code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a_ : List[str] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
75
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Any ) -> Any: # Initialise PyTorch model lowercase : Union[str, Any] = RemBertConfig.from_json_file(__snake_case ) print("Building PyTorch model from configuration: {}".format(str(__snake_case ) ) ) lowercase : str = RemBertModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print("Save PyTorch model to {}".format(__snake_case ) ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": _A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _A : List[str] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
202
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "naver-clova-ix/donut-base-finetuned-docvqa" A_ = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) A_ = "document_qa" A_ = AutoProcessor A_ = VisionEncoderDecoderModel A_ = ["image", "text"] A_ = ["text"] def __init__( self: str , *__A: List[Any] , **__A: Union[str, Any] ) -> Dict: if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__A , **__A ) def __A ( self: Dict , __A: "Image" , __A: str ) -> int: _A = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _A = task_prompt.replace('''{user_input}''' , __A ) _A = self.pre_processor.tokenizer( __A , add_special_tokens=__A , return_tensors='''pt''' ).input_ids _A = self.pre_processor(__A , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __A ( self: Optional[int] , __A: str ) -> str: return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__A , ).sequences def __A ( self: Union[str, Any] , __A: List[Any] ) -> Optional[int]: _A = self.pre_processor.batch_decode(__A )[0] _A = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _A = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _A = re.sub(R'''<.*?>''' , '''''' , __A , count=1 ).strip() # remove first task start token _A = self.pre_processor.tokenajson(__A ) return sequence["answer"]
75
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "rag" A_ = True def __init__( self: Optional[int] , __A: Optional[int]=None , __A: Dict=True , __A: Any=None , __A: Dict=None , __A: Optional[int]=None , __A: Optional[Any]=None , __A: Optional[Any]=None , __A: Optional[Any]=" / " , __A: int=" // " , __A: List[Any]=5 , __A: Dict=3_00 , __A: int=7_68 , __A: Tuple=8 , __A: List[Any]="wiki_dpr" , __A: List[str]="train" , __A: Optional[Any]="compressed" , __A: Optional[int]=None , __A: Union[str, Any]=None , __A: Dict=False , __A: Tuple=False , __A: Optional[int]=0.0 , __A: Optional[int]=True , __A: int=False , __A: int=False , __A: Optional[Any]=False , __A: Optional[int]=True , __A: Optional[int]=None , **__A: Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token_id=__A , pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , is_encoder_decoder=__A , prefix=__A , vocab_size=__A , **__A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A = kwargs.pop('''question_encoder''' ) _A = question_encoder_config.pop('''model_type''' ) _A = kwargs.pop('''generator''' ) _A = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A = AutoConfig.for_model(__A , **__A ) _A = AutoConfig.for_model(__A , **__A ) _A = reduce_loss _A = label_smoothing _A = exclude_bos_score _A = do_marginalize _A = title_sep _A = doc_sep _A = n_docs _A = max_combined_length _A = dataset _A = dataset_split _A = index_name _A = retrieval_vector_size _A = retrieval_batch_size _A = passages_path _A = index_path _A = use_dummy_dataset _A = output_retrieved _A = do_deduplication _A = use_cache if self.forced_eos_token_id is None: _A = getattr(self.generator , '''forced_eos_token_id''' , __A ) @classmethod def __A ( cls: List[Any] , __A: PretrainedConfig , __A: PretrainedConfig , **__A: Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__A ) def __A ( self: Optional[Any] ) -> Dict: _A = copy.deepcopy(self.__dict__ ) _A = self.question_encoder.to_dict() _A = self.generator.to_dict() _A = self.__class__.model_type return output
75
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a_ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Any , a : Path , a : Union[str, None] = None , a : Union[List[str], None] = None , a : Union[str, List[str], None] = None , a : bool = True , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [file for file in os.listdir(a ) if os.path.isfile(os.path.join(a , a ) )] if identifier is not None: SCREAMING_SNAKE_CASE : List[str] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a ): for n_ in n_identifier: SCREAMING_SNAKE_CASE : List[str] = [file for file in files if n_ not in file] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [file for file in files if n_identifier not in file] SCREAMING_SNAKE_CASE : str = ignore_files or [] ignore_files.append("__init__.py" ) SCREAMING_SNAKE_CASE : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a ) if only_modules: SCREAMING_SNAKE_CASE : Any = file.split("." )[0] try: SCREAMING_SNAKE_CASE : int = getattr(a , a ) SCREAMING_SNAKE_CASE : List[Any] = doctest.DocTestSuite(a ) SCREAMING_SNAKE_CASE : str = unittest.TextTestRunner().run(a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"{module_identifier} is not a module." ) else: SCREAMING_SNAKE_CASE : str = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = Path("src/transformers" ) SCREAMING_SNAKE_CASE : List[str] = '''modeling''' SCREAMING_SNAKE_CASE : Any = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(a , identifier=a , ignore_files=a ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Path("src/transformers" ) SCREAMING_SNAKE_CASE : List[str] = '''tokenization''' self.analyze_directory(a , identifier=a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path("src/transformers" ) SCREAMING_SNAKE_CASE : List[str] = '''configuration''' self.analyze_directory(a , identifier=a ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = Path("src/transformers" ) SCREAMING_SNAKE_CASE : Dict = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(a , n_identifier=a ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = Path("docs/source" ) SCREAMING_SNAKE_CASE : List[str] = ['''favicon.ico'''] self.analyze_directory(a , ignore_files=a , only_modules=a )
76
from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , A : Any ) ->Optional[int]: lowerCamelCase__ : Optional[int] = data lowerCamelCase__ : Any = None class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->str: lowerCamelCase__ : Any = None def __lowerCamelCase ( self : Tuple ) ->Any: lowerCamelCase__ : str = self.head while temp is not None: print(temp.data , end=''' ''' ) lowerCamelCase__ : Dict = temp.next print() def __lowerCamelCase ( self : Dict , A : Any ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = Node(A ) lowerCamelCase__ : Dict = self.head lowerCamelCase__ : List[str] = new_node def __lowerCamelCase ( self : Optional[int] , A : int , A : Tuple ) ->List[Any]: if node_data_a == node_data_a: return else: lowerCamelCase__ : Tuple = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase__ : Union[str, Any] = node_a.next lowerCamelCase__ : int = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase__ : Optional[int] = node_a.next if node_a is None or node_a is None: return lowerCamelCase__ , lowerCamelCase__ : str = node_a.data, node_a.data if __name__ == "__main__": _A : List[Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
142
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[tf.Tensor, np.ndarray] ) -> List[int]: '''simple docstring''' if isinstance(_snake_case , np.ndarray ): return list(tensor.shape ) _A = tf.shape(_snake_case ) if tensor.shape == tf.TensorShape(_snake_case ): return dynamic _A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_snake_case )] def _snake_case ( _snake_case : tf.Tensor , _snake_case : Optional[int] = None , _snake_case : Optional[str] = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=_snake_case , name=_snake_case ) def _snake_case ( _snake_case : Dict , _snake_case : Any , _snake_case : List[str] , _snake_case : List[str]=1E-5 , _snake_case : Optional[Any]=-1 ) -> Any: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_snake_case , _snake_case ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _A , _A = tf.nn.moments(_snake_case , axes=[axis] , keepdims=_snake_case ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _A = [1] * inputs.shape.rank _A = shape_list(_snake_case )[axis] _A = tf.reshape(_snake_case , _snake_case ) _A = tf.reshape(_snake_case , _snake_case ) # Compute layer normalization using the batch_normalization # function. _A = tf.nn.batch_normalization( _snake_case , _snake_case , _snake_case , offset=_snake_case , scale=_snake_case , variance_epsilon=_snake_case , ) return outputs def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any]=0 , _snake_case : int=-1 ) -> List[Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _A = tf.shape(_snake_case ) _A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_snake_case , _snake_case ) def _snake_case ( _snake_case : tf.Tensor ) -> tf.Tensor: '''simple docstring''' if not isinstance(_snake_case , tf.Tensor ): _A = tf.convert_to_tensor(_snake_case ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _snake_case ( _snake_case : tf.Tensor , _snake_case : int , _snake_case : str = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( _snake_case , tf.cast(_snake_case , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(_snake_case )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Tuple ) -> List[Any]: '''simple docstring''' _A = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _A = [x for x in data if len(_snake_case ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) _A = np.asarray(_snake_case ) _A = 1 _A = np.array_split(_snake_case , _snake_case ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _A = np.array_split(_snake_case , _snake_case ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_snake_case ): _A = chunk_data else: _A = data def _snake_case ( _snake_case : Any , _snake_case : Tuple ) -> Dict: '''simple docstring''' if name in group.attrs: _A = [n.decode('utf8' ) if hasattr(_snake_case , 'decode' ) else n for n in group.attrs[name]] else: _A = [] _A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(_snake_case , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def _snake_case ( _snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def _expand_single_ad_tensor(_snake_case : str ): if isinstance(_snake_case , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_snake_case , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _snake_case )
271
"""simple docstring""" from __future__ import annotations import time import numpy as np a = [8, 5, 9, 7] a = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : list[int] , _UpperCAmelCase : list[list[int]] , _UpperCAmelCase : list[list[int]] , ): _A = claim_vector _A = allocated_resources_table _A = maximum_claim_table def lowerCAmelCase_ ( self : Tuple ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase_ ( self : Tuple ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase_ ( self : List[Any] ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase_ ( self : List[Any] ): return {self.__need().index(_UpperCAmelCase ): i for i in self.__need()} def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : int ): _A = self.__need() _A = self.__allocated_resources_table _A = self.__available_resources() _A = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: _A = False for each_need in need_list: _A = True for index, need in enumerate(_UpperCAmelCase ): if need > available_resources[index]: _A = False break if execution: _A = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _A = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_UpperCAmelCase ) # update available/freed resources stack _A = np.array(_UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def lowerCAmelCase_ ( self : Union[str, Any] ): print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(_UpperCAmelCase ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(_UpperCAmelCase ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_UpperCAmelCase ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
271
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCAmelCase_ = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class snake_case_ : '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : int = 1_4 ) ->None: if group not in primes: raise ValueError('''Unsupported Group''' ) snake_case_ = primes[group]['''prime'''] snake_case_ = primes[group]['''generator'''] snake_case_ = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def snake_case__( self : int ) ->str: return hex(self.__private_key )[2:] def snake_case__( self : List[str] ) ->str: snake_case_ = pow(self.generator , self.__private_key , self.prime ) return hex(_UpperCamelCase )[2:] def snake_case__( self : Optional[Any] , _UpperCamelCase : int ) ->bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_UpperCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def snake_case__( self : List[str] , _UpperCamelCase : str ) ->str: snake_case_ = int(_UpperCamelCase , base=1_6 ) if not self.is_valid_public_key(_UpperCamelCase ): raise ValueError('''Invalid public key''' ) snake_case_ = pow(_UpperCamelCase , self.__private_key , self.prime ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() @staticmethod def snake_case__( _UpperCamelCase : int , _UpperCamelCase : int ) ->bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCamelCase , (prime - 1) // 2 , _UpperCamelCase ) == 1 ) @staticmethod def snake_case__( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : int = 1_4 ) ->str: snake_case_ = int(_UpperCamelCase , base=1_6 ) snake_case_ = int(_UpperCamelCase , base=1_6 ) snake_case_ = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''Invalid public key''' ) snake_case_ = pow(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase__ = random.Random() def _A ( A__ , A__=1.0 , A__=None , A__=None ): """simple docstring""" if rng is None: __lowercase = global_rng __lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,lowercase__ : List[str] ,lowercase__ : List[Any]=7 ,lowercase__ : Dict=4_0_0 ,lowercase__ : Tuple=2_0_0_0 ,lowercase__ : Optional[int]=1_0 ,lowercase__ : Optional[int]=1_6_0 ,lowercase__ : Dict=8 ,lowercase__ : str=0.0 ,lowercase__ : Union[str, Any]=4_0_0_0 ,lowercase__ : Optional[int]=False ,lowercase__ : List[str]=True ,): __lowercase = parent __lowercase = batch_size __lowercase = min_seq_length __lowercase = max_seq_length __lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase = padding_value __lowercase = sampling_rate __lowercase = return_attention_mask __lowercase = do_normalize __lowercase = feature_size __lowercase = chunk_length __lowercase = hop_length def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str]=False ,lowercase__ : Dict=False ): def _flatten(lowercase__ : Optional[Any] ): return list(itertools.chain(*lowercase__ ) ) if equal_length: __lowercase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = WhisperFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = WhisperFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = feat_extract_first.save_pretrained(lowercase__ )[0] check_json_file_has_correct_format(lowercase__ ) __lowercase = self.feature_extraction_class.from_pretrained(lowercase__ ) __lowercase = feat_extract_first.to_dict() __lowercase = feat_extract_second.to_dict() __lowercase = feat_extract_first.mel_filters __lowercase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase__ ,lowercase__ ) ) self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(lowercase__ ,'''feat_extract.json''' ) feat_extract_first.to_json_file(lowercase__ ) __lowercase = self.feature_extraction_class.from_json_file(lowercase__ ) __lowercase = feat_extract_first.to_dict() __lowercase = feat_extract_second.to_dict() __lowercase = feat_extract_first.mel_filters __lowercase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase__ ,lowercase__ ) ) self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): # Tests that all call wrap to encode_plus and batch_encode_plus __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] __lowercase = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test feature size __lowercase = feature_extractor(lowercase__ ,padding='''max_length''' ,return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowercase = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_features __lowercase = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test batched __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __lowercase = np.asarray(lowercase__ ) __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test truncation required __lowercase = [floats_list((1, x) )[0] for x in range(2_0_0 ,(feature_extractor.n_samples + 5_0_0) ,2_0_0 )] __lowercase = [np.asarray(lowercase__ ) for speech_input in speech_inputs] __lowercase = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowercase = [np.asarray(lowercase__ ) for speech_input in speech_inputs_truncated] __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): import torch __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = np.random.rand(1_0_0 ,3_2 ).astype(np.floataa ) __lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowercase = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) # automatic decoding with librispeech __lowercase = ds.sort('''id''' ).select(range(lowercase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self : str ): # fmt: off __lowercase = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = WhisperFeatureExtractor() __lowercase = feature_extractor(lowercase__ ,return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape ,(1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] ,lowercase__ ,atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = self._load_datasamples(1 )[0] __lowercase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue __lowercase = feat_extract.zero_mean_unit_var_norm([audio] ,attention_mask=lowercase__ )[0] self.assertTrue(np.all(np.mean(lowercase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase__ ) - 1 ) < 1e-3 ) )
104
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : int = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : List[str] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) __magic_name__ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Optional[Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __magic_name__ : List[str] = DDPMScheduler() __magic_name__ : List[Any] = AudioDiffusionPipeline(vqvae=__lowerCamelCase , unet=self.dummy_unet , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) __magic_name__ : Any = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __magic_name__ : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) __magic_name__ : Tuple = pipe(generator=__lowerCamelCase , steps=4 ) __magic_name__ : Optional[Any] = output.audios[0] __magic_name__ : List[str] = output.images[0] __magic_name__ : Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) __magic_name__ : Dict = pipe(generator=__lowerCamelCase , steps=4 , return_dict=__lowerCamelCase ) __magic_name__ : Optional[Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __magic_name__ : int = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __magic_name__ : Tuple = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] __magic_name__ : Any = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __magic_name__ : List[str] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __magic_name__ : int = DDIMScheduler() __magic_name__ : Dict = self.dummy_vqvae_and_unet __magic_name__ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) __magic_name__ : Union[str, Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) np.random.seed(0 ) __magic_name__ : Tuple = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __magic_name__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) __magic_name__ : Optional[int] = pipe(raw_audio=__lowerCamelCase , generator=__lowerCamelCase , start_step=5 , steps=10 ) __magic_name__ : Dict = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __magic_name__ : Any = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __magic_name__ : Any = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __magic_name__ : Union[str, Any] = self.dummy_unet_condition __magic_name__ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__lowerCamelCase , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) __magic_name__ : List[Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) np.random.seed(0 ) __magic_name__ : Union[str, Any] = torch.rand((1, 1, 10) ) __magic_name__ : Optional[Any] = pipe(generator=__lowerCamelCase , encoding=__lowerCamelCase ) __magic_name__ : Union[str, Any] = output.images[0] __magic_name__ : Any = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __magic_name__ : Union[str, Any] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = torch_device __magic_name__ : Optional[Any] = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) __magic_name__ : Optional[int] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __magic_name__ : List[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) __magic_name__ : str = pipe(generator=__lowerCamelCase ) __magic_name__ : Tuple = output.audios[0] __magic_name__ : int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __magic_name__ : Dict = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __magic_name__ : Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
367
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : List[Any] = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _snake_case ( snake_case ): UpperCamelCase__ = 'roformer' def __init__( self , _a=50_000 , _a=None , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_536 , _a=2 , _a=0.02 , _a=1e-12 , _a=0 , _a=False , _a=True , **_a , ): super().__init__(pad_token_id=_a , **_a ) __magic_name__ : Tuple = vocab_size __magic_name__ : Dict = hidden_size if embedding_size is None else embedding_size __magic_name__ : int = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : Optional[int] = intermediate_size __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = max_position_embeddings __magic_name__ : str = type_vocab_size __magic_name__ : Dict = initializer_range __magic_name__ : Tuple = layer_norm_eps __magic_name__ : Optional[int] = rotary_value __magic_name__ : List[Any] = use_cache class _snake_case ( snake_case ): @property def SCREAMING_SNAKE_CASE ( self ): if self.task == "multiple-choice": __magic_name__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: __magic_name__ : str = {0: "batch", 1: "sequence"} __magic_name__ : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
41
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> list: '''simple docstring''' UpperCamelCase__ = len(__A ) for i in range(1 , __A ): UpperCamelCase__ = collection[i] UpperCamelCase__ = 0 UpperCamelCase__ = i - 1 while low <= high: UpperCamelCase__ = (low + high) // 2 if val < collection[mid]: UpperCamelCase__ = mid - 1 else: UpperCamelCase__ = mid + 1 for j in range(__A , __A , -1 ): UpperCamelCase__ = collection[j - 1] UpperCamelCase__ = val return collection if __name__ == "__main__": a__ : Tuple = input('Enter numbers separated by a comma:\n').strip() a__ : str = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
80
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ :Optional[Any] = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a_ :Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class A : """simple docstring""" lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def snake_case__ ( self : Dict )-> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(lowercase_ ) for k, v in self.__dict__.items()} )
282
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A : """simple docstring""" def __init__( self : Any,lowercase_ : Optional[int],lowercase_ : Optional[int]=1_3,lowercase_ : int=7,lowercase_ : List[str]=True,lowercase_ : str=True,lowercase_ : List[str]=True,lowercase_ : Optional[Any]=True,lowercase_ : Dict=9_9,lowercase_ : Dict=2_4,lowercase_ : Union[str, Any]=2,lowercase_ : str=6,lowercase_ : Dict=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : Any=0.1,lowercase_ : Any=0.1,lowercase_ : Any=5_1_2,lowercase_ : Dict=1_6,lowercase_ : List[str]=2,lowercase_ : Dict=0.02,lowercase_ : Any=3,lowercase_ : Dict=None,lowercase_ : List[str]=1_0_0_0,)-> Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = range_bbox def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length, 4],self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self : Dict )-> int: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple,lowercase_ : str,lowercase_ : Optional[int],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : List[str],lowercase_ : Tuple,)-> Optional[Any]: '''simple docstring''' A__ = LiltModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def snake_case__ ( self : Any,lowercase_ : Dict,lowercase_ : List[Any],lowercase_ : List[str],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : List[Any],)-> List[str]: '''simple docstring''' A__ = self.num_labels A__ = LiltForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : int,lowercase_ : Union[str, Any],lowercase_ : int,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : Optional[int],lowercase_ : Tuple,lowercase_ : List[str],)-> Any: '''simple docstring''' A__ = LiltForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,start_positions=lowercase_,end_positions=lowercase_,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : List[str],lowercase_ : str,lowercase_ : Optional[Any],lowercase_ : Optional[Any] )-> Any: '''simple docstring''' return True def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = LiltModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def snake_case__ ( self : List[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LiltModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(lowercase_ ) A__ = torch.tensor([[1, 2]],device=lowercase_ ) A__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]],device=lowercase_ ) # forward pass with torch.no_grad(): A__ = model(input_ids=lowercase_,bbox=lowercase_ ) A__ = torch.Size([1, 2, 7_6_8] ) A__ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]],device=lowercase_,) self.assertTrue(outputs.last_hidden_state.shape,lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3],lowercase_,atol=1E-3 ) )
282
1
'''simple docstring''' def a_ ( __snake_case : list ) -> bool: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__snake_case ) == 1: return True lowerCamelCase_ =series[1] - series[0] for index in range(len(__snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def a_ ( __snake_case : list ) -> float: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowerCamelCase_ =0 for val in series: answer += val return answer / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
75
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =FunnelTokenizer lowercase : List[str] =FunnelTokenizerFast lowercase : Union[str, Any] =True lowercase : int =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =[ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''UNwant\u00E9d,running''' lowerCamelCase_ ='''unwanted, running''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer_class(self.vocab_file ) lowerCamelCase_ =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''' ) lowerCamelCase_ =len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len ) lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''', '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len + [1] * sentence_len )
75
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Union[str, Any] = logging.get_logger(__name__) _snake_case : Dict = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _UpperCAmelCase ( A_ ): """simple docstring""" a_ = "open-llama" def __init__( self : List[str] , lowerCAmelCase_ : Tuple=1_0_0_0_0_0 , lowerCAmelCase_ : Dict=4_0_9_6 , lowerCAmelCase_ : str=1_1_0_0_8 , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : str="silu" , lowerCAmelCase_ : str=2_0_4_8 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Any=1e-6 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Any , ) -> Dict: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = intermediate_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = initializer_range __lowerCAmelCase = rms_norm_eps __lowerCAmelCase = use_cache __lowerCAmelCase = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_dropout_prob __lowerCAmelCase = use_stable_embedding __lowerCAmelCase = shared_input_output_embedding __lowerCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) __lowerCAmelCase = self.rope_scaling.get('type' , snake_case__ ) __lowerCAmelCase = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
360
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case : Union[str, Any] = False try: _snake_case : Tuple = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : str = None , lowerCAmelCase_ : list = [] ) -> Optional[int]: __lowerCAmelCase = 0 __lowerCAmelCase = choices __lowerCAmelCase = prompt if sys.platform == "win32": __lowerCAmelCase = '*' else: __lowerCAmelCase = '➔ ' def lowercase ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str = "" ) -> Any: if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , lowerCAmelCase_ ) else: forceWrite(self.choices[index] , lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : int ) -> List[Any]: if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(lowerCAmelCase_ ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def lowercase ( self : Dict , lowerCAmelCase_ : Direction , lowerCAmelCase_ : int = 1 ) -> Union[str, Any]: __lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(lowerCAmelCase_ ) move_cursor(lowerCAmelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def lowercase ( self : Optional[int] ) -> Tuple: self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def lowercase ( self : str ) -> Optional[Any]: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def lowercase ( self : str ) -> Any: move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def lowercase ( self : Dict ) -> Optional[Any]: move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(lowerCAmelCase_ )] for number in range(1_0 )] ) def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = int(chr(self.current_selection ) ) __lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , lowerCAmelCase_ ) else: return else: return def lowercase ( self : Any , lowerCAmelCase_ : int = 0 ) -> int: if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) __lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(lowerCAmelCase_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: __lowerCAmelCase = int(builtins.input() ) except ValueError: __lowerCAmelCase = default_choice else: __lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(lowerCAmelCase_ , '\n' ) return choice
207
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
271
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("""T""") class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ,_a : T ): '''simple docstring''' _a : List[str] = data _a : Node[T] | None = None def __str__( self : Dict ): '''simple docstring''' return F"""{self.data}""" class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' _a : Node[T] | None = None def __iter__( self : str ): '''simple docstring''' _a : Tuple = self.top while node: yield node.data _a : int = node.next def __str__( self : str ): '''simple docstring''' return "->".join([str(_a ) for item in self] ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(tuple(iter(self ) ) ) def __lowercase ( self : str ): '''simple docstring''' return self.top is None def __lowercase ( self : List[Any] ,_a : T ): '''simple docstring''' _a : int = Node(_a ) if not self.is_empty(): _a : Optional[Any] = self.top _a : List[str] = node def __lowercase ( self : Tuple ): '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top ,_a ) _a : List[Any] = self.top _a : int = self.top.next return pop_node.data def __lowercase ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
271
1
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : str , __lowerCamelCase : pyspark.sql.DataFrame , __lowerCamelCase : Optional[NamedSplit] = None , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : bool = True , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , __lowerCamelCase : str = None , __lowerCamelCase : bool = True , __lowerCamelCase : str = "arrow" , **__lowerCamelCase : Dict , ): super().__init__( split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase :List[Any] = load_from_cache_file UpperCamelCase :Tuple = file_format UpperCamelCase :Any = Spark( df=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , working_dir=__lowerCamelCase , **__lowerCamelCase , ) def _A ( self : str ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase :List[str] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
38
'''simple docstring''' from __future__ import annotations import requests _A : str =set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase = 1 , UpperCamelCase = "new" , UpperCamelCase = None ) -> dict: lowerCamelCase__ : Any = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(UpperCamelCase ) - valid_terms ) ): lowerCamelCase__ : str = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(UpperCamelCase ) lowerCamelCase__ : str = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 429: raise requests.HTTPError lowerCamelCase__ : Optional[int] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(UpperCamelCase )} lowerCamelCase__ : Dict = {} for id_ in range(UpperCamelCase ): lowerCamelCase__ : Union[str, Any] = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
41
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _lowercase: List[str] = logging.get_logger(__name__) def a( A : List[Any] , A : int , A : Any , A : str=None , A : Dict=None ) -> Optional[Any]: """simple docstring""" if "." in tensor_name: a = tensor_name.split("." ) for split in splits[:-1]: a = getattr(A , A ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) a = new_module a = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) a = tensor_name in module._buffers a = getattr(A , A ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) a = False a = False if is_buffer or not is_bitsandbytes_available(): a = False a = False else: a = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) a = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: a = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: a = old_value.to(A ) elif isinstance(A , torch.Tensor ): a = value.to("cpu" ) if value.dtype == torch.inta: a = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: a = torch.tensor(A , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A ) and fpaa_statistics is None: a = new_value.T a = old_value.__dict__ if is_abit: a = bnb.nn.IntaParams(A , requires_grad=A , **A ).to(A ) elif is_abit: a = bnb.nn.Paramsabit(A , requires_grad=A , **A ).to(A ) a = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(A ) ) else: if value is None: a = old_value.to(A ) elif isinstance(A , torch.Tensor ): a = value.to(A ) else: a = torch.tensor(A , device=A ) if is_buffer: a = new_value else: a = nn.Parameter(A , requires_grad=old_value.requires_grad ) a = new_value def a( A : Any , A : str=None , A : str=None , A : List[str]=None , A : Union[str, Any]=False ) -> Dict: """simple docstring""" for name, module in model.named_children(): if current_key_name is None: a = [] current_key_name.append(A ) if (isinstance(A , nn.Linear ) or isinstance(A , A )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(A ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(A , A ): a , a = module.weight.shape else: a = module.in_features a = module.out_features if quantization_config.quantization_method() == "llm_int8": a = bnb.nn.LinearabitLt( A , A , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) a = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: a = bnb.nn.Linearabit( A , A , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) a = True # Store the module class in case we need to transpose the weight later a = type(A ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A ) if len(list(module.children() ) ) > 0: a , a = _replace_with_bnb_linear( A , A , A , A , has_been_replaced=A , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a( A : List[Any] , A : Dict=None , A : Dict=None , A : Optional[int]=None ) -> Dict: """simple docstring""" a = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert a , a = _replace_with_bnb_linear( A , A , A , A ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def a( *A : Dict , **A : Union[str, Any] ) -> str: """simple docstring""" warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , A , ) return replace_with_bnb_linear(*A , **A ) def a( *A : str , **A : List[str] ) -> Optional[Any]: """simple docstring""" warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , A , ) return set_module_quantized_tensor_to_device(*A , **A ) def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = deepcopy(A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() a = find_tied_parameters(A ) # For compatibility with Accelerate < 0.18 if isinstance(A , A ): a = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: a = sum(A , [] ) a = len(A ) > 0 # Check if it is a base model a = not hasattr(A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a = list(model.named_children() ) a = [list_modules[-1][0]] # add last module together with tied weights a = set(A ) - set(A ) a = list(set(A ) ) + list(A ) # remove ".weight" from the keys a = [".weight", ".bias"] a = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a = name.replace(A , "" ) filtered_module_names.append(A ) return filtered_module_names
71
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _lowercase: Optional[Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" _lowercase: Union[str, Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" _lowercase: Union[str, Any] = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" _lowercase: List[Any] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" _lowercase: List[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=[1, 10, 100] , lowerCamelCase_=4 , lowerCamelCase_=3.0 ): """simple docstring""" if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=lowerCamelCase_ ) as executor: a = [] a = Counter() a = 0 a = defaultdict(lowerCamelCase_ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): for candidate in candidates: a = candidate + "\n" + test_case a = (test_program, timeout, task_id, completion_id[task_id]) a = executor.submit(lowerCamelCase_ , *lowerCamelCase_ ) futures.append(lowerCamelCase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase_ ): a = future.result() results[result["task_id"]].append((result["completion_id"], result) ) a , a = [], [] for result in results.values(): result.sort() a = [r[1]["passed"] for r in result] total.append(len(lowerCamelCase_ ) ) correct.append(sum(lowerCamelCase_ ) ) a = np.array(lowerCamelCase_ ) a = np.array(lowerCamelCase_ ) a = k a = {F'''pass@{k}''': estimate_pass_at_k(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def a( A : Optional[Any] , A : str , A : Dict ) -> Optional[int]: """simple docstring""" def estimator(A : int , A : int , A : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A , A ): a = itertools.repeat(A , len(A ) ) else: assert len(A ) == len(A ) a = iter(A ) return np.array([estimator(int(A ) , int(A ) , A ) for n, c in zip(A , A )] )
71
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _lowerCamelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase : Dict = 256 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = ["melgan"] def __init__( self : Dict , lowercase : SpectrogramNotesEncoder , lowercase : SpectrogramContEncoder , lowercase : TaFilmDecoder , lowercase : DDPMScheduler , lowercase : OnnxRuntimeModel if is_onnx_available() else Any , ): '''simple docstring''' super().__init__() # From MELGAN _snake_case = math.log(1E-5 ) # Matches MelGAN training. _snake_case = 4.0 # Largest value for most examples _snake_case = 128 self.register_modules( notes_encoder=lowercase , continuous_encoder=lowercase , decoder=lowercase , scheduler=lowercase , melgan=lowercase , ) def A ( self : Any , lowercase : int , lowercase : Dict=(-1.0, 1.0) , lowercase : Dict=False ): '''simple docstring''' _snake_case , _snake_case = output_range if clip: _snake_case = torch.clip(lowercase , self.min_value , self.max_value ) # Scale to [0, 1]. _snake_case = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : str=(-1.0, 1.0) , lowercase : List[str]=False ): '''simple docstring''' _snake_case , _snake_case = input_range _snake_case = torch.clip(lowercase , lowercase , lowercase ) if clip else outputs # Scale to [0, 1]. _snake_case = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Optional[int] ): '''simple docstring''' _snake_case = input_tokens > 0 _snake_case , _snake_case = self.notes_encoder( encoder_input_tokens=lowercase , encoder_inputs_mask=lowercase ) _snake_case , _snake_case = self.continuous_encoder( encoder_inputs=lowercase , encoder_inputs_mask=lowercase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def A ( self : Optional[int] , lowercase : List[str] , lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' _snake_case = noise_time if not torch.is_tensor(lowercase ): _snake_case = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowercase ) and len(timesteps.shape ) == 0: _snake_case = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _snake_case = self.decoder( encodings_and_masks=lowercase , decoder_input_tokens=lowercase , decoder_noise_time=lowercase ) return logits @torch.no_grad() def __call__( self : List[Any] , lowercase : List[List[int]] , lowercase : Optional[torch.Generator] = None , lowercase : int = 100 , lowercase : bool = True , lowercase : str = "numpy" , lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase : int = 1 , ): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase , lowercase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowercase )}.''' ) _snake_case = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _snake_case = np.zeros([1, 0, self.n_dims] , np.floataa ) _snake_case = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowercase , device=self.device ) for i, encoder_input_tokens in enumerate(lowercase ): if i == 0: _snake_case = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _snake_case = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowercase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _snake_case = ones _snake_case = self.scale_features( lowercase , output_range=[-1.0, 1.0] , clip=lowercase ) _snake_case = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowercase , continuous_mask=lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _snake_case = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowercase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _snake_case = self.decode( encodings_and_masks=lowercase , input_tokens=lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _snake_case = self.scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _snake_case = self.scale_to_features(lowercase , input_range=[-1.0, 1.0] ) _snake_case = mel[:1] _snake_case = mel.cpu().float().numpy() _snake_case = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase , lowercase ) logger.info('Generated segment' , lowercase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": _snake_case = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _snake_case = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowercase )
282
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList(lowercase ) def A ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : Union[torch.Tensor, float, int] , lowercase : torch.Tensor , lowercase : List[torch.tensor] , lowercase : List[float] , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[Dict[str, Any]] = None , lowercase : bool = False , lowercase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowercase , lowercase , self.nets ) ): _snake_case , _snake_case = controlnet( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # merge samples if i == 0: _snake_case , _snake_case = down_samples, mid_sample else: _snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase , lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A ( self : Dict , lowercase : Union[str, os.PathLike] , lowercase : bool = True , lowercase : Callable = None , lowercase : bool = False , lowercase : Optional[str] = None , ): '''simple docstring''' _snake_case = 0 _snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase , is_main_process=lowercase , save_function=lowercase , safe_serialization=lowercase , variant=lowercase , ) idx += 1 _snake_case = model_path_to_save + f'''_{idx}''' @classmethod def A ( cls : Any , lowercase : Optional[Union[str, os.PathLike]] , **lowercase : List[str] ): '''simple docstring''' _snake_case = 0 _snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _snake_case = pretrained_model_path while os.path.isdir(lowercase ): _snake_case = ControlNetModel.from_pretrained(lowercase , **lowercase ) controlnets.append(lowercase ) idx += 1 _snake_case = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(lowercase )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowercase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(lowercase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowercase )
282
1
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ : str =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[int] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : int ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : Tuple =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : Union[str, Any] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : List[str] =jax.random.PRNGKey(0 ) A__ : Any =50 A__ : Optional[Any] =jax.device_count() A__ : List[Any] =num_samples * [prompt] A__ : str =num_samples * [init_image] A__ : int =num_samples * [mask_image] A__ , A__ , A__ : List[str] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : List[Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : str =shard(lowerCAmelCase_ ) A__ : int =shard(lowerCAmelCase_ ) A__ : Dict =shard(lowerCAmelCase_ ) A__ : List[Any] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : Optional[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : Dict =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Optional[int] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
136
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int ) -> None: '''simple docstring''' A__ : Any =num_of_nodes A__ : list[list[int]] =[] A__ : dict[int, int] ={} def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : int , lowerCAmelCase_ : int ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: A__ : str =self.find_component(lowerCAmelCase_ ) def lowercase__ ( self : int , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: A__ : int =v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: A__ : List[str] =self.find_component(lowerCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(lowerCAmelCase_ ) def lowercase__ ( self : str ) -> None: '''simple docstring''' A__ : Union[str, Any] =[] A__ : List[str] =0 A__ : list[Any] =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) A__ : List[str] =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: A__ , A__ , A__ : Any =edge A__ : Tuple =self.m_component[u] A__ : Optional[Any] =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): A__ : Optional[int] =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ , A__ , A__ : Tuple =edge A__ : Any =self.m_component[u] A__ : Optional[Any] =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 A__ : int =[-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def __lowerCamelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
136
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Optional[int]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =scope def __A (self ) -> Optional[int]: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self ) -> Optional[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _lowercase =LlamaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Any: _lowercase =True _lowercase =LlamaModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: _lowercase =LlamaForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[Any]: _lowercase =True _lowercase =True _lowercase =LlamaForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase , ) _lowercase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowercase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase =torch.cat([input_mask, next_mask] , dim=-1 ) _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] # select random slice _lowercase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase =output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def __A (self ) -> Any: _lowercase =self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[int]: _lowercase =LlamaModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> Dict: self.config_tester.run_common_tests() def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase =type self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A (self ) -> str: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase ='''single_label_classification''' _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A (self ) -> Dict: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase ='''multi_label_classification''' _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __A (self ) -> Dict: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __A (self , UpperCAmelCase ) -> Optional[Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =ids_tensor([1, 1_0] , config.vocab_size ) _lowercase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _lowercase =LlamaModel(UpperCAmelCase ) original_model.to(UpperCAmelCase ) original_model.eval() _lowercase =original_model(UpperCAmelCase ).last_hidden_state _lowercase =original_model(UpperCAmelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _lowercase ={'''type''': scaling_type, '''factor''': 10.0} _lowercase =LlamaModel(UpperCAmelCase ) scaled_model.to(UpperCAmelCase ) scaled_model.eval() _lowercase =scaled_model(UpperCAmelCase ).last_hidden_state _lowercase =scaled_model(UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> Tuple: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> List[str]: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> int: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __A (self ) -> Dict: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) _lowercase =torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off _lowercase =torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __A (self ) -> int: _lowercase ='''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' _lowercase ='''Simply put, the theory of relativity states that ''' _lowercase =LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) _lowercase =tokenizer.encode(UpperCAmelCase , return_tensors='''pt''' ) _lowercase =LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCAmelCase ) # greedy generation outputs _lowercase =model.generate(UpperCAmelCase , max_new_tokens=6_4 , top_p=UpperCAmelCase , temperature=1 , do_sample=UpperCAmelCase ) _lowercase =tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
5
from math import asin, atan, cos, radians, sin, sqrt, tan A__ : Optional[int] = 637_8137.0 A__ : List[str] = 635_6752.31_4245 A__ : Union[str, Any] = 6_37_81_37 def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = (AXIS_A - AXIS_B) / AXIS_A lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) lowercase__ = radians(lowerCamelCase_ ) lowercase__ = radians(lowerCamelCase_ ) # Equation lowercase__ = sin((phi_a - phi_a) / 2 ) lowercase__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase__ = sqrt(sin_sq_phi + (cos(lowerCamelCase_ ) * cos(lowerCamelCase_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
207
0
from __future__ import annotations def UpperCamelCase ( _A ): """simple docstring""" if len(_A ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __magic_name__ : Dict = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
138
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __magic_name__: Union[str, Any] = False @skip_mps class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[int] = StableDiffusionAttendAndExcitePipeline lowercase__ : Tuple = False lowercase__ : List[str] = TEXT_TO_IMAGE_PARAMS lowercase__ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) lowercase__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __magic_name__ ( cls ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls ) -> Optional[Any]: super().tearDownClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase__ , ) __magic_name__ : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) __magic_name__ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __magic_name__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __magic_name__ : Any = CLIPTextModel(lowerCAmelCase__ ) __magic_name__ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __magic_name__ : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[Any]: if str(lowerCAmelCase__ ).startswith("""mps""" ): __magic_name__ : int = torch.manual_seed(lowerCAmelCase__ ) else: __magic_name__ : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def __magic_name__ ( self ) -> Dict: __magic_name__ : int = """cpu""" __magic_name__ : Union[str, Any] = self.get_dummy_components() __magic_name__ : int = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __magic_name__ : str = pipe(**lowerCAmelCase__ ).images __magic_name__ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __magic_name__ : Dict = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) __magic_name__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1e-3 ) def __magic_name__ ( self ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self ) -> int: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __magic_name__ ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __magic_name__ ( self ) -> Any: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> Dict: super().test_save_load_local(expected_max_difference=5e-4 ) def __magic_name__ ( self ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase ): @classmethod def __magic_name__ ( cls ) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls ) -> List[Any]: super().tearDownClass() torch.use_deterministic_algorithms(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = torch.manual_seed(51 ) __magic_name__ : Tuple = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) __magic_name__ : List[str] = """a painting of an elephant with glasses""" __magic_name__ : Any = [5, 7] __magic_name__ : List[Any] = pipe( prompt=lowerCAmelCase__ , token_indices=lowerCAmelCase__ , guidance_scale=7.5 , generator=lowerCAmelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] __magic_name__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
138
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> float: """simple docstring""" if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a : Dict = logging.get_logger(__name__) @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , "vision" ) self.check_model_type(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , **lowerCAmelCase__ ) -> Any: return {}, {}, {} def __a ( self , lowerCAmelCase__ ) -> Tuple: a : Union[str, Any] = load_image(lowerCAmelCase__ ) a : List[Any] = image.size a : Any = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) return model_inputs def __a ( self , lowerCAmelCase__ ) -> Dict: a : List[str] = self.model(**lowerCAmelCase__ ) return model_outputs def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: a : Optional[int] = model_outputs.predicted_depth a : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=lowerCAmelCase__ ) a : str = prediction.squeeze().cpu().numpy() a : Any = (output * 255 / np.max(lowerCAmelCase__ )).astype("uint8" ) a : str = Image.fromarray(lowerCAmelCase__ ) a : Dict = {} a : str = predicted_depth a : Optional[Any] = depth return output_dict
79
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Any = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def A ( a_ ,a_=0.999 ,a_="cosine" ,) -> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(a_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __UpperCamelCase : str =[] for i in range(a_ ): __UpperCamelCase : Optional[int] =i / num_diffusion_timesteps __UpperCamelCase : Optional[Any] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a_ ) / alpha_bar_fn(a_ ) ,a_ ) ) return torch.tensor(a_ ,dtype=torch.floataa ) class __A ( a , a ): """simple docstring""" UpperCamelCase__ : Tuple =[e.name for e in KarrasDiffusionSchedulers] UpperCamelCase__ : Optional[Any] =2 @register_to_config def __init__( self , lowerCamelCase__ = 1000 , lowerCamelCase__ = 0.00_085 , lowerCamelCase__ = 0.012 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = "linspace" , lowerCamelCase__ = 0 , ): """simple docstring""" if trained_betas is not None: __UpperCamelCase : Optional[int] =torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCamelCase : Tuple =torch.linspace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase : int =( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase : Dict =betas_for_alpha_bar(lowerCamelCase__ ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __UpperCamelCase : Dict =1.0 - self.betas __UpperCamelCase : List[Any] =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" if schedule_timesteps is None: __UpperCamelCase : Dict =self.timesteps __UpperCamelCase : List[Any] =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCamelCase : List[str] =1 if len(lowerCamelCase__ ) > 1 else 0 else: __UpperCamelCase : int =timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep __UpperCamelCase : Optional[Any] =self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.index_for_timestep(lowerCamelCase__ ) if self.state_in_first_order: __UpperCamelCase : str =self.sigmas[step_index] else: __UpperCamelCase : Optional[int] =self.sigmas_interpol[step_index] __UpperCamelCase : Any =sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ): """simple docstring""" __UpperCamelCase : Dict =num_inference_steps __UpperCamelCase : Optional[int] =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCamelCase : Optional[int] =np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase__ , dtype=lowerCamelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCamelCase : int =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase : List[Any] =(np.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCamelCase : List[str] =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase : Optional[int] =(np.arange(lowerCamelCase__ , 0 , -step_ratio )).round().copy().astype(lowerCamelCase__ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __UpperCamelCase : Any =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCamelCase : Optional[Any] =torch.from_numpy(np.log(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : Any =np.interp(lowerCamelCase__ , np.arange(0 , len(lowerCamelCase__ ) ) , lowerCamelCase__ ) __UpperCamelCase : List[Any] =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCamelCase : Dict =torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) # interpolate sigmas __UpperCamelCase : Tuple =sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __UpperCamelCase : int =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCamelCase : Optional[Any] =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCamelCase__ ).startswith('mps' ): # mps does not support float64 __UpperCamelCase : Tuple =torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ , dtype=torch.floataa ) else: __UpperCamelCase : List[str] =torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) # interpolate timesteps __UpperCamelCase : Union[str, Any] =self.sigma_to_t(lowerCamelCase__ ).to(lowerCamelCase__ , dtype=timesteps.dtype ) __UpperCamelCase : List[Any] =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __UpperCamelCase : List[Any] =torch.cat([timesteps[:1], interleaved_timesteps] ) __UpperCamelCase : Optional[int] =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCamelCase : List[Any] =defaultdict(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =sigma.log() # get distribution __UpperCamelCase : Optional[int] =log_sigma - self.log_sigmas[:, None] # get sigmas range __UpperCamelCase : List[str] =dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __UpperCamelCase : List[Any] =low_idx + 1 __UpperCamelCase : int =self.log_sigmas[low_idx] __UpperCamelCase : Tuple =self.log_sigmas[high_idx] # interpolate sigmas __UpperCamelCase : str =(low - log_sigma) / (low - high) __UpperCamelCase : List[Any] =w.clamp(0 , 1 ) # transform interpolation to time range __UpperCamelCase : List[str] =(1 - w) * low_idx + w * high_idx __UpperCamelCase : Dict =t.view(sigma.shape ) return t @property def __lowercase ( self ): """simple docstring""" return self.sample is None def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ): """simple docstring""" __UpperCamelCase : int =self.index_for_timestep(lowerCamelCase__ ) # advance index counter by 1 __UpperCamelCase : str =timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCamelCase : List[str] =self.sigmas[step_index] __UpperCamelCase : str =self.sigmas_interpol[step_index + 1] __UpperCamelCase : Any =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __UpperCamelCase : int =self.sigmas[step_index - 1] __UpperCamelCase : Tuple =self.sigmas_interpol[step_index] __UpperCamelCase : List[Any] =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCamelCase : Any =0 __UpperCamelCase : Tuple =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCamelCase : List[str] =sigma_hat if self.state_in_first_order else sigma_interpol __UpperCamelCase : Union[str, Any] =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCamelCase : Any =sigma_hat if self.state_in_first_order else sigma_interpol __UpperCamelCase : Optional[int] =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCamelCase : List[Any] =(sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCamelCase : List[str] =sigma_interpol - sigma_hat # store for 2nd order step __UpperCamelCase : Tuple =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __UpperCamelCase : Optional[Any] =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep __UpperCamelCase : Optional[Any] =sigma_next - sigma_hat __UpperCamelCase : List[Any] =self.sample __UpperCamelCase : int =None __UpperCamelCase : Union[str, Any] =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : int =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase__ ): # mps does not support float64 __UpperCamelCase : int =self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCamelCase : Union[str, Any] =timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCamelCase : Optional[Any] =self.timesteps.to(original_samples.device ) __UpperCamelCase : Tuple =timesteps.to(original_samples.device ) __UpperCamelCase : Any =[self.index_for_timestep(lowerCamelCase__ , lowerCamelCase__ ) for t in timesteps] __UpperCamelCase : List[Any] =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCamelCase : int =sigma.unsqueeze(-1 ) __UpperCamelCase : Dict =original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
71
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ :List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A_ :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A_ :Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A_ :List[str] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A_ :Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[1, 10, 100] , lowerCamelCase__=4 , lowerCamelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =Counter() __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: __UpperCamelCase : str =candidate + '\n' + test_case __UpperCamelCase : Any =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : Optional[Any] =executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): __UpperCamelCase : str =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase : int =[], [] for result in results.values(): result.sort() __UpperCamelCase : str =[r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =np.array(lowerCamelCase__ ) __UpperCamelCase : List[str] =np.array(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =k __UpperCamelCase : List[Any] ={f'pass@{k}': estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A ( a_ ,a_ ,a_ ) -> Optional[int]: def estimator(a_ ,a_ ,a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =itertools.repeat(a_ ,len(a_ ) ) else: assert len(a_ ) == len(a_ ) __UpperCamelCase : List[Any] =iter(a_ ) return np.array([estimator(int(a_ ) ,int(a_ ) ,a_ ) for n, c in zip(a_ ,a_ )] )
71
1
def lowerCAmelCase_ ( _snake_case : list ) -> float: '''simple docstring''' __magic_name__ : Any = 0 while len(_snake_case ) > 1: __magic_name__ : List[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __magic_name__ : int = files.index(min(_snake_case ) ) temp += files[min_index] files.pop(_snake_case ) files.append(_snake_case ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
41
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Optional[int] = ["model.decoder.embed_positions.weights"] def lowerCAmelCase_ ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' if "emb" in name: __magic_name__ : Optional[Any] = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: __magic_name__ : List[str] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: __magic_name__ : Dict = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: __magic_name__ : Optional[Any] = name.replace("linear1" , "fc1" ) if "linear2" in name: __magic_name__ : List[str] = name.replace("linear2" , "fc2" ) if "norm1" in name: __magic_name__ : Optional[int] = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: __magic_name__ : Union[str, Any] = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: __magic_name__ : Any = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: __magic_name__ : Union[str, Any] = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: __magic_name__ : Optional[Any] = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: __magic_name__ : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def lowerCAmelCase_ ( _snake_case : OrderedDict , _snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __magic_name__ : int = list(state_dict.keys() ) __magic_name__ : Dict = {} for key in keys: __magic_name__ : Any = state_dict.pop(_snake_case ) __magic_name__ : Optional[Any] = rename_keys(_snake_case ) if "in_proj_weight" in key: # split fused qkv proj __magic_name__ : Optional[int] = val[:hidden_size, :] __magic_name__ : List[str] = val[hidden_size : 2 * hidden_size, :] __magic_name__ : List[str] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __magic_name__ : int = val else: __magic_name__ : str = val return state_dict, enc_dec_proj_state_dict def lowerCAmelCase_ ( _snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __magic_name__ : Tuple = 1024 __magic_name__ : List[str] = 24 __magic_name__ : str = 16 elif checkpoint == "medium": __magic_name__ : Optional[int] = 1536 __magic_name__ : Dict = 48 __magic_name__ : List[Any] = 24 elif checkpoint == "large": __magic_name__ : Any = 2048 __magic_name__ : int = 48 __magic_name__ : str = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) __magic_name__ : str = MusicgenDecoderConfig( hidden_size=_snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=_snake_case , num_attention_heads=_snake_case , ) return config @torch.no_grad() def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=None , _snake_case : List[str]=None , _snake_case : Optional[Any]="cpu" ) -> List[str]: '''simple docstring''' __magic_name__ : Dict = MusicGen.get_pretrained(_snake_case , device=_snake_case ) __magic_name__ : Any = decoder_config_from_checkpoint(_snake_case ) __magic_name__ : Any = fairseq_model.lm.state_dict() __magic_name__ , __magic_name__ : Optional[Any] = rename_state_dict( _snake_case , hidden_size=decoder_config.hidden_size ) __magic_name__ : str = TaEncoderModel.from_pretrained("t5-base" ) __magic_name__ : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" ) __magic_name__ : int = MusicgenForCausalLM(_snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __magic_name__ , __magic_name__ : List[str] = decoder.load_state_dict(_snake_case , strict=_snake_case ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_snake_case ) if len(_snake_case ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(_snake_case ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model __magic_name__ : Optional[Any] = MusicgenForConditionalGeneration(text_encoder=_snake_case , audio_encoder=_snake_case , decoder=_snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_snake_case ) # check we can do a forward pass __magic_name__ : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __magic_name__ : List[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __magic_name__ : Dict = model(input_ids=_snake_case , decoder_input_ids=_snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor __magic_name__ : Optional[Any] = AutoTokenizer.from_pretrained("t5-base" ) __magic_name__ : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) __magic_name__ : Union[str, Any] = MusicgenProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) # set the appropriate bos/pad token ids __magic_name__ : List[str] = 2048 __magic_name__ : List[str] = 2048 # set other default generation config params __magic_name__ : Union[str, Any] = int(30 * audio_encoder.config.frame_rate ) __magic_name__ : Optional[Any] = True __magic_name__ : Dict = 3.0 if pytorch_dump_folder is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(_snake_case ) processor.push_to_hub(_snake_case ) if __name__ == "__main__": snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) snake_case : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
41
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : str = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : str = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = RobertaTokenizer def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : Optional[int]="<s>" , lowerCAmelCase_ : Optional[Any]="<unk>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Any=True , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : int): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
136
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' lowercase_ = len(__lowerCAmelCase ) lowercase_ = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): lowercase_ = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
136
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase=0.0 , __lowercase = None , __lowercase = "geglu" , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = True , __lowercase = "layer_norm" , __lowercase = False , ): super().__init__() __lowerCAmelCase = only_cross_attention __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowerCAmelCase = AdaLayerNorm(__lowercase , __lowercase ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase = AdaLayerNormZero(__lowercase , __lowercase ) else: __lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase ) __lowerCAmelCase = Attention( query_dim=__lowercase , heads=__lowercase , dim_head=__lowercase , dropout=__lowercase , bias=__lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowerCAmelCase = ( AdaLayerNorm(__lowercase , __lowercase ) if self.use_ada_layer_norm else nn.LayerNorm(__lowercase , elementwise_affine=__lowercase ) ) __lowerCAmelCase = Attention( query_dim=__lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowercase , dim_head=__lowercase , dropout=__lowercase , bias=__lowercase , upcast_attention=__lowercase , ) # is self-attn if encoder_hidden_states is none else: __lowerCAmelCase = None __lowerCAmelCase = None # 3. Feed-forward __lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase ) __lowerCAmelCase = FeedForward(__lowercase , dropout=__lowercase , activation_fn=__lowercase , final_dropout=__lowercase ) # let chunk size default to None __lowerCAmelCase = None __lowerCAmelCase = 0 def _snake_case (self , __lowercase , __lowercase ): # Sets chunk feed-forward __lowerCAmelCase = chunk_size __lowerCAmelCase = dim def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __lowerCAmelCase = self.norma(__lowercase , __lowercase ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.norma( __lowercase , __lowercase , __lowercase , hidden_dtype=hidden_states.dtype ) else: __lowerCAmelCase = self.norma(__lowercase ) __lowerCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowerCAmelCase = self.attna( __lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowercase , **__lowercase , ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_msa.unsqueeze(1 ) * attn_output __lowerCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowerCAmelCase = ( self.norma(__lowercase , __lowercase ) if self.use_ada_layer_norm else self.norma(__lowercase ) ) __lowerCAmelCase = self.attna( __lowercase , encoder_hidden_states=__lowercase , attention_mask=__lowercase , **__lowercase , ) __lowerCAmelCase = attn_output + hidden_states # 3. Feed-forward __lowerCAmelCase = self.norma(__lowercase ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __lowerCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowerCAmelCase = torch.cat( [self.ff(__lowercase ) for hid_slice in norm_hidden_states.chunk(__lowercase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __lowerCAmelCase = self.ff(__lowercase ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output __lowerCAmelCase = ff_output + hidden_states return hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase = None , __lowercase = 4 , __lowercase = 0.0 , __lowercase = "geglu" , __lowercase = False , ): super().__init__() __lowerCAmelCase = int(dim * mult ) __lowerCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowerCAmelCase = GELU(__lowercase , __lowercase ) if activation_fn == "gelu-approximate": __lowerCAmelCase = GELU(__lowercase , __lowercase , approximate='''tanh''' ) elif activation_fn == "geglu": __lowerCAmelCase = GEGLU(__lowercase , __lowercase ) elif activation_fn == "geglu-approximate": __lowerCAmelCase = ApproximateGELU(__lowercase , __lowercase ) __lowerCAmelCase = nn.ModuleList([] ) # project in self.net.append(__lowercase ) # project dropout self.net.append(nn.Dropout(__lowercase ) ) # project out self.net.append(nn.Linear(__lowercase , __lowercase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowercase ) ) def _snake_case (self , __lowercase ): for module in self.net: __lowerCAmelCase = module(__lowercase ) return hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase = "none" ): super().__init__() __lowerCAmelCase = nn.Linear(__lowercase , __lowercase ) __lowerCAmelCase = approximate def _snake_case (self , __lowercase ): if gate.device.type != "mps": return F.gelu(__lowercase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.proj(__lowercase ) __lowerCAmelCase = self.gelu(__lowercase ) return hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = nn.Linear(__lowercase , dim_out * 2 ) def _snake_case (self , __lowercase ): if gate.device.type != "mps": return F.gelu(__lowercase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = self.proj(__lowercase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = nn.Linear(__lowercase , __lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.proj(__lowercase ) return x * torch.sigmoid(1.7_0_2 * x ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = nn.Embedding(__lowercase , __lowercase ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(__lowercase , embedding_dim * 2 ) __lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.linear(self.silu(self.emb(__lowercase ) ) ) __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__lowercase , 2 ) __lowerCAmelCase = self.norm(__lowercase ) * (1 + scale) + shift return x class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = CombinedTimestepLabelEmbeddings(__lowercase , __lowercase ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(__lowercase , 6 * embedding_dim , bias=__lowercase ) __lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase , eps=1e-6 ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=None ): __lowerCAmelCase = self.linear(self.silu(self.emb(__lowercase , __lowercase , hidden_dtype=__lowercase ) ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = emb.chunk(6 , dim=1 ) __lowerCAmelCase = self.norm(__lowercase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = 1e-5 ): super().__init__() __lowerCAmelCase = num_groups __lowerCAmelCase = eps if act_fn is None: __lowerCAmelCase = None else: __lowerCAmelCase = get_activation(__lowercase ) __lowerCAmelCase = nn.Linear(__lowercase , out_dim * 2 ) def _snake_case (self , __lowercase , __lowercase ): if self.act: __lowerCAmelCase = self.act(__lowercase ) __lowerCAmelCase = self.linear(__lowercase ) __lowerCAmelCase = emb[:, :, None, None] __lowerCAmelCase , __lowerCAmelCase = emb.chunk(2 , dim=1 ) __lowerCAmelCase = F.group_norm(__lowercase , self.num_groups , eps=self.eps ) __lowerCAmelCase = x * (1 + scale) + shift return x
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[Any] = AltDiffusionPipeline lowerCAmelCase_ : str = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : int = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase : str = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) lowerCAmelCase : Optional[Any] = CLIPTextModel(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) lowerCAmelCase : Tuple = 77 lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int=0 ): if str(UpperCAmelCase_ ).startswith('mps' ): lowerCAmelCase : Optional[Any] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase : Tuple = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase : str = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Tuple ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[str] = self.get_dummy_components() torch.manual_seed(0 ) lowerCAmelCase : List[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase : List[Any] = RobertaSeriesModelWithTransformation(UpperCAmelCase_ ) lowerCAmelCase : str = text_encoder lowerCAmelCase : Optional[Any] = AltDiffusionPipeline(**UpperCAmelCase_ ) lowerCAmelCase : List[str] = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(UpperCAmelCase_ ) lowerCAmelCase : str = 'A photo of an astronaut' lowerCAmelCase : Tuple = alt_pipe(**UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output.images lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Dict = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : str ): lowerCAmelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) torch.manual_seed(0 ) lowerCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase : Optional[Any] = RobertaSeriesModelWithTransformation(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = text_encoder lowerCAmelCase : List[str] = AltDiffusionPipeline(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = alt_pipe(**UpperCAmelCase_ ) lowerCAmelCase : int = output.images lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[str] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowercase__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ): # make sure here that pndm scheduler skips prk lowerCAmelCase : Any = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=UpperCAmelCase_ ) lowerCAmelCase : Any = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : List[str] = 'A painting of a squirrel eating a burger' lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = alt_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) lowerCAmelCase : int = output.images lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Tuple = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[Any] ): lowerCAmelCase : List[str] = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) lowerCAmelCase : int = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Any = 'A painting of a squirrel eating a burger' lowerCAmelCase : str = torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = alt_pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='numpy' ) lowerCAmelCase : Optional[int] = output.images lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : List[str] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
138
from datetime import datetime as dt import os from github import Github __A : Dict = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase : List[str] = g.get_repo('huggingface/transformers' ) lowerCAmelCase : Tuple = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase : Dict = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
138
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A ( _a ): lowercase_ = 'big_bird' def __init__( self : Any , lowerCAmelCase_ : Optional[Any]=5_03_58 , lowerCAmelCase_ : Optional[Any]=7_68 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Optional[int]=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Any="gelu_new" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=40_96 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Any=0.0_2 , lowerCAmelCase_ : int=1e-12 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=66 , lowerCAmelCase_ : List[Any]="block_sparse" , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=64 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Union[str, Any] , ) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , sep_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = type_vocab_size _a = layer_norm_eps _a = use_cache _a = rescale_embeddings _a = attention_type _a = use_bias _a = block_size _a = num_random_blocks _a = classifier_dropout class A ( _a ): @property def __lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
179
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _snake_case : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( _a ): def __init__( self : Dict , lowerCAmelCase_ : CLIPSegForImageSegmentation , lowerCAmelCase_ : CLIPSegProcessor , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ) -> int: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: _a = ( F'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' F' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _a = dict(scheduler.config ) _a = 1 _a = FrozenDict(lowerCAmelCase_ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: _a = ( F'The configuration file of this scheduler: {scheduler} has not set the configuration' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _a = dict(scheduler.config ) _a = True _a = FrozenDict(lowerCAmelCase_ ) if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=lowerCAmelCase_ , segmentation_processor=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ) -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase_ : str , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Any , ) -> Tuple: """simple docstring""" _a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) _a = self.segmentation_model(**lowerCAmelCase_ ) _a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _a = self.numpy_to_pil(lowerCAmelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , )
179
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None ): '''simple docstring''' super().__init__() _A = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _A = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ) else: _A = None _A = torch.nn.Parameter(__UpperCAmelCase ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 def __init__( self : Any , __UpperCAmelCase : VQModel , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : TransformeraDModel , __UpperCAmelCase : VQDiffusionScheduler , __UpperCAmelCase : LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__UpperCAmelCase , transformer=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , ) def lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ): '''simple docstring''' _A = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else 1 # get prompt text embeddings _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _A = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _A = text_input_ids[:, : self.tokenizer.model_max_length] _A = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _A = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _A = prompt_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _A = self.learned_classifier_free_sampling_embeddings.embeddings _A = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCAmelCase , 1 , 1 ) else: _A = [""] * batch_size _A = text_input_ids.shape[-1] _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , ) _A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _A = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A = negative_prompt_embeds.shape[1] _A = negative_prompt_embeds.repeat(1 , __UpperCAmelCase , 1 ) _A = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 5.0 , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = len(__UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}''' ) _A = batch_size * num_images_per_prompt _A = guidance_scale > 1.0 _A = self._encode_prompt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__UpperCAmelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _A = (batch_size, self.transformer.num_latent_pixels) if latents is None: _A = self.transformer.num_vector_embeds - 1 _A = torch.full(__UpperCAmelCase , __UpperCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _A = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device ) _A = self.scheduler.timesteps.to(self.device ) _A = latents for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the sample if we are doing classifier free guidance _A = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _A = self.transformer(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , timestep=__UpperCAmelCase ).sample if do_classifier_free_guidance: _A , _A = model_output.chunk(2 ) _A = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCAmelCase , dim=1 , keepdim=__UpperCAmelCase ) _A = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) # remove `log(0)`'s (`-inf`s) _A = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = self.vqvae.config.vq_embed_dim _A = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _A = self.vqvae.quantize.get_codebook_entry(__UpperCAmelCase , shape=__UpperCAmelCase ) _A = self.vqvae.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : float ): '''simple docstring''' _A , _A = torch.sort(__UpperCAmelCase , 1 , descending=__UpperCAmelCase ) _A = torch.exp(__UpperCAmelCase ) _A = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _A = torch.full_like(keep_mask[:, 0:1, :] , __UpperCAmelCase ) _A = torch.cat((all_true, keep_mask) , dim=1 ) _A = keep_mask[:, :-1, :] _A = keep_mask.gather(1 , indices.argsort(1 ) ) _A = log_p_x_0.clone() _A = -torch.inf # -inf = log(0) return rv
79
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''canine''' def __init__( self : Dict , __UpperCAmelCase : List[str]=768 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Union[str, Any]=12 , __UpperCAmelCase : int=3072 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : List[Any]=16384 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Dict=1E-12 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : int=0xE000 , __UpperCAmelCase : List[Any]=0xE001 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : List[str]=8 , __UpperCAmelCase : int=16384 , __UpperCAmelCase : Union[str, Any]=128 , **__UpperCAmelCase : Dict , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = type_vocab_size _A = layer_norm_eps # Character config: _A = downsampling_rate _A = upsampling_kernel_size _A = num_hash_functions _A = num_hash_buckets _A = local_transformer_stride
79
1
"""simple docstring""" import re def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": __lowerCamelCase = "0094702343221" print(is_sri_lankan_phone_number(phone))
154
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ = 100 ): """simple docstring""" A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
154
1
'''simple docstring''' from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> list[int]: lowerCamelCase__ : Any = [0] * no_of_processes lowerCamelCase__ : Optional[int] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase ): lowerCamelCase__ : Optional[Any] = burst_time[i] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Tuple = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCamelCase__ : int = [] lowerCamelCase__ : Optional[int] = -1 for i in range(UpperCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase ) if len(UpperCamelCase ) > 0: lowerCamelCase__ : Union[str, Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCamelCase__ : int = i total_time += burst_time[target_process] completed += 1 lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : List[str] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> list[int]: lowerCamelCase__ : Optional[int] = [0] * no_of_processes for i in range(UpperCamelCase ): lowerCamelCase__ : int = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') _A : int =4 _A : Any =[2, 5, 3, 7] _A : Dict =[0, 0, 0, 0] _A : int =calculate_waitingtime(arrival_time, burst_time, no_of_processes) _A : int =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' F'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(F'\nAverage waiting time = {mean(waiting_time):.5f}') print(F'Average turnaround time = {mean(turn_around_time):.5f}')
41
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _A : List[Any] =logging.get_logger(__name__) _A : Dict =['''model.decoder.embed_positions.weights'''] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: if "emb" in name: lowerCamelCase__ : Dict = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: lowerCamelCase__ : List[str] = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: lowerCamelCase__ : List[str] = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: lowerCamelCase__ : Optional[int] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: lowerCamelCase__ : Dict = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: lowerCamelCase__ : Optional[Any] = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: lowerCamelCase__ : Dict = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: lowerCamelCase__ : Optional[Any] = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: lowerCamelCase__ : Optional[Any] = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: lowerCamelCase__ : int = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple[Dict, Dict]: lowerCamelCase__ : int = list(state_dict.keys() ) lowerCamelCase__ : Tuple = {} for key in keys: lowerCamelCase__ : Any = state_dict.pop(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = rename_keys(UpperCamelCase ) if "in_proj_weight" in key: # split fused qkv proj lowerCamelCase__ : Union[str, Any] = val[:hidden_size, :] lowerCamelCase__ : Any = val[hidden_size : 2 * hidden_size, :] lowerCamelCase__ : Optional[int] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowerCamelCase__ : str = val else: lowerCamelCase__ : Union[str, Any] = val return state_dict, enc_dec_proj_state_dict def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values lowerCamelCase__ : int = 1024 lowerCamelCase__ : int = 24 lowerCamelCase__ : List[Any] = 16 elif checkpoint == "medium": lowerCamelCase__ : Any = 1536 lowerCamelCase__ : Union[str, Any] = 48 lowerCamelCase__ : Optional[int] = 24 elif checkpoint == "large": lowerCamelCase__ : Optional[Any] = 2048 lowerCamelCase__ : Dict = 48 lowerCamelCase__ : List[Any] = 32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) lowerCamelCase__ : Any = MusicgenDecoderConfig( hidden_size=UpperCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase , num_attention_heads=UpperCamelCase , ) return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="cpu" ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = MusicGen.get_pretrained(UpperCamelCase , device=UpperCamelCase ) lowerCamelCase__ : List[Any] = decoder_config_from_checkpoint(UpperCamelCase ) lowerCamelCase__ : Any = fairseq_model.lm.state_dict() lowerCamelCase__ , lowerCamelCase__ : Optional[int] = rename_state_dict( UpperCamelCase , hidden_size=decoder_config.hidden_size ) lowerCamelCase__ : str = TaEncoderModel.from_pretrained("""t5-base""" ) lowerCamelCase__ : Tuple = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) lowerCamelCase__ : Optional[int] = MusicgenForCausalLM(UpperCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowerCamelCase__ , lowerCamelCase__ : List[str] = decoder.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase ) if len(UpperCamelCase ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(UpperCamelCase ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model lowerCamelCase__ : Optional[Any] = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase , audio_encoder=UpperCamelCase , decoder=UpperCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase ) # check we can do a forward pass lowerCamelCase__ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowerCamelCase__ : Optional[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor lowerCamelCase__ : str = AutoTokenizer.from_pretrained("""t5-base""" ) lowerCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) lowerCamelCase__ : Optional[int] = MusicgenProcessor(feature_extractor=UpperCamelCase , tokenizer=UpperCamelCase ) # set the appropriate bos/pad token ids lowerCamelCase__ : Union[str, Any] = 2048 lowerCamelCase__ : List[str] = 2048 # set other default generation config params lowerCamelCase__ : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(UpperCamelCase ) processor.push_to_hub(UpperCamelCase ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) _A : List[str] =parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
41
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"audio": Audio()} ) snake_case_ = Features({"transcription": Value("string" )} ) snake_case_ = "audio" snake_case_ = "transcription" def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ): if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,A ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) __A = copy.deepcopy(self ) __A = self.input_schema.copy() __A = features[self.audio_column] __A = input_schema return task_template @property def UpperCamelCase_ ( self : int ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
124
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE :str = 'docs/source/en/_toctree.yml' def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = defaultdict(a_ ) for doc in model_doc: counts[doc["local"]] += 1 __A = [key for key, value in counts.items() if value > 1] __A = [] for duplicate_key in duplicates: __A = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(a_ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(a_ , key=lambda a_ : s["title"].lower() ) def UpperCAmelCase ( a_=False ) -> List[Any]: """simple docstring""" with open(a_ , encoding="utf-8" ) as f: __A = yaml.safe_load(f.read() ) # Get to the API doc __A = 0 while content[api_idx]["title"] != "API": api_idx += 1 __A = content[api_idx]["sections"] # Then to the model doc __A = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __A = api_doc[model_idx]["sections"] __A = [(idx, section) for idx, section in enumerate(a_ ) if "sections" in section] __A = False for idx, modality_doc in modalities_docs: __A = modality_doc["sections"] __A = clean_model_doc_toc(a_ ) if old_modality_doc != new_modality_doc: __A = True if overwrite: __A = new_modality_doc if diff: if overwrite: __A = model_doc __A = api_doc with open(a_ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(a_ , allow_unicode=a_ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
124
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :str = "geglu" , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :str = "layer_norm" , lowerCAmelCase__ :bool = False , ) -> Tuple: super().__init__() __SCREAMING_SNAKE_CASE : Optional[Any] = only_cross_attention __SCREAMING_SNAKE_CASE : int = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __SCREAMING_SNAKE_CASE : List[str] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __SCREAMING_SNAKE_CASE : Dict = AdaLayerNorm(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Union[str, Any] = AdaLayerNormZero(lowerCAmelCase__ , lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = Attention( query_dim=lowerCAmelCase__ , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , dropout=lowerCAmelCase__ , bias=lowerCAmelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowerCAmelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __SCREAMING_SNAKE_CASE : Optional[int] = ( AdaLayerNorm(lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = Attention( query_dim=lowerCAmelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , dropout=lowerCAmelCase__ , bias=lowerCAmelCase__ , upcast_attention=lowerCAmelCase__ , ) # is self-attn if encoder_hidden_states is none else: __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Dict = None # 3. Feed-forward __SCREAMING_SNAKE_CASE : Tuple = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = FeedForward(lowerCAmelCase__ , dropout=lowerCAmelCase__ , activation_fn=lowerCAmelCase__ , final_dropout=lowerCAmelCase__ ) # let chunk size default to None __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : int = 0 def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int ) -> Union[str, Any]: # Sets chunk feed-forward __SCREAMING_SNAKE_CASE : Tuple = chunk_size __SCREAMING_SNAKE_CASE : str = dim def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.LongTensor] = None , lowerCAmelCase__ :Dict[str, Any] = None , lowerCAmelCase__ :Optional[torch.LongTensor] = None , ) -> List[Any]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __SCREAMING_SNAKE_CASE : Optional[Any] = self.norma(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.norma( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hidden_dtype=hidden_states.dtype ) else: __SCREAMING_SNAKE_CASE : List[Any] = self.norma(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} __SCREAMING_SNAKE_CASE : Any = self.attna( lowerCAmelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : List[str] = gate_msa.unsqueeze(1 ) * attn_output __SCREAMING_SNAKE_CASE : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = ( self.norma(lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_ada_layer_norm else self.norma(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.attna( lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : str = attn_output + hidden_states # 3. Feed-forward __SCREAMING_SNAKE_CASE : int = self.norma(lowerCAmelCase__ ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Optional[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) __SCREAMING_SNAKE_CASE : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat( [self.ff(lowerCAmelCase__ ) for hid_slice in norm_hidden_states.chunk(lowerCAmelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __SCREAMING_SNAKE_CASE : int = self.ff(lowerCAmelCase__ ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output __SCREAMING_SNAKE_CASE : Tuple = ff_output + hidden_states return hidden_states class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :int = 4 , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :str = "geglu" , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: super().__init__() __SCREAMING_SNAKE_CASE : List[Any] = int(dim * mult ) __SCREAMING_SNAKE_CASE : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": __SCREAMING_SNAKE_CASE : Tuple = GELU(lowerCAmelCase__ , lowerCAmelCase__ ) if activation_fn == "gelu-approximate": __SCREAMING_SNAKE_CASE : int = GELU(lowerCAmelCase__ , lowerCAmelCase__ , approximate='''tanh''' ) elif activation_fn == "geglu": __SCREAMING_SNAKE_CASE : List[str] = GEGLU(lowerCAmelCase__ , lowerCAmelCase__ ) elif activation_fn == "geglu-approximate": __SCREAMING_SNAKE_CASE : int = ApproximateGELU(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList([] ) # project in self.net.append(lowerCAmelCase__ ) # project dropout self.net.append(nn.Dropout(lowerCAmelCase__ ) ) # project out self.net.append(nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCAmelCase__ ) ) def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> Any: for module in self.net: __SCREAMING_SNAKE_CASE : str = module(lowerCAmelCase__ ) return hidden_states class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :str = "none" ) -> Optional[int]: super().__init__() __SCREAMING_SNAKE_CASE : Tuple = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = approximate def __magic_name__( self :int , lowerCAmelCase__ :Optional[int] ) -> Tuple: if gate.device.type != "mps": return F.gelu(lowerCAmelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __magic_name__( self :int , lowerCAmelCase__ :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.proj(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.gelu(lowerCAmelCase__ ) return hidden_states class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Optional[Any]: super().__init__() __SCREAMING_SNAKE_CASE : Dict = nn.Linear(lowerCAmelCase__ , dim_out * 2 ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: if gate.device.type != "mps": return F.gelu(lowerCAmelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.proj(lowerCAmelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowerCAmelCase__ ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Tuple: super().__init__() __SCREAMING_SNAKE_CASE : Dict = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = self.proj(lowerCAmelCase__ ) return x * torch.sigmoid(1.702 * x ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict ) -> Any: super().__init__() __SCREAMING_SNAKE_CASE : Dict = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.SiLU() __SCREAMING_SNAKE_CASE : Any = nn.Linear(lowerCAmelCase__ , embedding_dim * 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) def __magic_name__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: __SCREAMING_SNAKE_CASE : Any = self.linear(self.silu(self.emb(lowerCAmelCase__ ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = torch.chunk(lowerCAmelCase__ , 2 ) __SCREAMING_SNAKE_CASE : str = self.norm(lowerCAmelCase__ ) * (1 + scale) + shift return x class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str ) -> Dict: super().__init__() __SCREAMING_SNAKE_CASE : List[Any] = CombinedTimestepLabelEmbeddings(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = nn.SiLU() __SCREAMING_SNAKE_CASE : int = nn.Linear(lowerCAmelCase__ , 6 * embedding_dim , bias=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ , eps=1E-6 ) def __magic_name__( self :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = self.linear(self.silu(self.emb(lowerCAmelCase__ , lowerCAmelCase__ , hidden_dtype=lowerCAmelCase__ ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = emb.chunk(6 , dim=1 ) __SCREAMING_SNAKE_CASE : Optional[int] = self.norm(lowerCAmelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :float = 1E-5 ) -> Tuple: super().__init__() __SCREAMING_SNAKE_CASE : Dict = num_groups __SCREAMING_SNAKE_CASE : Optional[Any] = eps if act_fn is None: __SCREAMING_SNAKE_CASE : Optional[int] = None else: __SCREAMING_SNAKE_CASE : str = get_activation(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(lowerCAmelCase__ , out_dim * 2 ) def __magic_name__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] ) -> Optional[int]: if self.act: __SCREAMING_SNAKE_CASE : Dict = self.act(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.linear(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = emb[:, :, None, None] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = emb.chunk(2 , dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = F.group_norm(lowerCAmelCase__ , self.num_groups , eps=self.eps ) __SCREAMING_SNAKE_CASE : List[Any] = x * (1 + scale) + shift return x
9
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowercase : '''simple docstring''' @staticmethod def __magic_name__( *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :str ) -> Union[str, Any]: pass def _UpperCamelCase ( lowercase__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : str =( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( '''document-question-answering''' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) __SCREAMING_SNAKE_CASE : str = '''What is the placebo?''' __SCREAMING_SNAKE_CASE : str = [ { '''image''': load_image(lowerCAmelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : int = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE : Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE : Union[str, Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Tuple = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : str = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : str = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL __SCREAMING_SNAKE_CASE : Dict = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : List[str] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[int] = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__( self :Union[str, Any] ) -> Tuple: pass
9
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: '''simple docstring''' _UpperCAmelCase : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case ( ) -> Tuple: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] while len(SCREAMING_SNAKE_CASE__ ) > 1: _UpperCAmelCase , _UpperCAmelCase : int = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) start.append(SCREAMING_SNAKE_CASE__ ) end.append(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) end.reverse() return start + collection + end if __name__ == "__main__": _lowerCAmelCase : int = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : List[str] = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
202
0
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=3 , __lowerCamelCase=18 , __lowerCamelCase=30 , __lowerCamelCase=400 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=[0.5, 0.5, 0.5] , __lowerCamelCase=[0.5, 0.5, 0.5] , __lowerCamelCase=False , ): '''simple docstring''' __A : Dict = size if size is not None else {'''height''': 20, '''width''': 20} __A : List[str] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __A : Optional[int] = parent __A : Optional[int] = batch_size __A : Any = num_channels __A : Optional[Any] = image_size __A : Any = min_resolution __A : str = max_resolution __A : Tuple = do_resize __A : Any = size __A : List[str] = do_center_crop __A : List[str] = crop_size __A : Optional[Any] = do_normalize __A : int = image_mean __A : List[str] = image_std __A : str = do_reduce_labels def UpperCamelCase__( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __lowercase ( ) ->Optional[int]: '''simple docstring''' __A : List[str] = load_dataset('''hf-internal-testing/fixtures_ade20k''' ,split='''test''' ) __A : int = Image.open(dataset[0]['''file'''] ) __A : Optional[int] = Image.open(dataset[1]['''file'''] ) return image, map def __lowercase ( ) ->Any: '''simple docstring''' __A : str = load_dataset('''hf-internal-testing/fixtures_ade20k''' ,split='''test''' ) __A : str = Image.open(ds[0]['''file'''] ) __A : str = Image.open(ds[1]['''file'''] ) __A : Union[str, Any] = Image.open(ds[2]['''file'''] ) __A : Optional[int] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = BeitImageProcessingTester(self ) @property def UpperCamelCase__( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCamelCase ) __A : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input __A : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __A : Dict = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input __A : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __A : Tuple = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input __A : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __A : Any = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) __A : int = [] for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A : Optional[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched __A : Tuple = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) __A , __A : Optional[int] = prepare_semantic_single_inputs() __A : Union[str, Any] = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) __A , __A : int = prepare_semantic_batch_inputs() __A : Any = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A : Tuple = prepare_semantic_single_inputs() __A : str = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) __A : Any = True __A : Any = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
179
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a_ = NewType("""DataClass""", Any) a_ = NewType("""DataClassType""", Any) def __lowercase ( snake_case_ : List[str] ) ->List[str]: '''simple docstring''' if isinstance(snake_case_ ,snake_case_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __lowercase ( snake_case_ : list ) ->Callable[[str], Any]: '''simple docstring''' __A : List[Any] = {str(snake_case_ ): choice for choice in choices} return lambda snake_case_ : str_to_choice.get(snake_case_ ,snake_case_ ) def __lowercase ( *, snake_case_ : Union[str, List[str]] = None ,snake_case_ : str = None ,snake_case_ : Any = dataclasses.MISSING ,snake_case_ : Callable[[], Any] = dataclasses.MISSING ,snake_case_ : dict = None ,**snake_case_ : str ,) ->dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A : Optional[Any] = {} if aliases is not None: __A : List[Any] = aliases if help is not None: __A : str = help return dataclasses.field(metadata=snake_case_ ,default=snake_case_ ,default_factory=snake_case_ ,**snake_case_ ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 def __init__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' if "formatter_class" not in kwargs: __A : str = ArgumentDefaultsHelpFormatter super().__init__(**__lowerCamelCase ) if dataclasses.is_dataclass(__lowerCamelCase ): __A : Union[str, Any] = [dataclass_types] __A : Optional[Any] = list(__lowerCamelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowerCamelCase ) @staticmethod def UpperCamelCase__( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = F"""--{field.name}""" __A : List[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowerCamelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __A : Tuple = kwargs.pop('''aliases''' , [] ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : Optional[int] = [aliases] __A : str = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__lowerCamelCase , '''UnionType''' ) and isinstance(__lowerCamelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowerCamelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field '{field.name}'.""" ) if type(__lowerCamelCase ) not in field.type.__args__: # filter `str` in Union __A : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A : int = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A : int = ( field.type.__args__[0] if isinstance(__lowerCamelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __A : Tuple = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A : Union[str, Any] = {} if origin_type is Literal or (isinstance(field.type , __lowerCamelCase ) and issubclass(field.type , __lowerCamelCase )): if origin_type is Literal: __A : Union[str, Any] = field.type.__args__ else: __A : Union[str, Any] = [x.value for x in field.type] __A : Optional[int] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __A : Dict = field.default else: __A : Optional[Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A : Any = copy(__lowerCamelCase ) # Hack because type=bool in argparse does not behave as we want. __A : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A : Optional[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name __A : str = '''?''' # This is the value that will get picked if we do --field_name (without value) __A : int = True elif isclass(__lowerCamelCase ) and issubclass(__lowerCamelCase , __lowerCamelCase ): __A : str = field.type.__args__[0] __A : List[str] = '''+''' if field.default_factory is not dataclasses.MISSING: __A : Optional[int] = field.default_factory() elif field.default is dataclasses.MISSING: __A : Tuple = True else: __A : Union[str, Any] = field.type if field.default is not dataclasses.MISSING: __A : Dict = field.default elif field.default_factory is not dataclasses.MISSING: __A : List[str] = field.default_factory() else: __A : str = True parser.add_argument(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A : List[str] = False parser.add_argument(F"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if hasattr(__lowerCamelCase , '''_argument_group_name''' ): __A : Tuple = self.add_argument_group(dtype._argument_group_name ) else: __A : List[Any] = self try: __A : Dict[str, type] = get_type_hints(__lowerCamelCase ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__lowerCamelCase ): __A : List[str] = '''.'''.join(map(__lowerCamelCase , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__lowerCamelCase ): if not field.init: continue __A : int = type_hints[field.name] self._parse_dataclass_field(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A : Tuple = [] if args_filename: args_files.append(Path(__lowerCamelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A : Dict = ArgumentParser() args_file_parser.add_argument(__lowerCamelCase , type=__lowerCamelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A : List[Any] = args_file_parser.parse_known_args(args=__lowerCamelCase ) __A : Dict = vars(__lowerCamelCase ).get(args_file_flag.lstrip('''-''' ) , __lowerCamelCase ) if cmd_args_file_paths: args_files.extend([Path(__lowerCamelCase ) for p in cmd_args_file_paths] ) __A : Any = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A : Tuple = self.parse_known_args(args=__lowerCamelCase ) __A : int = [] for dtype in self.dataclass_types: __A : List[str] = {f.name for f in dataclasses.fields(__lowerCamelCase ) if f.init} __A : List[str] = {k: v for k, v in vars(__lowerCamelCase ).items() if k in keys} for k in keys: delattr(__lowerCamelCase , __lowerCamelCase ) __A : int = dtype(**__lowerCamelCase ) outputs.append(__lowerCamelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowerCamelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Tuple = set(args.keys() ) __A : Union[str, Any] = [] for dtype in self.dataclass_types: __A : str = {f.name for f in dataclasses.fields(__lowerCamelCase ) if f.init} __A : Optional[int] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A : int = dtype(**__lowerCamelCase ) outputs.append(__lowerCamelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(__lowerCamelCase )}""" ) return tuple(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' with open(Path(__lowerCamelCase ) , encoding='''utf-8''' ) as open_json_file: __A : List[str] = json.loads(open_json_file.read() ) __A : List[str] = self.parse_dict(__lowerCamelCase , allow_extra_keys=__lowerCamelCase ) return tuple(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Dict = self.parse_dict(yaml.safe_load(Path(__lowerCamelCase ).read_text() ) , allow_extra_keys=__lowerCamelCase ) return tuple(__lowerCamelCase )
179
1
import numpy as np def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray ): '''simple docstring''' return vector * sigmoid(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
367
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase : Optional[Any] = False lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Any = "ybelkada/fonts" def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ 'Pix2StructImageProcessor. Please upgrade torch.' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ): '''simple docstring''' requires_backends(lowercase , ['torch'] ) _check_torch_version() lowerCamelCase_ = image_tensor.unsqueeze(0 ) lowerCamelCase_ = torch.nn.functional.unfold(lowercase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowerCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowercase , lowercase , -1 ) lowerCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int = 36 , lowercase : str = "black" , lowercase : str = "white" , lowercase : int = 5 , lowercase : int = 5 , lowercase : int = 5 , lowercase : int = 5 , lowercase : Optional[bytes] = None , lowercase : Optional[str] = None , ): '''simple docstring''' requires_backends(lowercase , 'vision' ) # Add new lines so that each line is no more than 80 characters. lowerCamelCase_ = textwrap.TextWrapper(width=80 ) lowerCamelCase_ = wrapper.wrap(text=lowercase ) lowerCamelCase_ = '\n'.join(lowercase ) if font_bytes is not None and font_path is None: lowerCamelCase_ = io.BytesIO(lowercase ) elif font_path is not None: lowerCamelCase_ = font_path else: lowerCamelCase_ = hf_hub_download(lowercase , 'Arial.TTF' ) lowerCamelCase_ = ImageFont.truetype(lowercase , encoding='UTF-8' , size=lowercase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowerCamelCase_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , lowercase ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = temp_draw.textbbox((0, 0) , lowercase , lowercase ) # Create the actual image with a bit of padding around the text. lowerCamelCase_ = text_width + left_padding + right_padding lowerCamelCase_ = text_height + top_padding + bottom_padding lowerCamelCase_ = Image.new('RGB' , (image_width, image_height) , lowercase ) lowerCamelCase_ = ImageDraw.Draw(lowercase ) draw.text(xy=(left_padding, top_padding) , text=lowercase , fill=lowercase , font=lowercase ) return image def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(lowercase , 'vision' ) # Convert to PIL image if necessary lowerCamelCase_ = to_pil_image(lowercase ) lowerCamelCase_ = render_text(lowercase , **lowercase ) lowerCamelCase_ = max(header_image.width , image.width ) lowerCamelCase_ = int(image.height * (new_width / image.width) ) lowerCamelCase_ = int(header_image.height * (new_width / header_image.width) ) lowerCamelCase_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowerCamelCase_ = to_numpy_array(lowercase ) if infer_channel_dimension_format(lowercase ) == ChannelDimension.LAST: lowerCamelCase_ = to_channel_dimension_format(lowercase , ChannelDimension.LAST ) return new_image class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''flattened_patches'''] def __init__( self : Dict , A_ : bool = True , A_ : bool = True , A_ : Dict[str, int] = None , A_ : int = 2048 , A_ : bool = False , **A_ : str , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} lowerCamelCase_ = do_normalize lowerCamelCase_ = do_convert_rgb lowerCamelCase_ = max_patches lowerCamelCase_ = is_vqa def a__ ( self : Union[str, Any] , A_ : np.ndarray , A_ : int , A_ : dict , **A_ : Any ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch lowerCamelCase_ = to_channel_dimension_format(A_ , ChannelDimension.FIRST ) lowerCamelCase_ = torch.from_numpy(A_ ) lowerCamelCase_ , lowerCamelCase_ = patch_size['height'], patch_size['width'] lowerCamelCase_ , lowerCamelCase_ = get_image_size(A_ ) # maximize scale s.t. lowerCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowerCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , A_ ) , 1 ) lowerCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , A_ ) , 1 ) lowerCamelCase_ = max(num_feasible_rows * patch_height , 1 ) lowerCamelCase_ = max(num_feasible_cols * patch_width , 1 ) lowerCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=A_ , antialias=A_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowerCamelCase_ = torch_extract_patches(A_ , A_ , A_ ) lowerCamelCase_ = patches.shape lowerCamelCase_ = patches_shape[1] lowerCamelCase_ = patches_shape[2] lowerCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowerCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowerCamelCase_ = torch.arange(A_ ).reshape([rows, 1] ).repeat(1 , A_ ).reshape([rows * columns, 1] ) lowerCamelCase_ = torch.arange(A_ ).reshape([1, columns] ).repeat(A_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowerCamelCase_ = row_ids.to(torch.floataa ) lowerCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowerCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowerCamelCase_ = torch.nn.functional.pad(A_ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowerCamelCase_ = to_numpy_array(A_ ) return result def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: lowerCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` lowerCamelCase_ = np.mean(A_ ) lowerCamelCase_ = np.std(A_ ) lowerCamelCase_ = max(A_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(A_ , mean=A_ , std=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : ImageInput , A_ : Optional[str] = None , A_ : bool = None , A_ : Optional[bool] = None , A_ : Optional[int] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Optional[int] , ) -> ImageInput: """simple docstring""" lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ = patch_size if patch_size is not None else self.patch_size lowerCamelCase_ = max_patches if max_patches is not None else self.max_patches lowerCamelCase_ = self.is_vqa if kwargs.get('data_format' , A_ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ = [convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) lowerCamelCase_ = kwargs.pop('font_bytes' , A_ ) lowerCamelCase_ = kwargs.pop('font_path' , A_ ) if isinstance(A_ , A_ ): lowerCamelCase_ = [header_text] * len(A_ ) lowerCamelCase_ = [ render_header(A_ , header_text[i] , font_bytes=A_ , font_path=A_ ) for i, image in enumerate(A_ ) ] if do_normalize: lowerCamelCase_ = [self.normalize(image=A_ ) for image in images] # convert to torch tensor and permute lowerCamelCase_ = [ self.extract_flattened_patches(image=A_ , max_patches=A_ , patch_size=A_ ) for image in images ] # create attention mask in numpy lowerCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowerCamelCase_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=A_ ) return encoded_outputs
208
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__): _UpperCamelCase:int = 1 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 1000 , _SCREAMING_SNAKE_CASE = None )-> List[Any]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(_SCREAMING_SNAKE_CASE ) # standard deviation of the initial noise distribution lowerCamelCase_ =1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowerCamelCase_ =4 # running values lowerCamelCase_ =[] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> int: lowerCamelCase_ =num_inference_steps lowerCamelCase_ =torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowerCamelCase_ =torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowerCamelCase_ =torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowerCamelCase_ =torch.sin(steps * math.pi / 2 ) ** 2 lowerCamelCase_ =(1.0 - self.betas**2) ** 0.5 lowerCamelCase_ =(torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowerCamelCase_ =timesteps.to(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )-> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) lowerCamelCase_ =(self.timesteps == timestep).nonzero().item() lowerCamelCase_ =timestep_index + 1 lowerCamelCase_ =sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_SCREAMING_SNAKE_CASE ) if len(self.ets ) == 1: lowerCamelCase_ =self.ets[-1] elif len(self.ets ) == 2: lowerCamelCase_ =(3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowerCamelCase_ =(23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowerCamelCase_ =(1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowerCamelCase_ =self._get_prev_sample(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> torch.FloatTensor: return sample def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =self.alphas[timestep_index] lowerCamelCase_ =self.betas[timestep_index] lowerCamelCase_ =self.alphas[prev_timestep_index] lowerCamelCase_ =self.betas[prev_timestep_index] lowerCamelCase_ =(sample - sigma * ets) / max(_SCREAMING_SNAKE_CASE , 1E-8 ) lowerCamelCase_ =next_alpha * pred + ets * next_sigma return prev_sample def __len__( self )-> List[Any]: return self.config.num_train_timesteps
154
def __UpperCamelCase ( _A : Dict ) ->List[str]: """simple docstring""" lowerCamelCase_ =[0] * len(_A ) lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: lowerCamelCase_ =queue.pop(0 ) cnt += 1 topo.append(_A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_A ) if cnt != len(_A ): print("""Cycle exists""" ) else: print(_A ) # Adjacency List of Graph __A : List[Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
154
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (ksize % 2) == 0: lowerCAmelCase : Optional[Any] = ksize + 1 lowerCAmelCase : Dict = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE ): for x in range(SCREAMING_SNAKE_CASE ): # distance from center lowerCAmelCase : str = x - ksize // 2 lowerCAmelCase : List[Any] = y - ksize // 2 # degree to radiant lowerCAmelCase : Optional[Any] = theta / 1_8_0 * np.pi lowerCAmelCase : List[Any] = np.cos(_theta ) lowerCAmelCase : List[str] = np.sin(_theta ) # get kernel x lowerCAmelCase : Optional[Any] = cos_theta * px + sin_theta * py # get kernel y lowerCAmelCase : List[Any] = -sin_theta * px + cos_theta * py # fill kernel lowerCAmelCase : Dict = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCAmelCase__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value lowerCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCAmelCase__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCAmelCase__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCAmelCase__ = out / out.max() * 255 lowerCAmelCase__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
133
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase__ = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , snake_case__ = " " ): """simple docstring""" lowerCAmelCase : List[Any] = sentence_delimiter def lowercase__ ( self , snake_case__ ): """simple docstring""" return list(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = [] for sent_idx, sentence in enumerate(snake_case__ ): chars.extend(self.process_string(snake_case__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case__ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase__ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase__ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase__ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase__ = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' lowerCAmelCase__ = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )["wer"] lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
133
1
from __future__ import annotations from decimal import Decimal from numpy import array def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[float]]: snake_case : Optional[Any] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix snake_case : Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements snake_case : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]] snake_case , snake_case : str = matrix[1][1], matrix[0][0] snake_case , snake_case : int = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule snake_case : Optional[Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix snake_case : List[str] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] snake_case : Dict = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) snake_case : List[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) snake_case : List[str] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) snake_case : Dict = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) snake_case : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) snake_case : Tuple = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) snake_case : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) snake_case : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) snake_case : List[str] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) snake_case : Any = array(lowercase ) for i in range(3 ): for j in range(3 ): snake_case : Dict = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix snake_case : Dict = array(lowercase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase ) # Calculate the inverse of the matrix return [[float(d(lowercase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
124
import math def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not isinstance(lowercase ,lowercase ): snake_case : List[Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: snake_case : int = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case : Any = int(math.log(number // 3 ,2 ) ) + 2 snake_case : List[Any] = [3, 5] snake_case : Optional[int] = 2 snake_case : Union[str, Any] = 3 for block in range(1 ,lowercase ): for _ in range(lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): lowerCamelCase : Optional[Any] = 0 try: lowerCamelCase : Tuple = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
124
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase_ = None UpperCamelCase_ = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase_ = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class _snake_case : '''simple docstring''' A__ : bool = True A__ : Optional[str] = None # Automatically constructed A__ : ClassVar[str] = "PIL.Image.Image" A__ : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A__ : str = field(default="Image" , init=__snake_case , repr=__snake_case ) def __call__( self: Tuple ) -> Union[str, Any]: return self.pa_type def A__ ( self: Optional[Any] ,lowerCamelCase_: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = np.array(lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCamelCase_ ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCamelCase_ ) elif isinstance(lowerCamelCase_ ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCamelCase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def A__ ( self: List[str] ,lowerCamelCase_: dict ,lowerCamelCase_: Union[str, Any]=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCamelCase_ ): UpperCAmelCase_ : Any = PIL.Image.open(lowerCamelCase_ ) else: UpperCAmelCase_ : int = path.split("""::""" )[-1] try: UpperCAmelCase_ : Optional[int] = string_to_dict(lowerCamelCase_ ,config.HUB_DATASETS_URL )["""repo_id"""] UpperCAmelCase_ : str = token_per_repo_id.get(lowerCamelCase_ ) except ValueError: UpperCAmelCase_ : Optional[int] = None with xopen(lowerCamelCase_ ,"""rb""" ,use_auth_token=lowerCamelCase_ ) as f: UpperCAmelCase_ : Optional[int] = BytesIO(f.read() ) UpperCAmelCase_ : List[Any] = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : Dict = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A__ ( self: List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def A__ ( self: Tuple ,lowerCamelCase_: Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Tuple = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.binary() ) UpperCAmelCase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] ,["""bytes""", """path"""] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : int = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.string() ) UpperCAmelCase_ : List[Any] = pa.StructArray.from_arrays([storage, path_array] ,["""bytes""", """path"""] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: UpperCAmelCase_ : str = storage.field("""bytes""" ) else: UpperCAmelCase_ : Dict = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: UpperCAmelCase_ : Optional[int] = storage.field("""path""" ) else: UpperCAmelCase_ : Optional[int] = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.string() ) UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,["""bytes""", """path"""] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : str = pa.array( [encode_np_array(np.array(lowerCamelCase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) UpperCAmelCase_ : Tuple = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.string() ) UpperCAmelCase_ : int = pa.StructArray.from_arrays( [bytes_array, path_array] ,["""bytes""", """path"""] ,mask=bytes_array.is_null() ) return array_cast(lowerCamelCase_ ,self.pa_type ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowerCamelCase_: Union[str, Any] ): with xopen(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : str = f.read() return bytes_ UpperCAmelCase_ : str = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : List[str] = pa.array( [os.path.basename(lowerCamelCase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,["""bytes""", """path"""] ,mask=bytes_array.is_null() ) return array_cast(lowerCamelCase_ ,self.pa_type ) def lowerCamelCase_ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase_ ( _a : "PIL.Image.Image" ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : Union[str, Any] = image.format else: UpperCAmelCase_ : Optional[int] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(_a , format=_a ) return buffer.getvalue() def lowerCamelCase_ ( _a : "PIL.Image.Image" ): '''simple docstring''' if hasattr(_a , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_a )} def lowerCamelCase_ ( _a : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) UpperCAmelCase_ : Optional[Any] = array.dtype UpperCAmelCase_ : Optional[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER UpperCAmelCase_ : int = dtype.kind UpperCAmelCase_ : Tuple = dtype.itemsize UpperCAmelCase_ : List[str] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : Tuple = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : List[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : List[Any] = dtype_byteorder + dtype_kind + str(_a ) UpperCAmelCase_ : Union[str, Any] = np.dtype(_a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCAmelCase_ : int = PIL.Image.fromarray(array.astype(_a ) ) return {"path": None, "bytes": image_to_bytes(_a )} def lowerCamelCase_ ( _a : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = first_non_null_value(_a ) if isinstance(_a , _a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_a , np.ndarray ): UpperCAmelCase_ : Dict = no_op_if_value_is_null(_a ) return [obj_to_image_dict_func(_a ) for obj in objs] elif isinstance(_a , PIL.Image.Image ): UpperCAmelCase_ : Optional[int] = no_op_if_value_is_null(_a ) return [obj_to_image_dict_func(_a ) for obj in objs] else: return objs else: return objs
59
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [False] * len(_a ) UpperCAmelCase_ : Any = [-1] * len(_a ) def dfs(_a : Optional[int] , _a : str ): UpperCAmelCase_ : int = True UpperCAmelCase_ : Optional[int] = c for u in graph[v]: if not visited[u]: dfs(_a , 1 - c ) for i in range(len(_a ) ): if not visited[i]: dfs(_a , 0 ) for i in range(len(_a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCamelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
59
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _UpperCamelCase : Tuple = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _UpperCamelCase : Tuple = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _UpperCamelCase : List[Any] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class snake_case__ ( datasets.Metric): def A ( self : Any ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def A ( self : List[Any] ) -> Union[str, Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def A ( self : int , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any]=None , _A : Dict="uniform_average" , _A : str=True ) -> List[str]: UpperCAmelCase_ : Dict = mean_squared_error( _a , _a , sample_weight=_a , multioutput=_a , squared=_a ) return {"mse": mse}
304
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _A : Optional[Any] = 1_00 _A : Optional[int] = set(range(3, NUM_PRIMES, 2)) primes.add(2) _A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __magic_name__ ( __snake_case : int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase : set[int] = set() lowercase : int lowercase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __magic_name__ ( __snake_case : int = 5000 ) -> int | None: for number_to_partition in range(1 , __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
202
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : str = """xlm""" UpperCamelCase_ : Any = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_01_45 , SCREAMING_SNAKE_CASE_ : Dict=20_48 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Tuple=16 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : int=1 , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Optional[int]=5_12 , SCREAMING_SNAKE_CASE_ : Dict=20_48**-0.5 , SCREAMING_SNAKE_CASE_ : Optional[int]=1E-12 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE_ : str=1 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : str=5 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : int="first" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : str=5 , SCREAMING_SNAKE_CASE_ : List[str]=5 , SCREAMING_SNAKE_CASE_ : Any=0 , SCREAMING_SNAKE_CASE_ : List[str]=0 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> Tuple: '''simple docstring''' A: int = vocab_size A: Dict = emb_dim A: int = n_layers A: Optional[Any] = n_heads A: List[Any] = dropout A: Union[str, Any] = attention_dropout A: int = gelu_activation A: str = sinusoidal_embeddings A: Union[str, Any] = causal A: Tuple = asm A: Optional[Any] = n_langs A: Any = use_lang_emb A: List[str] = layer_norm_eps A: Tuple = bos_index A: Tuple = eos_index A: Optional[Any] = pad_index A: Optional[Any] = unk_index A: Optional[Any] = mask_index A: List[str] = is_encoder A: Any = max_position_embeddings A: Optional[int] = embed_init_std A: Tuple = init_std A: Optional[Any] = summary_type A: str = summary_use_proj A: str = summary_activation A: Optional[Any] = summary_proj_to_labels A: Tuple = summary_first_dropout A: Any = start_n_top A: Union[str, Any] = end_n_top A: Optional[int] = mask_token_id A: Optional[int] = lang_id if "n_words" in kwargs: A: Optional[int] = kwargs['''n_words'''] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
334
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.encodec''') UpperCamelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCamelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCamelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCamelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCamelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: for attribute in key.split('''.''' ): A: Union[str, Any] = getattr(__lowercase , __lowercase ) if weight_type is not None: A: Tuple = getattr(__lowercase , __lowercase ).shape else: A: str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A: Dict = value elif weight_type == "weight_g": A: Tuple = value elif weight_type == "weight_v": A: Any = value elif weight_type == "bias": A: str = value elif weight_type == "running_mean": A: List[Any] = value elif weight_type == "running_var": A: Dict = value elif weight_type == "num_batches_tracked": A: List[str] = value elif weight_type == "weight_ih_l0": A: Dict = value elif weight_type == "weight_hh_l0": A: Optional[int] = value elif weight_type == "bias_ih_l0": A: List[Any] = value elif weight_type == "bias_hh_l0": A: str = value elif weight_type == "weight_ih_l1": A: Optional[int] = value elif weight_type == "weight_hh_l1": A: int = value elif weight_type == "bias_ih_l1": A: Optional[Any] = value elif weight_type == "bias_hh_l1": A: str = value else: A: Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A , A: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: A: Any = [] if model_name == "encodec_24khz" or "encodec_32khz": A: List[str] = MAPPING_24K elif model_name == "encodec_48khz": A: List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue A: Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: A , A: Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A: str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A: Optional[Any] = True if "*" in mapped_key: A: Any = name.split(__lowercase )[0].split('''.''' )[-2] A: Tuple = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: A: str = '''weight_g''' elif "weight_v" in name: A: List[Any] = '''weight_v''' elif "weight_ih_l0" in name: A: Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: A: int = '''weight_hh_l0''' elif "bias_ih_l0" in name: A: Union[str, Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: A: Tuple = '''bias_hh_l0''' elif "weight_ih_l1" in name: A: int = '''weight_ih_l1''' elif "weight_hh_l1" in name: A: Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: A: Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A: str = '''bias_hh_l1''' elif "bias" in name: A: Union[str, Any] = '''bias''' elif "weight" in name: A: Dict = '''weight''' elif "running_mean" in name: A: Tuple = '''running_mean''' elif "running_var" in name: A: Any = '''running_var''' elif "num_batches_tracked" in name: A: str = '''num_batches_tracked''' else: A: Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Dict: if config_path is not None: A: Tuple = EncodecConfig.from_pretrained(__lowercase ) else: A: Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A: Union[str, Any] = [8, 5, 4, 4] A: Dict = [2.2] A: List[Any] = 6_4 A: Optional[Any] = 3_2_0_0_0 A: List[Any] = 2_0_4_8 A: Optional[Any] = False A: int = False A: Union[str, Any] = False elif model_name == "encodec_48khz": A: Optional[int] = [8, 5, 4, 2] A: List[Any] = [3.0, 6.0, 1_2.0, 2_4.0] A: List[Any] = 4_8_0_0_0 A: int = 2 A: List[Any] = False A: Any = '''time_group_norm''' A: Optional[Any] = True A: Any = 1.0 A: Any = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) A: str = EncodecModel(__lowercase ) A: Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) A: Union[str, Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A: Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
298
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def a_ ( *_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase=True ,_lowerCAmelCase=2 ) -> List[str]: from .. import __version__ __lowerCamelCase : Any = take_from __lowerCamelCase : Optional[int] = () if not isinstance(args[0] ,_lowerCAmelCase ): __lowerCamelCase : Optional[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCAmelCase ).base_version ) >= version.parse(_lowerCAmelCase ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) __lowerCamelCase : Union[str, Any] = None if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCAmelCase ),) __lowerCamelCase : Optional[Any] = F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(_lowerCAmelCase ,_lowerCAmelCase ): values += (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) __lowerCamelCase : List[str] = F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: __lowerCamelCase : Optional[Any] = F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: __lowerCamelCase : Optional[int] = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,_lowerCAmelCase ,stacklevel=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: __lowerCamelCase : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] __lowerCamelCase : List[str] = call_frame.filename __lowerCamelCase : int = call_frame.lineno __lowerCamelCase : Union[str, Any] = call_frame.function __lowerCamelCase ,__lowerCamelCase : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(_lowerCAmelCase ) == 0: return elif len(_lowerCAmelCase ) == 1: return values[0] return values
208
0
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" if n_term == "": return [] __UpperCamelCase =[] for temp in range(int(snake_case__ ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": __lowercase = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
365
"""simple docstring""" import os from pathlib import Path def lowerCAmelCase (): """simple docstring""" from torch.utils.cpp_extension import load __UpperCamelCase =Path(__UpperCamelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __UpperCamelCase =[ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __UpperCamelCase , with_cuda=__UpperCamelCase , extra_include_paths=[str(__UpperCamelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
85
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : torch.FloatTensor snake_case_ : torch.FloatTensor snake_case_ : Optional[torch.FloatTensor] = None class __lowerCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): snake_case_ : Union[str, Any] = 2 @register_to_config def __init__( self : List[str] , snake_case__ : float = 0.02 , snake_case__ : float = 100 , snake_case__ : float = 1.007 , snake_case__ : float = 80 , snake_case__ : float = 0.05 , snake_case__ : float = 50 , ): """simple docstring""" _UpperCAmelCase = sigma_max # setable values _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None # sigma(t_i) def UpperCamelCase ( self : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): """simple docstring""" return sample def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): """simple docstring""" _UpperCAmelCase = num_inference_steps _UpperCAmelCase = np.arange(0 , self.num_inference_steps )[::-1].copy() _UpperCAmelCase = torch.from_numpy(snake_case__ ).to(snake_case__ ) _UpperCAmelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _UpperCAmelCase = torch.tensor(snake_case__ , dtype=torch.floataa , device=snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : Optional[torch.Generator] = None ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: _UpperCAmelCase = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _UpperCAmelCase = 0 # sample eps ~ N(0, S_noise^2 * I) _UpperCAmelCase = self.config.s_noise * randn_tensor(sample.shape , generator=snake_case__ ).to(sample.device ) _UpperCAmelCase = sigma + gamma * sigma _UpperCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : float , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): """simple docstring""" _UpperCAmelCase = sample_hat + sigma_hat * model_output _UpperCAmelCase = (sample_hat - pred_original_sample) / sigma_hat _UpperCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=snake_case__ , derivative=snake_case__ , pred_original_sample=snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : float , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): """simple docstring""" _UpperCAmelCase = sample_prev + sigma_prev * model_output _UpperCAmelCase = (sample_prev - pred_original_sample) / sigma_prev _UpperCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=snake_case__ , derivative=snake_case__ , pred_original_sample=snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str] ): """simple docstring""" raise NotImplementedError()
133
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ : str = logging.get_logger(__name__) lowercase_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase_ : Optional[Any] = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } lowercase_ : int = { 'gpt2': 10_24, 'gpt2-medium': 10_24, 'gpt2-large': 10_24, 'gpt2-xl': 10_24, 'distilgpt2': 10_24, } class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : Optional[int] = VOCAB_FILES_NAMES snake_case_ : List[str] = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Tuple = ["input_ids", "attention_mask"] snake_case_ : str = GPTaTokenizer def __init__( self : List[str] , snake_case__ : Any=None , snake_case__ : List[Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]="<|endoftext|>" , snake_case__ : str="<|endoftext|>" , snake_case__ : Optional[int]="<|endoftext|>" , snake_case__ : str=False , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) _UpperCAmelCase = kwargs.pop("add_bos_token" , snake_case__ ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: _UpperCAmelCase = getattr(snake_case__ , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**snake_case__ ) _UpperCAmelCase = add_prefix_space def UpperCamelCase ( self : Union[str, Any] , *snake_case__ : int , **snake_case__ : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = kwargs.get("is_split_into_words" , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : int , *snake_case__ : Optional[Any] , **snake_case__ : List[str] ): """simple docstring""" _UpperCAmelCase = kwargs.get("is_split_into_words" , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : Dict , snake_case__ : "Conversation" ): """simple docstring""" _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
133
1
'''simple docstring''' import numpy as np def lowercase_ ( __A , __A , __A , __A , __A ) -> Union[str, Any]: _snake_case = int(np.ceil((x_end - xa) / h ) ) _snake_case = np.zeros((n + 1,) ) _snake_case = ya _snake_case = xa for k in range(snake_case_ ): _snake_case = f(snake_case_ , y[k] ) _snake_case = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _snake_case = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _snake_case = f(x + h , y[k] + h * ka ) _snake_case = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class __UpperCAmelCase : def __init__( self ): """simple docstring""" _snake_case = [] _snake_case = 0 _snake_case = 0 def lowerCamelCase ( self ): """simple docstring""" return self.head == self.tail def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.data.append(lowerCAmelCase_ ) _snake_case = self.tail + 1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.data[self.head] _snake_case = self.head + 1 return ret def lowerCamelCase ( self ): """simple docstring""" return self.tail - self.head def lowerCamelCase ( self ): """simple docstring""" print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = data _snake_case = None _snake_case = None _snake_case = 1 def lowerCamelCase ( self ): """simple docstring""" return self.data def lowerCamelCase ( self ): """simple docstring""" return self.left def lowerCamelCase ( self ): """simple docstring""" return self.right def lowerCamelCase ( self ): """simple docstring""" return self.height def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = data def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = node def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = node def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = height def SCREAMING_SNAKE_CASE__ ( __A ) -> int: if node is None: return 0 return node.get_height() def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> int: if a > b: return a return b def SCREAMING_SNAKE_CASE__ ( __A ) -> MyNode: print('left rotation node:' , node.get_data() ) _snake_case = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__A ) _snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__A ) _snake_case = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__A ) return ret def SCREAMING_SNAKE_CASE__ ( __A ) -> MyNode: print('right rotation node:' , node.get_data() ) _snake_case = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__A ) _snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__A ) _snake_case = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__A ) return ret def SCREAMING_SNAKE_CASE__ ( __A ) -> MyNode: _snake_case = node.get_left() assert left_child is not None node.set_left(left_rotation(__A ) ) return right_rotation(__A ) def SCREAMING_SNAKE_CASE__ ( __A ) -> MyNode: _snake_case = node.get_right() assert right_child is not None node.set_right(right_rotation(__A ) ) return left_rotation(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> MyNode | None: if node is None: return MyNode(__A ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __A ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _snake_case = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _snake_case = right_rotation(__A ) else: _snake_case = lr_rotation(__A ) else: node.set_right(insert_node(node.get_right() , __A ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _snake_case = node.get_right() assert right_child is not None if data < right_child.get_data(): _snake_case = rl_rotation(__A ) else: _snake_case = left_rotation(__A ) _snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__A ) return node def SCREAMING_SNAKE_CASE__ ( __A ) -> Any: while True: _snake_case = root.get_right() if right_child is None: break _snake_case = right_child return root.get_data() def SCREAMING_SNAKE_CASE__ ( __A ) -> Any: while True: _snake_case = root.get_left() if left_child is None: break _snake_case = left_child return root.get_data() def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> MyNode | None: _snake_case = root.get_left() _snake_case = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _snake_case = get_left_most(__A ) root.set_data(__A ) root.set_right(del_node(__A , __A ) ) elif left_child is not None: _snake_case = left_child elif right_child is not None: _snake_case = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(__A , __A ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__A , __A ) ) if get_height(__A ) - get_height(__A ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _snake_case = left_rotation(__A ) else: _snake_case = rl_rotation(__A ) elif get_height(__A ) - get_height(__A ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _snake_case = right_rotation(__A ) else: _snake_case = lr_rotation(__A ) _snake_case = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__A ) return root class __UpperCAmelCase : def __init__( self ): """simple docstring""" _snake_case = None def lowerCamelCase ( self ): """simple docstring""" return get_height(self.root ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" print('insert:' + str(lowerCAmelCase_ ) ) _snake_case = insert_node(self.root , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" print('delete:' + str(lowerCAmelCase_ ) ) if self.root is None: print('Tree is empty!' ) return _snake_case = del_node(self.root , lowerCAmelCase_ ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree """simple docstring""" _snake_case = '' _snake_case = MyQueue() q.push(self.root ) _snake_case = self.get_height() if layer == 0: return output _snake_case = 0 while not q.is_empty(): _snake_case = q.pop() _snake_case = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase_ ) q.push(lowerCAmelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _snake_case = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , lowerCAmelCase_ ) - 1: _snake_case = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def SCREAMING_SNAKE_CASE__ ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase : List[Any] = AVLtree() lowercase : Dict = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
160
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = R""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class UpperCAmelCase ( A_ ): @add_start_docstrings(snake_case__ ) def __call__(self : Union[str, Any] , snake_case__ : torch.LongTensor , snake_case__ : torch.FloatTensor , **snake_case__ : Optional[int] ) -> bool: '''simple docstring''' raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class UpperCAmelCase ( A_ ): def __init__(self : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[int] = None ) -> Any: '''simple docstring''' snake_case : List[str] = max_length snake_case : Dict = max_position_embeddings @add_start_docstrings(snake_case__ ) def __call__(self : str , snake_case__ : torch.LongTensor , snake_case__ : torch.FloatTensor , **snake_case__ : int ) -> bool: '''simple docstring''' snake_case : Optional[Any] = input_ids.shape[-1] snake_case : Union[str, Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , snake_case__ : int , snake_case__ : int ) -> Union[str, Any]: '''simple docstring''' warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , snake_case__ , ) snake_case : Union[str, Any] = start_length snake_case : Union[str, Any] = max_new_tokens snake_case : Union[str, Any] = start_length + max_new_tokens @add_start_docstrings(snake_case__ ) def __call__(self : Optional[Any] , snake_case__ : torch.LongTensor , snake_case__ : torch.FloatTensor , **snake_case__ : Any ) -> bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class UpperCAmelCase ( A_ ): def __init__(self : List[str] , snake_case__ : float , snake_case__ : Optional[float] = None ) -> Any: '''simple docstring''' snake_case : Tuple = max_time snake_case : List[str] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(snake_case__ ) def __call__(self : Dict , snake_case__ : torch.LongTensor , snake_case__ : torch.FloatTensor , **snake_case__ : str ) -> bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class UpperCAmelCase ( A_ ): @add_start_docstrings(snake_case__ ) def __call__(self : Any , snake_case__ : torch.LongTensor , snake_case__ : torch.FloatTensor , **snake_case__ : List[str] ) -> bool: '''simple docstring''' return any(criteria(snake_case__ , snake_case__ ) for criteria in self ) @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(snake_case__ , snake_case__ ): return stopping_criterium.max_length elif isinstance(snake_case__ , snake_case__ ): return stopping_criterium.max_length return None def UpperCamelCase ( __lowerCamelCase : StoppingCriteriaList , __lowerCamelCase : int ): snake_case : Any = stopping_criteria.max_length snake_case : Tuple = deepcopy(__lowerCamelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , __lowerCamelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__lowerCamelCase ) ) return new_stopping_criteria
59
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCamelCase ( __lowerCamelCase : Dataset , __lowerCamelCase : Dict[str, str] ): snake_case : int = args.log_outputs snake_case : Dict = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case : List[str] = load_metric("wer" ) snake_case : Tuple = load_metric("cer" ) # compute metrics snake_case : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case : int = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case : int = f"""WER: {wer_result}\nCER: {cer_result}""" print(__lowerCamelCase ) with open(f"""{dataset_id}_eval_results.txt""" , "w" ) as f: f.write(__lowerCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case : int = f"""log_{dataset_id}_predictions.txt""" snake_case : List[Any] = f"""log_{dataset_id}_targets.txt""" with open(__lowerCamelCase , "w" ) as p, open(__lowerCamelCase , "w" ) as t: # mapping function to write output def write_to_file(__lowerCamelCase : str , __lowerCamelCase : Optional[int] ): p.write(f"""{i}""" + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f"""{i}""" + "\n" ) t.write(batch["target"] + "\n" ) result.map(__lowerCamelCase , with_indices=__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : str ): snake_case : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case : List[Any] = re.sub(__lowerCamelCase , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case : Dict = " ".join(text.split(__lowerCamelCase ) ) return text def UpperCamelCase ( __lowerCamelCase : int ): # load dataset snake_case : str = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__lowerCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case : Union[str, Any] = feature_extractor.sampling_rate # resample audio snake_case : Union[str, Any] = dataset.cast_column("audio" , Audio(sampling_rate=__lowerCamelCase ) ) # load eval pipeline if args.device is None: snake_case : List[str] = 0 if torch.cuda.is_available() else -1 snake_case : str = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__lowerCamelCase : int ): snake_case : Dict = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case : str = prediction["text"] snake_case : Tuple = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case : Dict = dataset.map(__lowerCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase = parser.parse_args() main(args)
59
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _A : int = '__DUMMY_TRANSFORMERS_USER__' _A : List[Any] = 'Dummy User' _A : Optional[Any] = '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' _A : Optional[Any] = 'https://hub-ci.huggingface.co' _A : Optional[Any] = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _A : Union[str, Any] = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _A : List[str] = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , UpperCAmelCase ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Tuple: """simple docstring""" monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" HfFolder.save_token(UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def _a ( ) -> Dict: """simple docstring""" return HfApi(endpoint=UpperCAmelCase ) @pytest.fixture(scope='''session''' ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : int = HfFolder.get_token() HfFolder.save_token(UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Tuple: """simple docstring""" def _cleanup_repo(UpperCAmelCase ): hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" @contextmanager def _temporary_repo(UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope='''session''' ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : List[Any] = f"repo_txt_data-{int(time.time() * 1_0E3 )}" lowerCamelCase__ : Tuple = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type='''dataset''' , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo='''data/text_data.txt''' , repo_id=UpperCAmelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Any = f"repo_zipped_txt_data-{int(time.time() * 1_0E3 )}" lowerCamelCase__ : Tuple = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type='''dataset''' , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo='''data.zip''' , repo_id=UpperCAmelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Dict = f"repo_zipped_img_data-{int(time.time() * 1_0E3 )}" lowerCamelCase__ : int = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type='''dataset''' , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo='''data.zip''' , repo_id=UpperCAmelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
353
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Any = logging.get_logger(__name__) _A : int = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Dict = "timesformer" def __init__( self : List[str] , A : int=2_2_4 , A : Optional[Any]=1_6 , A : str=3 , A : str=8 , A : Any=7_6_8 , A : Dict=1_2 , A : Optional[Any]=1_2 , A : Any=3_0_7_2 , A : str="gelu" , A : Optional[int]=0.0 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : int=1e-6 , A : Tuple=True , A : Any="divided_space_time" , A : Optional[Any]=0 , **A : Tuple , ) ->str: super().__init__(**A ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : int = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Optional[int] = num_frames lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : Union[str, Any] = qkv_bias lowerCamelCase__ : str = attention_type lowerCamelCase__ : List[str] = drop_path_rate
265
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCamelCase ={ "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } _lowerCamelCase ={"allegro/herbert-base-cased": 5_14} _lowerCamelCase ={} class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = HerbertTokenizer def __init__( self : Optional[int] ,snake_case : Any=None ,snake_case : str=None ,snake_case : Optional[Any]=None ,snake_case : List[str]="<s>" ,snake_case : Union[str, Any]="<unk>" ,snake_case : Dict="<pad>" ,snake_case : List[Any]="<mask>" ,snake_case : Any="</s>" ,**snake_case : Dict ,): super().__init__( snake_case ,snake_case ,tokenizer_file=snake_case ,cls_token=snake_case ,unk_token=snake_case ,pad_token=snake_case ,mask_token=snake_case ,sep_token=snake_case ,**snake_case ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self : List[Any] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ,snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case ,token_ids_a=snake_case ,already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] def _lowerCAmelCase ( self : str ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.sep_token_id] SCREAMING_SNAKE_CASE =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self : int ,snake_case : str ,snake_case : Optional[str] = None ): SCREAMING_SNAKE_CASE =self._tokenizer.model.save(snake_case ,name=snake_case ) return tuple(snake_case )
334
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCAmelCase : Any = logging.getLogger(__name__) class lowerCAmelCase__ ( __lowercase ): """simple docstring""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=-1 ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = label_idx def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = mode.value __SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , f'{mode}.txt' ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] else: __SCREAMING_SNAKE_CASE = line.split(""" """ ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : TextIO , __SCREAMING_SNAKE_CASE : TextIO , __SCREAMING_SNAKE_CASE : List ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __SCREAMING_SNAKE_CASE = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for \'%s\'.""" , line.split()[0] ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" if path: with open(UpperCAmelCase__ , """r""" ) as f: __SCREAMING_SNAKE_CASE = f.read().splitlines() if "O" not in labels: __SCREAMING_SNAKE_CASE = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCAmelCase__ ( __lowercase ): """simple docstring""" def __init__( self : Union[str, Any] ) -> str: """simple docstring""" super().__init__(label_idx=-2 ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" if path: with open(UpperCAmelCase__ , """r""" ) as f: __SCREAMING_SNAKE_CASE = f.read().splitlines() if "O" not in labels: __SCREAMING_SNAKE_CASE = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCAmelCase__ ( __lowercase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = mode.value __SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , f'{mode}.txt' ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : TextIO , __SCREAMING_SNAKE_CASE : TextIO , __SCREAMING_SNAKE_CASE : List ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 for sentence in parse_incr(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = preds_list[example_id] __SCREAMING_SNAKE_CASE = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" if path: with open(UpperCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
361
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : Optional[int] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "retribert" def __init__( self : int , __SCREAMING_SNAKE_CASE : str=30_522 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : List[str]=3_072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Tuple=0 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = share_encoders __SCREAMING_SNAKE_CASE = projection_dim
331
0
'''simple docstring''' def __lowercase ( __lowercase ) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
79
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def _lowercase ( _UpperCAmelCase , _UpperCAmelCase = "cpu" , _UpperCAmelCase = None ) -> None: lowerCamelCase =torch.load(_UpperCAmelCase , map_location=_UpperCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCamelCase =v.half() if save_path is None: # overwrite src_path lowerCamelCase =src_path torch.save(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
352
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCAmelCase__ : Optional[Any] ={ '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class __A ( a ): __A = """ernie_m""" __A = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , UpperCAmelCase_ = 250002 , UpperCAmelCase_ = 768 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 3072 , UpperCAmelCase_ = "gelu" , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 514 , UpperCAmelCase_ = 0.0_2 , UpperCAmelCase_ = 1 , UpperCAmelCase_ = 1E-05 , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=0.0 , **UpperCAmelCase_ , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =vocab_size lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =hidden_act lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =max_position_embeddings lowerCamelCase =initializer_range lowerCamelCase =layer_norm_eps lowerCamelCase =classifier_dropout lowerCamelCase =is_decoder lowerCamelCase =act_dropout
262
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Optional[Any] = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class __snake_case ( UpperCamelCase_ ): _a = '''xlnet''' _a = ['''mems'''] _a = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , A_ : Any=3_2_0_0_0 , A_ : Optional[int]=1_0_2_4 , A_ : List[str]=2_4 , A_ : str=1_6 , A_ : Optional[int]=4_0_9_6 , A_ : Optional[int]="gelu" , A_ : Any=True , A_ : Tuple="bi" , A_ : List[str]=0.02 , A_ : Any=1e-12 , A_ : str=0.1 , A_ : Any=5_1_2 , A_ : Optional[Any]=None , A_ : int=True , A_ : Any=False , A_ : Dict=False , A_ : Any=-1 , A_ : int=False , A_ : Optional[int]="last" , A_ : List[str]=True , A_ : Optional[int]="tanh" , A_ : Dict=0.1 , A_ : int=5 , A_ : Optional[int]=5 , A_ : Tuple=5 , A_ : Tuple=1 , A_ : Optional[int]=2 , **A_ : Optional[int] , ): lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : Optional[int] = d_model lowerCAmelCase_ : Tuple = n_layer lowerCAmelCase_ : str = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""") lowerCAmelCase_ : Optional[int] = d_model // n_head lowerCAmelCase_ : str = ff_activation lowerCAmelCase_ : int = d_inner lowerCAmelCase_ : List[str] = untie_r lowerCAmelCase_ : Dict = attn_type lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Tuple = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = dropout lowerCAmelCase_ : Tuple = mem_len lowerCAmelCase_ : Union[str, Any] = reuse_len lowerCAmelCase_ : str = bi_data lowerCAmelCase_ : str = clamp_len lowerCAmelCase_ : Any = same_length lowerCAmelCase_ : Union[str, Any] = summary_type lowerCAmelCase_ : str = summary_use_proj lowerCAmelCase_ : str = summary_activation lowerCAmelCase_ : List[Any] = summary_last_dropout lowerCAmelCase_ : int = start_n_top lowerCAmelCase_ : Optional[int] = end_n_top lowerCAmelCase_ : Union[str, Any] = bos_token_id lowerCAmelCase_ : Tuple = pad_token_id lowerCAmelCase_ : Optional[int] = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , A_ , ) lowerCAmelCase_ : str = kwargs['''use_cache'''] lowerCAmelCase_ : Optional[int] = use_mems_eval lowerCAmelCase_ : str = use_mems_train super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_) @property def UpperCAmelCase__ ( self : Tuple): logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""") return -1 @max_position_embeddings.setter def UpperCAmelCase__ ( self : Dict , A_ : Any): # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""")
103
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=True , ): __a : Dict = parent __a : List[str] = batch_size __a : str = num_channels __a : Optional[int] = image_size __a : Tuple = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Dict = size_divisor __a : Dict = do_rescale def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = GLPNImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : str = GLPNImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size_divisor''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''resample''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_rescale''' ) ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCamelCase ( self ): # Initialize image_processing __a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCamelCase ( self ): # Initialize image_processing __a : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
160
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase : Union[str, Any] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase : int = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase : str = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") UpperCamelCase : List[str] = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] ) -> Tuple: """simple docstring""" a : Union[str, Any] = None # source code of `config_class` a : List[str] = inspect.getsource(__lowerCamelCase ) a : Optional[Any] = _re_checkpoint.findall(__lowerCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): a : Tuple = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link a : Union[str, Any] = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: a : Union[str, Any] = ckpt_name break return checkpoint def SCREAMING_SNAKE_CASE__ ( ) -> Dict: """simple docstring""" a : str = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue a : Dict = get_checkpoint_from_config_class(__lowerCamelCase ) a : str = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: a : List[str] = "\n".join(sorted(__lowerCamelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
360
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __lowerCAmelCase : snake_case_ : Tuple = BlenderbotSmallConfig snake_case_ : Any = {} snake_case_ : List[str] = "gelu" def __init__( self : Tuple , snake_case__ : Tuple , snake_case__ : int=13 , snake_case__ : int=7 , snake_case__ : Optional[int]=True , snake_case__ : int=False , snake_case__ : str=99 , snake_case__ : List[str]=32 , snake_case__ : List[str]=2 , snake_case__ : List[Any]=4 , snake_case__ : Any=37 , snake_case__ : List[str]=0.1 , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=20 , snake_case__ : Optional[Any]=2 , snake_case__ : List[Any]=1 , snake_case__ : Union[str, Any]=0 , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_blenderbot_small_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCamelCase ( self : Optional[int] , snake_case__ : str , snake_case__ : int ): """simple docstring""" _UpperCAmelCase = TFBlenderbotSmallModel(config=snake_case__ ).get_decoder() _UpperCAmelCase = inputs_dict["""input_ids"""] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict["""attention_mask"""][:1, :] _UpperCAmelCase = inputs_dict["""head_mask"""] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ )[0] _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , ): '''simple docstring''' if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): snake_case_ : List[str] = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) snake_case_ : int = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () snake_case_ : Optional[Any] = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) snake_case_ : Optional[int] = True snake_case_ : List[Any] = False snake_case_ : Any = False def UpperCamelCase ( self : Optional[int] ): """simple docstring""" _UpperCAmelCase = TFBlenderbotSmallModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __lowerCAmelCase ( unittest.TestCase ): snake_case_ : Optional[Any] = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i\'m going to throw up.\nand why is that?" ] snake_case_ : Optional[Any] = "facebook/blenderbot_small-90M" @cached_property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = self.tokenizer(self.src_text , return_tensors="tf" ) _UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case__ , ) _UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
133
'''simple docstring''' from itertools import count def __lowerCamelCase ( _lowercase = 5_0 ) -> int: UpperCAmelCase : Any = [1] * min_block_length for n in count(_lowercase ): fill_count_functions.append(1 ) for block_length in range(_lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F'''{solution() = }''')
265
0
from __future__ import annotations from fractions import Fraction def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ) -> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> list[str]: '''simple docstring''' __snake_case : Optional[int] = [] __snake_case : Union[str, Any] = 11 __snake_case : int = int('1' + '0' * digit_len ) for num in range(__snake_case , __snake_case ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__snake_case , __snake_case ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __snake_case : int = 10 return solutions def __UpperCAmelCase ( UpperCAmelCase_ : Any = 2 ) -> int: '''simple docstring''' __snake_case : Dict = 1.0 for fraction in fraction_list(__snake_case ): __snake_case : Tuple = Fraction(__snake_case ) result *= frac.denominator / frac.numerator return int(__snake_case ) if __name__ == "__main__": print(solution())
361
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _a : List[str]= False class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : List[str]) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : Optional[Any]) -> Union[str, Any]: return 12 @property def _lowercase (self : Dict) -> Union[str, Any]: return 12 @property def _lowercase (self : int) -> Tuple: return 32 @property def _lowercase (self : Optional[int]) -> Dict: torch.manual_seed(0) __snake_case : Any = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _lowercase (self : List[Any]) -> Optional[int]: __snake_case : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def _lowercase (self : Union[str, Any]) -> Optional[int]: torch.manual_seed(0) __snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_A) @property def _lowercase (self : Union[str, Any]) -> Dict: torch.manual_seed(0) __snake_case : Any = 12 __snake_case : int = 12 __snake_case : List[Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __snake_case : Union[str, Any] = TransformeraDModel(**_A) return model def _lowercase (self : Union[str, Any]) -> Dict: __snake_case : Tuple = 'cpu' __snake_case : List[str] = self.dummy_vqvae __snake_case : str = self.dummy_text_encoder __snake_case : Optional[Any] = self.dummy_tokenizer __snake_case : Dict = self.dummy_transformer __snake_case : Optional[int] = VQDiffusionScheduler(self.num_embed) __snake_case : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=_A) __snake_case : List[Any] = VQDiffusionPipeline( vqvae=_A , text_encoder=_A , tokenizer=_A , transformer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) __snake_case : List[Any] = pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Optional[Any] = 'teddy bear playing in the pool' __snake_case : str = torch.Generator(device=_A).manual_seed(0) __snake_case : Union[str, Any] = pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='np') __snake_case : Optional[int] = output.images __snake_case : int = torch.Generator(device=_A).manual_seed(0) __snake_case : Tuple = pipe( [prompt] , generator=_A , output_type='np' , return_dict=_A , num_inference_steps=2)[0] __snake_case : str = image[0, -3:, -3:, -1] __snake_case : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case : str = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowercase (self : Tuple) -> Optional[int]: __snake_case : Optional[Any] = 'cpu' __snake_case : Optional[int] = self.dummy_vqvae __snake_case : List[str] = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : Optional[Any] = self.dummy_transformer __snake_case : Union[str, Any] = VQDiffusionScheduler(self.num_embed) __snake_case : Optional[int] = LearnedClassifierFreeSamplingEmbeddings( learnable=_A , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) __snake_case : Union[str, Any] = VQDiffusionPipeline( vqvae=_A , text_encoder=_A , tokenizer=_A , transformer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) __snake_case : Union[str, Any] = pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Union[str, Any] = 'teddy bear playing in the pool' __snake_case : Optional[int] = torch.Generator(device=_A).manual_seed(0) __snake_case : Tuple = pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='np') __snake_case : Optional[Any] = output.images __snake_case : str = torch.Generator(device=_A).manual_seed(0) __snake_case : Dict = pipe( [prompt] , generator=_A , output_type='np' , return_dict=_A , num_inference_steps=2)[0] __snake_case : int = image[0, -3:, -3:, -1] __snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case : Optional[Any] = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Any) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Tuple) -> Optional[int]: __snake_case : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') __snake_case : Union[str, Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') __snake_case : Tuple = pipeline.to(_A) pipeline.set_progress_bar_config(disable=_A) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __snake_case : Optional[int] = torch.Generator(device=_A).manual_seed(0) __snake_case : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=_A , output_type='np' , ) __snake_case : int = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image).max() < 2.0
95
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Dict = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) lowerCamelCase : Dict = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) lowerCamelCase : Any = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) lowerCamelCase : Any = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) lowerCamelCase : List[Any] = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) lowerCamelCase : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) lowerCamelCase : List[str] = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) lowerCamelCase : Optional[int] = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) lowerCamelCase : str = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) lowerCamelCase : Dict = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) lowerCamelCase : Optional[int] = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) lowerCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_MAPPING lowerCamelCase : int = auto_class_update(FlaxAutoModel) class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCamelCase : Any = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCamelCase : List[str] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class A__ ( _BaseAutoModelClass ): A__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
47
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 0, __lowerCamelCase = 0 ): _SCREAMING_SNAKE_CASE : Any = right or len(__lowerCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__lowerCamelCase, __lowerCamelCase, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
354
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
325
0
from queue import PriorityQueue from typing import Any import numpy as np def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )-> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase = cst_fwd.get(__lowerCAmelCase , np.inf ) _UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase = new_cost_f _UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = -1 _UpperCAmelCase = set() _UpperCAmelCase = set() _UpperCAmelCase = {source: 0} _UpperCAmelCase = {destination: 0} _UpperCAmelCase = {source: None} _UpperCAmelCase = {destination: None} _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase , _UpperCAmelCase = queue_forward.get() visited_forward.add(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = queue_backward.get() visited_backward.add(__lowerCAmelCase ) _UpperCAmelCase = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _UpperCAmelCase = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase = shortest_distance return shortest_path_distance _a = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } _a = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
39
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=7 , __lowercase=3 , __lowercase=1_8 , __lowercase=3_0 , __lowercase=4_0_0 , __lowercase=True , __lowercase=None , __lowercase=True , __lowercase=None , ) -> List[Any]: lowerCAmelCase_ : Optional[Any] = size if size is not None else {'''shortest_edge''': 2_0} lowerCAmelCase_ : Any = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : List[str] = min_resolution lowerCAmelCase_ : Dict = max_resolution lowerCAmelCase_ : Tuple = do_resize lowerCAmelCase_ : Optional[Any] = size lowerCAmelCase_ : Union[str, Any] = do_center_crop lowerCAmelCase_ : Optional[Any] = crop_size def lowercase_ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = MobileNetVaImageProcessor if is_vision_available() else None def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = MobileNetVaImageProcessingTester(self ) @property def lowercase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowercase , '''crop_size''' ) ) def lowercase_ ( self ) -> int: lowerCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 2_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) lowerCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input lowerCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCAmelCase_ : Tuple = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase_ ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input lowerCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCAmelCase_ : Tuple = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase_ ( self ) -> Any: # Initialize image_processing lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input lowerCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCAmelCase_ : Dict = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
262
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCamelCase = logging.get_logger(__name__) @dataclass class _a ( _lowercase): _a : Optional[Any] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase__ : Optional[int] = deprecated_arg[3:] setattr(self , _SCREAMING_SNAKE_CASE , not kwargs.pop(_SCREAMING_SNAKE_CASE ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) lowerCAmelCase__ : Optional[Any] = kwargs.pop('''torchscript''' , self.torchscript ) lowerCAmelCase__ : Optional[int] = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) lowerCAmelCase__ : Tuple = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**_SCREAMING_SNAKE_CASE ) _a : bool = field(default=_lowercase , metadata={'''help''': '''Trace the models using torchscript'''}) _a : bool = field(default=_lowercase , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) _a : str = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def UpperCAmelCase__( self : str )-> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowerCAmelCase__ : List[Any] = torch.device('''cpu''' ) lowerCAmelCase__ : List[str] = 0 elif is_torch_tpu_available(): lowerCAmelCase__ : Optional[int] = xm.xla_device() lowerCAmelCase__ : Union[str, Any] = 0 else: lowerCAmelCase__ : Optional[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase__ : List[Any] = torch.cuda.device_count() return device, n_gpu @property def UpperCAmelCase__( self : Union[str, Any] )-> Tuple: return is_torch_tpu_available() and self.tpu @property def UpperCAmelCase__( self : int )-> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCAmelCase__( self : Any )-> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def UpperCAmelCase__( self : Tuple )-> Union[str, Any]: return self.n_gpu > 0
211
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) lowerCamelCase = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) lowerCamelCase = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) lowerCamelCase = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) lowerCamelCase = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) lowerCamelCase = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass): _a : List[str] = FLAX_MODEL_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class _a ( _BaseAutoModelClass): _a : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class _a ( _BaseAutoModelClass): _a : Tuple = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class _a ( _BaseAutoModelClass): _a : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class _a ( _BaseAutoModelClass): _a : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class _a ( _BaseAutoModelClass): _a : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class _a ( _BaseAutoModelClass): _a : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
211
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Union[str, Any] =R"\w+[.]\d+" lowerCamelCase__: int =re.findall(__a , __a ) for pat in pats: lowerCamelCase__: Optional[int] =key.replace(__a , "_".join(pat.split("." ) ) ) return key def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: int =pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__: Optional[Any] =pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__: int =pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__: int =pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__: Optional[Any] =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__: List[Any] =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__: Union[str, Any] =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCamelCase__: int =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__: str =pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__: int =pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( __a , __a , __a=42 ) -> Tuple: """simple docstring""" lowerCamelCase__: int ={k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__: int =flax_model.init_weights(PRNGKey(__a ) ) lowerCamelCase__: Optional[int] =flatten_dict(__a ) lowerCamelCase__: int ={} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__: List[str] =rename_key(__a ) lowerCamelCase__: str =tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__: List[str] =rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown lowerCamelCase__: Union[str, Any] =jnp.asarray(__a ) return unflatten_dict(__a )
10
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class a__ ( _UpperCAmelCase ): _a : List[Any] = 'mobilenet_v2' def __init__( self , _A=3 , _A=2_2_4 , _A=1.0 , _A=8 , _A=8 , _A=6 , _A=3_2 , _A=True , _A=True , _A="relu6" , _A=True , _A=0.8 , _A=0.02 , _A=0.0_01 , _A=2_5_5 , **_A , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = depth_multiplier __lowerCAmelCase = depth_divisible_by __lowerCAmelCase = min_depth __lowerCAmelCase = expand_ratio __lowerCAmelCase = output_stride __lowerCAmelCase = first_layer_is_expansion __lowerCAmelCase = finegrained_output __lowerCAmelCase = hidden_act __lowerCAmelCase = tf_padding __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = semantic_loss_ignore_index class a__ ( _UpperCAmelCase ): _a : Optional[Any] = version.parse("""1.11""" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1E-4
355
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.dummy_uncond_unet __lowerCAmelCase = ScoreSdeVeScheduler() __lowerCAmelCase = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=_A ).images __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=_A , return_dict=_A )[ 0 ] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "google/ncsnpp-church-256" __lowerCAmelCase = UNetaDModel.from_pretrained(_A ) __lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(_A ) __lowerCAmelCase = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=1_0 , output_type="numpy" , generator=_A ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
102
0
"""simple docstring""" from __future__ import annotations import math def a_ ( lowerCamelCase , lowerCamelCase ): if len(lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) UpperCAmelCase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def a_ ( lowerCamelCase , lowerCamelCase ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase ) ) ] def a_ ( lowerCamelCase , lowerCamelCase ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase ) ) ] def a_ ( lowerCamelCase ): if len(lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) UpperCAmelCase__ = len(lowerCamelCase ) UpperCAmelCase__ = matrix_length // 2 UpperCAmelCase__ = [[a[i][j] for j in range(lowerCamelCase , lowerCamelCase )] for i in range(lowerCamelCase )] UpperCAmelCase__ = [ [a[i][j] for j in range(lowerCamelCase , lowerCamelCase )] for i in range(lowerCamelCase , lowerCamelCase ) ] UpperCAmelCase__ = [[a[i][j] for j in range(lowerCamelCase )] for i in range(lowerCamelCase )] UpperCAmelCase__ = [[a[i][j] for j in range(lowerCamelCase )] for i in range(lowerCamelCase , lowerCamelCase )] return top_left, top_right, bot_left, bot_right def a_ ( lowerCamelCase ): return len(lowerCamelCase ), len(matrix[0] ) def a_ ( lowerCamelCase ): print('\n'.join(str(lowerCamelCase ) for line in matrix ) ) def a_ ( lowerCamelCase , lowerCamelCase ): if matrix_dimensions(lowerCamelCase ) == (2, 2): return default_matrix_multiplication(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = split_matrix(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = split_matrix(lowerCamelCase ) UpperCAmelCase__ = actual_strassen(lowerCamelCase , matrix_subtraction(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = actual_strassen(matrix_addition(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) UpperCAmelCase__ = actual_strassen(matrix_addition(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) UpperCAmelCase__ = actual_strassen(lowerCamelCase , matrix_subtraction(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = actual_strassen(matrix_addition(lowerCamelCase , lowerCamelCase ) , matrix_addition(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = actual_strassen(matrix_subtraction(lowerCamelCase , lowerCamelCase ) , matrix_addition(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = actual_strassen(matrix_subtraction(lowerCamelCase , lowerCamelCase ) , matrix_addition(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) , lowerCamelCase ) UpperCAmelCase__ = matrix_addition(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = matrix_addition(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) , lowerCamelCase ) # construct the new matrix from our 4 quadrants UpperCAmelCase__ = [] for i in range(len(lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def a_ ( lowerCamelCase , lowerCamelCase ): if matrix_dimensions(lowerCamelCase )[1] != matrix_dimensions(lowerCamelCase )[0]: UpperCAmelCase__ = ( 'Unable to multiply these matrices, please check the dimensions.\n' f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(lowerCamelCase ) UpperCAmelCase__ = matrix_dimensions(lowerCamelCase ) UpperCAmelCase__ = matrix_dimensions(lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] UpperCAmelCase__ = max(*lowerCamelCase , *lowerCamelCase ) UpperCAmelCase__ = int(math.pow(2 , math.ceil(math.loga(lowerCamelCase ) ) ) ) UpperCAmelCase__ = matrixa UpperCAmelCase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) UpperCAmelCase__ = actual_strassen(lowerCamelCase , lowerCamelCase ) # Removing the additional zeros for i in range(0 , lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCAmelCase__ : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCAmelCase__ : List[str] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
98
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __lowerCAmelCase : pass
95
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
361
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE__ ) as metadata_file: __lowerCamelCase : List[str] = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __lowerCamelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) # Load the entity vocab file __lowerCamelCase : List[Any] = load_entity_vocab(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __lowerCamelCase : str = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = LukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Initialize the embeddings of the special tokens __lowerCamelCase : Union[str, Any] = state_dict['embeddings.word_embeddings.weight'] __lowerCamelCase : Tuple = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __lowerCamelCase : Any = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __lowerCamelCase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowerCamelCase : Optional[int] = f'encoder.layer.{layer_index}.attention.self.' __lowerCamelCase : Dict = state_dict[prefix + matrix_name] __lowerCamelCase : List[Any] = state_dict[prefix + matrix_name] __lowerCamelCase : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowerCamelCase : Optional[int] = state_dict['entity_embeddings.entity_embeddings.weight'] __lowerCamelCase : Union[str, Any] = entity_emb[entity_vocab['[MASK]']] __lowerCamelCase : Optional[Any] = LukeModel(config=SCREAMING_SNAKE_CASE__ ).eval() __lowerCamelCase , __lowerCamelCase : List[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if not (len(SCREAMING_SNAKE_CASE__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(SCREAMING_SNAKE_CASE__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs __lowerCamelCase : Optional[Any] = LukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , task='entity_classification' ) __lowerCamelCase : Dict = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __lowerCamelCase : Union[str, Any] = (39, 42) __lowerCamelCase : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , add_prefix_space=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE__ ) # Verify word hidden states if model_size == "large": __lowerCamelCase : Dict = torch.Size((1, 42, 1_024) ) __lowerCamelCase : int = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base __lowerCamelCase : Union[str, Any] = torch.Size((1, 42, 768) ) __lowerCamelCase : Tuple = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __lowerCamelCase : Union[str, Any] = torch.Size((1, 1, 1_024) ) __lowerCamelCase : Dict = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base __lowerCamelCase : int = torch.Size((1, 1, 768) ) __lowerCamelCase : Dict = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE__ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = {} with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase , __lowerCamelCase : List[Any] = line.rstrip().split('\t' ) __lowerCamelCase : Any = index return entity_vocab if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) lowercase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
194
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : str = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class a__ ( A__ ): A = 'git_vision_model' def __init__( self : Any,_A : str=768,_A : Union[str, Any]=3072,_A : List[Any]=12,_A : Dict=12,_A : List[Any]=3,_A : Union[str, Any]=224,_A : Any=16,_A : Union[str, Any]="quick_gelu",_A : List[str]=1E-5,_A : str=0.0,_A : Tuple=0.02,**_A : Tuple,): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE_ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = hidden_act @classmethod def __UpperCamelCase ( cls : int,_A : Union[str, os.PathLike],**_A : str ): """simple docstring""" cls._set_token_in_kwargs(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = cls.get_config_dict(_A,**_A ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": SCREAMING_SNAKE_CASE_ : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A,**_A ) class a__ ( A__ ): A = 'git' def __init__( self : Dict,_A : Optional[Any]=None,_A : int=3_0522,_A : Dict=768,_A : str=6,_A : str=12,_A : Optional[int]=3072,_A : List[str]="gelu",_A : Tuple=0.1,_A : Optional[int]=0.1,_A : Any=1024,_A : Optional[Any]=0.02,_A : Optional[int]=1E-12,_A : Any=0,_A : List[str]="absolute",_A : List[str]=True,_A : List[str]=False,_A : Optional[int]=101,_A : Optional[int]=102,_A : List[str]=None,**_A : str,): """simple docstring""" super().__init__(bos_token_id=_A,eos_token_id=_A,pad_token_id=_A,**_A ) if vision_config is None: SCREAMING_SNAKE_CASE_ : Optional[int] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ : List[str] = GitVisionConfig(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : str = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = position_embedding_type SCREAMING_SNAKE_CASE_ : Tuple = use_cache SCREAMING_SNAKE_CASE_ : List[Any] = tie_word_embeddings SCREAMING_SNAKE_CASE_ : Any = num_image_with_embedding SCREAMING_SNAKE_CASE_ : List[str] = bos_token_id SCREAMING_SNAKE_CASE_ : Dict = eos_token_id def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.__class__.model_type return output
18
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
175
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def snake_case_ ( A_ : Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def snake_case_ ( A_ : Dict, A_ : Any ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : List[str] = False elif args.student_type == "gpt2": _lowerCamelCase : Any = False def snake_case_ ( A_ : Optional[Any], A_ : List[Any] ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : Optional[int] = False def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''', action='''store_true''', help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''', type=A_, required=A_, help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''', type=A_, required=A_, help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''', ) parser.add_argument( '''--student_type''', type=A_, choices=['''distilbert''', '''roberta''', '''gpt2'''], required=A_, help='''The student type (DistilBERT, RoBERTa).''', ) parser.add_argument('''--student_config''', type=A_, required=A_, help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''', default=A_, type=A_, help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''', choices=['''bert''', '''roberta''', '''gpt2'''], required=A_, help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''', type=A_, required=A_, help='''The teacher model.''' ) parser.add_argument('''--temperature''', default=2.0, type=A_, help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''', default=0.5, type=A_, help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''', default=0.0, type=A_, help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''', ) parser.add_argument('''--alpha_clm''', default=0.5, type=A_, help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''', default=0.0, type=A_, help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''', default=0.0, type=A_, help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''', action='''store_true''', help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''', default=0.15, type=A_, help='''Proportion of tokens for which we need to make a prediction.''', ) parser.add_argument('''--word_mask''', default=0.8, type=A_, help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''', default=0.1, type=A_, help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''', default=0.1, type=A_, help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''', default=0.7, type=A_, help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''', ) parser.add_argument('''--token_counts''', type=A_, help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''', action='''store_true''', help='''If true, compute the distillation loss only the [MLM] prediction distribution.''', ) parser.add_argument( '''--freeze_pos_embs''', action='''store_true''', help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''', ) parser.add_argument( '''--freeze_token_type_embds''', action='''store_true''', help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''', ) parser.add_argument('''--n_epoch''', type=A_, default=3, help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''', type=A_, default=5, help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''', action='''store_false''', help='''If true, group sequences that have similar length into the same batch. Default is true.''', ) parser.add_argument( '''--gradient_accumulation_steps''', type=A_, default=50, help='''Gradient accumulation for larger training batches.''', ) parser.add_argument('''--warmup_prop''', default=0.05, type=A_, help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''', default=0.0, type=A_, help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''', default=5E-4, type=A_, help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''', default=1E-6, type=A_, help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''', default=5.0, type=A_, help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''', default=0.02, type=A_, help='''Random initialization range.''' ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=A_, default='''O1''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_gpu''', type=A_, default=1, help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''', type=A_, default=-1, help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''', type=A_, default=56, help='''Random seed''' ) parser.add_argument('''--log_interval''', type=A_, default=5_00, help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''', type=A_, default=40_00, help='''Checkpoint interval.''' ) _lowerCamelCase : List[Any] = parser.parse_args() sanity_checks(A_ ) # ARGS # init_gpu_params(A_ ) set_seed(A_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path, '''parameters.json''' ), '''w''' ) as f: json.dump(vars(A_ ), A_, indent=4 ) git_log(args.dump_path ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = MODEL_CLASSES[args.student_type] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowerCamelCase : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowerCamelCase : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowerCamelCase : Optional[int] = tokenizer.all_special_tokens.index(A_ ) _lowerCamelCase : Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _lowerCamelCase : Optional[Any] = special_tok_ids _lowerCamelCase : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file, '''rb''' ) as fp: _lowerCamelCase : Any = pickle.load(A_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts, '''rb''' ) as fp: _lowerCamelCase : str = pickle.load(A_ ) _lowerCamelCase : List[Any] = np.maximum(A_, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowerCamelCase : List[Any] = 0.0 # do not predict special tokens _lowerCamelCase : str = torch.from_numpy(A_ ) else: _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Any = LmSeqsDataset(params=A_, data=A_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _lowerCamelCase : str = student_config_class.from_pretrained(args.student_config ) _lowerCamelCase : Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _lowerCamelCase : Dict = student_model_class.from_pretrained(args.student_pretrained_weights, config=A_ ) else: _lowerCamelCase : Optional[Any] = student_model_class(A_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # _lowerCamelCase : int = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=A_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A_, A_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A_, A_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowerCamelCase : Optional[int] = Distiller( params=A_, dataset=A_, token_probs=A_, student=A_, teacher=A_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
175
1
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase_ = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def lowerCAmelCase (__A , __A , __A , __A=None): """simple docstring""" _a = XLNetConfig.from_json_file(__A) _a = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''') _a = finetuning_task _a = GLUE_TASKS_NUM_LABELS[finetuning_task] _a = XLNetForSequenceClassification(__A) elif "squad" in finetuning_task: _a = finetuning_task _a = XLNetForQuestionAnswering(__A) else: _a = XLNetLMHeadModel(__A) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A) # Save pytorch-model _a = os.path.join(__A , __A) _a = os.path.join(__A , __A) print(F'''Save PyTorch model to {os.path.abspath(__A)}''') torch.save(model.state_dict() , __A) print(F'''Save configuration file to {os.path.abspath(__A)}''') with open(__A , '''w''' , encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowercase_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
211
'''simple docstring''' from __future__ import annotations from typing import TypedDict class __A ( A ): '''simple docstring''' __lowerCamelCase : str __lowerCamelCase : int def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter s type must be str.''') return [s[i:] + s[:i] for i in range(len(__A))] def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter s type must be str.''') if not s: raise ValueError('''The parameter s must not be empty.''') _a = all_rotations(__A) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a = { "bwt_string": "".join([word[-1] for word in rotations]), "idx_original_string": rotations.index(__A), } return response def lowerCAmelCase (__A , __A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter bwt_string type must be str.''') if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''') try: _a = int(__A) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''') if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''') if idx_original_string >= len(__A): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''') _a = [''''''] * len(__A) for _ in range(len(__A)): for i in range(len(__A)): _a = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowercase_ = "Provide a string that I will generate its BWT transform: " lowercase_ = input(entry_msg).strip() lowercase_ = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result['bwt_string']}'""" ) lowercase_ = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( F"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ F"""we get original string '{original_string}'""" )
211
1
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = BioGptTokenizer SCREAMING_SNAKE_CASE_ : List[str] = False def _UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE :int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __SCREAMING_SNAKE_CASE :str = dict(zip(SCREAMING_SNAKE_CASE__ ,range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __SCREAMING_SNAKE_CASE :str = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __SCREAMING_SNAKE_CASE :Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE :str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) with open(self.merges_file ,'''w''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = '''lower newer''' __SCREAMING_SNAKE_CASE :Tuple = '''lower newer''' return input_text, output_text def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = BioGptTokenizer(self.vocab_file ,self.merges_file ) __SCREAMING_SNAKE_CASE :List[str] = '''lower''' __SCREAMING_SNAKE_CASE :Tuple = ['''low''', '''er</w>'''] __SCREAMING_SNAKE_CASE :List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = tokens + ['''<unk>'''] __SCREAMING_SNAKE_CASE :str = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __SCREAMING_SNAKE_CASE :Any = tokenizer.encode('''sequence builders''' ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
239
"""simple docstring""" from __future__ import annotations import math def __lowerCamelCase ( a_ : int , a_ : int , a_ : bool , a_ : list[int] , a_ : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(a_ ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , a_ , a_ , a_ ) , minimax(depth + 1 , node_index * 2 + 1 , a_ , a_ , a_ ) , ) return min( minimax(depth + 1 , node_index * 2 , a_ , a_ , a_ ) , minimax(depth + 1 , node_index * 2 + 1 , a_ , a_ , a_ ) , ) def __lowerCamelCase ( ) -> None: __SCREAMING_SNAKE_CASE :Dict = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] __SCREAMING_SNAKE_CASE :Optional[int] = math.log(len(a_ ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , a_ , a_ , a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
239
1
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowercase_ ( _snake_case ,_snake_case ): assert isinstance(_snake_case ,_snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" ,[False, True] ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ : Optional[int] = SqlDatasetReader( """dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_snake_case ,keep_in_memory=_snake_case ).read() _check_sql_dataset(_snake_case ,_snake_case ) @require_sqlalchemy @pytest.mark.parametrize( """features""" ,[ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] ,) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Any = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ : Any = ( Features({feature: Value(_snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,features=_snake_case ,cache_dir=_snake_case ).read() _check_sql_dataset(_snake_case ,_snake_case ) def lowercase_ ( _snake_case ): with contextlib.closing(sqlitea.connect(_snake_case ) ) as con: SCREAMING_SNAKE_CASE__ : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Any = os.path.join(_snake_case ,"""tmp.sql""" ) SCREAMING_SNAKE_CASE__ : Dict = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_snake_case ).read() SqlDatasetWriter(_snake_case ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=1 ).write() SCREAMING_SNAKE_CASE__ : List[str] = iter_sql_file(_snake_case ) SCREAMING_SNAKE_CASE__ : int = iter_sql_file(_snake_case ) for rowa, rowa in zip(_snake_case ,_snake_case ): assert rowa == rowa @require_sqlalchemy def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(_snake_case ,"""tmp.sql""" ) SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_snake_case ).read() SqlDatasetWriter(_snake_case ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=2 ).write() SCREAMING_SNAKE_CASE__ : Any = iter_sql_file(_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = iter_sql_file(_snake_case ) for rowa, rowa in zip(_snake_case ,_snake_case ): assert rowa == rowa @require_sqlalchemy def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(_snake_case ,"""tmp.sql""" ) SCREAMING_SNAKE_CASE__ : Any = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_snake_case ).read() with pytest.raises(_snake_case ): SqlDatasetWriter(_snake_case ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=0 ).write()
25
"""simple docstring""" import math def lowercase ( _snake_case : int ) ->bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( _snake_case : float = 0.1 ) ->int: """simple docstring""" __snake_case : Tuple = 3 __snake_case : Any = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
102
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __snake_case : List[str] = logging.get_logger(__name__) # General docstring __snake_case : int = 'RegNetConfig' # Base docstring __snake_case : Dict = 'facebook/regnet-y-040' __snake_case : List[str] = [1, 1_088, 7, 7] # Image classification docstring __snake_case : List[str] = 'facebook/regnet-y-040' __snake_case : Tuple = 'tabby, tabby cat' __snake_case : Union[str, Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 3 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[str] = "relu" , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2) __lowerCAmelCase : List[str] = tf.keras.layers.ConvaD( filters=_SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , strides=_SCREAMING_SNAKE_CASE , padding="VALID" , groups=_SCREAMING_SNAKE_CASE , use_bias=_SCREAMING_SNAKE_CASE , name="convolution" , ) __lowerCAmelCase : Union[str, Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization") __lowerCAmelCase : Tuple = ACTaFN[activation] if activation is not None else tf.identity def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: List[Any]) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.convolution(self.padding(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Tuple = self.normalization(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.activation(_SCREAMING_SNAKE_CASE) return hidden_state class A__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: RegNetConfig , **_SCREAMING_SNAKE_CASE: List[str]) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = config.num_channels __lowerCAmelCase : List[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = shape_list(_SCREAMING_SNAKE_CASE)[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCAmelCase : Union[str, Any] = tf.transpose(_SCREAMING_SNAKE_CASE , perm=(0, 2, 3, 1)) __lowerCAmelCase : Union[str, Any] = self.embedder(_SCREAMING_SNAKE_CASE) return hidden_state class A__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 2 , **_SCREAMING_SNAKE_CASE: int) -> Any: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = tf.keras.layers.ConvaD( filters=_SCREAMING_SNAKE_CASE , kernel_size=1 , strides=_SCREAMING_SNAKE_CASE , use_bias=_SCREAMING_SNAKE_CASE , name="convolution") __lowerCAmelCase : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization") def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: tf.Tensor , _SCREAMING_SNAKE_CASE: bool = False) -> tf.Tensor: """simple docstring""" return self.normalization(self.convolution(_SCREAMING_SNAKE_CASE) , training=_SCREAMING_SNAKE_CASE) class A__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> int: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_SCREAMING_SNAKE_CASE , name="pooler") __lowerCAmelCase : Dict = [ tf.keras.layers.ConvaD(filters=_SCREAMING_SNAKE_CASE , kernel_size=1 , activation="relu" , name="attention.0"), tf.keras.layers.ConvaD(filters=_SCREAMING_SNAKE_CASE , kernel_size=1 , activation="sigmoid" , name="attention.2"), ] def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: str) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.pooler(_SCREAMING_SNAKE_CASE) for layer_module in self.attention: __lowerCAmelCase : Union[str, Any] = layer_module(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = hidden_state * pooled return hidden_state class A__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: RegNetConfig , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 1 , **_SCREAMING_SNAKE_CASE: Optional[Any]) -> int: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = in_channels != out_channels or stride != 1 __lowerCAmelCase : Any = max(1 , out_channels // config.groups_width) __lowerCAmelCase : Union[str, Any] = ( TFRegNetShortCut(_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , name="shortcut") if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut") ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCAmelCase : Tuple = [ TFRegNetConvLayer(_SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act , name="layer.0"), TFRegNetConvLayer( _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act , name="layer.1"), TFRegNetConvLayer(_SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE , name="layer.2"), ] __lowerCAmelCase : Dict = ACTaFN[config.hidden_act] def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> int: """simple docstring""" __lowerCAmelCase : str = hidden_state for layer_module in self.layers: __lowerCAmelCase : Dict = layer_module(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.shortcut(_SCREAMING_SNAKE_CASE) hidden_state += residual __lowerCAmelCase : Optional[Any] = self.activation(_SCREAMING_SNAKE_CASE) return hidden_state class A__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: RegNetConfig , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 1 , **_SCREAMING_SNAKE_CASE: int) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = in_channels != out_channels or stride != 1 __lowerCAmelCase : Any = max(1 , out_channels // config.groups_width) __lowerCAmelCase : Any = ( TFRegNetShortCut(_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , name="shortcut") if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut") ) __lowerCAmelCase : Union[str, Any] = [ TFRegNetConvLayer(_SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act , name="layer.0"), TFRegNetConvLayer( _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act , name="layer.1"), TFRegNetSELayer(_SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4)) , name="layer.2"), TFRegNetConvLayer(_SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE , name="layer.3"), ] __lowerCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = hidden_state for layer_module in self.layers: __lowerCAmelCase : Tuple = layer_module(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.shortcut(_SCREAMING_SNAKE_CASE) hidden_state += residual __lowerCAmelCase : Optional[int] = self.activation(_SCREAMING_SNAKE_CASE) return hidden_state class A__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: RegNetConfig , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = 2 , _SCREAMING_SNAKE_CASE: int = 2 , **_SCREAMING_SNAKE_CASE: Tuple) -> Optional[int]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __lowerCAmelCase : Union[str, Any] = [ # downsampling is done in the first layer with stride of 2 layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , name="layers.0"), *[layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , name=F"""layers.{i+1}""") for i in range(depth - 1)], ] def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Dict) -> str: """simple docstring""" for layer_module in self.layers: __lowerCAmelCase : Optional[int] = layer_module(_SCREAMING_SNAKE_CASE) return hidden_state class A__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: RegNetConfig , **_SCREAMING_SNAKE_CASE: List[Any]) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , )) __lowerCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:]) for i, ((in_channels, out_channels), depth) in enumerate(zip(_SCREAMING_SNAKE_CASE , config.depths[1:])): self.stages.append(TFRegNetStage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , depth=_SCREAMING_SNAKE_CASE , name=F"""stages.{i+1}""")) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: tf.Tensor , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: bool = True) -> TFBaseModelOutputWithNoAttention: """simple docstring""" __lowerCAmelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCAmelCase : Tuple = hidden_states + (hidden_state,) __lowerCAmelCase : Dict = stage_module(_SCREAMING_SNAKE_CASE) if output_hidden_states: __lowerCAmelCase : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE) @keras_serializable class A__ ( tf.keras.layers.Layer ): '''simple docstring''' SCREAMING_SNAKE_CASE = RegNetConfig def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Optional[int]) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = config __lowerCAmelCase : List[Any] = TFRegNetEmbeddings(_SCREAMING_SNAKE_CASE , name="embedder") __lowerCAmelCase : Optional[Any] = TFRegNetEncoder(_SCREAMING_SNAKE_CASE , name="encoder") __lowerCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_SCREAMING_SNAKE_CASE , name="pooler") @unpack_inputs def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: tf.Tensor , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowerCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Dict = self.embedder(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = encoder_outputs[0] __lowerCAmelCase : Optional[Any] = self.pooler(_SCREAMING_SNAKE_CASE) # Change to NCHW output format have uniformity in the modules __lowerCAmelCase : Optional[Any] = tf.transpose(_SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2)) __lowerCAmelCase : Tuple = tf.transpose(_SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2)) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCAmelCase : Dict = tuple([tf.transpose(_SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , pooler_output=_SCREAMING_SNAKE_CASE , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = RegNetConfig SCREAMING_SNAKE_CASE = 'regnet' SCREAMING_SNAKE_CASE = 'pixel_values' @property def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa)} __snake_case : List[Any] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __snake_case : Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: RegNetConfig , *_SCREAMING_SNAKE_CASE: Tuple , **_SCREAMING_SNAKE_CASE: List[Any]) -> Any: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = TFRegNetMainLayer(_SCREAMING_SNAKE_CASE , name="regnet") @unpack_inputs @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: tf.Tensor , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: List[str]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: """simple docstring""" __lowerCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : int = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Optional[Any] = self.regnet( pixel_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Any , _SCREAMING_SNAKE_CASE: RegNetConfig , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: int) -> Union[str, Any]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = config.num_labels __lowerCAmelCase : Dict = TFRegNetMainLayer(_SCREAMING_SNAKE_CASE , name="regnet") # classification head __lowerCAmelCase : int = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1") if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: tf.Tensor = None , _SCREAMING_SNAKE_CASE: tf.Tensor = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: List[str]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: """simple docstring""" __lowerCAmelCase : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Any = self.regnet( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = outputs.pooler_output if return_dict else outputs[1] __lowerCAmelCase : str = self.classifier[0](_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = self.classifier[1](_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = None if labels is None else self.hf_compute_loss(labels=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE) if not return_dict: __lowerCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states)
358
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: Dict) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_SCREAMING_SNAKE_CASE).to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small") __lowerCAmelCase : Tuple = tokenizer("Hello there" , return_tensors="pt").input_ids __lowerCAmelCase : List[str] = tokenizer("Hi I am" , return_tensors="pt").input_ids __lowerCAmelCase : List[str] = model(input_ids.to(_SCREAMING_SNAKE_CASE) , labels=labels.to(_SCREAMING_SNAKE_CASE)).loss __lowerCAmelCase : Optional[int] = -(labels.shape[-1] * loss.item()) __lowerCAmelCase : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
58
0
from collections import deque def _A ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" a__ : str =len(SCREAMING_SNAKE_CASE ) a__ : Tuple =deque() a__ : List[Any] =[False for _ in range(SCREAMING_SNAKE_CASE )] a__ : int =[-1 for _ in range(SCREAMING_SNAKE_CASE )] a__ : List[Any] =index_of[:] def strong_connect(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ): a__ : Optional[int] =index # the number when this node is seen a__ : Any =index # lowest rank node reachable from here index += 1 stack.append(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =True for w in g[v]: if index_of[w] == -1: a__ : Union[str, Any] =strong_connect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : int =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: a__ : Optional[int] =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: a__ : Optional[int] =[] a__ : str =stack.pop() a__ : Any =False component.append(SCREAMING_SNAKE_CASE ) while w != v: a__ : str =stack.pop() a__ : Tuple =False component.append(SCREAMING_SNAKE_CASE ) components.append(SCREAMING_SNAKE_CASE ) return index a__ : Optional[Any] =[] for v in range(SCREAMING_SNAKE_CASE ): if index_of[v] == -1: strong_connect(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return components def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Any =[[] for _ in range(SCREAMING_SNAKE_CASE )] for u, v in edges: g[u].append(SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": # Test UpperCAmelCase : int = 7 UpperCAmelCase : Union[str, Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase : Optional[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase : Tuple = [(u, v) for u, v in zip(source, target)] UpperCAmelCase : Any = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
95
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" if isinstance(__snake_case, torch.Tensor ): return image elif isinstance(__snake_case, PIL.Image.Image ): _UpperCamelCase = [image] if isinstance(image[0], PIL.Image.Image ): _UpperCamelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] _UpperCamelCase = np.concatenate(__snake_case, axis=0 ) _UpperCamelCase = np.array(__snake_case ).astype(np.floataa ) / 255.0 _UpperCamelCase = image.transpose(0, 3, 1, 2 ) _UpperCamelCase = 2.0 * image - 1.0 _UpperCamelCase = torch.from_numpy(__snake_case ) elif isinstance(image[0], torch.Tensor ): _UpperCamelCase = torch.cat(__snake_case, dim=0 ) return image def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=0.9995 ) -> List[Any]: """simple docstring""" if not isinstance(__snake_case, np.ndarray ): _UpperCamelCase = True _UpperCamelCase = va.device _UpperCamelCase = va.cpu().numpy() _UpperCamelCase = va.cpu().numpy() _UpperCamelCase = np.sum(va * va / (np.linalg.norm(__snake_case ) * np.linalg.norm(__snake_case )) ) if np.abs(__snake_case ) > DOT_THRESHOLD: _UpperCamelCase = (1 - t) * va + t * va else: _UpperCamelCase = np.arccos(__snake_case ) _UpperCamelCase = np.sin(__snake_case ) _UpperCamelCase = theta_a * t _UpperCamelCase = np.sin(__snake_case ) _UpperCamelCase = np.sin(theta_a - theta_t ) / sin_theta_a _UpperCamelCase = sin_theta_t / sin_theta_a _UpperCamelCase = sa * va + sa * va if inputs_are_torch: _UpperCamelCase = torch.from_numpy(__snake_case ).to(__snake_case ) return va def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = F.normalize(__snake_case, dim=-1 ) _UpperCamelCase = F.normalize(__snake_case, dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" for param in model.parameters(): _UpperCamelCase = value class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a , __a , __a , __a , __a , __a=None , __a=None , __a=None , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules( vae=__a , text_encoder=__a , clip_model=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , coca_model=__a , coca_tokenizer=__a , coca_transform=__a , ) _UpperCamelCase = ( feature_extractor.size if isinstance(feature_extractor.size , __a) else feature_extractor.size['''shortest_edge'''] ) _UpperCamelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std) set_requires_grad(self.text_encoder , __a) set_requires_grad(self.clip_model , __a) def UpperCAmelCase ( self , __a = "auto") -> Union[str, Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' set_requires_grad(self.vae , __a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' set_requires_grad(self.vae , __a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' set_requires_grad(self.unet , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' set_requires_grad(self.unet , __a) def UpperCAmelCase ( self , __a , __a , __a) -> Any: '''simple docstring''' # get the original timestep using init_timestep _UpperCamelCase = min(int(num_inference_steps * strength) , __a) _UpperCamelCase = max(num_inference_steps - init_timestep , 0) _UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a=None) -> Tuple: '''simple docstring''' if not isinstance(__a , torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(__a)}''') _UpperCamelCase = image.to(device=__a , dtype=__a) if isinstance(__a , __a): _UpperCamelCase = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(__a) ] _UpperCamelCase = torch.cat(__a , dim=0) else: _UpperCamelCase = self.vae.encode(__a).latent_dist.sample(__a) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase = 0.1_8215 * init_latents _UpperCamelCase = init_latents.repeat_interleave(__a , dim=0) _UpperCamelCase = randn_tensor(init_latents.shape , generator=__a , device=__a , dtype=__a) # get latents _UpperCamelCase = self.scheduler.add_noise(__a , __a , __a) _UpperCamelCase = init_latents return latents def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = self.coca_transform(__a).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _UpperCamelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype)) _UpperCamelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('''<end_of_text>''')[0].replace('''<start_of_text>''' , '''''').rstrip(''' .,''') def UpperCAmelCase ( self , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.feature_extractor.preprocess(__a) _UpperCamelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0]).unsqueeze(0).to(self.device).half() _UpperCamelCase = self.clip_model.get_image_features(__a) _UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a) _UpperCamelCase = image_embeddings_clip.repeat_interleave(__a , dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , ) -> Tuple: '''simple docstring''' _UpperCamelCase = latents.detach().requires_grad_() _UpperCamelCase = self.scheduler.scale_model_input(__a , __a) # predict the noise residual _UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _UpperCamelCase = self.scheduler.alphas_cumprod[timestep] _UpperCamelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _UpperCamelCase = torch.sqrt(__a) _UpperCamelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.sigmas[index] _UpperCamelCase = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase = 1 / 0.1_8215 * sample _UpperCamelCase = self.vae.decode(__a).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = transforms.Resize(self.feature_extractor_size)(__a) _UpperCamelCase = self.normalize(__a).to(latents.dtype) _UpperCamelCase = self.clip_model.get_image_features(__a) _UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a) _UpperCamelCase = spherical_dist_loss(__a , __a).mean() * clip_guidance_scale _UpperCamelCase = -torch.autograd.grad(__a , __a)[0] if isinstance(self.scheduler , __a): _UpperCamelCase = latents.detach() + grads * (sigma**2) _UpperCamelCase = noise_pred_original else: _UpperCamelCase = noise_pred_original - torch.sqrt(__a) * grads return noise_pred, latents @torch.no_grad() def __call__( self , __a , __a , __a = None , __a = None , __a = 5_12 , __a = 5_12 , __a = 0.6 , __a = 50 , __a = 7.5 , __a = 1 , __a = 0.0 , __a = 1_00 , __a = None , __a = "pil" , __a = True , __a = 0.8 , __a = 0.1 , __a = 0.1 , ) -> Dict: '''simple docstring''' if isinstance(__a , __a) and len(__a) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(__a)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(__a , torch.Generator) and batch_size > 1: _UpperCamelCase = [generator] + [None] * (batch_size - 1) _UpperCamelCase = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _UpperCamelCase = [x[0] for x in coca_is_none if x[1]] _UpperCamelCase = ''', '''.join(__a) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__a): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _UpperCamelCase = self.get_image_description(__a) if style_prompt is None: if len(__a): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _UpperCamelCase = self.get_image_description(__a) # get prompt text embeddings for content and style _UpperCamelCase = self.tokenizer( __a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _UpperCamelCase = self.tokenizer( __a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _UpperCamelCase = slerp(__a , __a , __a) # duplicate text embeddings for each generation per prompt _UpperCamelCase = text_embeddings.repeat_interleave(__a , dim=0) # set timesteps _UpperCamelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _UpperCamelCase = {} if accepts_offset: _UpperCamelCase = 1 self.scheduler.set_timesteps(__a , **__a) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _UpperCamelCase , _UpperCamelCase = self.get_timesteps(__a , __a , self.device) _UpperCamelCase = timesteps[:1].repeat(__a) # Preprocess image _UpperCamelCase = preprocess(__a , __a , __a) _UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a) _UpperCamelCase = preprocess(__a , __a , __a) _UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a) _UpperCamelCase = slerp(__a , __a , __a) if clip_guidance_scale > 0: _UpperCamelCase = self.get_clip_image_embeddings(__a , __a) _UpperCamelCase = self.get_clip_image_embeddings(__a , __a) _UpperCamelCase = slerp( __a , __a , __a) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCamelCase = content_text_input.input_ids.shape[-1] _UpperCamelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=__a , return_tensors='''pt''') _UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _UpperCamelCase = uncond_embeddings.repeat_interleave(__a , dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCamelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _UpperCamelCase = torch.randn(__a , generator=__a , device='''cpu''' , dtype=__a).to( self.device) else: _UpperCamelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _UpperCamelCase = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta # check if the scheduler accepts generator _UpperCamelCase = '''generator''' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _UpperCamelCase = generator with self.progress_bar(total=__a): for i, t in enumerate(__a): # expand the latents if we are doing classifier free guidance _UpperCamelCase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _UpperCamelCase = self.scheduler.scale_model_input(__a , __a) # predict the noise residual _UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a).sample # perform classifier free guidance if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase = noise_pred.chunk(2) _UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _UpperCamelCase = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _UpperCamelCase , _UpperCamelCase = self.cond_fn( __a , __a , __a , __a , __a , __a , __a , ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__a , __a , __a , **__a).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase = 1 / 0.1_8215 * latents _UpperCamelCase = self.vae.decode(__a).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a)
194
0
"""simple docstring""" import requests from bsa import BeautifulSoup def _lowerCamelCase(__UpperCamelCase = "https://www.worldometers.info/coronavirus" ) -> dict: _lowerCAmelCase =BeautifulSoup(requests.get(__UpperCamelCase ).text , """html.parser""" ) _lowerCAmelCase =soup.findAll("""h1""" ) _lowerCAmelCase =soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__UpperCamelCase , __UpperCamelCase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
341
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : List[str] ): with open(lowerCamelCase , 'r' , encoding='utf-8' ) as f: UpperCamelCase_ : Optional[int] = json.loads(f.read() ) UpperCamelCase_ : int = collections.OrderedDict() UpperCamelCase_ : Any = collections.OrderedDict() UpperCamelCase_ : Optional[int] = collections.OrderedDict() with open(lowerCamelCase , 'r' , encoding='utf-8' ) as f: UpperCamelCase_ : Union[str, Any] = f.readlines() UpperCamelCase_ : Optional[int] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase ): UpperCamelCase_ : Any = b UpperCamelCase_ : str = idx for wd in b: UpperCamelCase_ : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowercase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : List[Any]="<|endoftext|>" , snake_case : str="<|endoftext|>" , snake_case : List[str]="<|startoftext|>" , snake_case : str="<|endoftext|>" , snake_case : str=False , **snake_case : Optional[Any] , ) -> int: """simple docstring""" super().__init__( unk_token=snake_case , pad_token=snake_case , bos_token=snake_case , eos_token=snake_case , do_clean_text=snake_case , **snake_case , ) if not os.path.isfile(snake_case ): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case ): raise ValueError( f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) UpperCamelCase_ : Tuple = do_clean_text UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : List[str] = load_vocab_and_emoji(snake_case , snake_case ) UpperCamelCase_ : int = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: """simple docstring""" return len(self.raw_vocab ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Optional[int] ) -> str: """simple docstring""" return self.subword_tokenizer.tokenize(snake_case , clean=self.do_clean_text ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" return self.vocab.get(snake_case , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = ''.join(snake_case ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : "Conversation" ) -> List[int]: """simple docstring""" UpperCamelCase_ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case , add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: UpperCamelCase_ : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase_ : List[str] = 0 if os.path.isdir(snake_case ): UpperCamelCase_ : Tuple = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_ : Dict = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: UpperCamelCase_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_ : Any = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) UpperCamelCase_ : Union[str, Any] = token_index writer.write(','.join(snake_case ) + '\n' ) index += 1 with open(snake_case , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , snake_case ) return vocab_file, emoji_file class _lowercase ( snake_case_ ): def __init__( self : Union[str, Any] , snake_case : List[str] , snake_case : int , snake_case : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : int = vocab # same as swe UpperCamelCase_ : Tuple = ids_to_tokens # same as bpe UpperCamelCase_ : List[Any] = emoji UpperCamelCase_ : Optional[int] = np.max([len(snake_case ) for w in self.vocab.keys()] ) UpperCamelCase_ : Dict = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) UpperCamelCase_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) UpperCamelCase_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) UpperCamelCase_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) UpperCamelCase_ : List[str] = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) UpperCamelCase_ : Optional[Any] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) UpperCamelCase_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' UpperCamelCase_ : str = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' UpperCamelCase_ : Any = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : Dict ) -> Any: """simple docstring""" return len(self.ids_to_tokens ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : Dict ) -> Any: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.content_repattera.sub('<URL>' , snake_case ) UpperCamelCase_ : Optional[int] = self.content_repattera.sub('<EMAIL>' , snake_case ) UpperCamelCase_ : Any = self.content_repattera.sub('<TEL>' , snake_case ) UpperCamelCase_ : Any = self.content_repattera.sub('<DATE>' , snake_case ) UpperCamelCase_ : Union[str, Any] = self.content_repattera.sub('<DATE>' , snake_case ) UpperCamelCase_ : int = self.content_repattera.sub('<PRICE>' , snake_case ) UpperCamelCase_ : Any = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCamelCase_ : Optional[Any] = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : str , snake_case : Dict=False ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = text.replace(' ' , '<SP>' ) UpperCamelCase_ : Any = text.replace(' ' , '<SP>' ) UpperCamelCase_ : List[str] = text.replace('\r\n' , '<BR>' ) UpperCamelCase_ : Union[str, Any] = text.replace('\n' , '<BR>' ) UpperCamelCase_ : List[Any] = text.replace('\r' , '<BR>' ) UpperCamelCase_ : Dict = text.replace('\t' , '<TAB>' ) UpperCamelCase_ : List[Any] = text.replace('—' , 'ー' ) UpperCamelCase_ : Dict = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCamelCase_ : str = text.replace(snake_case , snake_case ) if clean: UpperCamelCase_ : List[str] = self.clean_text(snake_case ) def check_simbol(snake_case : Optional[Any] ): UpperCamelCase_ : Dict = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 2: UpperCamelCase_ : List[str] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case : Optional[Any] ): UpperCamelCase_ : Optional[Any] = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 3: UpperCamelCase_ : Optional[int] = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False UpperCamelCase_ : Any = 0 UpperCamelCase_ : Optional[int] = [] while pos < len(snake_case ): UpperCamelCase_ : Optional[int] = min(len(snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 UpperCamelCase_ : Union[str, Any] = [] # (token_id, token, pos) for e in range(snake_case , snake_case , -1 ): UpperCamelCase_ : Optional[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case ) > 2: UpperCamelCase_ : Dict = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case ) > 0: # the smallest token_id is adopted UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : int = sorted(snake_case , key=lambda snake_case : x[0] )[0] result.append(snake_case ) UpperCamelCase_ : int = e else: UpperCamelCase_ : List[Any] = pos + 1 UpperCamelCase_ : Union[str, Any] = text[pos:end] if check_simbol(snake_case ): result.append('<KIGOU>' ) elif checkuae(snake_case ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) UpperCamelCase_ : int = end return result def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Optional[Any] , snake_case : List[Any]="\n" ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Optional[Any] = [] UpperCamelCase_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) UpperCamelCase_ : Any = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case ) if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) UpperCamelCase_ : Dict = ''.join(snake_case ) return text
175
from __future__ import annotations def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): # noqa: E741 while r - l > 1: UpperCamelCase_ : Union[str, Any] = (l + r) // 2 if v[m] >= key: UpperCamelCase_ : str = m else: UpperCamelCase_ : List[Any] = m # noqa: E741 return r def __lowercase ( lowerCamelCase : list[int] ): if len(lowerCamelCase ) == 0: return 0 UpperCamelCase_ : Tuple = [0] * len(lowerCamelCase ) UpperCamelCase_ : int = 1 UpperCamelCase_ : Dict = v[0] for i in range(1 , len(lowerCamelCase ) ): if v[i] < tail[0]: UpperCamelCase_ : Any = v[i] elif v[i] > tail[length - 1]: UpperCamelCase_ : Dict = v[i] length += 1 else: UpperCamelCase_ : List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
175
1
'''simple docstring''' lowercase__ = 9.8_06_65 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = g ) -> float: '''simple docstring''' if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
83
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """efficientnet""" def __init__( self : str , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 600 , UpperCamelCase__ : float = 2.0 , UpperCamelCase__ : float = 3.1 , UpperCamelCase__ : int = 8 , UpperCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ : List[int] = [] , UpperCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ : float = 0.25 , UpperCamelCase__ : str = "swish" , UpperCamelCase__ : int = 2560 , UpperCamelCase__ : str = "mean" , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 0.001 , UpperCamelCase__ : float = 0.99 , UpperCamelCase__ : float = 0.5 , UpperCamelCase__ : float = 0.2 , **UpperCamelCase__ : Any , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) snake_case : Dict = num_channels snake_case : List[Any] = image_size snake_case : Any = width_coefficient snake_case : int = depth_coefficient snake_case : List[str] = depth_divisor snake_case : Tuple = kernel_sizes snake_case : Optional[Any] = in_channels snake_case : Optional[Any] = out_channels snake_case : Dict = depthwise_padding snake_case : Optional[Any] = strides snake_case : List[str] = num_block_repeats snake_case : Any = expand_ratios snake_case : Any = squeeze_expansion_ratio snake_case : Optional[Any] = hidden_act snake_case : Optional[int] = hidden_dim snake_case : Dict = pooling_type snake_case : Any = initializer_range snake_case : Optional[Any] = batch_norm_eps snake_case : Tuple = batch_norm_momentum snake_case : Any = dropout_rate snake_case : str = drop_connect_rate snake_case : Dict = sum(UpperCamelCase__ ) * 4 class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = version.parse("""1.11""" ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase ( self : Tuple ) -> float: """simple docstring""" return 1e-5
83
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : list[int] ) -> int: if not numbers: return 0 if not isinstance(UpperCAmelCase__ , (list, tuple) ) or not all( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) lowercase_ : List[str] = numbers[0] for i in range(1 , len(UpperCAmelCase__ ) ): # update the maximum and minimum subarray products lowercase_ : Tuple = numbers[i] if number < 0: lowercase_ , lowercase_ : Union[str, Any] = min_till_now, max_till_now lowercase_ : Dict = max(UpperCAmelCase__ , max_till_now * number ) lowercase_ : Any = min(UpperCAmelCase__ , min_till_now * number ) # update the maximum product found till now lowercase_ : Tuple = max(UpperCAmelCase__ , UpperCAmelCase__ ) return max_prod
239
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowercase : Optional[int] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowercase : List[Any] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowercase : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Any=None , lowercase_ : str=None , lowercase_ : Dict=None , lowercase_ : Any=None , lowercase_ : int="auto" , lowercase_ : Tuple=-1 , lowercase_ : str=0.9 , lowercase_ : Union[str, Any]=5 , lowercase_ : List[str]=500 , lowercase_ : Union[str, Any]="gpt2-large" , lowercase_ : List[Any]=-1 , lowercase_ : str=1024 , lowercase_ : List[str]=25 , lowercase_ : str=5 , lowercase_ : List[Any]=True , lowercase_ : Tuple=25 , ): lowercase_ : List[str] = compute_mauve( p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , ) return out
239
1
'''simple docstring''' def a__ ( lowercase : int ) -> bool: """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _UpperCamelCase = 4 _UpperCamelCase = (1 << p) - 1 for _ in range(p - 2 ): _UpperCamelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
356
'''simple docstring''' def a__ ( lowercase : int, lowercase : int ) -> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(lowercase, x % y ) def a__ ( lowercase : int, lowercase : int ) -> int: """simple docstring""" return (x * y) // greatest_common_divisor(lowercase, lowercase ) def a__ ( lowercase : int = 20 ) -> int: """simple docstring""" _UpperCamelCase = 1 for i in range(1, n + 1 ): _UpperCamelCase = lcm(lowercase, lowercase ) return g if __name__ == "__main__": print(F"""{solution() = }""")
287
0
"""simple docstring""" import math def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> str: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 while num > 0: SCREAMING_SNAKE_CASE = num % 8 SCREAMING_SNAKE_CASE = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 SCREAMING_SNAKE_CASE = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(__lowerCamelCase )}' def lowercase () -> None: print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(2_16 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
113
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def snake_case_( self , A , A , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self , A ) -> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def snake_case_( self ) -> str: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 0 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def __call__( self , A ) -> List[str]: _SCREAMING_SNAKE_CASE = Tracker(self.dest )(A ).parametrized _SCREAMING_SNAKE_CASE = Tracker(self.src )(A ).parametrized _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ): raise Exception( f'Numbers of operations are different. Source module has {len(A )} operations while' f' destination module has {len(A )}.' ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : ResNetConfig , __lowerCamelCase : Path , __lowerCamelCase : bool = True ) ->int: print(F'Converting {name}...' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ResNetForImageClassification(__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) assert torch.allclose(from_model(__lowerCamelCase ) , our_model(__lowerCamelCase ).logits ), "The model logits don't match the original one." _SCREAMING_SNAKE_CASE = F'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__lowerCamelCase , ) # we can use the convnext one _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__lowerCamelCase , ) print(F'Pushed {checkpoint_name}' ) def lowerCamelCase ( __lowerCamelCase : Path , __lowerCamelCase : str = None , __lowerCamelCase : bool = True ) ->Any: _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = (1, num_labels) _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
58
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "WhisperFeatureExtractor" __lowerCAmelCase = "WhisperTokenizer" def __init__( self , __A , __A ) -> Dict: super().__init__(__A , __A ) a =self.feature_extractor a =False def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None , __A=True ) -> int: return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self , *__A , **__A ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) a =kwargs.pop('''audio''' , __A ) a =kwargs.pop('''sampling_rate''' , __A ) a =kwargs.pop('''text''' , __A ) if len(__A ) > 0: a =args[0] a =args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: a =self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if text is not None: a =self.tokenizer(__A , **__A ) if text is None: return inputs elif audio is None: return encodings else: a =encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Optional[Any]: return self.tokenizer.batch_decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Union[str, Any]: return self.tokenizer.decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A="np" ) -> Optional[Any]: return self.tokenizer.get_prompt_ids(__A , return_tensors=__A )
363
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **__A ) -> Dict: super().__init__(**__A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(__A ) def __call__( self , __A , __A = None , **__A , ) -> List[str]: if "text_queries" in kwargs: a =kwargs.pop('''text_queries''' ) if isinstance(__A , (str, Image.Image) ): a ={'''image''': image, '''candidate_labels''': candidate_labels} else: a =image a =super().__call__(__A , **__A ) return results def SCREAMING_SNAKE_CASE ( self , **__A ) -> Optional[Any]: a ={} if "threshold" in kwargs: a =kwargs['''threshold'''] if "top_k" in kwargs: a =kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self , __A ) -> str: a =load_image(inputs['''image'''] ) a =inputs['''candidate_labels'''] if isinstance(__A , __A ): a =candidate_labels.split(''',''' ) a =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__A ): a =self.tokenizer(__A , return_tensors=self.framework ) a =self.image_processor(__A , return_tensors=self.framework ) yield { "is_last": i == len(__A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]: a =model_inputs.pop('''target_size''' ) a =model_inputs.pop('''candidate_label''' ) a =model_inputs.pop('''is_last''' ) a =self.model(**__A ) a ={'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self , __A , __A=0.1 , __A=None ) -> List[str]: a =[] for model_output in model_outputs: a =model_output['''candidate_label'''] a =BaseModelOutput(__A ) a =self.image_processor.post_process_object_detection( outputs=__A , threshold=__A , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): a =outputs['''scores'''][index].item() a =self._get_bounding_box(outputs['''boxes'''][index][0] ) a ={'''score''': score, '''label''': label, '''box''': box} results.append(__A ) a =sorted(__A , key=lambda __A : x["score"] , reverse=__A ) if top_k: a =results[:top_k] return results def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) a , a , a , a =box.int().tolist() a ={ '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
215
0
'''simple docstring''' import requests from bsa import BeautifulSoup def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus" ): _snake_case = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , """html.parser""" ) _snake_case = soup.findAll("""h1""" ) _snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
341
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
1
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _UpperCAmelCase : Any = None try: import msvcrt except ImportError: _UpperCAmelCase : Any = None try: import fcntl except ImportError: _UpperCAmelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCAmelCase : str = OSError # Data # ------------------------------------------------ _UpperCAmelCase : Any = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] _UpperCAmelCase : int = """3.0.12""" _UpperCAmelCase : Optional[int] = None def __magic_name__( ): global _logger __lowerCAmelCase = _logger or logging.getLogger(__name__) return _logger class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = lock_file return None def __str__(self ): __lowerCAmelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = lock return None def __enter__(self ): return self.lock def __exit__(self , __lowercase , __lowercase , __lowercase ): self.lock.release() return None class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): __lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __lowerCAmelCase = self.hash_filename_if_too_long(__lowercase , __lowercase ) # The path to the lock file. __lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCAmelCase = None # The default timeout value. __lowerCAmelCase = timeout # We use this lock primarily for the lock counter. __lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCAmelCase = 0 return None @property def _snake_case (self ): return self._lock_file @property def _snake_case (self ): return self._timeout @timeout.setter def _snake_case (self , __lowercase ): __lowerCAmelCase = float(__lowercase ) return None def _snake_case (self ): raise NotImplementedError() def _snake_case (self ): raise NotImplementedError() @property def _snake_case (self ): return self._lock_file_fd is not None def _snake_case (self , __lowercase=None , __lowercase=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file __lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__lowercase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _snake_case (self , __lowercase=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCAmelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): self.acquire() return self def __exit__(self , __lowercase , __lowercase , __lowercase ): self.release() return None def __del__(self ): self.release(force=__lowercase ) return None def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = os.path.basename(__lowercase ) if len(__lowercase ) > max_length and max_length > 0: __lowerCAmelCase = os.path.dirname(__lowercase ) __lowerCAmelCase = str(hash(__lowercase ) ) __lowerCAmelCase = filename[: max_length - len(__lowercase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__lowercase , __lowercase ) else: return path class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): from .file_utils import relative_to_absolute_path super().__init__(__lowercase , timeout=__lowercase , max_filename_length=__lowercase ) __lowerCAmelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def _snake_case (self ): __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , __lowercase ) except OSError: pass else: try: msvcrt.locking(__lowercase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__lowercase ) else: __lowerCAmelCase = fd return None def _snake_case (self ): __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None msvcrt.locking(__lowercase , msvcrt.LK_UNLCK , 1 ) os.close(__lowercase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): __lowerCAmelCase = os.statvfs(os.path.dirname(__lowercase ) ).f_namemax super().__init__(__lowercase , timeout=__lowercase , max_filename_length=__lowercase ) def _snake_case (self ): __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCAmelCase = os.open(self._lock_file , __lowercase ) try: fcntl.flock(__lowercase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__lowercase ) else: __lowerCAmelCase = fd return None def _snake_case (self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None fcntl.flock(__lowercase , fcntl.LOCK_UN ) os.close(__lowercase ) return None class a__ ( __A ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , __lowercase ) except OSError: pass else: __lowerCAmelCase = fd return None def _snake_case (self ): os.close(self._lock_file_fd ) __lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCAmelCase : Any = None if msvcrt: _UpperCAmelCase : Any = WindowsFileLock elif fcntl: _UpperCAmelCase : List[Any] = UnixFileLock else: _UpperCAmelCase : List[Any] = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging snake_case_ : str = '\\n\n' snake_case_ : str = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' snake_case_ : List[str] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 16 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : int=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCamelCase : int = 'cuda' else: _UpperCamelCase : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCamelCase : Dict = AutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Dict = model.to(lowerCamelCase__ ) _UpperCamelCase : int = AutoTokenizer.from_pretrained(lowerCamelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCamelCase : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCamelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCamelCase : List[Any] = model.config.max_length - 1 else: _UpperCamelCase : Tuple = model.config.max_length _UpperCamelCase : Tuple = tokenizer( lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors='pt' ,return_attention_mask=lowerCamelCase__ ,).to(lowerCamelCase__ ) _UpperCamelCase : str = encodings['input_ids'] _UpperCamelCase : int = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCamelCase : List[Any] = [] _UpperCamelCase : Dict = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 ,len(lowerCamelCase__ ) ,lowerCamelCase__ ) ): _UpperCamelCase : str = min(start_index + batch_size ,len(lowerCamelCase__ ) ) _UpperCamelCase : Tuple = encoded_texts[start_index:end_index] _UpperCamelCase : List[str] = attn_masks[start_index:end_index] if add_start_token: _UpperCamelCase : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCamelCase__ ) _UpperCamelCase : List[Any] = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) _UpperCamelCase : Tuple = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(lowerCamelCase__ ), attn_mask] ,dim=1 ) _UpperCamelCase : Tuple = encoded_batch with torch.no_grad(): _UpperCamelCase : Any = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ).logits _UpperCamelCase : Dict = out_logits[..., :-1, :].contiguous() _UpperCamelCase : List[str] = labels[..., 1:].contiguous() _UpperCamelCase : Optional[int] = attn_mask[..., 1:].contiguous() _UpperCamelCase : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,lowerCamelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCamelCase__ )}
83
'''simple docstring''' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = abs(UpperCAmelCase_ ) _UpperCamelCase : int = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = abs(UpperCAmelCase_ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def A__ ( UpperCAmelCase_ ): return sum(int(UpperCAmelCase_ ) for c in str(abs(UpperCAmelCase_ ) ) ) def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: _UpperCamelCase : str = f'{func.__name__}({value})' _UpperCamelCase : Tuple = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(UpperCAmelCase_ )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
83
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case :str = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class _A ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : Optional[Any]): '''simple docstring''' __a = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE) @classmethod def _lowerCamelCase ( cls : Union[str, Any]): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''') except HTTPError: pass def _lowerCamelCase ( self : Any): '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) __a = FlaxBertModel(__SCREAMING_SNAKE_CASE) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token) __a = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax') __a = flatten_dict(unfreeze(model.params)) __a = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3 , msg=F'{key} not identical') # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) __a = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax') __a = flatten_dict(unfreeze(model.params)) __a = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3 , msg=F'{key} not identical') def _lowerCamelCase ( self : Any): '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) __a = FlaxBertModel(__SCREAMING_SNAKE_CASE) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''') __a = flatten_dict(unfreeze(model.params)) __a = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3 , msg=F'{key} not identical') # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''') __a = flatten_dict(unfreeze(model.params)) __a = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3 , msg=F'{key} not identical') def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: __a = False return models_are_equal @require_flax class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') __a = FlaxBertModel(__SCREAMING_SNAKE_CASE) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) with self.assertRaises(__SCREAMING_SNAKE_CASE): __a = FlaxBertModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxBertModel.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE) self.assertTrue(check_models_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') __a = FlaxBertModel(__SCREAMING_SNAKE_CASE) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , max_shard_size='''10KB''') with self.assertRaises(__SCREAMING_SNAKE_CASE): __a = FlaxBertModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxBertModel.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE) self.assertTrue(check_models_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__SCREAMING_SNAKE_CASE): __a = FlaxBertModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxBertModel.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__SCREAMING_SNAKE_CASE): __a = FlaxBertModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxBertModel.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE)
131
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __snake_case :Dict = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : int , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Tuple=None): '''simple docstring''' __a = {} __a = {} if prompt is not None: __a = prompt if generate_kwargs is not None: __a = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __a = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''') __a = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=None): '''simple docstring''' __a = load_image(__SCREAMING_SNAKE_CASE) if prompt is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): raise ValueError( F'Received an invalid text input, got - {type(__SCREAMING_SNAKE_CASE)} - but expected a single string. ' '''Note also that one single text can be provided for conditional image to text generation.''') __a = self.model.config.model_type if model_type == "git": __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) __a = self.tokenizer(text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE).input_ids __a = [self.tokenizer.cls_token_id] + input_ids __a = torch.tensor(__SCREAMING_SNAKE_CASE).unsqueeze(0) model_inputs.update({'''input_ids''': input_ids}) elif model_type == "pix2struct": __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) __a = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework) model_inputs.update(__SCREAMING_SNAKE_CASE) else: raise ValueError(F'Model type {model_type} does not support conditional text generation') else: __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: __a = None return model_inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=None): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __SCREAMING_SNAKE_CASE) and all(x is None for x in model_inputs['''input_ids''']) ): __a = None if generate_kwargs is None: __a = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __a = model_inputs.pop(self.model.main_input_name) __a = self.model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) return model_outputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = [] for output_ids in model_outputs: __a = { '''generated_text''': self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , ) } records.append(__SCREAMING_SNAKE_CASE) return records
131
1
'''simple docstring''' A__ : str = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
185
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _lowerCamelCase ="""pytorch_model.bin""" _lowerCamelCase ="""pytorch_model.bin.index.json""" _lowerCamelCase ="""adapter_config.json""" _lowerCamelCase ="""adapter_model.bin""" _lowerCamelCase ="""adapter_model.safetensors""" _lowerCamelCase ="""tf_model.h5""" _lowerCamelCase ="""tf_model.h5.index.json""" _lowerCamelCase ="""model.ckpt""" _lowerCamelCase ="""flax_model.msgpack""" _lowerCamelCase ="""flax_model.msgpack.index.json""" _lowerCamelCase ="""model.safetensors""" _lowerCamelCase ="""model.safetensors.index.json""" _lowerCamelCase ="""config.json""" _lowerCamelCase ="""preprocessor_config.json""" _lowerCamelCase =FEATURE_EXTRACTOR_NAME _lowerCamelCase ="""generation_config.json""" _lowerCamelCase ="""modelcard.json""" _lowerCamelCase ="""▁""" _lowerCamelCase =SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _lowerCamelCase =[ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _lowerCamelCase =[[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _lowerCamelCase =[[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _a ( lowerCamelCase ): if version.parse(lowerCamelCase ) < version.parse(lowerCamelCase ): if "dev" in min_version: lowerCamelCase : Optional[int] = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: lowerCamelCase : int = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
287
0
# Lint as: python3 import itertools import os import re snake_case_ = re.compile(r'''([A-Z]+)([A-Z][a-z])''') snake_case_ = re.compile(r'''([a-z\d])([A-Z])''') snake_case_ = re.compile(r'''(?<!_)_(?!_)''') snake_case_ = re.compile(r'''(_{2,})''') snake_case_ = r'''^\w+(\.\w+)*$''' snake_case_ = r'''<>:/\|?*''' def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Optional[Any] = _uppercase_uppercase_re.sub(R'\1_\2' , SCREAMING_SNAKE_CASE_ ) lowercase__ : Any = _lowercase_uppercase_re.sub(R'\1_\2' , SCREAMING_SNAKE_CASE_ ) return name.lower() def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : Dict = _single_underscore_re.split(SCREAMING_SNAKE_CASE_ ) lowercase__ : Any = [_multiple_underscores_re.split(SCREAMING_SNAKE_CASE_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) if n != '' ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' if os.path.basename(SCREAMING_SNAKE_CASE_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if os.path.basename(SCREAMING_SNAKE_CASE_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , SCREAMING_SNAKE_CASE_ ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(SCREAMING_SNAKE_CASE_ )}-{split}""" def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int]=None ): '''simple docstring''' lowercase__ : Optional[Any] = filename_prefix_for_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if filetype_suffix: prefix += f""".{filetype_suffix}""" lowercase__ : Dict = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f"""{filepath}*""" def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' lowercase__ : Optional[Any] = filename_prefix_for_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if shard_lengths: lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(SCREAMING_SNAKE_CASE_ )] if filetype_suffix: lowercase__ : int = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: lowercase__ : Any = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
216
import math import sys def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowercase__ : Tuple = [-1] * (number + 1) lowercase__ : Tuple = 0 for i in range(1 , number + 1 ): lowercase__ : Tuple = sys.maxsize lowercase__ : str = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): lowercase__ : List[Any] = 1 + answers[i - (j**2)] lowercase__ : str = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
216
1
__snake_case = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
259
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = DPTConfig() if "large" in checkpoint_url: _UpperCAmelCase : List[Any] = 1024 _UpperCAmelCase : Optional[int] = 4096 _UpperCAmelCase : Tuple = 24 _UpperCAmelCase : List[str] = 16 _UpperCAmelCase : str = [5, 11, 17, 23] _UpperCAmelCase : Tuple = [256, 512, 1024, 1024] _UpperCAmelCase : List[str] = (1, 384, 384) if "ade" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = 150 _UpperCAmelCase : Tuple = """huggingface/label-files""" _UpperCAmelCase : int = """ade20k-id2label.json""" _UpperCAmelCase : List[str] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) ) , """r""" ) ) _UpperCAmelCase : List[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Tuple = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCAmelCase : int = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: _UpperCAmelCase : str = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: _UpperCAmelCase : Optional[Any] = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: _UpperCAmelCase : int = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: _UpperCAmelCase : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: _UpperCAmelCase : List[str] = name.replace("""proj""" , """projection""" ) if "blocks" in name: _UpperCAmelCase : Dict = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: _UpperCAmelCase : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _UpperCAmelCase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: _UpperCAmelCase : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _UpperCAmelCase : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: _UpperCAmelCase : Dict = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: _UpperCAmelCase : Optional[Any] = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: _UpperCAmelCase : List[Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: _UpperCAmelCase : Optional[int] = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: _UpperCAmelCase : List[str] = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: _UpperCAmelCase : str = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: _UpperCAmelCase : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCAmelCase : Tuple = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _UpperCAmelCase : List[Any] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: _UpperCAmelCase : Tuple = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: _UpperCAmelCase : Union[str, Any] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: _UpperCAmelCase : int = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: _UpperCAmelCase : List[str] = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _UpperCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _UpperCAmelCase : str = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _UpperCAmelCase : Any = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: _UpperCAmelCase : Tuple = name.replace("""bn""" , """batch_norm""" ) if "head" in name: _UpperCAmelCase : Dict = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: _UpperCAmelCase : List[Any] = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: _UpperCAmelCase : List[Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : Any = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def snake_case_ ( )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : List[str] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : List[str] = get_dpt_config(lowerCAmelCase_ ) # load original state_dict from URL _UpperCAmelCase : Any = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowerCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : Dict = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model _UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(lowerCAmelCase_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # Check outputs on an image _UpperCAmelCase : Tuple = 480 if """ade""" in checkpoint_url else 384 _UpperCAmelCase : List[str] = DPTImageProcessor(size=lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : Dict = image_processor(lowerCAmelCase_ , return_tensors="""pt""" ) # forward pass _UpperCAmelCase : Optional[Any] = model(**lowerCAmelCase_ ).logits if """ade""" in checkpoint_url else model(**lowerCAmelCase_ ).predicted_depth # Assert logits _UpperCAmelCase : Optional[int] = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _UpperCAmelCase : str = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(lowerCAmelCase_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase_ ) ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) A_ : List[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
215
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[Any] = '▁' __A : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} __A : Optional[int] = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } __A : Any = { 'facebook/xglm-564M': 2_048, } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : str = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self :Dict ,_UpperCamelCase :str ,_UpperCamelCase :Optional[Any]="<s>" ,_UpperCamelCase :List[Any]="</s>" ,_UpperCamelCase :List[Any]="</s>" ,_UpperCamelCase :Optional[Any]="<s>" ,_UpperCamelCase :List[Any]="<unk>" ,_UpperCamelCase :Optional[int]="<pad>" ,_UpperCamelCase :Optional[Dict[str, Any]] = None ,**_UpperCamelCase :List[Any] ,): snake_case_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case_ : Union[str, Any] = 7 snake_case_ : Any = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] snake_case_ : List[Any] = kwargs.get("""additional_special_tokens""" ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCamelCase ,) snake_case_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) snake_case_ : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ : Optional[Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} snake_case_ : Dict = len(self.sp_model ) snake_case_ : List[Any] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_UpperCamelCase ) snake_case_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :str ): snake_case_ : Optional[int] = self.__dict__.copy() snake_case_ : int = None snake_case_ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self :List[str] ,_UpperCamelCase :int ): snake_case_ : int = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): snake_case_ : List[str] = {} snake_case_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ ( self :Optional[int] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case_ : List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def a__ ( self :Dict ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ,_UpperCamelCase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) def a__ ( self :List[str] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : Tuple = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def a__ ( self :Any ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def a__ ( self :Dict ): snake_case_ : List[Any] = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self :int ,_UpperCamelCase :str ): return self.sp_model.encode(_UpperCamelCase ,out_type=_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :Any ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ : Tuple = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ ( self :Optional[int] ,_UpperCamelCase :int ): snake_case_ : Dict = """""".join(_UpperCamelCase ).replace(_UpperCamelCase ,""" """ ).strip() return out_string def a__ ( self :Optional[int] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Any = os.path.join( _UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase ,"""wb""" ) as fi: snake_case_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
8
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
1
import logging import os import threading import time try: import warnings except ImportError: __lowerCAmelCase : List[str] =None try: import msvcrt except ImportError: __lowerCAmelCase : List[Any] =None try: import fcntl except ImportError: __lowerCAmelCase : str =None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __lowerCAmelCase : int =OSError # Data # ------------------------------------------------ __lowerCAmelCase : List[Any] =[ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] __lowerCAmelCase : Dict ='3.0.12' __lowerCAmelCase : Dict =None def _UpperCamelCase ( ): global _logger __SCREAMING_SNAKE_CASE : Dict = _logger or logging.getLogger(__name__ ) return _logger class _lowercase ( A__ ): '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :int ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = lock_file return None def __str__( self :Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[str] = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : str = lock return None def __enter__( self :List[str] ) -> int: return self.lock def __exit__( self :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> str: self.lock.release() return None class _lowercase : '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Any=-1 , lowerCAmelCase__ :List[Any]=None ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __SCREAMING_SNAKE_CASE : Optional[int] = self.hash_filename_if_too_long(lowerCAmelCase__ , lowerCAmelCase__ ) # The path to the lock file. __SCREAMING_SNAKE_CASE : Tuple = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __SCREAMING_SNAKE_CASE : Any = None # The default timeout value. __SCREAMING_SNAKE_CASE : Union[str, Any] = timeout # We use this lock primarily for the lock counter. __SCREAMING_SNAKE_CASE : Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __SCREAMING_SNAKE_CASE : Any = 0 return None @property def __magic_name__( self :Union[str, Any] ) -> Dict: return self._lock_file @property def __magic_name__( self :Union[str, Any] ) -> int: return self._timeout @timeout.setter def __magic_name__( self :Any , lowerCAmelCase__ :str ) -> Any: __SCREAMING_SNAKE_CASE : int = float(lowerCAmelCase__ ) return None def __magic_name__( self :List[Any] ) -> List[str]: raise NotImplementedError() def __magic_name__( self :int ) -> int: raise NotImplementedError() @property def __magic_name__( self :List[Any] ) -> Union[str, Any]: return self._lock_file_fd is not None def __magic_name__( self :str , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :int=0.05 ) -> int: # Use the default timeout, if no timeout is provided. if timeout is None: __SCREAMING_SNAKE_CASE : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __SCREAMING_SNAKE_CASE : Tuple = id(self ) __SCREAMING_SNAKE_CASE : Dict = self._lock_file __SCREAMING_SNAKE_CASE : int = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCAmelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __SCREAMING_SNAKE_CASE : Union[str, Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __magic_name__( self :Dict , lowerCAmelCase__ :Any=False ) -> Tuple: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __SCREAMING_SNAKE_CASE : Any = id(self ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() __SCREAMING_SNAKE_CASE : Any = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self :Tuple ) -> List[Any]: self.acquire() return self def __exit__( self :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] ) -> int: self.release() return None def __del__( self :Union[str, Any] ) -> Any: self.release(force=lowerCAmelCase__ ) return None def __magic_name__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : str = os.path.basename(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > max_length and max_length > 0: __SCREAMING_SNAKE_CASE : str = os.path.dirname(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = str(hash(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : List[str] = filename[: max_length - len(lowerCAmelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) else: return path class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :Optional[int]=None ) -> List[Any]: from .file_utils import relative_to_absolute_path super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __SCREAMING_SNAKE_CASE : Dict = os.open(self._lock_file , lowerCAmelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : List[str] = fd return None def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self._lock_file_fd __SCREAMING_SNAKE_CASE : int = None msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCAmelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str]=-1 , lowerCAmelCase__ :Optional[Any]=None ) -> Any: __SCREAMING_SNAKE_CASE : Dict = os.statvfs(os.path.dirname(lowerCAmelCase__ ) ).f_namemax super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ ) def __magic_name__( self :Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC __SCREAMING_SNAKE_CASE : Union[str, Any] = os.open(self._lock_file , lowerCAmelCase__ ) try: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : str = fd return None def __magic_name__( self :Tuple ) -> Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __SCREAMING_SNAKE_CASE : int = self._lock_file_fd __SCREAMING_SNAKE_CASE : List[str] = None fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN ) os.close(lowerCAmelCase__ ) return None class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :Tuple ) -> int: __SCREAMING_SNAKE_CASE : List[str] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __SCREAMING_SNAKE_CASE : int = os.open(self._lock_file , lowerCAmelCase__ ) except OSError: pass else: __SCREAMING_SNAKE_CASE : int = fd return None def __magic_name__( self :List[Any] ) -> Optional[int]: os.close(self._lock_file_fd ) __SCREAMING_SNAKE_CASE : Optional[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __lowerCAmelCase : Optional[int] =None if msvcrt: __lowerCAmelCase : str =WindowsFileLock elif fcntl: __lowerCAmelCase : Union[str, Any] =UnixFileLock else: __lowerCAmelCase : Union[str, Any] =SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
9
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ = 1_3 , lowercase_ = 6_4 , lowercase_ = 2 , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = True , lowercase_ = True , lowercase_ = 1_2_8 , lowercase_=[1_6, 3_2, 6_4, 1_2_8] , lowercase_ = 7 , lowercase_ = 4 , lowercase_ = 3_7 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 1_0 , lowercase_ = 0.02 , lowercase_ = 2 , lowercase_ = 1 , lowercase_ = 1_2_8 , lowercase_ = [2, 2, 2, 2] , lowercase_ = 2 , lowercase_ = 2 , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = encoder_stride lowerCAmelCase_ = num_attention_outputs lowerCAmelCase_ = embed_dim lowerCAmelCase_ = embed_dim + 1 lowerCAmelCase_ = resolution lowerCAmelCase_ = depths lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = dim lowerCAmelCase_ = mlp_expansion_ratio def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def _lowercase ( self ) -> str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = TFEfficientFormerModel(config=lowercase_ ) lowerCAmelCase_ = model(lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.type_sequence_label_size lowerCAmelCase_ = TFEfficientFormerForImageClassification(lowercase_ ) lowerCAmelCase_ = model(lowercase_ , labels=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = TFEfficientFormerForImageClassification(lowercase_ ) lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __a: int = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __a: Dict = False __a: Union[str, Any] = False __a: Dict = False __a: List[Any] = False __a: List[str] = False def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = TFEfficientFormerModelTester(self ) lowerCAmelCase_ = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7 ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def _lowercase ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(lowercase_ ) lowerCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ): lowerCAmelCase_ = model_class(lowercase_ ) lowerCAmelCase_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) , training=lowercase_ ) lowerCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): lowerCAmelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: lowerCAmelCase_ = seq_length * self.model_tester.chunk_length else: lowerCAmelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCAmelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(lowercase_ , (list, tuple) ) self.assertEqual(len(lowercase_ ) , lowercase_ ) lowerCAmelCase_ = getattr(self.model_tester , 'seq_length' , lowercase_ ) lowerCAmelCase_ = getattr(self.model_tester , 'decoder_seq_length' , lowercase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = TFEfficientFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = True lowerCAmelCase_ = getattr(self.model_tester , 'seq_length' , lowercase_ ) lowerCAmelCase_ = getattr(self.model_tester , 'encoder_seq_length' , lowercase_ ) lowerCAmelCase_ = getattr(self.model_tester , 'key_length' , lowercase_ ) lowerCAmelCase_ = getattr(self.model_tester , 'chunk_length' , lowercase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): lowerCAmelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = model_class(lowercase_ ) lowerCAmelCase_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) , training=lowercase_ ) lowerCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ = True lowerCAmelCase_ = model_class(lowercase_ ) lowerCAmelCase_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) , training=lowercase_ ) lowerCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase_ = model_class(lowercase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowercase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase_ = model(lowercase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase ( ) -> int: lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=lowercase_ , return_tensors='tf' ) # forward pass lowerCAmelCase_ = model(**lowercase_ , training=lowercase_ ) # verify the logits lowerCAmelCase_ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowerCAmelCase_ = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) ) @slow def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=lowercase_ , return_tensors='tf' ) # forward pass lowerCAmelCase_ = model(**lowercase_ , training=lowercase_ ) # verify the logits lowerCAmelCase_ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowerCAmelCase_ = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
14
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
1
# Lint as: python3 import itertools import os import re lowerCamelCase = re.compile(R'''([A-Z]+)([A-Z][a-z])''') lowerCamelCase = re.compile(R'''([a-z\d])([A-Z])''') lowerCamelCase = re.compile(R'''(?<!_)_(?!_)''') lowerCamelCase = re.compile(R'''(_{2,})''') lowerCamelCase = R'''^\w+(\.\w+)*$''' lowerCamelCase = R'''<>:/\|?*''' def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = _uppercase_uppercase_re.sub(R'''\1_\2''' , _a ) lowerCAmelCase__ : List[Any] = _lowercase_uppercase_re.sub(R'''\1_\2''' , _a ) return name.lower() def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : List[str] = _single_underscore_re.split(_a ) lowerCAmelCase__ : Any = [_multiple_underscores_re.split(_a ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_a ) if n != '''''' ) def lowerCamelCase_ ( _a ): """simple docstring""" if os.path.basename(_a ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(_a ) def lowerCamelCase_ ( _a , _a ): """simple docstring""" if os.path.basename(_a ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , _a ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(_a )}-{split}' def lowerCamelCase_ ( _a , _a , _a , _a=None ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = filename_prefix_for_split(_a , _a ) if filetype_suffix: prefix += f'.{filetype_suffix}' lowerCAmelCase__ : Optional[int] = os.path.join(_a , _a ) return f'{filepath}*' def lowerCamelCase_ ( _a , _a , _a , _a=None , _a=None ): """simple docstring""" lowerCAmelCase__ : List[str] = filename_prefix_for_split(_a , _a ) lowerCAmelCase__ : Optional[Any] = os.path.join(_a , _a ) if shard_lengths: lowerCAmelCase__ : Union[str, Any] = len(_a ) lowerCAmelCase__ : Tuple = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(_a )] if filetype_suffix: lowerCAmelCase__ : Optional[Any] = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: lowerCAmelCase__ : Tuple = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
131
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( _lowercase): _a : Union[str, Any] = ['''image_processor''', '''tokenizer'''] _a : List[Any] = '''ChineseCLIPImageProcessor''' _a : List[Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Dict=None , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> List[str]: lowerCAmelCase__ : Dict = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Union[str, Any] = kwargs.pop('''feature_extractor''' ) lowerCAmelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = self.image_processor def __call__( self : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : List[Any]=None , **_SCREAMING_SNAKE_CASE : Dict )-> List[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCAmelCase__ : List[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: lowerCAmelCase__ : Dict = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowerCAmelCase__ : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict , *_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : Optional[int] )-> Any: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str , *_SCREAMING_SNAKE_CASE : Tuple , **_SCREAMING_SNAKE_CASE : Any )-> int: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: lowerCAmelCase__ : Any = self.tokenizer.model_input_names lowerCAmelCase__ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__( self : str )-> List[str]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class
131
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''post_extract_proj''': '''feature_projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.upsample.0''': '''encoder.upsample.projection''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __lowerCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Any ): for attribute in key.split("." ): a__: Union[str, Any] =getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: a__: int =getattr(__magic_name__ , __magic_name__ ).shape else: a__: Dict =hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": a__: int =value elif weight_type == "weight_g": a__: Tuple =value elif weight_type == "weight_v": a__: Tuple =value elif weight_type == "bias": a__: int =value else: a__: str =value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): a__: Optional[int] =[] a__: Optional[Any] =fairseq_model.state_dict() a__: Tuple =hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): a__: Union[str, Any] =False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == "group" , ) a__: str =True else: for key, mapped_key in MAPPING.items(): a__: List[str] ="sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a__: int =True if "*" in mapped_key: a__: List[Any] =name.split(__magic_name__ )[0].split("." )[-2] a__: Union[str, Any] =mapped_key.replace("*" , __magic_name__ ) if "weight_g" in name: a__: List[str] ="weight_g" elif "weight_v" in name: a__: Dict ="weight_v" elif "weight" in name: a__: Dict ="weight" elif "bias" in name: a__: Optional[Any] ="bias" else: a__: Tuple =None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowerCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : str ): a__: Dict =full_name.split("conv_layers." )[-1] a__: Any =name.split("." ) a__: Dict =int(items[0] ) a__: Tuple =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) a__: Union[str, Any] =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) a__: Optional[Any] =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) a__: Dict =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) a__: Dict =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : List[Any] , __magic_name__ : Any ): a__: int =SEWConfig() if is_finetuned: a__: Optional[int] =model.wav_encoder.wav_model.cfg else: a__: Any =model.cfg a__: Optional[Any] =fs_config.conv_bias a__: Dict =eval(fs_config.conv_feature_layers ) a__: Dict =[x[0] for x in conv_layers] a__: List[Any] =[x[1] for x in conv_layers] a__: Tuple =[x[2] for x in conv_layers] a__: Optional[int] ="gelu" a__: List[Any] ="layer" if fs_config.extractor_mode == "layer_norm" else "group" a__: Optional[int] =0.0 a__: Dict =fs_config.activation_fn.name a__: int =fs_config.encoder_embed_dim a__: List[str] =0.02 a__: Optional[Any] =fs_config.encoder_ffn_embed_dim a__: Tuple =1e-5 a__: Tuple =fs_config.encoder_layerdrop a__: int =fs_config.encoder_attention_heads a__: Dict =fs_config.conv_pos_groups a__: Optional[Any] =fs_config.conv_pos a__: Any =len(__magic_name__ ) a__: Optional[Any] =fs_config.encoder_layers a__: Tuple =fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: a__: List[str] =model.cfg a__: Optional[int] =fs_config.final_dropout a__: Any =fs_config.layerdrop a__: Optional[Any] =fs_config.activation_dropout a__: int =fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 a__: Optional[Any] =fs_config.attention_dropout a__: List[str] =fs_config.dropout_input a__: Optional[Any] =fs_config.dropout a__: List[Any] =fs_config.mask_channel_length a__: Optional[int] =fs_config.mask_channel_prob a__: Union[str, Any] =fs_config.mask_length a__: Optional[int] =fs_config.mask_prob a__: int ="Wav2Vec2FeatureExtractor" a__: Any ="Wav2Vec2CTCTokenizer" return config @torch.no_grad() def __lowerCamelCase ( __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Dict=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[str]=True ): if is_finetuned: a__ , a__ , a__: Any =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a__ , a__ , a__: List[str] =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: a__: List[str] =SEWConfig.from_pretrained(__magic_name__ ) else: a__: List[Any] =convert_config(model[0] , __magic_name__ ) a__: Tuple =model[0].eval() a__: int =True if config.feat_extract_norm == "layer" else False a__: Dict =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__magic_name__ , return_attention_mask=__magic_name__ , ) if is_finetuned: if dict_path: a__: List[Any] =Dictionary.load(__magic_name__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__: str =target_dict.pad_index a__: Dict =target_dict.bos_index a__: Optional[int] =target_dict.pad_index a__: str =target_dict.bos_index a__: Dict =target_dict.eos_index a__: Optional[Any] =len(target_dict.symbols ) a__: Optional[int] =os.path.join(__magic_name__ , "vocab.json" ) if not os.path.isdir(__magic_name__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__magic_name__ ) ) return os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) with open(__magic_name__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , __magic_name__ ) a__: Optional[Any] =WavaVecaCTCTokenizer( __magic_name__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__magic_name__ , ) a__: str =WavaVecaProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ ) processor.save_pretrained(__magic_name__ ) a__: List[Any] =SEWForCTC(__magic_name__ ) else: a__: Dict =SEWModel(__magic_name__ ) feature_extractor.save_pretrained(__magic_name__ ) recursively_load_weights(__magic_name__ , __magic_name__ , __magic_name__ ) hf_model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCAmelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
42
import os def __lowerCamelCase ( __magic_name__ : str = "input.txt" ): with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: a__: str =[ [int(__magic_name__ ) for element in line.split("," )] for line in input_file.readlines() ] a__: int =len(__magic_name__ ) a__: int =len(matrix[0] ) a__: Optional[Any] =[[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): a__: Dict =matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): a__: int =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): a__: Tuple =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): a__: Tuple =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
42
1
import random from typing import Any def __UpperCamelCase ( lowerCAmelCase__ : list ): for _ in range(len(lowerCAmelCase__ ) ): __a : Optional[Any] = random.randint(0 , len(lowerCAmelCase__ ) - 1 ) __a : Union[str, Any] = random.randint(0 , len(lowerCAmelCase__ ) - 1 ) __a , __a : Optional[int] = data[b], data[a] return data if __name__ == "__main__": lowercase__ =[0, 1, 2, 3, 4, 5, 6, 7] lowercase__ =['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
216
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ ={ 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowercase__ ='ETAOINSHRDLCUMWFGYPBVKJXQZ' lowercase__ ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : List[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( lowerCAmelCase__ : tuple ): return x[0] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : Optional[Any] = get_letter_count(lowerCAmelCase__ ) __a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) __a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) __a : int = ''''''.join(freq_to_letter[freq] ) __a : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = get_frequency_order(lowerCAmelCase__ ) __a : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
216
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : int = original_name.split('''.''' )[0] snake_case_ : List[str] = key.split('''.''' ) snake_case_ : Union[str, Any] = int(key_list[key_list.index(_UpperCamelCase ) - 2] ) snake_case_ : List[str] = int(key_list[key_list.index(_UpperCamelCase ) - 1] ) snake_case_ : Tuple = orig_block_num - offset snake_case_ : Tuple = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : Dict = OrderedDict() snake_case_ , snake_case_ : List[Any] = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case_ : str = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case_ : Any = key[: key.find('''proj''' )] snake_case_ : List[Any] = key.replace(_UpperCamelCase , f'''patch_embeddings.{total_embed_found}.''' ) snake_case_ : Optional[int] = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case_ : Optional[Any] = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case_ : Union[str, Any] = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case_ : Optional[Any] = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case_ : Dict = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case_ : Optional[int] = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case_ : List[str] = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case_ : List[str] = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case_ : int = key.replace('''head''' , '''classifier''' ) snake_case_ : int = value return new_state_dict def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ : Dict = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : Dict = PoolFormerConfig() # set attributes based on model_name snake_case_ : Optional[int] = '''huggingface/label-files''' snake_case_ : Optional[int] = model_name[-3:] snake_case_ : Tuple = 1_000 snake_case_ : int = '''imagenet-1k-id2label.json''' snake_case_ : List[str] = (1, 1_000) # set config attributes snake_case_ : int = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : Union[str, Any] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : int = {v: k for k, v in idalabel.items()} if size == "s12": snake_case_ : List[str] = [2, 2, 6, 2] snake_case_ : Optional[int] = [64, 128, 320, 512] snake_case_ : List[str] = 4.0 snake_case_ : List[str] = 0.9 elif size == "s24": snake_case_ : Optional[int] = [4, 4, 12, 4] snake_case_ : Tuple = [64, 128, 320, 512] snake_case_ : List[Any] = 4.0 snake_case_ : Optional[int] = 0.9 elif size == "s36": snake_case_ : List[Any] = [6, 6, 18, 6] snake_case_ : List[str] = [64, 128, 320, 512] snake_case_ : Optional[Any] = 4.0 snake_case_ : Any = 1E-6 snake_case_ : Any = 0.9 elif size == "m36": snake_case_ : Union[str, Any] = [6, 6, 18, 6] snake_case_ : Union[str, Any] = [96, 192, 384, 768] snake_case_ : Optional[int] = 4.0 snake_case_ : Optional[Any] = 1E-6 snake_case_ : List[Any] = 0.95 elif size == "m48": snake_case_ : Union[str, Any] = [8, 8, 24, 8] snake_case_ : int = [96, 192, 384, 768] snake_case_ : Optional[int] = 4.0 snake_case_ : str = 1E-6 snake_case_ : Optional[Any] = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor snake_case_ : Optional[Any] = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) # Prepare image snake_case_ : Union[str, Any] = prepare_img() snake_case_ : str = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict snake_case_ : Union[str, Any] = torch.load(_UpperCamelCase , map_location=torch.device('''cpu''' ) ) # rename keys snake_case_ : Any = rename_keys(_UpperCamelCase ) # create HuggingFace model and load state dict snake_case_ : List[str] = PoolFormerForImageClassification(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Define image processor snake_case_ : Union[str, Any] = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) snake_case_ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case_ : Union[str, Any] = model(_UpperCamelCase ) snake_case_ : Optional[int] = outputs.logits # define expected logit slices for different models if size == "s12": snake_case_ : str = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": snake_case_ : Optional[Any] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": snake_case_ : int = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": snake_case_ : Optional[Any] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": snake_case_ : Any = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase_ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
279
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = [] snake_case_ : List[str] = [] for i in range(self.num_layers ): snake_case_ : Tuple = self.in_channels if i == 0 else self.out_channels snake_case_ : Dict = FlaxResnetBlockaD( in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : str = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : Union[str, Any] = resnets snake_case_ : Union[str, Any] = attentions if self.add_downsample: snake_case_ : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> List[Any]: '''simple docstring''' snake_case_ : str = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case_ : Optional[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : List[str] = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : Union[str, Any] = self.downsamplers_a(__magic_name__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = [] for i in range(self.num_layers ): snake_case_ : List[Any] = self.in_channels if i == 0 else self.out_channels snake_case_ : Tuple = FlaxResnetBlockaD( in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Dict = resnets if self.add_downsample: snake_case_ : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = () for resnet in self.resnets: snake_case_ : List[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : str = self.downsamplers_a(__magic_name__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = [] for i in range(self.num_layers ): snake_case_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : List[Any] = resnets snake_case_ : Tuple = attentions if self.add_upsample: snake_case_ : List[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Union[str, Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case_ : Dict = res_hidden_states_tuple[-1] snake_case_ : List[Any] = res_hidden_states_tuple[:-1] snake_case_ : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Tuple = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) if self.add_upsample: snake_case_ : Optional[Any] = self.upsamplers_a(__magic_name__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = [] for i in range(self.num_layers ): snake_case_ : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Tuple = resnets if self.add_upsample: snake_case_ : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states snake_case_ : Tuple = res_hidden_states_tuple[-1] snake_case_ : List[Any] = res_hidden_states_tuple[:-1] snake_case_ : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Optional[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) if self.add_upsample: snake_case_ : Optional[int] = self.upsamplers_a(__magic_name__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Dict = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case_ : int = [] for _ in range(self.num_layers ): snake_case_ : str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Optional[Any] = resnets snake_case_ : Optional[int] = attentions def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.resnets[0](__magic_name__ , __magic_name__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : Union[str, Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) return hidden_states
279
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''▁''' lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase_ = { '''facebook/xglm-564M''': 20_48, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : int="<s>" , _UpperCamelCase : int="</s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Tuple="<s>" , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<pad>" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Optional[Any] , ) ->None: snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case_ = 7 snake_case_ = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] snake_case_ = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} snake_case_ = len(self.sp_model ) snake_case_ = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_UpperCamelCase ) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) ->str: snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , _UpperCamelCase : Union[str, Any] ) ->Optional[Any]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case__( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case_ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case__( self : int ) ->Union[str, Any]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case__( self : Any ) ->int: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__( self : int , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[Any] ) ->Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__( self : Dict , _UpperCamelCase : List[str] ) ->int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__( self : Tuple , _UpperCamelCase : int ) ->str: snake_case_ = ''''''.join(_UpperCamelCase ).replace(_UpperCamelCase , ''' ''' ).strip() return out_string def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
8
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class __a : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a=0.2 , _a=0.2 ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Tuple = bp_numa SCREAMING_SNAKE_CASE__ : int = bp_numa SCREAMING_SNAKE_CASE__ : int = conva_get[:2] SCREAMING_SNAKE_CASE__ : int = conva_get[2] SCREAMING_SNAKE_CASE__ : List[str] = size_pa SCREAMING_SNAKE_CASE__ : Optional[Any] = rate_w SCREAMING_SNAKE_CASE__ : Dict = rate_t SCREAMING_SNAKE_CASE__ : Tuple = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : List[Any] = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : int = -2 * np.random.rand(self.num_bpa ) + 1 def _a ( self , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(_a , """wb""" ) as f: pickle.dump(_a , _a ) print(f'''Model saved: {save_path}''' ) @classmethod def _a ( cls , _a ) -> int: """simple docstring""" with open(_a , """rb""" ) as f: SCREAMING_SNAKE_CASE__ : str = pickle.load(_a ) # noqa: S301 SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_dic.get("""size_pooling1""" ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get("""num_bp1""" ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get("""num_bp2""" ) SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get("""num_bp3""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_dic.get("""rate_weight""" ) SCREAMING_SNAKE_CASE__ : int = model_dic.get("""rate_thre""" ) # create model instance SCREAMING_SNAKE_CASE__ : List[Any] = CNN(_a , _a , _a , _a , _a , _a , _a ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get("""w_conv1""" ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get("""wkj""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get("""vji""" ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get("""thre_conv1""" ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get("""thre_bp2""" ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get("""thre_bp3""" ) return conv_ins def _a ( self , _a ) -> str: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def _a ( self , _a ) -> int: """simple docstring""" return round(_a , 3 ) def _a ( self , _a , _a , _a , _a , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = convs[0] SCREAMING_SNAKE_CASE__ : Optional[int] = convs[1] SCREAMING_SNAKE_CASE__ : Tuple = np.shape(_a )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _a ): for j_focus in range(0 , size_data - size_conv + 1 , _a ): SCREAMING_SNAKE_CASE__ : Any = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_a ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : str = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_a ): SCREAMING_SNAKE_CASE__ : List[Any] = [] for i_focus in range(len(_a ) ): SCREAMING_SNAKE_CASE__ : str = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_a ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asmatrix(_a ).reshape( _a , _a ) data_featuremap.append(_a ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : Any = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_a ) ) SCREAMING_SNAKE_CASE__ : int = np.asarray(_a ) return focus_list, data_featuremap def _a ( self , _a , _a , _a="average_pool" ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : Dict = [] for i_map in range(len(_a ) ): SCREAMING_SNAKE_CASE__ : List[Any] = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : Any = [] for i_focus in range(0 , _a , _a ): for j_focus in range(0 , _a , _a ): SCREAMING_SNAKE_CASE__ : Tuple = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_a ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_a ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_a ).reshape(_a , _a ) featuremap_pooled.append(_a ) return featuremap_pooled def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [] for i in range(len(_a ) ): SCREAMING_SNAKE_CASE__ : int = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Dict = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(_a ) SCREAMING_SNAKE_CASE__ : Any = np.asarray(_a ) return data_expanded def _a ( self , _a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = np.shape(_a ) SCREAMING_SNAKE_CASE__ : Any = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _a ( self , _a , _a , _a , _a , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Any = 0 for i_map in range(_a ): SCREAMING_SNAKE_CASE__ : Dict = np.ones((size_map, size_map) ) for i in range(0 , _a , _a ): for j in range(0 , _a , _a ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Any = i_pool + 1 SCREAMING_SNAKE_CASE__ : int = np.multiply( _a , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_a ) return pd_all def _a ( self , _a , _a , _a , _a , _a , _a=bool ) -> List[Any]: """simple docstring""" print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(_a )) ) print((""" - - Shape: Teach_Data """, np.shape(_a )) ) SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = 10_000 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(_a ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : List[str] = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : int = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.convolute( _a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_a , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Dict = np.shape(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._expand(_a ) SCREAMING_SNAKE_CASE__ : int = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_a , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Dict = self.sig(_a ) SCREAMING_SNAKE_CASE__ : Dict = np.dot(_a , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_a ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_a , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : Dict = np.multiply( np.dot(_a , self.wkj ) , np.multiply(_a , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[str] = np.dot(_a , self.vji ) SCREAMING_SNAKE_CASE__ : List[str] = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : Any = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Dict = self._calculate_gradient_from_pool( _a , _a , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : str = self.rate_weight * np.dot(_a , _a ) SCREAMING_SNAKE_CASE__ : str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : int = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : Dict = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : List[str] = rp + 1 SCREAMING_SNAKE_CASE__ : Optional[int] = error_count / patterns all_mse.append(_a ) def draw_error(): SCREAMING_SNAKE_CASE__ : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_a , """+-""" ) plt.plot(_a , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(_a , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _a ( self , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(_a )) ) for p in range(len(_a ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : List[Any] = self.pooling(_a , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_a ) SCREAMING_SNAKE_CASE__ : Dict = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : List[Any] = self.sig(_a ) SCREAMING_SNAKE_CASE__ : Dict = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_a ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : int = [list(map(self.do_round , _a ) ) for each in produce_out] return np.asarray(_a ) def _a ( self , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = np.asmatrix(_a ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.convolute( _a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Tuple = self.pooling(_a , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
56
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example a :str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a :Dict = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _lowercase ( __lowerCAmelCase ) -> list[list[int]]: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE__ : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours SCREAMING_SNAKE_CASE__ : List[str] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__lowerCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__lowerCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. SCREAMING_SNAKE_CASE__ : Dict = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__lowerCAmelCase ) return next_generation def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> list[Image.Image]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for _ in range(__lowerCAmelCase ): # Create output image SCREAMING_SNAKE_CASE__ : int = Image.new("""RGB""" , (len(cells[0] ), len(__lowerCAmelCase )) ) SCREAMING_SNAKE_CASE__ : List[Any] = img.load() # Save cells to image for x in range(len(__lowerCAmelCase ) ): for y in range(len(cells[0] ) ): SCREAMING_SNAKE_CASE__ : str = 255 - cells[y][x] * 255 SCREAMING_SNAKE_CASE__ : Optional[Any] = (colour, colour, colour) # Save image images.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_generation(__lowerCAmelCase ) return images if __name__ == "__main__": a :Dict = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
56
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCAmelCase__ (snake_case__ : int = 8 ): """simple docstring""" _snake_case : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(snake_case__ ) for _ in range(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : int ): """simple docstring""" i -= len(snake_case__ ) _snake_case : List[Any] = i // 3 _snake_case : Union[str, Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _snake_case : Optional[Any] = ( chars_incl + random(snake_case__ , quotient + remainder ) + random(snake_case__ , snake_case__ ) + random(snake_case__ , snake_case__ ) ) _snake_case : Union[str, Any] = list(snake_case__ ) shuffle(snake_case__ ) return "".join(snake_case__ ) # random is a generalised function for letters, characters and numbers def UpperCAmelCase__ (snake_case__ : str , snake_case__ : int ): """simple docstring""" return "".join(secrets.choice(snake_case__ ) for _ in range(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): """simple docstring""" pass # Put your code here... def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): """simple docstring""" pass # Put your code here... def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" pass # Put your code here... def UpperCAmelCase__ (snake_case__ : str , snake_case__ : int = 8 ): """simple docstring""" if len(snake_case__ ) < min_length: # Your Password must be at least 8 characters long return False _snake_case : Any = any(char in ascii_uppercase for char in password ) _snake_case : List[Any] = any(char in ascii_lowercase for char in password ) _snake_case : Optional[int] = any(char in digits for char in password ) _snake_case : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = int(input("""Please indicate the max length of your password: """ ).strip() ) _snake_case : Optional[Any] = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(snake_case__ ) ) print( """Alternative Password generated:""" , alternative_password_generator(snake_case__ , snake_case__ ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
359
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A_ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) A_ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = """https://pypi.org/pypi/diffusers/json""" _snake_case : Optional[int] = json.loads(request.urlopen(snake_case__ ).read() )["""releases"""].keys() return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : str = Path(snake_case__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _snake_case : List[Any] = Path(snake_case__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : List[Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : Union[str, Any] = f.read() # Imports of the form `import .xxx` _snake_case : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" _snake_case : Tuple = False _snake_case : Any = [module_file] _snake_case : str = [] # Let's recurse through all relative imports while not no_change: _snake_case : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case__ ) ) _snake_case : Dict = Path(snake_case__ ).parent _snake_case : Dict = [str(module_path / m ) for m in new_imports] _snake_case : Tuple = [f for f in new_import_files if f not in all_relative_imports] _snake_case : str = [F"{f}.py" for f in new_import_files] _snake_case : Dict = len(snake_case__ ) == 0 all_relative_imports.extend(snake_case__ ) return all_relative_imports def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : int = f.read() # Imports of the form `import xxx` _snake_case : Tuple = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Only keep the top-level module _snake_case : Tuple = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all _snake_case : Any = list(set(snake_case__ ) ) _snake_case : int = [] for imp in imports: try: importlib.import_module(snake_case__ ) except ImportError: missing_packages.append(snake_case__ ) if len(snake_case__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`" ) return get_relative_imports(snake_case__ ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = module_path.replace(os.path.sep , """.""" ) _snake_case : int = importlib.import_module(snake_case__ ) if class_name is None: return find_pipeline_class(snake_case__ ) return getattr(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" from ..pipelines import DiffusionPipeline _snake_case : Tuple = dict(inspect.getmembers(snake_case__ , inspect.isclass ) ) _snake_case : Dict = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) _snake_case : List[str] = cls return pipeline_class def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ): """simple docstring""" _snake_case : List[str] = str(snake_case__ ) _snake_case : Optional[Any] = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ): _snake_case : List[str] = module_file_or_url _snake_case : Optional[Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: _snake_case : Tuple = get_diffusers_versions() # cut ".dev0" _snake_case : Union[str, Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: _snake_case : int = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: _snake_case : Optional[Any] = F"v{revision}" elif revision == "main": _snake_case : int = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub _snake_case : List[str] = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ ) try: _snake_case : Dict = cached_download( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Union[str, Any] = """git""" _snake_case : str = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached _snake_case : str = hf_hub_download( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Optional[Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment _snake_case : int = check_imports(snake_case__ ) # Now we move the module inside our cached dynamic modules. _snake_case : Optional[int] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case__ ) _snake_case : Any = Path(snake_case__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case__ , submodule_path / module_file ) for module_needed in modules_needed: _snake_case : Any = F"{module_needed}.py" shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case__ , snake_case__ ): _snake_case : Any = use_auth_token elif use_auth_token is True: _snake_case : int = HfFolder.get_token() else: _snake_case : Optional[int] = None _snake_case : int = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _snake_case : int = submodule_path / commit_hash _snake_case : Optional[int] = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case__ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case__ , F"{module_needed}.py" , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return os.path.join(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : Tuple , ): """simple docstring""" _snake_case : Union[str, Any] = get_cached_module_file( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return get_class_in_module(snake_case__ , final_module.replace(""".py""" , """""" ) )
132
0
'''simple docstring''' from __future__ import annotations class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(lowerCAmelCase_ ) != 0: _snake_case = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase_ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase_ , (int, float) ): raise error _snake_case = rows else: _snake_case = [] def lowerCamelCase ( self ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowerCamelCase ( self ): """simple docstring""" return len(self.rows ) @property def lowerCamelCase ( self ): """simple docstring""" return len(self.rows[0] ) @property def lowerCamelCase ( self ): """simple docstring""" return (self.num_rows, self.num_columns) @property def lowerCamelCase ( self ): """simple docstring""" return self.order[0] == self.order[1] def lowerCamelCase ( self ): """simple docstring""" _snake_case = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowerCamelCase ( self ): """simple docstring""" return bool(self.determinant() ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase_ ).determinant() def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase_ , lowerCAmelCase_ ) return -1 * self.get_minor(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" return Matrix( [ [self.get_minor(lowerCAmelCase_ , lowerCAmelCase_ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowerCamelCase ( self ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self ): """simple docstring""" return str(self.rows ) def __str__( self ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(lowerCAmelCase_ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise type_error for value in row: if not isinstance(lowerCAmelCase_ , (int, float) ): raise type_error if len(lowerCAmelCase_ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(lowerCAmelCase_ ) else: _snake_case = self.rows[0:position] + [row] + self.rows[position:] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise type_error for value in column: if not isinstance(lowerCAmelCase_ , (int, float) ): raise type_error if len(lowerCAmelCase_ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: _snake_case = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _snake_case = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return NotImplemented return self.rows == other.rows def __ne__( self , lowerCAmelCase_ ): """simple docstring""" return not self == other def __neg__( self ): """simple docstring""" return self * -1 def __add__( self , lowerCAmelCase_ ): """simple docstring""" if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , lowerCAmelCase_ ): """simple docstring""" if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , lowerCAmelCase_ ): """simple docstring""" if isinstance(lowerCAmelCase_ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase_ , lowerCAmelCase_ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) _snake_case = self for _ in range(other - 1 ): result *= self return result @classmethod def lowerCamelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCAmelCase_ ).to(lowerCAmelCase_ ) _snake_case = AutoTokenizer.from_pretrained('google/mt5-small' ) _snake_case = tokenizer('Hello there' , return_tensors='pt' ).input_ids _snake_case = tokenizer('Hi I am' , return_tensors='pt' ).input_ids _snake_case = model(input_ids.to(lowerCAmelCase_ ) , labels=labels.to(lowerCAmelCase_ ) ).loss _snake_case = -(labels.shape[-1] * loss.item()) _snake_case = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
42
1
'''simple docstring''' def _A ( A__ = 1000 ): """simple docstring""" __lowercase , __lowercase = 1, 1 __lowercase = 2 while True: __lowercase = 0 __lowercase = fa + fa __lowercase , __lowercase = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
52
'''simple docstring''' import string def _A ( A__ ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __lowercase = '''''' for symbol in message: if symbol in string.ascii_uppercase: __lowercase = string.ascii_uppercase.find(A__ ) __lowercase = num - key if num < 0: __lowercase = num + len(string.ascii_uppercase ) __lowercase = translated + string.ascii_uppercase[num] else: __lowercase = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def _A ( ): """simple docstring""" __lowercase = input('''Encrypted message: ''' ) __lowercase = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
52
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = parent snake_case_ : Tuple = batch_size snake_case_ : List[str] = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[Any] = use_attention_mask snake_case_ : Optional[int] = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : Any = vocab_size snake_case_ : str = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : List[str] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : Tuple = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : Union[str, Any] = num_choices def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : str = None if self.use_attention_mask: snake_case_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Dict = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__magic_name__ , ) return config, input_ids, attention_mask def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : Optional[int] = config_and_inputs snake_case_ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : List[str] = FlaxDistilBertModelTester(self ) @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Any = model_class_name.from_pretrained('''distilbert-base-uncased''' ) snake_case_ : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) snake_case_ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case_ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ )[0] snake_case_ : Optional[int] = (1, 11, 768) self.assertEqual(output.shape , __magic_name__ ) snake_case_ : Union[str, Any] = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) )
279
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''megatron-bert''' def __init__(self , __magic_name__=2_9056 , __magic_name__=1024 , __magic_name__=24 , __magic_name__=16 , __magic_name__=4096 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=0 , __magic_name__="absolute" , __magic_name__=True , **__magic_name__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) snake_case_ : Union[str, Any] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : List[str] = intermediate_size snake_case_ : Dict = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : int = initializer_range snake_case_ : int = layer_norm_eps snake_case_ : List[str] = position_embedding_type snake_case_ : Dict = use_cache
279
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a__ : Tuple = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
243
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : List[Any] = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
243
1
'''simple docstring''' import re def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' snake_case_ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(__UpperCAmelCase, __UpperCAmelCase ) ) if __name__ == "__main__": a : Any = '0094702343221' print(is_sri_lankan_phone_number(phone))
56
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def A_ ( *lowercase_ : int , **lowercase_ : str ): pass @is_pipeline_test @require_vision @require_timm @require_torch class a ( unittest.TestCase ): snake_case_ = MODEL_FOR_OBJECT_DETECTION_MAPPING def A_ ( self : Any , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str] ): snake_case_ = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def A_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : int ): snake_case_ = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, } , ) import datasets snake_case_ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) snake_case_ = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] snake_case_ = object_detector(lowercase_ , threshold=0.0 ) self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def A_ ( self : int ): pass @require_torch def A_ ( self : Tuple ): snake_case_ = '''hf-internal-testing/tiny-detr-mobilenetsv3''' snake_case_ = AutoModelForObjectDetection.from_pretrained(lowercase_ ) snake_case_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) snake_case_ = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] , ) @require_torch @slow def A_ ( self : Optional[int] ): snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = AutoModelForObjectDetection.from_pretrained(lowercase_ ) snake_case_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) snake_case_ = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def A_ ( self : Tuple ): snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = pipeline('''object-detection''' , model=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def A_ ( self : str ): snake_case_ = 0.9985 snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = pipeline('''object-detection''' , model=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) @require_torch @require_pytesseract @slow def A_ ( self : Dict ): snake_case_ = '''Narsil/layoutlmv3-finetuned-funsd''' snake_case_ = 0.9993 snake_case_ = pipeline('''object-detection''' , model=lowercase_ , threshold=lowercase_ ) snake_case_ = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] , )
56
1
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( ) -> Iterator[int]: A_ = 2 while True: if is_prime(UpperCAmelCase__ ): yield num num += 1 def UpperCAmelCase__ ( UpperCAmelCase__ = 2_00_00_00 ) -> int: return sum(takewhile(lambda UpperCAmelCase__ : x < n, prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
101
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = 42 class A__ ( nn.Module ): lowercase = 42 lowercase = (16, 32, 96, 256) lowercase = jnp.floataa def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A_ = [] for i in range(len(self.block_out_channels ) - 1 ): A_ = self.block_out_channels[i] A_ = self.block_out_channels[i + 1] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = blocks A_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.conv_in(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) for block in self.blocks: A_ = block(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return embedding @flax_register_to_config class A__ ( nn.Module , _snake_case , _snake_case ): lowercase = 32 lowercase = 4 lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase = False lowercase = (320, 640, 1_280, 1_280) lowercase = 2 lowercase = 8 lowercase = None lowercase = 1_280 lowercase = 0.0 lowercase = False lowercase = jnp.floataa lowercase = True lowercase = 0 lowercase = "rgb" lowercase = (16, 32, 96, 256) def snake_case_ ( self , UpperCamelCase__ ) -> FrozenDict: '''simple docstring''' # init input tensors A_ = (1, self.in_channels, self.sample_size, self.sample_size) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ = jnp.ones((1,) , dtype=jnp.intaa ) A_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ = (1, 3, self.sample_size * 8, self.sample_size * 8) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ , A_ = jax.random.split(UpperCamelCase__ ) A_ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.block_out_channels A_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ = self.num_attention_heads or self.attention_head_dim # input A_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) A_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A_ = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (num_attention_heads,) * len(self.down_block_types ) # down A_ = [] A_ = [] A_ = block_out_channels[0] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A_ = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) for _ in range(self.layers_per_block ): A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) if not is_final_block: A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) A_ = down_blocks A_ = controlnet_down_blocks # mid A_ = block_out_channels[-1] A_ = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1.0 , UpperCamelCase__ = True , UpperCamelCase__ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' A_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": A_ = jnp.flip(UpperCamelCase__ , axis=1 ) # 1. time if not isinstance(UpperCamelCase__ , jnp.ndarray ): A_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ = timesteps.astype(dtype=jnp.floataa ) A_ = jnp.expand_dims(UpperCamelCase__ , 0 ) A_ = self.time_proj(UpperCamelCase__ ) A_ = self.time_embedding(UpperCamelCase__ ) # 2. pre-process A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.conv_in(UpperCamelCase__ ) A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.controlnet_cond_embedding(UpperCamelCase__ ) sample += controlnet_cond # 3. down A_ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) # 5. contronet blocks A_ = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ): A_ = controlnet_block(UpperCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) A_ = controlnet_down_block_res_samples A_ = self.controlnet_mid_block(UpperCamelCase__ ) # 6. scaling A_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
101
1