'] UpperCamelCase : int = torch.tensor([2.58_28, 0.79_93, -10.93_34], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
103
1